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ABSTRACT

Similarities between Walrasian equilibrium in quasilinear models of exchange and cor-

related equilibrium in normal form games are demonstrated via their common conju-

gate duality properties. Similarities extend to tâtonnement-like methods of convergence

in games. Important contrasts related to decentralization are exhibited between tâton-

nement and utility maximizing price-taking formulations of fictitious play as algorithms

for finding the minimum of a convex optimization problem that characterizes conver-

gence to correlated equilibrium.
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1 INTRODUCTION

The well-known equivalence between the Minimax Theorem for two-person zero-sum games

and linear programming marks the connection between game theory and modern duality

(Gale, Kuhn, Tucker [1951]). More recently, correlated equilibrium (Aumann [1974]) has been

characterized as a minimax (Hart and Schmeidler [1989]) or linear programming problem

(Nau and McCardle [1990] and Myerson [1997]). An earlier expression of duality is the relation

between prices and quantities in the Walrasian model of general equilibrium. When utilities

are quasilinear, price-taking, i.e., Walrasian, equilibria can be characterized as the primal and

dual solutions to a linear programming problem (having a finite number of constraints and,

when commodities are divisible, an infinite number of activities) or a minimax problem. (See,

below). These observations frame the objective of this paper: to formulate a game from the

perspective of the (quasilinear) general equilibrium model of exchange and to show that cor-

related equilibria can be regarded as price-taking.

More specifically, probabilistic play of a game are prices, deviations are trades and the satis-

faction of incentive compatibility constraints is the market-clearing condition for price-taking

equilibrium in games. The bridge between demand functions in economics and best response

functions in games is built on their conjugate duality properties employed in convex analy-

sis. Correlated equilibrium is demonstrated as an application of Fenchel’s Duality Theorem

(Fenchel [1951], Rockafellar [1970]). As added support for this objective, connections between

tâtonnement, a method of convergence to Walrasian equilibrium, and fictitious play methods

of convergence to correlated equilibrium in games (Foster and Vohra [1997], Fudenberg and

Levine [1998], Hart and Mas-Colell [2000]) are demonstrated.

The overall goal is to formalize common features of price-taking in economics and games

that will also serve to delineate their differences. For example, the property of prices in an ex-

change economy that they describe a condition in which aggregate excess demands are zero

can be said to describe a pre-condition for equilibrium. The convention is that the desired

exchanges will take place once the pre-condition is met, after which no one wants to trade.

In a game, there is no pre-condition — equilibrium prices are such that no individual wants to

trade/deviate. By itself, this difference is not dispositive: equilibrium in an exchange economy

can be readily redefined to satisfy the stronger condition that no one wants to trade. (See Re-

mark 2, below.) Nevertheless, the different descriptions of equilibrium are a point of departure

as to how disequilibrium is modeled and convergence is achieved.
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Convergence in an exchange economy focuses on prices adjusting to the infeasibility of ag-

gregate excess demands until they satisfy the equilibrium pre-condition of feasibility. In a

game, all plays and deviations from them are feasible and convergence necessarily leads from

one feasible outcome to another. To accommodate the different approaches to feasibility two

(price-quantity) dualities will be used to analyze games, called (E) for ‘exchange’ and (F) for

‘fictitious play.’ The E-duality for games is designed to mimic the price quantity duality in

economics: everyone faces the same prices, trades in the same ‘commodity’ space, and price

adjustments focus on the sum of excess demands, as in the economic model of exchange. This

is in contrast to the F-duality where price adjustments are based on the product of excess de-

mands, as in the game-theoretic algorithm of fictitious play. The dualities are formally equiv-

alent: either can be used to characterize and demonstrate the existence of correlated equi-

librium and either imply, with suitable modifications, convergence to correlated equilibrium.

However, these two dualities for games exhibit contrasting properties when compared to tâ-

tonnement in exchange.

Tâtonnement in economic models expresses the informational economy of the price sys-

tem; namely, individuals need only know the current prices of commodities and their own

utilities to make their utility maximizing choices. Moreover, price changes are commodity-

specific in the sense that adjustments to the price of any commodity depends only on that

commodity’s excess demands. But in the E-duality for games, excess demands are defined

by the utility consequences of one’s deviations; hence, excess demand reducing price adjust-

ments are based on utilities. Therefore, they do not exhibit the same informational economy

as tâtonnement in economics. In addition, prices changes for one n-tuple of individual devia-

tions/trades may depend on excess demands in all the others.

The F-duality for games follows tâtonnement in economics: it is trades/deviations them-

selves, rather than their utility consequences, which play the role of excess demands. When

combined with fictitious play, however, it does more. The informational economy of tâton-

nement in economics is subject to an obvious qualification. Since they are price-takers, indi-

viduals cannot change prices. This calls for another entity having knowledge of aggregate ex-

cess demands, often referred to as an auctioneer, to implement price changes. Consequently,

tâtonnement in economics is not completely decentralized (or, in the language of computer

algorithms, not completely distributed).

This contrasts with fictitious play (and the F-duality) for games in which, since prices are

based on previous choices, price changes emerge autonomously as the updating of those obser-

vations. In other words, fictitious play offers a more decentralized description of price adjust-
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ment in games than does tâtonnement in economics. (This more complete decentralization

imposes considerable observational and record-keeping burdens on individuals that could,

under certain conditions, be more efficiently discharged by a central authority responsible for

collecting and disseminating that information.)

Fictitious play can include histories of simultaneous play consistent with Aumann’s exten-

sion of Nash’s non-cooperative equilibrium. The need for further modification is based on the

well-known fact that best responses in a game cannot be assumed to be continuous functions

of prices/probabilities. This problem is avoided in economics because standard treatments

of tâtonnement assume excess demands vary continuously with prices. With differentiability

and quasi-linearity, tâtonnement corresponds to a gradient method for finding equilibrium

as the minimum of a convex function. As illustrated, below, discontinuities in price-taking

utility maximizing demands — resulting, for example, from indivisible commodities — cause

problems for convergence in economic models of exchange. They can be cured by modifying

tâtonnement to keep track of time and the history of previous trades, i.e., to look more like

fictitious play.

Further modification of fictitious play in games relies on various methods of smoothing to

eliminate discontinuities. The formulation adopted, below, uses a canonical quadratic cost

method for converting non-differentiable into differentiable optimization problems. In the F-

duality, price-taking utility maximization reproduces Hart and Mas-Colell’s ‘regret-matching.’

Further, by extending a finite player game to a population with a continuum of individuals of

each type — which is especially appropriate for the price-taking hypothesis that single indi-

viduals would have no influence on prices, a somewhat stronger version of population con-

vergence to correlated equilibrium is demonstrated. Hence, tâtonnement-like conclusions in

E-duality, where price changes require an Auctioneer’s active participation (see the need for a

projection mapping in Section 5.3), are replaced by price changes in the F-duality emerging

directly from individuals’ desires to exploit perceived profit opportunities.

The following section introduces the conjugate duality framework for price-taking equilib-

rium in a quasilinear exchange economy. This is the model for characterization and existence

of correlated equilibrium, using the E-duality, in Section 3. Differences in efficiency proper-

ties between economics and games are characterized and discussed in Section 4. Section 5

is devoted to tâtonnement convergence, both in economics and games. Second 6 introduces

the F-duality, autonomous models of price adjustment provided by randomized fictitious play,

the formulation of regret-matching as utility maximization and its convergence properties in

both the finite and population models of a game. This is followed by a Concluding Remark. A

polyhedral version of Fenchel’s Duality Theorem is stated in the Appendix.
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2 PRICE-TAKING EQUILIBRIUM IN EXCHANGE

The purpose of this section is to highlight features of price-taking equilibrium with quasilin-

earity as a template for games.

2.1 MODEL

The characteristics of individual i are defined by the utility function for (non-money) com-

modities,

νi :R`→R∪{−∞}. (2.1.1)

The characteristics include the set of trades i can feasibly make, defined by

Zi := {zi : νi (zi )>−∞}⊂R`. (2.1.2)

Denote by 0 the zero element of R`. Assume throughout that

• 0 ∈ Zi and νi (0) = 0

• Zi is compact

• νi is continuous on Zi .

In addition to trades zi in (non-money) commodities, there is a “money” commodity, mi ∈R.

The utility of (zi ,mi ) is of the quasilinear form

νi (zi ) +mi . (2.1.3)

Since the money commodity enters each individual’s utility in the same way, the data of quasi-

linear exchange economy can be summarized as

E = 〈νi 〉 := (ν1,ν2, . . . ,νn ). (2.1.4)

The smallest concave function greater than or equal to νi is

bνi (zi ) := sup
¦∑

k

λkνi (z
k
i ) :

∑

k

λk z k
i = zi ,λk ≥ 0,

∑

k

λk = 1
©

. (2.1.5)

Hence,
ÒZi =

¦∑

k

λk z k
i : z k

i ∈ Zi ,λk ≥ 0,
∑

k

λk = 1
©

(2.1.6)
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is the set of trading possibilities for bνi , and νi is concave when νi = bνi .

REMARK 1: (ADDED ASSUMPTIONS ON Zi ) Standard assumptions for E are

• Zi = ÒZi (commodities are divisible)

• 0 ∈ int Zi (individuals can trade all commodities).

When Zi is finite, commodities are indivisible, implying that bνi is polyhedral, i.e., concavi-

fication derived from a finite set. Polyhedral convexity will be a property of games, below, but

polyhedral concavity is not a standard assumption in exchange. A relevant exception is the

asssignment model. In that case, a supplier can offer one unit of a commodity personalized

to that seller and each buyer can purchase at most one unit from any seller. In comparison

to standard assumptions, above, which imply the relative interior with respect to the smallest

affine set common to all trades is

rint
�⋂

i

Zi

�

=R`,

personalization of commodities in the assignment model implies

rint
�⋂

i

Zi

�

= {0}.

Personalization of deviations/trades will also be a property of games. (Optimal solutions to the

assignment model are known to follow from the Minimax Theorem (von Neumann [1953]).)

