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Abstract

We consider nonparametric identi�cation and estimation of consumption based asset pricing

Euler equations. This entails estimation of pricing kernels or equivalently marginal utility

functions up to scale. The standard way of writing these Euler pricing equations yields Fredholm

integral equations of the �rst kind, resulting in the ill posed inverse problem. We show that these

equations can be written in a form that resembles Fredholm integral equations of the second kind,

having well posed rather than ill posed inverses. We allow durables, habits, or both to a¤ect

utility. We extend the usual method of solving Fredholm equations to allow for the presence

of habits. Using these results, we show with few low level assumptions that marginal utility

functions and pricing kernels are locally nonparametrically identi�ed, and we give conditions

for �nite set and point identi�cation of these functions. We provide consistent nonparametric

estimators for these functions and associated limiting distributions, and an empirical application

to US consumption and asset pricing data.
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1 Introduction

One of original motivations of the generalized method of moments GMM estimator was estimation of

the Euler equations associated with rational expectations in consumption and associated consumption

based asset pricing models. See, e.g., Hansen and Singleton (1982). More recently, these types of

Euler equation models have been used as leading examples of nonparametric instrumental variables

estimators. See, e.g., Newey and Powell (2003). Nonparametric instrumental variables models have

the structure of Fredholm equations of the �rst kind, and hence su¤er from the ill-posed inverse

problem, resulting in nonstandard limiting distribution theory and requiring di¢ cult to interpret,

high level assumptions for identi�cation.

In this paper we show that, even with the inclusion of habits, the standard time additive speci�-

cation of utility in these Euler equation models permits writing these Euler equations in a form that

resembles (and in some cases equals) Fredholm equations of the second kind, which (unlike those of

the �rst kind), have well-posed inverses.

Our models permit the marginal utility of consumption in each time period to depend on durables

or habits, which have been shown to be empirically important. In a utility function that allows

for habits, marginal utility in each time period depends on both current and past consumption

levels. This dependence on past consumption generates an Euler integral equation that is more

complicated than the standard Fredholm equation of the second kind. However, we show that this

more complicated integral equation can be solved in a way that is analogous to the usual solution

method for Fredholm equations of the second kind.

Our results make nonparametric Euler equation estimation, and associated asset pricing models,

amenable to standard nonparametric estimation methods and associated limiting distribution theory,

rather than requiring the nonstandard limiting distribution theory and associated peculiar regularity

requirements required for dealing with estimation of ill-posed inverses.

Existing nonparametric Euler equation estimators in the literature assume identi�cation. The

conditions for nonparametric identi�cation of Fredholm integral equations of the �rst kind are high

level and di¢ cult to interpret. By recasting the model as an integral equation that equals (or in the

model with habits, resembles) a Fredholm equation of the second kind, we can provide more explicit,

low level conditions for identi�cation.

In particular, we show that the subjective rate of time preference b equal the inverse of an

eigenvalue of an identi�ed matrix, and that the marginal utility function and hence the asset pricing

kernel can be recovered from the associated eigenvector. This implies that, with minimal low level

assumptions both b and the marginal utility function are identi�ed up to a �nite set (and hence is

locally identi�ed) and may be globally point identi�ed. Given point or �nite set identi�cation of
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b, the marginal utility function and pricing kernel are also point or �nite set identi�ed as long as

there are not multiple roots and hence multiple eigenvectors associated with the eigenvectors in the

identi�ed set for b.

These identi�cation results apply to estimation of a single Euler equation. If we observe returns

data on multiple assets, and so have multiple Euler equations, then the pricing kernel, the marginal

utility function, and b will all in general be point identi�ed, unless by some great coincidence the

Fredholm kernels associated with each asset just happen to yield multiple identical eigenvalues and

associated marginal utility functions across all assets.

One use of nonparametric estimates is to test for di¤erent functional restrictions on utility and

hence on the pricing kernel. Let Ct be expenditures on consumption and let Vt be a vector of other

variables that may a¤ect utility. These other variables could include durables or lagged consumption

values through habit formation. One possible application is to nonparametrically estimate the model

including both durables and lagged consumption in Vt, and then test whether one or both belong in

the model.

Let g(Ct; Vt) denote a time t marginal utility function (details regarding the construction of g

are provided in the next section). Let Rjt be the gross return in time period t of owning one unit of

asset j in period t � 1. For a consumer with time separable utility and a rate of time preference b
that saves by owning assets j, the Euler equation for maximizing utility is usually represented as

Et (Mt+1Rjt+1) = E

�
b
g(Ct+1; Vt+1)

g(Ct; Vt)
Rjt+1 j Ct; Vt

�
= 1 (1)

where Mt is the time t pricing kernel. An Euler equation in the form of equation (1) holds for each

�nancial asset j, and so pricing equations are often cast in the form of relative returns or net returns

Et [Mt+1 (Rjt+1 �R0t+1)] = Et

�
b
g(Ct+1; Vt+1)

g(Ct; Vt)
(Rjt+1 �R0t+1) j Ct; Vt

�
= 0 (2)

where R0t+1 denotes either a market rate or a risk free rate.

The goal is estimation of the pricing kernel Mt, or equivalently the marginal utility function g up

to scale and the subjective discount factor b. The scale of g is not identi�ed, so an arbitrary scale

normalization (which does not a¤ect the resulting estimate of Mt) is imposed.

Estimation typically proceeds by applying Hansen�s (1982) Generalized Method of Moments

(GMM) to the moment conditions (2) after parameterizing the unknown marginal utility function.

Prominent examples of such parameterized models include Hall (1978), Hansen and Singleton (1982),

Dunn and Singleton (1986), and Campbell and Cochrane (1999), among many, many others.

This paper considers semiparametric and nonparametric identi�cation and estimation of this

model. A di¢ culty with nonparametric estimation of equation (1) or (2) is that solving for the
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pricing kernel Mt corresponds to solving a Fredholm integral equation of the �rst kind (writing

out the conditional expectation as an integral). Estimation of equation (1) or (2) with unknown

functions is a special case of nonparametric instrumental variables estimation, or conditional GMM

estimation with unknown functions, as in Carrasco and Florens (2000), Newey and Powell (2003), Ai

and Chen (2003), Hall and Horowitz (2005), Chen and Ludvigson (2009), Chen and Pouzo (2009),

Chen and Reiss (2010), and Darolles, Fan, Florens and Renault (2010). Identi�cation conditions

for nonparametric instrumental variable models are given by Chen, Chernozhukov, Lee, and Newey

(2010).

These estimators require veri�cation of elaborate sets of nonstandard regularity conditions, due

to complications arising from the associated Fredholm integral equations of the �rst kind. Empirical

examples of semiparametric estimates of (special cases of) equation (2) include Gallant and Tauchen

(1989), Fleissig, Gallant, and Seater (2000), and Chen and Ludvigson (2009).

Let f(Ct+1; Vt+1 j Ct; Vt) denote the conditional density function of Ct+1; Vt+1 given Ct; Vt and
de�ne fj(Ct+1; Vt+1; Ct; Vt) = E (Rj j Ct+1; Vt+1; Ct; Vt) f(Ct+1; Vt+1 j Ct; Vt). Then the Euler equation
(1) can be rewritten as

g(Ct; Vt) = bE [Rjt+1g(Ct+1; Vt+1) j Ct; Vt] (3)

g(Ct; Vt) = b

Z
g(Ct+1; Vt+1)fj(Ct+1; Vt+1; Ct; Vt)dCt+1dVt+1: (4)

In a model without habits in utility, Vt will not include lags of Ct;, and in this case equation (4) is

a Fredholm integral equation of the second kind, which can be solved using standard methods for b

and the unknown function g. We base our estimators on equation (4), which has a well posed inverse,

resulting in a simpler limiting distribution theory with less restrictive assumptions. As noted above,

previous nonparametric and semiparametric Euler equation estimators were based on equations (1)

or (2), which are Fredholm integral equation of the �rst kind in Mt and so su¤er from the ill-posed

inverse problem.