2.2 PRICE-TAKING UTILITY MAXIMIZATION IN E

At prices p ∈R` for non-money commodities and a normalized price of 1 for the money com-

modity, the individual’s budget constraint is p · zi +mi = 0. The maximum utility achievable

at p , or indirect utility, is

sup
(zi ,mi )

{νi (zi ) +mi : p · zi +mi = 0}= sup
zi

{νi (zi )−p · zi }

=− inf
zi
{p · zi −νi (zi )}

:=−ν∗i (p )

(2.2.1)

The expression ν∗i (p ) = infzi
{p ·zi −νi (zi )} is the concave conjugate of νi . Therefore, −ν∗i (p ) is

convex.
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The demand correspondence (the argmax of −ν∗i (p )) is:

∂ ν∗i (p ) = {zi : (q −p ) · zi ≥ ν∗i (q )−ν
∗
i (p ), ∀q } (2.2.2)

When ν∗i is differentiable, ∂ ν∗i (p ) = ∇ν
∗
i (p ). With quasilinear utility the marginal utility of

money income ≡ 1. Hence, (2.2.2) is Roy’s Identity for quasilinear utility without the require-

ment that utility is differentiable.

The inverse demand correspondence for zi ∈ dom νi , i.e., the prices (if any) at which it

would be utility maximizing to choose zi , is

∂ νi (zi ) = {p : p · (yi − zi )≥ νi (yi )−νi (zi ), ∀yi }. (2.2.3)

Three descriptions of price-taking utility maximization are:

FACT 1: The following are equivalent:

• −ν∗i (p̄ ) = νi (z̄i )− p̄ · z̄i

• p̄ ∈ ∂ νi (z̄i )

• z̄i ∈ ∂ ν∗i (p̄ )

Price-taking maximization implies that if bνi (z̄i )>νi (z̄i ), there is no p at which an individual

with utility νi would choose z̄i . But maximizing choices of νi are similar to bνi in the sense that

if ∂ νi (z̄i ) 6= ;, then νi (z̄i ) = bνi (z̄i ) since p̄ ∈ ∂ νi (z̄i ) implies

ν∗i (p̄ ) = p̄ · z̄i −νi (z̄i ) = inf
zi
{p̄ · zi − bνi (zi )}. (2.2.4)

2.3 CONJUGATE DUALITY CHARACTERIZATION OF PRICE-TAKING EQUILIBRIUM IN E

The maximum gains to E facing the aggregate resource constraint z is

VE (z ) = sup
¦∑

i

νi (zi ) :
∑

i

zi = z
©

. (2.3.1)

Unlike νi (0) = 0, VE (0) ≥ 0. The inequality is strict when there are positive gains from trade

among individuals. The analog of the normalization νi (0) = 0 for E is

VE (z ) :=VE (z )−VE (0). (2.3.2)
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The conjugate of VE is

V ∗E (p ) = inf
p

�

p · z −VE (z )
	

=−sup
p

�

VE (z )−p · z
	

. (2.3.3)

Like −ν∗i (p ), −V
∗
E (p ) is convex.

Ignoring the normalization that the price of the money commodity is 1, there is no restric-

tion on p ∈R`. For purposes of symmetry, below, the absence of such restriction is formalized

by the concave indicator of R`,

P (p ) =







0 if p ∈R`,

−∞ otherwise.
(2.3.4)

Its conjugate is

P ∗(z ) = inf
p

�

p · z −P (p )
	

, (2.3.5)

Hence,P ∗(z )>−∞ if and only if z = 0.

Denote a list of individual trades as 〈zi 〉= (z1,z2, . . . , zn ). For a quasilinear model of exchange,

the Walrasian definition of equilibrium as utility maximization and market clearance is:

DEFINITION 1: (p 0,〈z 0
i 〉) is a price-taking (Walrasian) equilibrium for E = 〈νi 〉 if

• νi (z 0
i )−p 0 · z 0

i = sup(zi ,mi )

�

νi (zi ) +mi : p 0 · zi +mi = 0
	

, ∀i

•
∑

i z 0
i = 0

PROPOSITION 1: (CHARACTERIZATION)

(p 0,〈z 0
i 〉) is a price-taking equilibrium for E if and only if

∑

i z 0
i = 0 and

min
p

�

−V ∗E (p )−P (p )
	

=−V ∗E (p
0)−P (p 0) =−V ∗E (p

0) = 0.

Equivalently,
∑

i ν
∗
i (p

0) =
∑

i νi (z 0
i ).

Note the role of prices in minimizing the gains from trade. Since the opportunity to trade at

any prices implies −V ∗E (p )≥ 0, the minimum is achieved by prices encouraging E not to trade.



8

Proof. (From saddle-point to price-taking equilibrium) Let p 0 ∈ ∂ VE (0). Then

VE (z )−VE (0)≤ p 0 · z .

Let
∑

i z 0
i = 0,

∑

i νi (z 0
i ) =VE (0). Therefore, if

∑

i zi = z , then
∑

i νi (zi )≤VE (z ), and

∑

i

νi (zi )−νi (z
0
i )≤ p 0 ·

∑

i

(zi − z 0
i ) = p 0 · z .

Hence, the inequality

νi (zi )−νi (z
0
i )≤ p 0 · (zi − z 0

i ),

must hold for all i and zi . Therefore, z 0
i is utility maximizing at p 0.

(From price-taking equilibrium to saddle-point) Reverse the argument. Price-taking maxi-

mization at p 0 implies

νi (zi )−νi (z
0
i )≤ p 0 · (zi − z 0

i ),

for all i and zi , from which it is readily concluded that

∑

i

νi (z
0
i ) =VE (0),

and p 0 · z ≥VE (z )−VE (0) for all z =
∑

i zi , i.e., p 0 ∈ ∂ VE (0).

Equilibrium does not exist if

(1) ÒVE (0)>VE (0), i.e., VE is ‘not effectively concave’ at 0; or,

(2) ÒVE (0) =VE (0), but ∂ ÒVE (0) = ;, i.e., the marginal gain from trade at 0 is not bounded above.

(1) is the substantive qualification, while (2) is a more technical condition that is precluded if

0 ∈ int Z . An illustration of (2) is:

EXAMPLE 1 : A single individual economy with Zi = Z = [0,1] and νi (z ) = ν(z ) = 2z 1/2, z ∈
Z . (Here 0 = 0.) The directional derivative of ν at 0 is −∞ in the negative direction and

dν(z )/d z = (zi )−1/2, 0 < z < 1. Hence, the directional derivative of ν at 0 in the positive di-

rection is∞. Even though ν is concave and continuous on Z , 0 is on the boundary of Z .

From Proposition 1, existence depends entirely on ∂ VE (0) 6= ;. By construction, ∂ VE (0) =
∂ VE (0). Under standard assumptions (see Remark 1, above), the practical conditions to achieve

this requirement is νi = bνi to satisfy (1), along with a Lipschitz condition on νi to satisfy (2).



9

REMARK 2: (INDIVIDUAL MINIMAX DESCRIPTION OF EQUILIBRIUM) The definition of price-

taking equilibrium highlights prices as guides for individuals about which trades to make,

while equilibrium prices stipulate the mutual compatibility of their plans. Equilibrium in

games, below, focuses on each individual’s desire not to deviate from an as-if no-trade po-

sition. Price-taking in E can be similarly reformulated.

Let

νi (yi |zi ) := νi (zi + yi )−νi (zi ), (2.3.6)

be the change in utility to i by making the ‘deviation’ yi from zi ∈ Zi . Thus, νi (yi |0) = νi (yi ).

Price-taking utility maximization from zi is

−ν∗i (p |zi ) = sup
yi

{νi (yi |zi )−p · yi }=− inf
yi
{p · yi −νi (yi |zi )} (2.3.7)

At zi , (p̄ , ȳi ) is a saddle-point of νi (yi |zi )−p · yi for i when

−ν∗i (p |zi )≥−ν∗i (p̄ |zi ) = νi ( ȳi |zi )− p̄ · ȳi ≥ νi (yi |zi )− p̄ · yi , ∀p ,∀yi . (2.3.8)

The following individual, rather than aggregate, saddle-point condition replaces emphasis

on the mutual compatibility of demands in Proposition 1, where i ’s initial position is 0, with

an equivalent ‘stay-there’ requirement, i.e., yi = 0, with respect to i ’s finally attained position,

z 0
i , that more closely resembles the description of correlated equilibrium in games, below.

DEFINITION 2: (p 0,〈z 0
i 〉) is a price-taking equilibrium for E if

• −ν∗i (p |z
0
i )≥−ν

∗
i (p

0 |z 0
i ) = νi (0 |z 0

i )−p 0 ·0= 0≥ νi (yi |z 0
i )−p 0 · yi , ∀p ,∀yi ,∀i .

•
∑

i z 0
i = 0.

REMARK 3: (SELECTION PROBLEM) Price-taking equilibrium is often interpreted as implying

that knowledge of prices suffices for individuals to achieve equilibrium. This view is supported

when prices determine utility maximizing choices uniquely, i.e., when ν∗i is differentiable at

p 0 and therefore ∂ ν∗i (p
0) = {z 0

i }. However, when ∂ ν∗i (p
0) is not a singleton, e.g., when bνi is

‘flat’ at z 0
i and ∂ ν∗i (p

0) is a convex set in Zi , the choice in ∂ ν∗i (p
0) is critical. (With production

and constant returns to scale, this well-known problem is particularly acute.) With respect to

equilibrium, the issue is the difference between ‘is’ and ‘can be.’ The definition of price-taking



10

equilibrium ignores this problem by identifying ‘can be’ as ‘is,’ i.e., precluding choices zi ∈
∂ ν∗i (p

0), i = 1, . . . ,n , at equilibrium prices which do not sum to 0. Nevertheless, the selection

problem — which utility maximizing choice to make — is the source of continuity issues with

consequences for convergence to price-taking equilibrium in games. (See Example 2, below.)