An exception is Anatolyev (1999), who shows consistency of a speci�c Euler equation estimator

with a well posed inverse like ours. Another exception is Escanciano and Hoderlein (2010), who

show identi�cation of some versions of this model by imposing shape restrictions on utility functions,

and providing su¢ cient conditions to ensure that only one element of the set we identify satis�es

those shape restrictions. Unlike our results, they do not provide an explicit solution to the resulting

integral equations which we use to construct estimators. A �nal exception is Chen, Chernozhukov,

Lee, and Newey (2010), who in one example application of their local identi�cation theorems consider

semiparametric (not nonparametric) identi�cation of an Euler equation model in an instrumental

variables framework.

Interpreting equation (4) as a �ltering problem, one would typically estimate b based on the
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largest eigenvalue associated with the Fredholm equation solution. However, while 1=b must be an

eigenvalue, there is no economic theory that would require that individual�s rate of time preference

b to equal the inverse of the largest eigenvalue.

Allowing for habits in utility means that Vt includes lags of Ct, which complicates the resulting

integral equation. In particular, the Fredholm kernel function fj(Ct+1; Vt+1; Ct; Vt) is then no longer

an ordinary density. We show how standard methods for solving Fredholm integral equations of the

second kind can be extended to handle this case. With habits the integral equation (4) still has a

well posed inverse, though the corresponding integral equation solution and associated estimators

become more complicated.

Previous Euler equation estimators either assume nonparametric identi�cation of the model

(which requires high level assumptions that are di¢ cult to interpret or verify), or impose parametric

or semiparamertric assumptions to attain identi�cation.

Our recasting of the model in the form of a Fredholm equation of the second kind allows to

derive more primitive conditions for identi�cation. In particular, with minimal regularity we obtain

conditions for local identi�cation, identi�cation up to �nite sets, and for point identi�cation.

Given our estimates of g and hence of the pricing kernelM , we may test whether g is independent

of durables consumption, lagged consumption, or both, thereby testing whether durable consumption

or habit formation plays a role in determining the pricing kernel. We will also want to test various

popular functional restrictions on utility.

In addition to the pricing kernel M , other functions of the marginal utility function g that are

of interest to estimate are the Arrow Pratt coe¢ cients of relative and of absolute risk aversion (crra

and cara), and marginal rates of substitution (mrs),

crra(x) =
�c@g(c; v)=@c

g(c; v)

cara(x) =
�@g(c; v)=@c

g(c; v)

mrs(x) =
@g(c; v)=@v

@g(c; v)=@c

These measures are all independent of the scale of g. One might also be interested in the unconditional

means of these functions, corresponding to the average risk aversion or average marginal rates of

substitution in the population.
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2 Euler Equation Derivation

To encompass a very wide class of existing Euler equation and asset pricing models, consider utility

functions that in addition to ordinary consumption, may include both durables and habit e¤ects. Let

U be single period utility function, b is the one period subjective discount factor, Ct is expenditures

on consumption, Dt is a stock of durables, and Wt is a vector of other variables that a¤ect utility

and are known at time t. Let Vt denote the vector of all variables other than Ct that a¤ect utility

in time t. In particular, Vt contains Wt, Vt contains Dt if durables matter, and Vt contains lagged

consumption Ct�1, Ct�2, etc.,. if habits matter.

The consumer�s time separable utility function is

max
fCt;Dtg1t=1

E

"
TX
t=0

btU(Ct; Vt)

#
The consumer saves by owning durables and by owning quantities of risky assets Ajt, j = 1; :::; J .

Letting Ct be the numeraire, let Pt be the price of durables Dt at time t and let Rjt be the gross

return in time period t of owning one unit of asset j in period t � 1. Assume the depreciation rate
of durables is �. Then without frictions the consumer�s budget constraint can be written as, for each

period t,

Ct + (Dt � �Dt�1)Pt +
JX
j=1

Ajt �
JX
j=1

Ajt�1Rjt

We may interpret this model either as a representative consumer model, or a model of individual

agents which may vary by their initial endowments of durables and assets and by fWtg1t=0. The
Lagrangean is

E

"
TX
t=0

btU(Ct; Vt)�
 
Ct + (Dt � �Dt�1)Pt +

JX
j=1

(Ajt � Ajt�1Rjt)

!
�t

#
(5)

with Lagrange multipliers f�tg1t=0.
Consider the roles of durables and habits. For durables, de�ne

gd(Ct; Vt) =
@U(Ct; Vt)

@Dt

which will be nonzero only if Vt contains Dt. For habits, we must handle the possibility of both

internal or external habits. Habits are de�ned to be internal (or internalized) if the consumer

considers both the direct e¤ects of current consumption on future utility through habit as well as

through the budget constraint. In the above notation, habits are internal if the consumer takes into

account the fact that, due to habits, changing Ct will directly change Vt+1, Vt+2 etc.,. Otherwise, if

the consumer ignores this e¤ect when maximizing, then habits called external.
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If habits are external or if there are no habit e¤ects at all, then de�ne the marginal utility function

g by

g(Ct; Vt) =
@U(Ct; Vt)

@Ct
If habits exist and are internal then de�ne the function eg by

eg(It) = LX
`=0

b`E

�
@U(Ct+`; Vt+`)

@Ct
j It
�
.

where L is such that Vt contains Ct�1; Ct�2; :::Ct�L, and It is all information known or determined

by the consumer at time t (including Ct and Vt). For external habits, we can write eg(It) = g(Ct; Vt),

while for internal habits de�ne

g(Ct; Vt) = E (eg(It) j Ct; Vt) .
With this notation, regardless of whether habits are internal or external, we may write the �rst

order conditions associated with the Lagrangean (5) as

�t = bteg(It)
�t = Et (�t+1Rjt+1 j It) j = 1; :::; J

�tPt = btgd(Ct; Vt)� �Et (�t+1Pt+1 j It)

Using the consumption equation �t = bteg(It) to remove the Lagrangeans in the assets and durables
�rst order conditions gives

bteg(It) = E
�
bt+1eg(It+1)Rjt+1 j It

�
j = 1; :::; J

bteg(It)Pt = btgd(Ct; Vt)� �E
�
bt+1eg(It+1)Pt+1 j It� .

Taking the conditional expectation of the asset equations, conditioning on Ct; Vt, yields the asset

Euler equations

g(Ct; Vt) = bE [g(Ct+1; Vt+1)Rjt+1 j Ct; Vt] j = 1; :::; J (6)

which is the source of our estimated Fredholm equations.

Although we will focus our attention on the asset equations, one also obtains an Euler equation

associated with durables,

gd(Ct; Vt) = Ptg(Ct; Vt) + �bE [g(Ct+1; Vt+1)Pt+1 j Ct; Vt; Pt] . (7)

Given estimates of the function g, equation (7) would then provide an equation for estimating the

function gd. When habits are external, it would also be possible to estimate g and gd simultaneously,

imposing the additional constraint from Young�s theorem that

@g(Ct; Vt)

@Dt

=
@gd(Ct; Vt)

@Ct
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3 Identi�cation

In the previous section we derived the Euler equations (3) and (4), allowing Vt to depend on durables

Dt, past consumption Ct�1, etc.,. Here we take these equations as our starting point. Because of

the presence of lags, there can be elements of (Ct+1; Vt+1) that overlap with elements of (Ct; Vt), and

we will need to treat those elements di¤erently from others. To handle this overlap, and to simplify

notation by eliminating subscripts, de�ne Y to be the vector of elements of the intersection of the sets

of elements of (Ct; Vt) and (Ct+1; Vt+1). Then de�ne X to the elements of (Ct+1; Vt+1) that are not

in Y , and de�ne Z to be the elements of (Ct; Vt) that are not in Y . So, e.g., if Vt = (Ct�1; Ct�2; Dt),

corresponding to the model where utility depends on current consumption, two lags of consumption

comprising habit e¤ects, and current durables consumption, then we would have Y = (Ct; Ct�1),

X = (Ct+1; Dt+1), and Z = (Ct�2; Dt). If there are no lagged e¤ects, so e.g. if Vt = Dt, then we

would have X = (Ct+1; Dt+1), Z = (Ct; Dt), and Y would be empty. Note that by construction X

and Z will always have the same number of elements, and each element of Z will be a lag of the

corresponding element of X. Also, the elements of Y , X, and Z need to be ordered properly so that

(Ct; Vt) = (Y; Z) and (Ct+1; Vt+1) = (X; Y ).