3 PRICE-TAKING EQUILIBRIUM IN GAMES

Analysis of games (in normal form) is organized to parallel exchange.

3.1 MODEL

Let Ai denote the finite set of actions ai , i = 1, . . . ,n and

A := A1× · · ·×An . (3.1.1)

As in R`, the zero element of RA is 0. The same notation to denote prices in an exchange

economy, where p ∈R`, is used to denote prices in a game where p ∈RA . The normalized set

of such prices are the probabilities

P :=
¦

p : A→R+ :
∑

a

p (a ) = 1
©

. (3.1.2)

Similar notation will be used to define utility/payoff functions in a game. The difference is

that unlike the non-linear function νi :R`→R∪{−∞}, the utility of i is defined by vi : A→R,

an element of RA . The payoff to i from p is written as

p ·vi =
∑

a

p (a )vi (a ). (3.1.3)

A game G in normal form is a pair (〈vi 〉,A), or simply

G := 〈vi 〉, (3.1.4)

taking A as given.
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3.2 PRICE-TAKING UTILITY MAXIMIZATION IN G

This section and the following describe a reformulation of a game in the language of exchange.

3.2.1 Deviations as Trades and the E-duality

Let

Di = {di : Ai → Ai }, (3.2.1)

be the set of mappings from Ai to itself. Included in Di is the identity dId
i , i.e., dId

i (ai ) = ai , ∀ai .

Use Di to define

Di := {di : di (a ) = vi (di (ai ),a−i )−vi (ai ,a−i ), di ∈Di }. (3.2.2)

The set Di represents the utility consequences to i when deviating from Ai and choosing ac-

cording to di ∈Di instead. An alternative interpretation is that the analog of trades Zi in E is

Di in G , where di = 0 is the choice not to trade/deviate.

As in the assignment model version of E where rel int
�⋂

i Zi

�

= {0} (see Remark 1), since

each i is the only one controlling Di ,

rint
�⋂

i

Di

�

= {0}.

The indicator function of Di is

vi (di ) =







0 if di ∈Di ,

∞ if di /∈Di .
(3.2.3)

Note that vi (0) = 0, i.e., not deviating, is always feasible.

With trading opportunities given by vi , the maximum utility i can achieve at prices p (the

indirect utility/conjugate function) is

v∗i (p ) := sup
di

�

p ·di −vi (di )
	

= sup
�

p ·di : di ∈Di

	

, (3.2.4)

where

p ·di =
∑

a

p (a )di (a ). (3.2.5)
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Discreteness of Di implies that vi is not convex. Nevertheless, as the sup of linear functions,

v∗i is convex.

The demand correspondence (the argmax of v∗i (p )) is given by the subdifferential of v∗i (p ) as

∂ v∗i (p ) :=
�

d̄i : (q −p ) · d̄i ≤ v∗i (q )−v∗i (p ), ∀q }. (3.2.6)

The inverse demand correspondence for d̄i ∈ Di are the prices (if any) at which it is utility

maximizing to choose d̄i ,

∂ vi (d̄i ) :=
�

p : p · (di − d̄i )≤ vi (di )−vi (d̄i ), ∀di ∈RA
	

. (3.2.7)

In parallel with Fact 1 for E , the conditions (i) v∗i (p̄ ) = p̄ · d̄i − vi (d̄i ), (ii) p̄ ∈ ∂ vi (d̄i ), and (iii)

d̄i ∈ ∂ v∗i (p̄ ) are equivalent.

The E-duality for games is the pairing (p ,di ). Comparing (p ,di ) ∈ RA ×RA for G with the

(p ,zi ) ∈R`×R` duality for E , since 0 ∈Di ⊂RA and 0 ∈ Zi ⊂R`,

v∗i (p )≥ 0, ∀p ∈RA and −ν∗i (p )≥ 0, ∀p ∈R`.

For the purpose of characterizing correlated equilibrium via the E-duality, it will suffice to

describe G = 〈vi 〉 by 〈vi 〉, the indicator functions of 〈Di 〉.

REMARK 4: ( ELIMINATION OF MONEY TRANSFERS ING ) The conjugate functionν∗i (p ) = infzi

�

p ·
zi−νi (zi )

	

forE includes the utility functionνi (zi ) and the budget constraint defined by prices

p ∈R` and money transfers mi =−p · zi . For the conjugate v∗i (p ) = supdi

�

p ·di −vi (di )
	

in G ,

the indicator function vi is effectively the ‘budget constraint’ limiting i ’s choices, while p ·di

is the valuation of di at prices p ∈RA , i.e., there are no money transfers in G .

REMARK 5: ( REVEALED PREFERENCE) In E , information from utility maximizing choices (p ,zi ),

where zi ∈ ∂ ν∗i (p ), can be used to derive the utility function νi underlying those choices (as-

suming νi = bνi ). This revealed preference conclusion does not hold for G . Although Di is de-

termined by vi , the latter cannot be recovered from the former. Thus, if ṽi (a ) =αivi (a )+ fi (a−i ),

αi > 0, it is readily established that if v∗i is the conjugate of vi derived from vi and ṽ∗i is the con-

jugate of ṽi derived from ṽi , then although ṽi 6= vi , ∂ ṽ∗i (p ) = ∂ v∗i (p ), i.e., the same choices are

made by individuals with non-equivalent utilities.
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3.3 E-DUALITY CHARACTERIZATION OF PRICE-TAKING EQUILIBRIUM IN G

The analog for G of Z =
∑

i Zi for E is the indicator of D =
∑

i Di ,

VG (d ) :=







0 if d ∈D ,

∞ if d /∈D ,

= inf
¦∑

i

vi (di ) :
∑

i

di = d
©

.

(3.3.1)

Its conjugate is

V∗G (p ) := sup
d

�

p ·d −VG (d )
	

=
∑

i

v∗i (p ). (3.3.2)

For exchange, the prices of non-money commodity are given by the (unrestricted) indicator

function P (p ). For games, P is the relative price normalization of non-negative, non-zero

prices in RA . The concave indicator function of P is

P(p ) :=







0 if p ∈ P ,

−∞ if p /∈ P .
(3.3.3)

The concave conjugate of P is the (concave) support function of P ,

P∗(d ) = inf
p

�

p ·d −P(p )
	

= inf
�

p ·d : p ∈ P
	

. (3.3.4)

DEFINITION 3: A correlated equilibrium for G is a p 0 ∈ P such that no individual would gain

by deviating, i.e.,

p 0 ·Di ≤ 0, ∀i .

In price-taking terminology, the absence of gain in correlated equilibrium is equivalently

described as

0 ∈ ∂ v∗i (p
0)⇐⇒ p 0 ∈ ∂ vi (0), ∀i . (3.3.5)

This observation immediately implies:
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PROPOSITION 2: (CHARACTERIZATION)

(p 0,〈d 0
i 〉), where d 0

i = 0, is a correlated equilibrium if and only if

V∗G (p
0)−P(p 0) = inf

p

�

V∗G (p )−P(p )
	

= 0.

Equivalently, V∗G (p
0) =

∑

i v∗i (p
0) = 0.

Concavity and Lipschitz qualifications are required for existence of price-taking equilibrium

in E . Added qualification is not required in G .

PROPOSITION 3: (EXISTENCE)

P 0 = argmin
�

V∗G (p )−P(p )
	

is non-empty (and convex).

Proof. Fenchel’s Duality Theorem (see the Appendix), a conjugate duality extension of the

Minimax Theorem, is used to demonstrate existence.

(I) Extend VG to the indicator of the smallest convex cone containing D =
∑

i Di , i.e.,

→
VG (d ) =







0 if d =
∑

i

∑

k λ
k
i d k

i , d k
i ∈Di ,λk

i ≥ 0,

∞ otherwise.
(3.3.6)

Therefore, if p ∈ P ,

→
V
∗
G (p ) = sup

d

�

p ·d −
→
VG (d )

	

<∞=⇒
→
V
∗
G (p ) = 0= p ·0. (3.3.7)

The expression
→
V
∗
G (p )−P(p ) (3.3.8)

is the difference between the polyhedral convex function
→
V
∗
G (p ) and the polyhedral concave

function P(p ). And

P∗(d )−
→
VG (d ) (3.3.9)

is the difference between the concave function P∗, the conjugate of P, and the convex function
→
VG , which is the conjugate of

→
V
∗
G . The latter conclusion follows from the result that the conju-

gate of
→
V
∗
G , called the biconjugate, equals

→
VG when

→
VG is the indicator function of a polyhedral
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convex set (Rockafellar [1970, Theorem 14.1]. As the indicator function of a non-null set that

includes D ,
→
VG (d ) = 0 is a proper convex function, i.e., taking values >−∞. Its conjugate

→
V
∗
G

is also proper since
→
V
∗
G (0) = 0. And

P∗(0) = 0=
→
VG (0); (3.3.10)

i.e., 0 belongs to the effective domains of P∗ and
→
VG . Therefore, by Fenchel’s Duality Theorem,

there exists p 0 and d 0 such that

min
p

�→
V
∗
G (p )−P(p )

	

=
→
V
∗
G (p

0)−P(p 0) =P∗(d 0)−
→
VG (d

0) =max
d

�

P∗(d )−
→
VG (d )

	

. (3.3.11)

The equalities (3.3.7) and (3.3.11) imply the minimax equality

→
V
∗
G (p

0)−P(p 0) =V∗G (p
0) = p 0 ·d 0 = 0=P∗(d 0)−

→
VG (d

0) =P∗(d 0). (3.3.12)

Therefore, p 0 ·d 0 = 0 and it can be achieved by setting d 0 = 0. But this can also be achieved at

VG (0) = 0, i.e.,

V∗G (p
0)−P(p 0) = 0=P∗(0)−VG (0). (3.3.13)

(III) Convexity is a well-known and readily established property of argmin
�

V∗G (p )− P(p )
	

.

REMARK 6: (CONVEXITY OF P ) The critical condition for the existence of price-taking equi-

librium in E is ∂ VE (0) 6= ;. Similarly, existence in G requires ∂ VG (0) 6= ;. The difference is that

unless VE = ÒVE , the requirement cannot typically be fulfilled for E . Convexity of P eliminates

the need for convexifying VG , i.e., VG serves as an effective substitute for bVE .

REMARK 7: (NASH AND CORRELATED EQUILIBRIA) Let

Q =
¦

p (a1, . . . , an ) = q1(a1)× · · ·×qn (an ) : qi (ai )≥ 0,
∑

ai

qi (ai ) = 1,∀i
©

⊂ P

be the set of individually independent probability mixtures. Nash showed, in effect, that for

all G ,

P 0 ∩Q 6= ;.

I.e., there exists p 0 = (q 0
1 ,q 0

2 , . . . ,q 0
n ) ∈Q such that 0 ∈ ∂ v∗i (p

0), ∀i . Hence, if P 0 = {p 0}, p 0 must
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be a Nash equilibrium. Moreover, in 2-person zero-sum games,

P 0 ∩P is utility equivalent to P 0 ∩Q .

These properties make Nash equilibrium an n-person extension of non-cooperative equilib-

rium for 2-person zero-sum games. Nevertheless, the latter also includes games for which

P 0\Q 6= ;. To illustrate with matching pennies, add the null choice (N) for the column player

yielding a zero payoff to each. Let p 0 = (1/8,1/8,1/8,1/8,1/3,1/6) ∈ P , where the first four ele-

ments correspond to the original matching pennies choices and the last two are for (H,N) and

(T,N). It is readily confirmed that p 0 is a correlated equilibrium, but p 0 /∈Q .

H T N
H 1,−1 −1,1 0,0
T −1,1 1,−1 0,0

Adding P 0\Q to P 0 ∩Q in 2-person zero-sum games and extending to n-person (non-zero)

sum games yields the minimax characterization of correlated equilibrium as the generaliza-

tion of equilibrium for 2-person zero-sum games.

4 PROPERTIES OF EQUILIBRIUM IN E AND G

Formal similarities between price-taking equilibria in E and G belie well-known significant

differences.

4.1 MULTIPLICITY AND EFFICIENCY OF EQUILIBRIA IN E

Denote the set of price-taking equilibria for E as P 0 × {0} ⊂ R` ×Z . P 0 determines the set of

equilibrium payoffs

E [P 0] =
�

〈−ν∗i (p )〉 : p ∈ P 0
	

⊂Rn . (4.1.1)

Relevant points of comparison of this set with games are:

PROPOSITION 4: (UTILITY CONSEQUENCES OF EQUILIBRIA IN E )

(a ) E [P 0] is a convex set
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(b ) E [P 0]⊂
¦

(α1,α2, . . . ,αn ) :
∑

i

αi =VE (0)
©

⊂Rn .

Convexity of E [P 0] follows from the well-known convexity of P 0 and the convexity of −ν∗i .

The hyperplane property (b) follows from the fact that for every price-taking equilibrium p 0,

−
∑

i

ν∗i (p
0) =VE (0).

Thus,E exhibits a (maximum) constant-sum property with respect to price-taking equilibrium

payoffs, but the distribution of the sum is unique only if P 0 is a singleton.

4.2 MULTIPLICITY AND INEFFICIENCY OF EQUILIBRIA FOR G

The payoff consequences of equilibria in G are

G [P 0] =
�

〈p 0 ·vi 〉 : p 0 ∈ P 0
	

⊂Rn . (4.2.1)

Note that expected gain to i from p 0, p 0·vi , is typically not the same as the maximum deviation

gain to i from p 0, v∗i (p
0).

In the quasilinear model E , efficient allocations can be defined by maximizing a weighted

sum of utilities where the weights are fixed and equal to 1. InG , the weights may vary. Let 〈λi 〉,
λi > 0 for all i , and define

G 〈λi 〉 :=max
¦

p ·
∑

i

λivi : p ∈ P
©

, (4.2.2)

as the maximum gains in G when 〈vi 〉 are weighted by 〈λi 〉.
In comparison to Proposition 5 for E [P 0], well-known properties of G [P 0] are:

PROPOSITION 5: (UTILITY CONSEQUENCES OF EQUILIBRIA IN G )

(a ) G [P 0] is a convex set

Typically,

(b ) G [P 0] is not contained in a hyperplane
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(c ) p ∈ P, p ·
∑

i

λivi =G 〈λi 〉 =⇒ p /∈ P 0

Property (a) is shared with E [P 0]; but not (b) and (c).

REMARK 8: (PRICE-TAKING AND EXTERNALITIES) The economic rationale for inefficiency inG is

attributable to utility functions vi (ai ,a−i ) allowing j ’s choice a j , j 6= i , to impose ‘externalities’

on i . Similar consequences would follow if the utility functions νi (zi ) in E were modified to

Eext = 〈
e
νi (zi ; z−i )〉. There is, however, a difference between the way externalities are modeled

in G and Eext.

In G , prices p (a ) = p (ai ,a−i ) exist for all a ∈ A. But the built-in restriction in a normal

form game is that ‘property rights’ for i are such that deviations/trades are always restricted

to di : Ai → Ai . Hence, the indirect utility/conjugate function is

v∗i (p ) = sup
di

�

p ·di −vi (di )
	

= sup
di∈Di

�

p · [vi (di )−vi ]
	

,

The consequences of externalities in G are exhibited by comparing the gains to i from di ,

p ·di = p · [vi (di )−vi ], with the gains from d, where

vi (d)(a1,a2, . . . ,an ) := vi (d1(a1),d2(a2), . . . ,dn (an )). (4.2.3)

Elimination of individual opportunities for gain,

p 0 · [vi (di )−vi ]≤ 0, ∀di ,∀i , (4.2.4)

does not preclude the well-known possible existence of d with

p 0 · [vi (d)−vi ]> 0,∀i . (4.2.5)

InEext, externalities emerge as limitations on trading opportunities as defined by prices. The

relevant indirect utlity function becomes

e
ν∗i (p ; z−i ) = inf

zi

�

p · zi −
e
νi (zi ; z−i )

	

, (4.2.6)

where p ∈ R`, as above, and the trades of others, z−i = 〈z j 〉 j 6=i , are regarded as parameters

of
e
νi ( · ; z−i ). Externalities exists because markets/prices for z−i are missing. They would be
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eliminated if markets were complete, i.e., if prices were of the same dimension as the relevant

commodity space, R`×n .

DEFINITION 4: (p 0,〈z 0
i 〉) is a price-taking equilibrium in Eext = 〈

e
νi 〉 if

• z 0
i ∈ ∂

e
ν∗i (p

0; z 0
−i ), ∀i .

•
∑

i z 0
i = 0

Like Nash (but not correlated) equilibrium inG , the presence of externalities turns existence

of price-taking equilibrium in Eext into a fixed-point problem.

A play of a game is also ‘public good’ since, by construction, it is consumed by everyone.

In Ostroy and Song [2009] an alternative conjugate duality resulting from the incentive con-

straints of correlated equilibrium characterizes departures from Lindahl-like efficiency pric-

ing of public goods.

5 Tâtonnement

Under tâtonnement individuals respond to prices by registering their utility maximizing de-

mands, after which the price of each commodity is adjusted in the obvious direction to reduce

its excess demand. In non-quasilinear models of exchange, income effects of price changes im-

ply that trade at disequilibrium prices would change what constitutes an equilibrium; hence,

trade is not permitted until equilibrium prices are found. Nevertheless, even after precluding

trade out of equilibrium, the presence of income effects in non-quasilinear models is known

to create obstacles to convergence (Scarf [1960], Gale [1963]).

With quasilinearity, prices do not affect trading opportunities, Zi ; so there are no income ef-

fects associated with price changes. Allowing trade at disequilibrium prices would not change

the definition of equilibrium, a property reminiscent of repeated play of a game. Similarities

in convergence for economics and games, below, follow from similarities between the (p ,zi )

duality for E and the (p ,di ) E-duality for G .
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5.1 Tâtonnement IN E WITH DIFFERENTIABILITY

With quasilinearity, concavity of utility functions guarantees that aggregate excess demands

defined by

z (p ) ∈ ∂ V ∗E (p )
�

=
∑

i

∂ ν∗i (p )
�

, (5.1.1)

are the excess demands of an as-if single individual. Hence, the problem of finding equilibrium

prices in E is the same as finding a minimum of the convex function −V ∗E .

The traditional version of tâtonnement assumes each ∂ ν∗i (p ) is a singleton, i.e., zi (p ) =

∇ν∗i (p ), and therefore

z (p ) =
∑

i

zi (p ) =∇V ∗E (p ). (5.1.2)

The gradient algorithm is

p t+1 = p t − s [−z (p t )]. (5.1.3)

If −V ∗E (p
t ) >minp −V ∗E (p ), the gradient of the convex differentiable function −V ∗E at p t de-

scribes the direction of steepest descent, i.e.,

p t · [−z (p t )] = p t ·∇[−V ∗E (p
t )] =min

q

¦

lim
λ↘0

−V ∗E (p
t +λq )− [−V ∗E (p

t )]
λ

: ‖q‖= 1
©

. (5.1.4)

A well-known consequence of the gradient algorithm for a convex function is:

PROPOSITION 6: (Tâtonnement AS A GRADIENT ALGORITHM) If z (p t ) =∇V ∗E (p
t ) and s is suffi-

ciently small, the gradient algorithm mimics the method of steepest descent for −V ∗ and

p t+1 = p t − s [−z (p t )] =⇒ p t → p 0 ∈ P 0 and z (p t )→ 0,

where −V ∗E (p
0) =minp −V ∗E (p ).

5.2 Tâtonnement IN E WITHOUT DIFFERENTIABILITY

The gradient algorithm implies −V ∗E (p
t+1) < −V ∗E (p

t ), i.e., it is always descending towards

its goal. Without differentiability, this property need not hold. Nevertheless, convergence of

prices can be achieved.