In this notation, equation (3) for marginal utility g can be written as

g(y; z) = bE [g(X; Y )Rj j Y = y; Z = z] = bE [g(X; y)Rj j Y = y; Z = z] (8)

for random vectors X, Y , and Z, and random scalar Rj = Rjt. In the special case where Y is empty

this simpli�es to

g(z) = bE [g(X)Rj j Z = z] (9)

We now show how to construct the set of function g that solve equation (8). The method is

an extension of the standard technique for solving Fredholm integral equations of the second kind.

When Y is empty, equation (8) reduces to equation (9), which is an ordinary Fredholm equation

of the second kind, and in that case our method reduces to a standard solution method for such

equations. Make the following Assumption I (for identi�cation):

ASSUMPTION I. X and Z each have the same support 
, and Y has support 
y Let f(X j y; z)
denote the conditional probability density function of the continuously distributed X, conditional on

Y = y; Z = z. For each asset j = 1; :::; J , de�ne fj(x; y; z) = E (Rj j X = x; Y = y; Z = z) f(x j y; z).
Assume g(y; z) is not zero for all z. Without loss of generality, assume some scaling is imposed for

g(y; z), such as that the square of g(y; z) integrated over some known measure equals one. Assume

fj(x; y; z) is square integrable, that is,
R



R

y

R


fj(x; y; z)

2dxdydz is �nite. Assume there exists
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functions ajk, bjk and cjk such that

fj(x; y; z) =

KX
k=1

ajk(x)bjk(y)cjk(z) (10)

where K is either an integer or in�nity.

By analogy with standard Fredholm theory, when equation (10) holds with K �nite, we may

de�ne the Fredholm kernel function fj(x; y; z) to be degenerate, otherwise it is nondegenerate. A

su¢ cient condition to have equation (10) hold is fj(x; y; z) analytic, because in that case functions

ajk, bjk, and cjk can be constructed by a Taylor series expansion.

Given Assumption I, equation (8) can be written as

g(y; z) = b

Z



g(x; y)fj(x; y; z)dx. (11)

For each asset j = 1; :::; J and each index k; `;m on 1; :::; K, de�ne the scalars Ajk`m and �jk` by

Ajk`m =

Z



cjm(z)bjk(z)aj`(z)dz

�jk` =

Z



Z

y

g(x; y)ajk(x)dxbjk(y)aj`(y)dy:

Theorem 1. Let Assumption I hold. Then, For each asset j = 1; :::; J and each index k; `;m on

1; :::; K,

�jk` = b
KX
m=1

�jmkAjk`m (12)

and

g(y; z) = b
KX
m=1

KX
k=1

�jkmcjk(z)bjm(y)cjm(z) (13)

PROOFOFTHEOREM 1: De�neBjk(y) =
R


g(x; y)ajk(x)dx so �jk` =

R

y
Bjk(y)bjk(y)aj`(y)dy.

Substitute equation (10) into equation (11) to get

g(y; z) = b

KX
m=1

Z



g(x; y)ajm(x)dxbjm(y)cjm(z) = b
KX
m=1

Bjm(y)bjm(y)cjm(z): (14)

Multiply this equation by ajk(y) and integrate over yZ

y

g(y; z)ajk(y)dy = b

KX
m=1

Z

y

Bjm(y)bjm(y)ajk(y)dycjm(z)
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which by the de�nitions of Bjk(z) and �jkm simpli�es to

Bjk(z) =
KX
m=1

�jmkcjm(z). (15)

Now multiply this equation by bjk(z)aj`(z) and integrate over z to getZ



Bjk(z)bjk(z)aj`(z)dz = b
KX
m=1

�jmk

Z



cjm(z)bjk(z)aj`(z)dz

which, by applying the de�nitions of �jk` and Ajk`m gives equation (12). Also, equations (14) and

(15) together give equation (13).

Theorem 1 forms the basis for identi�cation. Since fj(x; y; z) is the product of a conditional

expectation of observables and a conditional density function of observables, we may assume fj(x; y; z)

is identi�ed. Then functions ajk, bjk and cjk that satisfy equation (10) can be constructed, and from

those the constants Ajk`m can be constructed. We therefore have identi�cation of Ajk`m. Equation

(12) relates b and �jk` to Ajk`m, and by equation (13), g(y; z) is identi�ed if b and �jk` are identi�ed.

So identi�cation depends on the extent to which b and �jk` can be recovered from equation (12),

given Ajk`m.

Let �jk� be the K vector of elements �jk` for ` = 1; :::; K, let �j�k be the K vector of elements

�j`k for ` = 1; :::; K, and let Ajk be the K by K matrix of having Am`k in the m�th row and `�th

column. Equation (12) can then be written as

�jk� = bAjk�j�k for k = 1; :::; K (16)

so 0BBBBB@
�j1�

�j2�
...

�jK�

1CCCCCA = b

0BBBBB@
Aj1 0 0 0

0 Aj2 0 0

0 0
. . . 0

0 0 0 AjK

1CCCCCA

0BBBBB@
�j�1

�j�2
...

�j�K

1CCCCCA (17)

Let e�j be the K2 element vector on the left in equation (17), let eAj denote the K2 by K2 block

diagonal matrix in equation (17), and let �j be the vector having K2 elements where �jk` is the

(k �K) + ` element of �j, so �j is �nal vector in equation (17). We then have e�j = b eAj�j. Now e�j
contains all the same elements as �j, but in a di¤erent order. For example, the �rst three elements

of e�j are �j11, �j12, and �j13, which are the elements in positions 1, K + 1, and 2K + 1 in �j. Let

P denote the permutation matrix that makes Pe�j = �j, and de�ne the matrix Aj = P eAj. Then
�j = Pe�j = bAj�j so

(I � bAj) �j = 0 (18)
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Equation (18) is just a way to rewrite equation (12), so identi�cation now depends on the extent to

which b and �j can be recovered from equation (18).

Corollary 1. Let Assumption I hold, removing the variable Y and the function bjk everywhere

they appear. In particular, fj(x; z) =
PK

k=1 ajk(x)cjk(z) and equation (9) can then be written as

g(z) = b

Z



g(x)fj(x; z)dx. (19)

De�ne Aj`m =
R


aj`(z)cjm(z)dz and �j` =

R


g(z)aj`(z)dz. Then �j` = b

PK
m=1 �jmAj`m and

g(z) = b

KX
m=1

�jmcjm(z). (20)

If we rede�ne A to be the K by K matrix of elements Aj`m and rede�ne � to be the k matrix of

elements �j`, then (I � bAj) �j = 0.

PROOF OF COROLLARY 1: g(z) = b
R


g(x)fj(x; z)dx = b

R


g(x)

PK
m=1 ajm(x)cjm(z)dx =

b
PK

m=1 �jmcjm(z). Multiply both sides of this expression by aj`(z) and integrate over z to get �j` =R


g(z)aj`(z)dz = b

PK
m=1 �jm

R


cjm(z)aj`(z)dz = b

PK
m=1 �jmAj`m, and this equation is �j = bAj�j.

Corollary 1 is the analog to Theorem 1 when there is no Y variable and so applies to equation (9)

instead of Equation (8) (that is, Euler equation models without habit or any other lagged variables in

the marginal utility function). Equation (8) is a standard Fredholm equation of the second kind, and

Corollary 1 corresponds to a standard method of solving such equations. Corollary 1 yields the same

form (I � bAj) �j = 0 as Theorem 1, though with smaller matrices. Essentially, Corollary 1 directly

yields an analog to equation (16) without the k subscripts, which can then be written directly as

(I � bAj) �j = 0, without having to go through the steps of getting from equation (16) to equation

(18).

We have now shown that starting from either equation (9) or (8), identi�cation of b and the

function g corresponds to recovering b and �j with Aj known in equation (18), or equivalently�
1
b
I � Aj

�
�j = 0. The equation (�jI � Aj)�j = 0 is satis�ed by up to K2 di¤erent eigenvalues �j.

Multiplicity of roots can result in there being more than one eigenvector �j associated with any given

eigenvalue �j. Let �j be the set of all eigenvalues of Aj.

Point identi�cation of b and g is likely (i.e., we have �generic�identi�cation in the sense of McManus

1992) when the data consist of multiple assets. Let Sj denote the set of all pairs �j; gj such that �j;�j
are an eigenvalue and a corresponding eigenvector of Aj, and gj is given either by equation (13) or

(20) using �j and replacing b with 1=�j. Given J assets, the true pair b; g will be in the intersection of
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the sets Sj for j = 1; :::; J . Failure of point identi�cation of b and g would therefore require that the

exact same eigenvalue and associated g type function appear in every set Sj, which would require a

great coincidence among the functions E (Rj j X = x; Y = y; Z = z), and hence among the Fredholm

kernels fj for all the assets j = 1; :::; J .

Even when we have only one asset j (such as only having the risk free interest rate in models

when we are only modeling marginal utility and not asset pricing), we still have useful set or point

identi�cation results (see, e.g., Manski 2003 for a general overview of set versus point identi�cation).

Let �j be the set of all eigenvalues associated with the matrix Aj. Since K can be in�nite, the

identi�ed set �j (for the given asset j) that 1=b must lie in can be in�nite, but is still countable, so

we have identi�cation up to a countable set.

It is unreasonable to think that an individual�s rate of time preference corresponds to a subjective

discount rate that is either above one or arbitrarily close to zero, so assume 1 � b � b� for some

positive constant b�. The eigenvalues associated with Aj can be ordered from largest to smallest, and

will in general be a series that approaches zero, so there can only be a �nite number of eigenvalues

that satisfy 1 � b � b�. Therefore, assuming 1 � b � b�, we have identi�cation up to a �nite set,

with 1=b 2 f�j 2 �j j 1 � 1=�j � b�g. We will alternatively have a �nite number of eigenvalues,
and hence identi�cation up to a �nite set, if the Fredholm kernel fj for any asset j is degenerate,

corresponding to a �nite K. Note that �nite set identi�cation also implies local identi�cation (that

is, identi�ed in an open neighborhood of the true; see Rothenberg 1971).

Given point or �nite set identi�cation of b, the marginal utility function g (and hence also the

pricing kernel) will be point identi�ed (or identi�ed up to the same size set) as long as there are not

multiple roots and hence multiple eigenvectors associated with the eigenvectors in the identi�ed set

for b.

In a special case of our model, Escanciano and Hoderlein (2010) show point identi�cation of

marginal utility and the discount factor after imposing some shape restrictions on marginal utility

that we do not impose. This point identi�cation requires additional restrictions, notably bounded

support of consumption, that may not be plausible in our data. however, their results suggest that

we may further shrink the identi�ed set by imposing shape restrictions beyond smoothness on the

marginal utility function g and bounds on the discount factor b. In particular, it may be sensible to

impose nonincreasing marginal utility, meaning that @g (x; y) =@x � 0.
Finally, if (as is commonly done), the subjective discount rate is assumed to equal a constant the

risk free rate, then taking Rj to be this risk free rate will cause b and Rj to drop out of the Euler

equation. Equivalently, we could in that case set b and Rj equal to one for the purpose of estimating

g.
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Based on market e¢ ciency, it may be reasonable to assume

E (Rj j X = x; Y = y; Z = z) = E (Rj j X = x) j = 1; :::; J (21)

meaning that, after conditioning on the time t + 1 information X, the mean returns of each asset

j in time t + 1 do not depend on information dated time t or earlier. If equation (21) holds then

to solve (I � bAj)�j = 0 for every asset j we only need to decompose the density function f as

f(x j y; z) =
PK

k=1 ak(x)bk(y)ck(z) for some functions ak, bk, and ck. Then equation (10) will hold for

all assets j, with ajk(x) = ak(x)E (Rj j X = x), and bjk(y) = bk(y), and cjk(z) = ck(z). This could

be an empirically valuable simpli�cation.

4 Estimation Overview

Suppose will be based on aggregate time series data on consumption and asset returns. Then the

derivations provided here would be those of a representative consumer, though in many cases it is

possible to obtain the same Euler equations by aggregating the demand functions of individual con-

sumers. Then one will need to include su¢ cient time varying covariates in Vt to have the Fredholm

kernel functions fj (which depend on the conditional density function of consumption and on condi-

tional mean of asset returns) be constant over time. A complication is that aggregate consumption

may be nonstationary. In this case, we might specify the model in terms of relative consumption as

in, e.g., Chen and Ludvigson (2009).

On the other hand, suppose we have data on individual consumers, so X, Y , and Z are then

vectors of consumption in a few time periods and other variables pertaining to individual consumers.

If we have cross section data from a single pair of time periods only then each Rj will be constant

across observations, so we would not be able to exploit variation in asset prices to aid identi�cation.

Panel data would provide some variation, but in that case E (Rj j X = x; Y = y; Z = z) will vary

only by the time period of the observations X, Y , and Z, so the amount of variation coming from

asset prices will be limited unless the panel is long.

For this preliminary overview, assume we have a sample f(Xi; Yi; Zi; Rji); i = 1; : : : ; ng where Xi,

Yi, and Zi are each continuously distributed vectors with supports Xi 2 
 � R`1, Zi 2 
 � R`1, and
Yi 2 
y � R`2. Assume the data are stationary. This data could either consist of a few periods of
consumption and possibly durables for each of many individuals i, or be time series data with growth

removed from consumption in some way. Note Rji generally only varies over time.

For example, in a model with habits based on aggregate consumption data, we could have i =

t = 1; :::; T ! 1, Xi = (Ct+1=Ct), Yi = (Ct=Ct�1), and Zi = (Ct�1=Ct�2), where we have written

the model in the form of relative consumption as in Chen and Ludvigson (2009) to remove possible
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nonstationarity in the levels of consumption. This would then be imposing the restriction that

marginal utility at time t is homogeneous of degree zero in Ct, Ct�1, and Ct�2, but is otherwise

nonparametric. Assets Rjt could include a risk free rate like the short term treasury bill rate, stock

or bond market index rates, rates on various beta portfolios, etc.,.

For an example using micro data, in a model with habits, durables D, and households h, we

could (after conditioning on su¢ cient observable household characteristics to make marginal utility

plausibly homogeneous) take i = i (h; t), h = 1; :::; H ! 1, t = 1; :::; T �xed; Xi = (Cht; Dht),

Yi = Cht�1, Zi = (Cht�2; Dht�1), and Rji = Rjt. If the model with this data did not include habits,

then we would instead drop Y and take Xi = (Cht; Dht) and Zi = (Cht�1; Dht�1). Dropping D

everywhere gives the model without durables, with or without habits.