To accommodate non-differentiability, tâtonnement can be defined as a subgradient algo-

rithm: starting with p t at time t and z (p t ) ∈ ∂ V ∗E (p
t ), the auctioneer resets prices in the next



21

period according to

p t+1 = p t − st [−z (p t )] = p t + st z (p t ), (5.2.1)

where st > 0, t = 1,2, . . .. The value st is the step-size at t . Unlike the gradient algorithm

where price changes are based only on excess demands, but are otherwise timeless, in the

subgradient algorithm price adjustments to excess demands need to keep track of time. (The

general condition is
∑

t st =∞ and
∑

t s 2
t <∞.)

The following property of the subgradient algorithm established by Shor [1985, Theorem

2.2], as refined by Anstreicher and Wolsey [2009, Theorem 3], is:

PROPOSITION 7: (Tâtonnement AS A SUBGRADIENT ALGORITHM)

If z (p t ) ∈ ∂ VE (p t ) and st = t −1, the subgradient algorithm for E yields:

p t+1 = p t − st [−z (p t )] =⇒ p t → p 0 ∈ P 0.

Without differentiability of V ∗E , convergence of prices does not suffice to imply convergence

of quantities. (Recall the selection problem in Remark 3, above.) When ∂ V ∗E (p ) is not unique,

the choice of an element in ∂ V ∗E (p
t ) determines z (p t ). The selection may be such that there

is α > 0 and an infinite subsequence {tk } such that ‖z (p tk )− 0‖ > α; i.e., while prices may be

converging to their equilibrium values, quantities traded can be bounded away from being

feasible. This is illustrated by the following.

EXAMPLE 2: (FAILURE OF CONVERGENCE OF EXCESS DEMANDS)

There is a single individual; hence the subscript i is omitted in the following. Let Z = [−1,1]

and ν(z ) = z , z ∈ Z . (Again, 0= 0.) It is readily established that

−ν∗(p ) =max{1−p , p −1}.

Equilibrium price and quantity are (p 0 = 1,z 0 = 0), while

∂ ν∗(p ) =















[−1,1] if p = 1,

−1 if p > 1,

1 if p < 1.

Failure of demand to be differentiable at p = 1 implies that z (p ) is discontinuous. When p 1 = 1,

if the initial choice z 1(p 1) 6= 0, then p 2 6= 1 and although st → 0 implies p t → 1, z t (p t ) contin-
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ually oscillates between −1 and 1. Similar conclusions would obtain if Z were the discrete set

{−1,0,1}.

A refinement of the subgradient algorithm can be obtained by requiring differentiability

only at equilibrium. Recalling the definition of differentiability of equilibrium for E as {0} =
∂ V ∗E (p

0), since the subgradient algorithm implies p t → p 0, and z (p t ) has a convergent sub-

sequence with limit z , the well-known closedness of the subdifferential mapping implies z =

{0}= ∂ V ∗E (p
0). Therefore,

PROPOSITION 8: ( Tâtonnement WITH DIFFERENTIABILITY AT EQUILIBRIUM)

If z (p t ) ∈ ∂ V ∗E (p
t ), p t → p 0 and ∂ V ∗E (p

0) is a singleton, then

p t+1 = p t − t −1[−z (p t )] =⇒ p t → p 0 ∈ P 0 and z (p t )→ 0.

The way to ensure differentiability at equilibrium is to assume it everywhere.

5.3 Tâtonnement IN E WITH INDIVISIBLE COMMODITIES

To eliminate reliance on differentiability, restrict feasible trades to be discrete, i.e.,

Zi = {z 1
i ,z 2

i , . . . ,z Ki
i }.

Denote these restrictions on E as EF .

A possible consequence of discreteness (non-concavity) is that for some zi ∈ Zi there may

be no p for which it would be a utility maximizing choice, i.e.,

{zi }∩ ∂ ν∗i (p ) = ;, ∀p .

Discreteness will typically make the existence of price-taking equilibrium in EF problematic.

Nevertheless, there is always some choice consistent with price-taking maximization, i.e.,

Zi

⋂

∂ ν∗i (p ) 6= ;, ∀p .

This suffices to define a subgradient algorithm.

The point of departure is that, like fictitious play, convergence can be defined by historical

averages. Based on the history of past prices and corresponding utility maximizing choices,
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the historical average of excess demands at time t is

z t (p t ,p t−1, . . . ,p 1) := t −1
�

z (p t ) + z (p t−1) + · · ·+ z (p 1)
�

. (5.3.1)

Although the historical average of excess demand is a function of current and past prices (p t , p t−1, . . . , p 1),

the previous period’s historical average is a summary statistic of the past prices (p t−1, . . . , p 1).

Therefore, the historical average of excess demand can be defined recursively by the following:

z t (p t ,z t−1) = t −1z (p t ) +
�

1− t −1
�

z t−1. (5.3.2)

The historical average of prices is

p t := t −1
�

p t +p t−1+ · · ·+p 1
�

. (5.3.3)

Modify the description of tâtonnement to be the historical subgradient algorithm,

p t+1 = p t + z t (p t ). (5.3.4)

PROPOSITION 9: (Tâtonnement AS AN HISTORICAL SUBGRADIENT ALGORITHM)

In EF ,

p t+1 = p t + z t (p t ) =⇒ p t → p 0 ∈ P 0 and z t (p t )→ 0.

Proof. From Proposition 11, the subgradient algorithm

p t+1 = p t + t −1z (p t ) =⇒ p t → p 0 ∈ P 0.

Restating the equality above for t ,t −1, . . . ,1,

t p t+1 = t p t + z (p t )

(t −1)p t = (t −1)p t−1+ z (p t−1)

...

p 2 = p 1+ z (p 1)
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Summing each side of these equalities,

t p t+1+ (t −1)p t + · · ·+p 2 = t p t + z (p t ) + (t −1)p t−1+ z (p t−1) + · · ·+p 1+ z (p 1).

Cancelling yields

t p t+1 = p t +p t−1+ · · ·+p 1+ z (p t ) + z (p t−1) + · · ·z (p 1).

Therefore,

p t+1 = t −1
�

t
∑

τ=1

pτ
�

+ t −1
�

t
∑

τ=1

z (pτ)
�

= p t + z t (p t )

Since p t → p 0, it follows that p t → p 0; and therefore z t (p t )→ 0.

Proposition 9 says that without requiring concavity of utility functions, if the auctioneer

keeps track of previous prices and excess demands and adjusts prices according to the his-

torical subgradient algorithm, average prices and average excess demands converge to price-

taking equilibrium.

5.3.1 Price-taking in E as a Linear Programming Problem

Each z k
i ∈ Zi inEF can be regarded as a unit level of ‘activity’ (i ,k )having value vi (z k

i ). Achieve-

ment of the maximum gains in EF can be formulated as the primal linear programming prob-

lem:

max
〈λk

i ≥0〉

∑

i

∑

k

λk
i vi (z

k
i )

(LP EF
) subject to:

∑

k

λk
i = 1, ∀i

∑

i

∑

k

λk
i z k

i = 0.
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The dual problem is:

min
〈ρi 〉,p

∑

i

ρi×1+p ·0

(D LP EF
) subject to:

ρi +p · z k
i ≥ vi (z

k
i ), ∀k ,∀i .

Sinceρi ≥ vi (z k
i )−p · z k

i is to be minimized, it is readily established that the constraints of the

dual can be incorporated into its objective function and the dual can be rewritten as

min
p

∑

i

max
z k

i

{vi (z
k
i )−p · z k

i }=min
p
−
∑

i

ν∗i (p ) =min
p
−V ∗E (p ). (5.3.5)

In other words, a solution to (DLPEF
) is a p 0 such that 0 ∈ ∂ V ∗E (p

0).

The LP formulation can also be interpreted as concavification over individuals for a con-

tinuum version of EF with finite types and unit mass of each type: prices p 0 and trades z k
i

represent existence of price-taking equilibrium, where λ
k

i is the fraction of type i trading z k
i .

The LP formulation can be extended from a finite number of activities Zi = {z 1
i , . . . , z Ki

i } for

each i to semi-infinite LP where Zi is compact convex subset, i.e., from EF to E . Other than

having an infinite number of activities, the LP characterization of price-taking equilibrium

also applies to E .

REMARK 9: (CONVEXIFICATION AND REGRET) Anticipating the connection in Section 6, Hart

and Mas-Collel’s concept of regret (“if I knew then what I know now”) applies to the historical

subgradient algorithm for EF .

The average price in the historical subgradient algorithm for EF converges to an optimal so-

lution p 0 to the dual and the average excess demand converges to an optimal solution 〈λ
k

i z k
i 〉

to the primal where

z (p 0) =
∑

i

∑

k

λ
k

i z k
i = 0. (5.3.6)

The expression
�∑

k λ
k

i z k
i

�

, where
∑

k λ
k

i = 1,λ
k

i ≥ 0, calls attention to averaging as concavifi-

cation of vi achieved over time in EF .

In the historical subgradient algorithm, the average of previous desired trades z t−1 are part

of the price adjustment process. Therefore, utility maximizing choices at t can be compared
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to what has previously occurred. Rewrite

z t−1
i = t −1

�

zi (p
t−1) + zi (p

t−2) + · · ·zi (p
1) + z 0

i

�

, z 0
i = 0, (5.3.7)

as

z t−1
i = t −1

∑

k

τk
i (z

t−1
i )z k

i , (5.3.8)

where τk
i (z

t−1
i ) is the number of times z k

i is chosen in the sequence {zi (pτ)}t−1
τ=0 defining z t−1

i .

Hence, t −1
�∑

k τ
k
i (z

t−1
i )

�

= 1. In the following, dependence of τk
i on z t−1

i is taken for granted.