The goal is estimation of the function g and discount value b in g(y; z) = b
R


g(x; y)fj(x; y; z)dx,

where the Fredholm kernel fj is given by fj(x; y; z) = E (Rj j X = x; Y = y; Z = z) f(x j y; z) for
each asset j. Let bfj(x; y; z) be a uniformly consistent estimator of fj(x; y; z). Below, use a kernel
estimator.

For deriving our asymptotic theory, we de�ne our estimators bb and bg as solutions to the empirical
analog of our identifying equations, that is, we de�ne bb and bg by bg (y; z) = bb R



bg (x; y) bfj (x; y; z) dx,

subject to normalizations and the identifying assumptions.

In practice, estimatesbb and bg could be obtained by applying the solution method given in Theorem
1 using bfj in place of fj, with 1=b being the associated eigenvalue and bg given by the estimated analog
to equation (13).

The integrals over 
 and 
y that are used to implement a solution will be numerical, and hence

equivalent to summations over a �ne grid of points which we may denote as 
� and 
�y. Therefore,

if desired one could more directly construct estimates bg and bb as solutions to
bg(y; z) = bbX

x2
�
bg (x; y) bfj(x; y; z), all y 2 
�y, z 2 
�, j = 1; :::; J (22)

subject to a scale normalization (imposed without loss of generality) such as
P

y2
�y

P
z2
� bg(y; z)2$(y; z) =

1 for some known measure $(y; z). It then becomes a numerical search to �nd the �nite number of

values of bb and bg (x; y) for all x 2 
� and y 2 
�y that satisfy equation (22), the scale normalization
for bg, and any known equalities or inequalities on bb, speci�cally b� � bb � 1.
Our estimator yields countable sets of values of bb and bg (x; y) given bfj(x; y; z). The fact that

plausible discount factors lie in a relative narrow range of values means we are likely to have either

point identi�cation (if only one candidate bb lies in a plausible range) or identi�cation up to a small
number of values. If we have more than one asset, so J > 1, then we could apply some minimum

distance estimator to impose the constraint that the true estimator be the value of bg(y; z) and bb that
is the same across all assets J . As noted earlier, if these restrictions do not yield point identi�cation,
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then we might further shrink the identi�ed set by imposing shape restrictions beyond smoothness on

the marginal utility function g. In particular, it may be sensible to impose nonincreasing marginal

utility, meaning that @g (x; y) =@x � 0.
For models without habits, all of the above steps can be applied after dropping all of the terms

involving y.

5 Asymptotic Theory

Here we provide conditions for consistency and limiting distribution theory for our estimator. We

begin by recapping our notation and adding additional notation as needed. Let Dt be a vector of

observable variables other than total consumption Ct that a¤ects utility (e.g., it could consumption

of just durables). Let Vt = (Ct�1; :::Ct�L1 ; Dt; :::Dt�L2) for some non-negative integers L1 and L2.

If L1 = 0, L2 > 0 then Vt = (Dt; :::Dt�L2); if L1 > 0, L2 = 0 then Vt = (Ct�1; :::Ct�L2); and if

L1 = L2 = 0 then Vt is empty. De�ne Yt to be the intersection of the sets of elements of (Ct; Vt) and

(Ct+1; Vt+1), de�ne Xt to be the elements of (Ct+1; Vt+1) that are not in Y , and de�ne Zt to be the

elements of (Ct; Vt).

Therefore, if L1 and L2 are positive then Y = (Ct�1; :::Ct�L1+1; Dt; :::Dt�L2+1), Xt = (Ct+1; Dt+1),

and Zt = (Ct�L1 ; Dt�L2). If L1 = 0, L2 > 0 then Yt = (Dt; :::Dt�L2+1), Xt = (Ct+1; Dt+1), and

Zt = (Ct; Dt�L2). If L1 > 0, L2 = 0 then Yt = (Ct�1; :::Ct�L1+1), Xt = Ct+1, and Zt = Ct�L1. If

L1 = L2 = 0 then Yt is empty, Xt = Ct+1, and Zt = Ct.

Assume the elements of Y , X, and Z are ordered properly so that (Ct; Vt) = (Yt; Zt) and

(Ct+1; Vt+1) = (Xt; Yt). Let the support of Xt be 
 � R`1, Zt has the same support as Xt, and

let the support of Yt be 
y � R`2. Let S � R`2 � R`1 denote the support of (Yt; Zt)
Aj is a linear operator so that

Ajg (y; z) =

Z
g (x; y) fj (x; y; z) dx;

where

mj (x; y; z) = E [Rjt+1jXt = x; Yt = y; Zt = z]

fj (x; y; z) = mj (x; y; z)� fxjy;z (xjy; z) .

Let rj (x; y; z) = fj (x; y; z)� fy;z (y; z). Let Kj be an `j-dimensional product of kernel functions K,

let h be a bandwidth, and let Kjh(:) = Kj(:=h)=h
`j . We de�ne the following kernel based estimators,

where all the summations are from 1 to T .

brj (x; y; z) = 1

T

X
Rjt+1K1h (x�Xt)K2h (y � Yt)K1h (z � Zt)
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bfx;y;z (x; y; z) = 1

T

X
K1h (x�Xt)K2h (y � Yt)K1h (z � Zt)

bmj (x; y; z) =
brj (x; y; z)bfx;y;z (x; y; z) = bE (Rjt+1 j Xt = x; Yt = y; Zt = z)

bfy;z (y; z) = 1

T

X
K2h (y � Yt)K1h (z � Zt)

bfxjy;z (xjy; z) = bfx;y;z (x; y; z)bfy;z (y; z)
bfj (x; y; z) = brj (x; y; z)bfy;z (y; z) = bm (x; y; z) bfxjy;z (xjy; z)

Our (set of) estimators
�bb; bg� are de�ned (in Assumption A below) to satisfy the empirical analog

linear equations of (11), subject to the same normalizations that we imposed on b and g. Let �j
denote the set of real eigenvalues that lie in (1;1) associated with the linear operator Aj. We
consider the following set of assumptions for our asymptotic results.

Assumption A.

1. Aj is a compact operator for each asset 1 � j � J .

2. The eigenspace corresponding to the eigenvalue that lies in � =
TJ
j=1 �j has dimension 1.

3. There exists a (y0; z0) 2 S such that any eigenfunction that corresponds to an eigenvalue in

� is non-zero at (y0; z0).

4. For j = 1; : : : ; J , the estimator
�bb; bg� is de�ned to solve bg (y; z) = bb R bg (x; y) bfj (x; y; z) dx such

that
R bg2 (y; z) bfy;z (y; z) dx = 1, and bg (y0; z0) > 0 for some (y0; z0) 2 S.

Assumption B.

1. The sequence (Ct; Dt; R1t; : : : ; RJt)
T
t=1 is a strictly stationary and geometrically strong mixing

sequence, satisfying the Euler equation (4), whose marginal distribution coincides with the

distribution of (C;D;R1; : : : ; RJ).

2. The support of (Yt; Zt), S, is a compact subset of R`2 � R`1 :

3. The probability density function fx;y;z (x; y; z) is continuous and bounded away from zero.

4. The regression function mj (x; y; z) is continuous.
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5. The kernel function K is a bounded, symmetric, 2nd-order kernel with support [�1; 1] that
integrates to 1.

6. As T !1; hT ! 0; Th2T ! 0 and Th2`1+`2T = log (T )2 !1.

7. As T !1; Th2T ! 0.

Assumption C.

1. The probability density function fx;y;z (x; y; z) is twice continuously di¤erentiable.

2. The regression function mj (x; y; z) is twice continuously di¤erentiable.

3. As T !1; Th`1+`2+4T ! 0.

Comments:

The �rst two conditions of Assumption A are high level conditions. Compactness ensures that

�j is countable and accumulates only at 0. No repeated eigenvalues is the other key assumption

we have to make. This can be relaxed to the case where we allow for repeated roots as long as the

geometric multiplicity is 1. The third condition in Assumption A is a harmless sign normalization,

so when we estimate an eigenfunction we incorporate the constraint that g (y0; z0) > 0. Assumptions

B.1 - B.6 and C are standard conditions in the nonparametric statistics literature. Note that, as

is common with semiparametric problems, B.7 imposes an undersmoothing condition required to

ensure a parametric rate of convergence for the estimator of the discount factor.

We have the following theorems (the proofs are provided in the Appendix.):

Theorem 2. Under Assumptions A and B, if g0 = b0Ajg0 for all j = 1; : : : ; J such thatR
g20 (y; z) fy;z (y; z) dx = 1, and, g (y0; z0) > 0 for some (y0; z0) 2 S then as T !1:

1. bb p! b0:

2. For all (y; z) 2 int (S), jbg (y; z)� g0 (y; z)j
p! 0:

Theorem 3. Under Assumptions A, B and C, if g0 = b0Ajg0 for all j = 1; : : : ; J such thatR
g20 (y; z) fy;z (y; z) dx = 1, and, g (y0; z0) > 0 for some (y0; z0) 2 S then as T !1:

1. Let �2 (x; y; z) = E [e2t jXt = x; Yt = y; Zt = z], where et = Rjt+1 �m (Xt; Yt; Zt), then

p
T
�bb� b0

�
d! N

 
0; E

"
�2 (Xt; Yt; Zt)

�
g0 (Xt; Yt)h0 (Yt; Zt)

fy;z (Yt; Zt)

�2#!
:
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2. For all (x; y) 2 int (S)q
Th`1+`2T (bg (y; z)� g0 (y; z)) = (I �B)y

q
Th`1+`2T CT (x; y) + op (1) ;

where (I �B)y is the Moore-Penrose pseudoinverse of (I �B), and
q
Th`1+`2T CT (x; y)

d!
N (0;�0 (x; y)). The process CT is de�ned in (33) and the explicit formula for �0 (x; y) is

provided in equation (34) of the Appendix.

In the Appendix we provide explicit formulae for the asymptotic variance of the estimators of

both the discount factor bb and the corresponding eigenfunction. There are clear sample analogues
available to perform pointwise inference. In particular, for the eigenfunction, the parameters of the

stochastic process CT and the operator (I �B)y can be estimated, so it is feasible approximate the

asymptotic distribution given above by discretization.

6 Empirical Implementation - Preliminary

As in Chen and Ludvigson (2009), we de�ne Ct to be quarterly, seasonally adjusted real per capita

expenditures on services and nondurables, constructed from US National Income and Products Ac-

count tables 2.3.4 and 2.3.5 (with clothing and shoes excluded from the NIPA de�nition of non-

durables). We use 220 quarters of data starting from the �rst quarter of 1954. We letXt = (Ct+1=Ct),

Yt = (Ct=Ct�1), and Z+ = (Ct�1=Ct�2), where we have written the model in the form of relative con-

sumption to remove nonstationarity in the levels of consumption. We consider two di¤erent assets.

The riskless asset j = 1 is the yield on one-month US treasury bills, and the risky asset j = 2 is the

excess market return on the US stock market.

Table 1 shows the ten largest eigenvalues between zero of one of the estimated operator, corre-

sponding to possible estimates of the discount factor b, using the riskfree and risky return separately,

for various bandwidths where h = std (Ct)T
�1=6.

The bolded numbers in these tables show the discount factors used to construct corresponding

nonparametric estimates of the marginal utility function. Since the discount rate should be the

same regardless of asset, we estimated the bolded choice of discount factor for each bandwidth by

minimizing the di¤erence between the estimated factors in the two tables, among all factors in the

economically plausible range of .7 to 1. The estimates across the tables were generally within a few

percent of each other, which is reassuring for estimates that should be asymptotically the same if

the model is correct. Note that while we often found repeated roots, the geometric multiplicity was

found to one, so the multiple eigenvalues do not appear to cause a failure of identi�cation.
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Figures 1 to 4 plot the nonparametric estimates of marginal utility as a function of log (Ct)

corresponding to each bandwidth in Table 1 respectively. For comparison, a parametric estimate is

in black. The parametric model is the CRRA power utility as in Hansen and Singleton (1982).1 In

this parametric model the estimated coe¢ cient of risk aversion is 0.5 and the estimated discount

factor is 0.9728.

The resulting estimated marginal utility functions are quite choppy, perhaps suggesting that

still larger bandwidths might be appropriate. The nonparametric functions show some curvature

indicating inadquacy of the parametric model. The estimated marginal utility functions are quite

similar across the two assets (particularly for the largest bandwidth), which is consistent with theory

that says they should be the same across assets.

7 Extensions

An alternative estimation method would be to �rst directly estimate bfj(x; y; z) in the form
bfj(x; y; z) = K�X

k=1

bajk(x)bbjk(y)bcjk(z) for all x; y; z 2 
 (23)

for some chosen K� that goes to in�nity with the sample size. For example, one might estimate

bfj(x; y; z) = eKX
k1=1

eKX
k2=1

eKX
k3=1

b�jk1k2k3ak1(x)bk2(y)ck3(z)
by a sieve maximum likelihood estimator where K� = eK3 and ak(x), bk(y), ck(z) for k = 1; :::; eK are

some relevant space spanning basis functions like polynomials or sines and cosines. Then following

the steps of the proof of Theorem 1, for each asset j = 1; :::; J we obtain
�
I � b bAj��j = 0, wherebAj is a K�2 by K�2 known matrix function of bajk(x), bbjk(y) and bcjk(z). Given an eigenvalue bb (as

before, one that satis�es any known equalities or inequalities regarding subjective discount rates)

and corresponding eigenvector b�j of elements b�jkm from the matrix bAj, the corresponding estimator
of bg would then be

bg(y; z) = bb KX
m=1

KX
k=1

�jkmbcjk(z)bbjm(y)bcjm(z) for any y; z 2 
: (24)

1The parametric utility function of consumption considered is U (C) = C1��

1�� , where �
�1 is the intertempo-

ral substitution of elasticity between consumption in any two periods. The moment conditions are based on

E

�
bRjt+1

�
Ct+1
Ct

���
� 1
�
= 0, for the risk free and risky assets respectively.
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Depending on the application, there may be some additional structure that one would like to

incorporate into g on estimation. In particular, models with habit generally assume the struc-

ture g(Ct; Vt) = G(Ct=Ct�1 + H(Vt)), where the function �H(Vt) represents habit, with Vt =

Ct�1=Ct,...,Ct�k=Ct. See, e.g., Chen and Ludvigson (2009), who estimate a model of this form with

parametric G and nonparametricH. The comparable structure g(Ct; Vt) = G(Ct+H(Vt)) would arise

if Ct is nondurables consumption, Vt is current and lagged expenditures on durables Dt�1,...,Dt�k,

and H(Vt) is the �ow of period t consumption services derived from the current stock of durables,

accounting for depreciation over time. We could also consider imposing shape restrictions on utility

as in Escanciano and Hoderlein (2010), to aid with identi�cation.