Define regret for the historical subgradient algorithm in exchange as the difference between

i ’s price-taking utility gain at t , given p t , if i could undo the past and the average utility of what

i ’s previous trades would have yielded at p t .

ri (p
t ,z t−1) :=−

�

ν∗i (p
t )− t −1

∑

k

τk
i

�

p t · z k
i −νi (z

k
i )
�

�

. (5.3.9)

Since ν∗i (p ) = infzi
{p · zi −νi (zi )}, the minus sign makes regret non-negative. Note that

∑

k

τk
i νi (z

k
i )≤ bνi

�

∑

k

τk
i z k

i

�

. (5.3.10)

The historical subgradient algorithm constructs the primal and dual solutions to the LP prob-

lem by continually reacting to regret by attempting to correct past ‘mistakes;’ i.e., convergence

of regret to zero effectively constructs the relevant values of bνi . This can occur even when

zi (p t ) does not converge, as in Example 2.

5.3.2 Price-taking in G as a Linear Programming Problem

Following the recipe for the LP formulation of EF , regard each d k
i ∈Di as a unit level of activ-

ity (i ,k ) having value −vi (d k
i )(= 0). Achievement of equilibrium in G is described by the LP
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problem:

max
〈λk

i ≥0〉,λ1≥0

∑

i

∑

k

λk
i [−vi (d

k
i )]+λ1

(LPG ) subject to:
∑

k

λk
i = 1,∀i

∑

i

∑

k

λk
i [−d k

i ] +λ11= 0.

The dual problem is:

min
〈γi 〉,p

∑

i

γi×1+p ·0

(DLPG ) subject to:

γi −p ·d k
i ≥−vi (d

k
i ), ∀k ,∀i

p ·1≥ 1.

Since γi ≥ p ·d k
i −vi (d k

i ) is to be minimized, it is readily established that the constraints of the

dual can be incorporated into its objective function and the dual can be rewritten as

min
{p :p ·1≥1}

∑

i

max
d k

i

{p ·d k
i −vi (d

k
i )}= min

{p :p ·1≥1}

∑

i

v∗i (p ) = min
{p :p ·1≥1}

V∗G (p ).

Analogously to (DLPEF
), a solution to (DLPG ) is a p 0 such that 0 ∈ ∂ V∗G (p

0).

(DLPG )differs from (DLPEF
)due to the constraint on p that effectively stipulates prices must

be non-zero. [In E (and EF ), prices are (p ,1) ∈ R`+1, where 1 is the price of the money com-

modity; hence prices are necessarily non-zero.] The Lagrangian variable associated with the

constraint p ·1≥ 1 isλ1. Evidently, the objective function of DLPG is minimized only when the

price constraint is binding. Nevertheless, the value of the primal equals the value of the dual

(= 0) only when λ1 = 0. I.e., even though the price constraint is binding, a perturbation of the

constraint to p · 1 ≥ α, α > 0 would not change the optimal value or the optimal solutions to

(LPG ).
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5.4 Tâtonnement IN G

The E-duality for G leads to the analog of tâtonnement with the qualification that, whereas

prices p ∈R` are unrestricted for E , in G p ∈RA is restricted to the probability mixtures P on

A.

For x ∈RA , let

Q (x |P ) =min
¦

p ∈ P : 2−1
∑

a

|x (a )−p (a )|2
©

; (5.4.1)

and denote by PQ [x ] ∈ P the argmin of Q (x |P ), i.e., the projection of x onto P as measured by

the element of P that is the minimum quadratic distance from x . The mapping PQ :RA→ P is

the continuously differentiable function,

PQ (x ) = x −∇x Q (x |P ). (5.4.2)

At prices p t , individuals report utility maximizing choices di (p t ) ∈ ∂ v∗i (p
t ). Aggregating

these choices as d (p t ) =
∑

i di (p t ) to form p t − t −1d (p t ), their sum does not typically belong

to P . To convert this expression into next period’s prices, the auctioneer revises p t according

to the projected subgradient algorithm for G

p t+1 = PQ

�

p t − t −1d (p t )
�

. (5.4.3)

Although price adjustments are based on aggregate excess demands, d (p t ), they do not follow

the simple rule that p t+1(a )−p t (a ) depends only on d (p t )(a ). Under PQ , adjustments to p t (a )

typically depend on all excess demands d (p t )(b ), b 6= a .

The projected subgradient algorithm leads to the same conclusions as the unconstrained

version when the polyhedral convex function V∗G is constrained to lie in the simplex P .

PROPOSITION 10: (Tâtonnement AS A PROJECTED SUBGRADIENT ALGORITHM FOR G )

If d (p t ) ∈ ∂ V∗G (p
t ), the projected subgradient algorithm yields

p t+1 = PQ

�

p t − t −1d (p t )
�

=⇒ p t → p 0.

In parallel with Proposition 8 for E , the projected subgradient algorithm can also achieve

convergence of d (p t ) if equilibria are differentiable.
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PROPOSITION 11: (Tâtonnement WITH DIFFERENTIABILITY AT EQUILIBRIUM)

If d (p t ) ∈ ∂ V∗G (p
t ) and ∂ V∗G (p

0) is a singleton, then

p t+1 = PQ

�

p t − t −1d (p t )
�

=⇒ p t → p 0 ∈ P 0 and d (p t )→ 0.

Differentiability of equilibria is not a viable hypothesis for G . However, the methods used

to accommodate non-differentiability in EF can be carried over to games.

The notation describing historical average prices p t ∈ R` in E can also be used for p t =

t −1
�

p t +p t−1+ · · ·+p 1
�

∈RA in G . The analog of historical average excess demands for G is

d
t
(p t ,p t−1, . . . ,p 1) := t −1

�

d (p t ) +d (p t−1) + · · ·+d (p 1)
�

. (5.4.4)

Again, the historical deviation d
t

can be defined recursively using the previous period’s histor-

ical average as:

d
t
(p t ,d

t−1
) := t −1d (p t ) +

�

1− t −1
�

d
t−1

. (5.4.5)

The projected historical subgradient algorithm for G is,

p t+1 = PQ

�

p t −d
t
(p t )

�

. (5.4.6)

PROPOSITION 12: (Tâtonnement AS A PROJECTED HISTORICAL SUBGRADIENT ALGORITHM FOR

G )

If d (p t ) ∈ ∂ V∗G (p
t ),

p t+1 = PQ

�

p t −d
t
(p t )

�

=⇒ p t → p 0 and d
t
(p t )→ 0.

Proposition 12 follows from 10 for G as Proposition 9 follows from 7 for E .

6 AUTONOMOUS PRICE ADJUSTMENT VIA FICTITIOUS PLAY

The previous section demonstrated convergence in games from the perspective of price ad-

justment in economics. Positive conclusions were obtained, but they required giving up the

following appealing properties of the standard model of tâtonnement with differentiability.
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(1) Substituting d (p ) =
∑

i di (p ) for z (p ) =
∑

i zi (p ) in the definition of aggregate excess

demands, the utility consequences of trades/deviations were substituted for the com-

modity descriptions of trades; hence, price changes depend explicitly on utilities.

(2) Substituting the projection mapping p t+1 = PQ

�

p t − st [d t ]
�

for p t+1 = p t − st z t , ad-

justments to p t (a ) depend on all the elements of d ∈ RA rather than being separately

implementable, commodity by commodity, as they are in tâtonnement.

(3) The subgradient algorithm required keeping track of time; and the historical subgradi-

ent algorithm required keeping track of historical averages.

(3) is attributable to the absence of differentiability, either in E orG . Both of these temporal

qualifications are also present in fictitious play. Nevertheless, fictitious play obviates the need

for (1) and (2), thereby avoiding the auctioneer-directed procedure in the standard model of

tâtonnement. The following reformulates the E-duality to be amenable to fictitious play.

6.1 FROM THE E- TO THE F-DUALITY

From di : Ai → Ai , let di (ai ) = bi and define

pi (p )(bi |ai ) :=
∑

a−i

p (ai ,a−i )[vi (bi ,a−i )−vi (ai ,a−i )]. (6.1.1)

Interpreting [vi (bi ,a−i )−vi (ai ,a−i )] as the marginal utility at ai of switching to bi , pi (p )(bi |ai )

is p -weighted marginal utility of such a change. Therefore, pi (p )(ai |ai ) = 0. Only those ai in

the support of p can have non-zero p -weighted marginal utilities, i.e.,

p (ai ) =
∑

a−i

p (ai ,a−i ) = 0=⇒ pi (p )(bi |ai ) = 0,∀bi . (6.1.2)

From ai , the vector

pi (p )[ai ] = 〈pi (p )(bi |ai )〉bi∈Ai
∈RAi , (6.1.3)

are the possible p -weighted marginal utilities, one for each bi ∈ Ai . For all ai ∈ Ai , the p -

weighted marginal utilities are denoted by pi (p ) = 〈pi (p )[ai ]〉ai∈Ai
∈RAi ×RAi .

Let ei : Ai →RAi where for each ai , ei (ai ) = 1bi
for some bi ∈ Ai . The deviation bi = di (ai ) is

now represented as an element inRAi . Evidently, each ei corresponds to exactly one di : Ai →
Ai . Analogously, dID

i becomes eID
i , where eID

i (ai ) = 1ai
for all ai . Extending ei , let zi : Ai → RAi ,
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where

zi [ai ] = 〈zi (bi |ai )〉bi∈Ai
∈RAi , (6.1.4)

for all ai .

The F-duality for G is

(pi [ai ] ,zi [ai ]) ∈RAi ×RAi

for each ai , or (pi ,zi ) ∈
�

RAi ×RAi
�

×
�

RAi ×RAi
�

for all ai . Formally, prices in the F-duality are

pi [ai ] ∈RAi , whether or not they are derived from p .