8 Appendix

Consider a single asset for now so suppress the index j on Aj. Let G be a space of functions, say
L2 (S). Recall that A : G ! G is a linear operator such that Ag (y; z) =

R
g (x; y) fj (x; y; z) dx for

any g 2 G. We consider the solution to the following linear equation

g = bAg;

for some known b 2 (0; 1). Therefore 1=b is an eigenvalue of the operator A that lies in �.
The approach of the proof is a combination of those found in Darolles, Florens and Gourier-

oux (2004, hereafter DFG) and Magnus (1985). Magnus�paper provides explicit formulae, in �nite

dimension, for the di¤erentials of the eigenvalue and eigenvector as a smooth function of a given

matrix. We extend this to the in�nite dimensional case and show that the estimators for the can-

didate of the discounting factors has an asymptotically normal distribution, converging at the rate

of root�T . However, the results for the eigenvector of Magnus rely on less conventional normal-
ization choice. Instead, to get the asymptotic distribution of the nonparametric estimator of the

marginal utility of consumption, i.e. the eigenfunction for a particular eigenvalue of the linear oper-

ator, we show that the �rst order conditions of our objective function leads to a countable sequence

of an eigenvalue/function identity of a self-adjoint operator despite our initial linear operator not

being necessarily self-adjoint. We outline how to obtain the distribution theory of the eigenfunction

satisfying these �rst order conditions.

To establish the large sample properties of our estimators, we �rst introduce some lemmas. The

�rst two lemmas state the uniform consistency involving the regression functions and joint densities

of continuous random variables, which follow from Roussas (1988) and Bosq (1998). The remaining

lemmas are results relating some integral transform of bfj. Note that all the lemmas only require
Assumptions B.1 - B.6.
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Lemma 1 Under Assumption B.1 - B.6: supy;z
��� bfy;z (y; z)� fy;z (y; z)

��� = o (1) a.s.

Lemma 2 Under Assumption B.1 - B.6: supx;y;z
��� bfj (x; y; z)� fj (x; y; z)

��� = o (1) a.s.

Proof. This follows from the uniform consistency of the nonparametric estimators of f (xjy; z) and
E [Rjt+1jXt = x; Yt = y; Zt = z] to their respective truths, which are uniformly bounded.

Since we are particularly interested in the functions in G that have unit norm, the following result
is particularly useful.

Lemma 3 Under Assumption B.1 - B.6:
R
g (y; z)

��� bf (y; z)� f (y; z)
��� dydz converges a.s. uniformly

to zero for any function g 2 G0, where for some M0, G0 =
�
g :
R
jg (y; z)j f (y; z) dydz �M0

	
is a

set of uniformly integrable functions, a subset of G.

Proof. This follows from Lemma 1, once noticing that since any function supg
���R g (y; z)� bf (y; z)� f (y; z)

�
dydz

���
is bounded above by M0 � supy;z

��� bf(y;z)�f(y;z)f(y;z)

���.
Lemma 4 Under Assumption B.1 - B.6, for each (x; y; z) in the interior of the support of Xt; Yt; Zt:

q
Th2`1+`2T

� bfj (x; y; z)� fj (x; y; z)
�
) N (0;� (x; y; z)) ;

where

� (x; y; z) = �2 (K)
2`1+`2 fx;y;z (x; y; z)

�
r2 (x; y; z) +

�2 (x; y; z)

f 2y;z (y; z)

�
;

with �2 (K) =
R
K2 (u) du; �2 (x; y; z) = E [e2t jXt = x; Yt = y; Zt = z] and et = Rjt+1�m (Xt; Yt; Zt).

Proof.

bfj (x; y; z)� fj (x; y; z) = bm (x; y; z) bfxjy;z (xjy; z)�m (x; y; z) fxjy;z (xjy; z)

' m (x; y; z)
� bfxjy;z (xjy; z)� fxjy;z (xjy; z)

�
+fxjy;z (xjy; z) (bm (x; y; z)�m (x; y; z)) :

We can expand uniformly bfxjy;z (xjy; z)� fxjy;z (xjy; z):

bfxjy;z (xjy; z)� fxjy;z (xjy; z) =
bfx;y;z (x; y; z)bfy;z (y; z) � fx;y;z (x; y; z)

fy;z (y; z)

'
bfx;y;z (x; y; z)� fx;y;z (x; y; z)

fy;z (y; z)
� fx;y;z (x; y; z)

f 2y;z (y; z)

� bfy;z (y; z)� fy;z (y; z)
�
;
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the leading stochastic term comes from the nonparametric density estimator for fx;y;z. Next, we do

the same for bm (x; y; z)�m (x; y; z):

bm (x; y; z)�m (x; y; z) =
br (x; y; z)bfx;y;z (x; y; z) �m (x; y; z)

=
1bfx;y;z (x; y; z)

�br (x; y; z)� bfx;y;z (x; y; z)m (x; y; z)� ;
since supx;y;z

��� bfx;y;z (x; y; z)� fx;y;z (x; y; z)
��� = op (1), we focus on the numerator

br (x; y; z)� bfx;y;z (x; y; z)m (x; y; z)
=

1

T

X
(Rjt+1 �m (x; y; z))Kh (x�Xt)Kh (y � Yt)Kh (z � Zt)

=
1

T

X
(m (Xt; Yt; Zt)�m (x; y; z))Kh (x�Xt)Kh (y � Yt)Kh (z � Zt)

+
1

T

X
etKh (x�Xt)Kh (y � Yt)Kh (z � Zt) ;

where Rjt+1 = m (Xt; Yt; Zt)+ et, and fetg is a martingale di¤erence sequence (MDS). The �rst term
on the RHS of the second equality is dominated by the bias term that is uniformly O (h2). In sum

bfj (x; y; z)� fj (x; y; z) =
m (x; y; z)

fy;z (y; z)

 
1

T

X"
Kh (x�Xt)Kh (y � Yt)Kh (z � Zt)

�E [Kh (x�Xt)Kh (y � Yt)Kh (z � Zt)]

#!

+
fxjy;z (xjy; z)
fx;y;z (x; y; z)

�
1

T

X
etKh (x�Xt)Kh (y � Yt)Kh (z � Zt)

�

+Op

0@h2 + log Tq
Th2`1+`2T

1A :

To reduce the notation, we replace m (x; y; z) =fy;z (y; z) by r (x; y; z) and fxjy;z (xjy; z) =fx;y;z (x; y; z)
by 1=fy;z (y; z). By the property of the MDS, we can ignore the covariance terms, then it is follows

from the usual CLT that � (x; y; z) has the desired expression.

Lemma 5 Under Assumption B.1 - B.6, for each (y; z) in the interior of S, for any ' 2 L2 (S):

q
Th`1+`2T

Z
' (x; y)

� bfj (x; y; z)� fj (x; y; z)
�
dx) N (0;�' (y; z))

where

�' (y; z) =
�2 (K)

`1+`2

f 2y;z (y; z)

Z
�2 (x; y; z)' (x; y) fx;y;z (x; y; z) dx;

with �2 (K) =
R
K2 (u) du; �2 (x; y; z) = E [e2t jXt = x; Yt = y; Zt = z] and et = Rjt+1�m (Xt; Yt; Zt).
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Proof. To proceed, it will be convenient to express bfj (x; y; z) as the ratio br(x;y;z)bfy;z(y;z) ,Z
' (x; y)

� bfj (x; y; z)� fj (x; y; z)
�
dx =

Z
' (x; y)

 br (x; y; z)bfy;z (y; z) � r (x; y; z)

fy;z (y; z)

!
dx

=
1bfy;z (y; z)

Z
' (x; y)

�br (x; y; z)� bfy;z (y; z) r (x; y; z)
fy;z (y; z)

�
dx:

We focus on the integral since supy;z
��� bfy;z (y; z)� fy;z (; y; z)

��� = op (1). First, note thatZ
' (x; y) br (x; y; z) dx =

1

T

X
Rjt+1

Z
' (x; y)Kh (x�Xt)Kh (y � Yt)Kh (z � Zt) dx

' 1

T

X
Rjt+1' (Xt; y)Kh (y � Yt)Kh (z � Zt) ;

thereforeZ
' (x; y)

� bfj (x; y; z)� fj (x; y; z)
�
dx

' 1

fy;z (y; z)

1

T

X�
m (Xt; Yt; Zt)' (Xt; y)�

Z
' (x; y)

r (x; y; z)

fy;z (y; z)
dx

�
Kh (y � Yt)Kh (z � Zt)

+
1

fy;z (y; z)

1

T

X
et' (Xt; y)Kh (y � Yt)Kh (z � Zt) ;

where fetg is the MDS used in the proof Lemma 4. The �rst term on the RHS is dominated by the

deterministic bias that is uniformly O (h2), and the desired asymptotic distribution is provided by

second term.