6.2 UTILITY MAXIMIZATION

Feasible trades from ai are circumscribed by

ui (zi [ai ]) =







0 if zi [ai ] ∈∆[Ai ],

∞ otherwise;
(6.2.1)

with the resulting conjugate function

u∗i (pi )[ai ] = sup
zi [ai ]

�

pi [ai ] · zi [ai ]−ui (zi [ai ])
	

(6.2.2)

To establish equivalence with the E-duality, its suffices to observe that when ei (ai ) = 1bi
, i.e.,

di (ai ) = bi ,

pi (p )(bi |ai ) = pi (p )[ai ] · ei [ai ] = p ·di (di (ai )). (6.2.3)

Hence, when ei ∼ di ,

pi (p ) · ei =
∑

ai

pi (p )[ai ] · ei [ai ] =
∑

ai

∑

a−i

p (ai ,a−i ) ·di (di (ai ),a−i )] = p ·di (di ) (6.2.4)
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When pi [ai ] is derived from p as pi (p )[ai ], overall utility maximization at pi = pi (p ) is

u∗i (pi (p )) :=
∑

ai

p (ai )u
∗
i (pi (p ))[ai ]

=
∑

ai

sup
ei [ai ]

p (ai )
�

pi (p )(ai ) · ei [ai ]−ui (ei [ai ])
	

= sup
di

�

p ·di −vi (di )
	

= v∗i (p )

(6.2.5)

The first equality highlights the fact that overall maximization can be separated into maximiza-

tion with respect to each ai (in the support of p ). This property is also a feature of the E-duality

duality, but it was not exploited because the emphasis was on establishing similarities with E
where separability is not typical. The second equality — that each u∗i (pi (p ))[ai ] can be achieved

without randomization — is mirrored in the third and fourth equalities previously employed

for the E-duality.

The essential difference between the two dualities is that instead of the utility consequences

of deviations, di (di ), playing the role of quantities, quantities are represented by ei (or its

randomized counterpart zi ) which, like zi in E , are not defined in units of utility. And, in-

stead of probabilities directly playing the role of prices, the (vector of) marginal-utility conse-

quences of those probabilities, pi (p )[ai ], represent prices to i . Information from vi defining

di (ai ) = vi (di (ai ),a−i )−vi (ai ,a−i ) in the E-duality is used in F-duality to define pi (p )(di (ai ) |ai );

but the latter transformation is achieved in a decentralized way since the conversion of p into

pi (p )(di (ai ) |ai ) is made only by i .

Therefore, by a slight abuse of notation, u∗i (pi (p )) can be written in more abbreviated form

as u∗i (p ), where the subscript i incorporates information about vi that translates p into pi (p ).

Note, however, that for the definition of ∂ u∗i (·)[ai ] only the vector pi [ai ], ignoring its possible

origins in p , is relevant. Thus, when pi [ai ] = pi (p )[ai ], ∂ u∗i (pi (p ))[ai ] is written as

∂pi
u∗i (p )[ai ] :=

¦

zi [ai ] :
�

p′i [ai ]−pi (p )[ai ]
�

· zi [ai ]≤ u∗i (p
′
i )[ai ]−u∗i (pi (p ))[ai ],∀p′i [ai ] ∈RAi

©

.

(6.2.6)

It is readily confirmed that (individually perceived) expected profits are non-negative, i.e.,

p (ai )u
∗
i (p )[ai ]≥ 0, ∀p ∈ P,∀ai ,∀i . (6.2.7)
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Correlated equilibrium is characterized by the complementary slackness condition:

p 0 ∈ P 0⇐⇒ p 0(ai )u
∗
i (p

0)[ai ] = 0, ∀ai ,∀i . (6.2.8)

In economic terminology, equilibrium prices eliminate profit opportunities.

REMARK 10: ( UTILITY MAXIMIZATION WITH AND WITHOUT INDEPENDENT PROBABILITIES) Let

q = 〈qi 〉 ∈ ×
i
∆[Ai ] = Q represent independent probabilities, a non-convex subset of P , and

p ∈ P \Q . A well-known property (associated with Nash equilibrium) is: i would be indifferent

between ai 6= a ′i in the support of q , i.e., u∗i (q )[ai ] = u∗i (q )[a
′
i ]. However, if ai and a ′i are in the

support of p , then u∗i (p )[ai ] need not equal u∗i (p )[a
′
i ] and utility maximizing choices can differ,

i.e., ∂pi
u∗i (p )[ai ]∩ ∂pi

u∗i (p )[a
′
i ] = ;. This distinction is relevant for fictitious play.

6.3 UTILITY MAXIMIZATION WITH QUADRATIC COSTS

The polyhedral property of u∗i implies that ∂pi
u∗i is not singleton-valued, i.e., not differentiable.

A standard method of converting a non-differentiable into a differentiable optimization prob-

lem is to introduce a quadratic penalty/cost. Add

Qi (zi [ai ]) := 2−1
∑

bi 6=ai

|zi (bi |ai )|2 (6.3.1)

to define the modification of ui as

Ui (zi [ai ]) := ui (zi [ai ])+Qi (zi [ai ]) (6.3.2)

Thus, Ui (zi [ai ]) = 0 if and only if zi [ai ] = eID
i [ai ]. The conjugate of Ui is

U∗i (pi )[ai ] = sup
zi [ai ]

�

pi [ai ] · zi [ai ]−Ui (zi [ai ])
	

(6.3.3)

Without loss of generality, vi can be scaled so that

max
a ,b∈A

{vi (b )−vi (a ) , 0}< 1, ∀i . (6.3.4)
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A consequence of the rescaling is that when p ∈ P and pi [ai ] = pi (p )[ai ],

pi (p )
+(bi |ai ) =







max{pi (p )(bi |ai ) , 0}< p (ai ) if p (ai )> 0,

0 if p (ai ) = 0.
(6.3.5)

Write zi (p )[ai ] =∇pi
U∗i (p )[ai ]. Therefore,

U∗i (p )[ai ] = pi (p )[ai ] · zi (p )[ai ]−Ui (zi (p )[ai ]) (6.3.6)

From∇pi
U∗i (p )[ai ], the first-order necessary and sufficient conditions for utility maximization

with respect to each possible deviation from ai is:

p+i (p )(bi |ai )
︸ ︷︷ ︸

p-weighted marginal utility

= zi (p )(bi |ai )
︸ ︷︷ ︸

marginal cost

, bi 6= ai . (6.3.7)

Ignoring costs, expected utility gains at p for i at ai is |p+i (p )[ai ]| :=
∑

bi
p+i (p )(bi |ai ). Scaling

of utilities and quadratic costs implies

1− |p+i (p )[ai ]|= zi (p )(ai |ai )> 0, (6.3.8)

guaranteeing that zi (ai ) ∈ ∆[Ai ]. Hence, the constraint
∑

bi∈Ai
zi (bi |ai ) = 1 is never binding.

From (6.3.7) and (6.3.8),

zi (p )[ai ] = p+i (p )[ai ] +
�

1− |p+i (p )[ai ]|
�

eID
i [ai ]. (6.3.9)

Hence,

U∗i (p )[ai ] = 2−1∇pi
U∗i (p )[ai ] ·p+i (p )[ai ] = 2−1|p+i (p )[ai ]|2. (6.3.10)

By construction, U∗i (p )[ai ]≤ui (p )[ai ]; however, adding quadratic costs does not change the

set of equilibrium prices: p 0 is a correlated equilibrium if and only if eID
i [ai ] = ∇pi

U∗i (p
0)[ai ]

for all ai in the support of p 0; or

p 0(ai )U
∗
i (p

0)[ai ] = 0⇐⇒ p 0(ai )u
∗
i (p

0)[ai ] = 0, ∀ai ,∀i . (6.3.11)

REMARK 11: ( REGRET) When p represents the frequencies of past choices, Hart and Mas-Colell

[2000] describe p+i (p )(bi |ai ) as i ’s regret in previously having chosen ai when i could have
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chosen bi ; and zi (p )[ai ] = ∇pi
U∗i (p )[ai ] are choices exhibiting regret-matching. (See, below.)

Regret-matching is an adaptive procedure for dealing with a changing environment in which

individuals can be regarded as learning by correcting past ‘mistakes.’ Consistent with the goal

of calling attention to similarities between game theory and general equilibrium, the formula-

tion, above, chararacterizes regret-matching as a smoothing, via trading costs, of price-taking

utility maximization.

REMARK 12: ( SMOOTH FICTITIOUS PLAY) Fudenberg and Levine [1998] adopt a related utility

maximizing approach in which choices are smoothed by adding costs. Their cost functions

are such that individuals always choose to be in the interior of∆[Ai ]. To illustrate using their

specific example, rewritten to conform to current conventions, the cost of zi [ai ] is

Ci (zi [ai ];λ) =







λ
∑

bi∈Ai
zi (bi |ai ) log zi (bi |ai ) if zi [ai ] ∈∆[Ai ],

∞ otherwise
(6.3.12)

where λ> 0. The resulting conjugate is

C ∗i (p ;λ)[ai ] = sup
zi [ai ]

�

pi (p ) · zi [ai ]−Ci (zi [ai ];λ)
	

. (6.3.13)

The (smooth) best-response function is

∇pi
C ∗i (p ;λ)[ai ] =




zi (p ;λ)(bi |ai )
�

=
¬ exp

�

λ−1pi (p )(bi |ai )
�

∑

b ′i ∈Ai
exp

�

λ−1pi (p )(b ′i |ai )
�

¶

� 0. (6.3.14)

In overall agreement with zi (p )[ai ] = ∇pi
U∗i (p )[ai ], the larger the value of pi (p )(bi |ai ), the

larger is zi (p ;λ)(bi |ai ); and the gap between ∇pi
U∗i (p )[ai ] and ∇pi

C ∗i (p ;λ)[ai ] narrows as λ

decreases.

6.4 CONVERGENCE

6.4.1 Randomized Fictitious Play

The choices a = 〈ai 〉 ∈ A can be represented as

1a =×
i

1ai
∈RA . (6.4.1)
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The average of the sequence {1aτ :τ= 1, . . . , t } is

p t = t −1
�

t
∑

τ=1

1aτ
�

. (6.4.2)

The average is updated as a convex combination of p t and 1a t+1 , i.e.,

p t+1 = t
t+1 p t + 1

t+1 1a t+1 . (6.4.3)

Fictitious play adopts the price-taking hypothesis that the current average, p t , will continue.

Without costs, i ’s best response at a t
i and p t is an element 1a t+1

i
= ei [a t

i ](p
t ) ∈ ∂pi

u∗i (p
t )[a t

i ].

Therefore,

1a t+1 =×
i

1a t+1
i
∈×

i
ei (p

t )[a t
i ],

where a t+1 = 〈a t+1
i 〉. The outcome is well-defined whenever ∂pi

u∗i (p
t )[a t

i ] is a singleton for all

i ; otherwise, there is a selection problem.

With costs, maximization leads to (uniquely defined) randomized fictitious play, where

zi (p
t )[a t

i ] = 〈zi (p
t )(a t+1

i |a t
i )〉=∇pi

U∗i (p
t )[a t

i ], (6.4.4)

is the vector of (cost-adjusted) utility maximizing choices of i at ai = a t
i when facing prices

p = p t .

The state at t is defined by the most recent realization, 1a t =×
i

1a t
i

, and the history of those

realizations, p t . The probability of 1a t+1 =×
i

1a t+1
i

depends on the state at t via the product of

the probabilities ×
i
zi (p

t )[a t
i ] ∈×i ∆[Ai ] as

Prob
�

1a t+1 |1a t ; p t
	

=×
i
zi (p

t )(a t+1
i |a t

i ). (6.4.5)

This formulation of randomized fictitious play has been shown to imply the following prob-

abilisitic conclusions on convergence to correlated equilibrium.

PROPOSITION 13: (Hart and Mas-Colell [2000])

The model of randomized fictitious play defined by (6.4.1–5) implies

∀ε> 0, lim
t→∞

Prob
¦

U∗i (p
t )[a t

i ]>ε
©

= 0,∀i .
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6.4.2 Randomized Fictitious Play in Populations

Given p t and 1a t , p t+1 is a random variable defined by (6.4.5). The expectation of p t+1,

E(p t+1 |p t ; 1a t ) = t
t+1 p t + 1

t+1

∑

a t+1=〈a t+1
i 〉

1a t+1 × Prob
�

1a t+1 |1a t ; p t
	

, (6.4.6)

is also random variable depending on the realization 1a t .

When a finite number of types of individuals make probabilistic choices, a continuum inter-

pretation, called the population model of randomized fictitious play, can be used to conclude

that each type’s randomized choice is achieved with certainty in the population as a whole. In

the population model, the evolution of prices is deterministic.

Assuming mass 1 of each i , p ∈ P describes an existing distribution of the population, where




p (ai ) =
∑

a−i

p (ai ,a−i )
�

∈∆[Ai ] (6.4.7)

is the distribution of individuals of type i . At p , if each ai in the support of p chooses to make

the changes zi [ai ] ∈∆[Ai ], the resulting distribution of the population is

p [×
i
zi ] :=

∑

a=〈ai 〉
p (a )[×

i
zi ][ai ] ∈ P, (6.4.8)

the population weighted average of those changes. While each [×
i
zi ][ai ] ∈ ×

i
∆[Ai ] represents

independently chosen randomizations, their convex combination (6.4.8) may not belong to

×
i
∆[Ai ], i.e., may exhibit correlation. The population distribution does not change when p =

p [×
i
eID

i ].

The average in the population version of the model is denoted by pt and is based on the

sequence of realized populations, i.e.,

pt = t −1
�

t
∑

τ=1

p t
�

, (6.4.9)

where p t+1 is determined by pt and p t as

p t+1 = p t [×
i
zi (p

t )]. (6.4.10)

Note that the description of utility maximizing behavior ×
i
zi (·)(bi |ai ), where 〈zi (·)(bi |ai )〉 =
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∇pi
U∗i (·)[ai ], from randomized fictitious play is used in the population version.

The state of the population model at t is (pt ,p t ). Hence, for those ai such that p t (ai ) > 0,

their choices are zi (p
t )[ai ] = 〈zi (p

t )(bi |ai )〉. Updating of the average is

pt+1 = t
t+1 pt + 1

t+1 p t+1

= t
t+1 pt + 1

t+1 p t [×
i
zi (p

t )].
(6.4.11)

In contrast to (6.4.6) for randomized fictitious play, in the population model the realized and

expected values of pt+1 coincide, i.e.,

E(pt+1 |pt ; p t ) = t
t+1 pt + 1

t+1 E(p t+1 |pt ; 1a t )

= t
t+1 pt + 1

t+1

∑

a

p t (a t )×
i
zi (p

t )[a t ]

= pt+1

(6.4.12)

Adapting arguments from the demonstration of convergence in the previous conclusion:

PROPOSITION 14: (POPULATION CONVERGENCE)

The model of randomized fictitious play in populations defined by (6.4.7–11) implies

lim
t→∞

∑

ai

p t (ai )U
∗
i (p

t )[ai ] = 0, ∀i .

A detailed proof is available as an online appendix.1

REMARK 13: ( METRIC AND PSEUDO-METRIC CONVERGENCE) Tâtonnement results for E and G
in Section 5 follow the standard definition of convergence of prices: the sequence {p t } con-

verges if there is a p such that the norm, hence metric, distance ‖p t −p‖→ 0. A pseudo-metric

satisfies the conditions of a metric except the distance between distinct points can be zero.

The F-duality calls attention to the minimizing condition for equilibrium prices as the elim-

ination of profit opportunities p 0(ai )U∗i (p
0)[ai ] = 0,∀ai ,∀i . A relevant measure of disequilib-

rium is the expected utility gains associated with prices in G ,

U∗(p ) =
∑

i

∑

ai

p (ai )U
∗
i (p )[ai ]≥ 0. (6.4.13)

1https://goo.gl/rzSv9G.

https://goo.gl/rzSv9G
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Expected utility gains can be used to define

dU∗ (p1,p2) = |U∗(p1)−U∗(p2)|, (6.4.14)

as a pseudo-metric for P in which distance between p1 and p2 is measured by the difference

in equivalence classes

P α = {p : U∗(p ) =α}

to which they belong. Convergence of p t to p in the pseudo-metric requires only that

dU∗ (p t ,p )→ 0.

Population convergence in Proposition 14 is with respect to the pseudo-metric, i.e.,

dU∗ (p
t , P 0)→ 0. If P 0 = {p 0}metric and pseudo-metric convergence coincide; but for G , P 0

is a convex set that is not typically a singleton. Although pseudo-metric convergence stipu-

lates that expected gains are converging to zero for all members of the population, the larger

is P 0 the less that can be said about how this translates to which elements of P 0 are being ap-

proached and, hence, the resulting distribution of utility gains. The conclusion in Proposition

13 for randomized fictitious play is a probabilistic version of convergence in the pseudo-metric.

REMARK 14: ( POPULATION CONVERGENCE) The population setting is especially suited to a

price-taking interpretation because a single individual’s response does not change the distri-

bution. With a finite number of individuals, if any one were to change their behavior, e.g., by

misrepresenting their preferences and therefore their responses, that individual might change

the equilibrium in their favor. Such favorable misrepresentation is well-known when E de-

scribes a model with a finite number of individuals (rather than a finite number of types).

Population models are used in evolutionary games, e.g., Friedman [1991], Samuelson [1997],

where individual behavior may be fixed and transition probabilities are based on measures

of relative fitness. In the population model here, ‘fixed’ behavior is individuals’ reactions to

currently perceived gains as determined by∇pi
U∗i (p

t ) that determines transition probabilities

p t+1 = p t [×
i
zi (p

t )].
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7 CONCLUDING REMARK

Connections between game theory and general equilibrium have employed cooperative or

non-cooperative solution concepts from games to rationalize Walrasian equilibrium. The di-

rection emphasized here is from economics (Walrasian equilibrium) to games (correlated equi-

librium). But the intent is not to rationalize the latter by the former. Rather it is to view cor-

related equilibrium as a modification of the Walrasian approach to general equilibrium that

retains much of its formal and informal structure.

The informational setting underlying price-taking in economics is: individuals make deci-

sions knowing which commodities can be traded, their prices, and how their choices affect

their utilities, without knowing the utilities of others. A similar informational setting consis-

tent with (convergence to) correlated equilibrium is: individual i knows the choices Ai , the

choices available to others, A−i , prices (in the F-duality, frequencies of previous choices), and

how those choices affect i ’s utility, vi , without requiring knowledge of v j , j 6= i .

A formal property of the modification from E to G is:

Instead of the default description of economic interactions defined by trade in com-

modities, interdependence is modeled as the direct utility consequences of individual

actions.

In the modification disequilibrium does not lead to infeasible outcomes, but to possibly un-

foreseen but nevertheless actual outcomes, to be corrected by individuals themselves rather

than by ‘market forces’ in the guise of an auctioneer. This allows for a more strategic inter-

pretation of price-taking behavior than the traditional interpretation of that term. Another

significant feature of the modified description of interdependence is that externalities are a

built-in feature of the environment. These changes stretch the concept of general equilibrium,

inviting alternative approaches to address a more comprehensive collection of issues relating

to the meaning of equilibrium, of competition, and its relation to economic efficiency, while

retaining a link to their Walrasian origins.
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8 APPENDIX

A restricted version of the result sufficient for Proposition 3, above, is:

Fenchel’s Duality Theorem for Polyhedral Functions: (Rockafellar [1970], Theorem 31.1) Let

f : Rm → R∪ {−∞} be a proper polyhedral convex function and g : Rm → R∪ {∞} a proper

polyhedral concave function with (proper and polyhedral) conjugates denoted f ∗ and g ∗. If

either

{x : f (x )<∞}
⋂

{x : g (x )<∞} 6= ;,

or

{y : g ∗(y )>−∞}
⋂

{y : f ∗(y )>−∞} 6= ;,

there exists (x 0,y 0) such that

f (x 0)− g (x 0) = inf
x
{ f (x )− g (x )}= sup

y
{g ∗(y )− f ∗(y )}= g ∗(y 0)− f ∗(y 0).
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