For the integrals w.r.t. A�, we �rst de�ne bf �j (x; y; z) and f �j (x; y; z) by bm (x; y; z) bfzjx;y (zjx; y)
and m (x; y; z) fzjx;y (zjx; y) respectively.

Lemma 6 Under Assumption B.1 - B.6, for each (x; y) in the interior of S, for any ' 2 L2 (S):

q
Th`1+`2T

Z
' (y; z)

� bf �j (x; y; z)� f �j (x; y; z)
�
dz ) N

�
0;��' (x; y)

�
where

��' (x; y) =
�2 (K)

`1+`2

f 2x;y (x; y)

Z
�2 (x; y; z)' (y; z) fx;y;z (x; y; z) dz;

with �2 (K) =
R
K2 (u) du; �2 (x; y; z) = E [e2t jXt = x; Yt = y; Zt = z] and et = Rjt+1�m (Xt; Yt; Zt).

Proof. The proof is almost a symmetry of that found for Lemma 5. We proceed by expressingbf �j (x; y; z) as the ratio br(x;y;z)bfx;y(x;y) ,Z
' (y; z)

� bf �j (x; y; z)� f �j (x; y; z)
�
dz =

Z
' (y; z)

 br (x; y; z)bfx;y (x; y) � r (x; y; z)

fx;y (x; y)

!
dz

=
1bfx;y (x; y)

Z
' (y; z)

�br (x; y; z)� bfx;y (x; y) r (x; y; z)
fx;y (x; y)

�
dz:
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We focus on the integral since supx;y
��� bfx;y (x; y)� fx;y (x; y)

��� = op (1). First, note thatZ
' (y; z) br (x; y; z) dz =

1

T

X
Rjt+1

Z
' (y; z)Kh (x�Xt)Kh (y � Yt)Kh (z � Zt) dz

' 1

T

X
Rjt+1' (y; Zt)Kh (x�Xt)Kh (y � Yt) ;

thereforeZ
' (y; z)

� bf �j (x; y; z)� f �j (x; y; z)
�
dz

' 1

fx;y (x; y)

1

T

X�
m (Xt; Yt; Zt)' (y; Zt)�

Z
' (y; z)

r (x; y; z)

fx;y (x; y)
dz

�
Kh (x�Xt)Kh (y � Yt)

+
1

fx;y (x; y)

1

T

X
et' (y; Zt)Kh (x�Xt)Kh (y � Yt) ;

where fetg is the MDS used in the proof Lemma 4 and 5. The �rst term on the RHS is dominated by
the deterministic bias that is uniformly O (h2), and the desired asymptotic distribution is delivered

by second term.

Lemma 7 Under Assumption B.1 - B.6, for each (x; y) in the interior of S, for any ' 2 L2 (S):

q
Th`1+`2T

Z Z
' (x0; y)

� bfj (x0; y; z0) bf �j (x; y; z0)� fj (x
0; y; z0) f �j (x; y; z

0)
�
dx0dz0 ) N

�
0;���' (x; y)

�
where

���' (x; y) =
�2 (K)

`1+`2

f 2x;y (x; y)

Z
�2 (x; y; z)

�Z
' (x0; y) fj (x

0; y; z) dx0
�2
fx;y;z (x; y; z) dz:

with �2 (K) =
R
K2 (u) du; �2 (x; y; z) = E [e2t jXt = x; Yt = y; Zt = z] and et = Rjt+1�m (Xt; Yt; Zt).

Proof. Z Z
' (x0; y)

� bfj (x0; y; z0) bf �j (x; y; z0)� fj (x
0; y; z0) f �j (x; y; z

0)
�
dx0dz0

'
Z Z

' (x0; y) fj (x
0; y; z0)

� bf �j (x; y; z0)� f �j (x; y; z
0)
�
dx0dz0

+

Z Z
' (x0; y) f �j (x; y; z

0)
� bfj (x0; y; z0)� fj (x

0; y; z0)
�
dx0dz0:

For the �rst term, as seen in the proof of Lemma 6, it follows immediately thatZ Z
' (x0; y) fj (x

0; y; z0)
� bf �j (x; y; z0)� f �j (x; y; z

0)
�
dx0dz0

=

Z �Z
' (x0; y) fj (x

0; y; z0) dx0
�� bf �j (x; y; z0)� f �j (x; y; z

0)
�
dz0

' 1

fx;y (x; y)

1

T

X
et

�Z
' (x0; y) fj (x

0; y; Zt) dx
0
�
Kh (x�Xt)Kh (y � Yt) :
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For the second term, as seen from proof of Lemma 5, that the inner integral has the following

expansion Z
' (x0; y)

� bfj (x0; y; z0)� fj (x
0; y; z0)

�
dx0

' 1

fy;z (y; z)

1

T

X
et' (Xt; y)Kh (y � Yt)Kh (z

0 � Zt) ;

therefore Z Z
' (x0; y) f �j (x; y; z

0)
� bfj (x0; y; z0)� fj (x

0; y; z0)
�
dx0dz0

' 1

fy;z (y; z)

1

T

X
et' (Xt; y)Kh (y � Yt)

Z
f �j (x; y; z

0)Kh (z
0 � Zt) dz

0

' 1

fy;z (y; z)

1

T

X
et' (Xt; y) f

�
j (x; y; Zt)Kh (y � Yt) :

In sum, we see that the �rst term is the leading term that determines the pointwise distribution

theory.

Lemma 8 Under Assumption B.1 - B.6, for each (y; z) in the interior of S, for any ';  2 L2 (S):

p
T

Z Z Z
' (x; y) (y; z)

� bfj (x; y; z)� fj (x; y; z)
�
dxdydz ) N (0;�' )

where

�' = E

"
�2 (Xt; Yt; Zt)

�
' (Xt; Yt) (Yt; Zt)

fy;z (Yt; Zt)

�2#
:

with �2 (x; y; z) = E [e2t jXt = x; Yt = y; Zt = z] and et = Rjt+1 �m (Xt; Yt; Zt).

Proof. From the proof of Lemma 5, and an additional change of variables and Taylor�s expansion,

it follows that Z Z Z
' (x; y) (y; z)

� bfj (x; y; z)� fj (x; y; z)
�
dxdydz

'
Z
 (y; z)

1

fy;z (y; z)

1

T

X
et' (Xt; y)Kh (y � Yt)Kh (z � Zt) dydz

' 1

T

X
et
' (Xt; Yt) (Yt; Zt)

fy;z (Yt; Zt)
;

where fetg is a MDS. The proof then follows from the CLT for MDS. �

Lemma 4 is standard. Lemma 5, 6 and 7 are somewhat similar to Theorem 3.7 of DFG; the

intuition these results is that the integrating kernel smoothers can improve their rates of convergence.

25



Lemma 8 extends the idea further when we integrate out all variables to obtain the parametric rate

of convergence.

From the theory of linear operator in Hilbert Spaces (for a review with an econometrics perspective

see Carrasco, Florens and Renault, 2007), for a compact operator K:

1. R (I �K) is closed

2. N (I �K) is �nite dimensional and L2 (S) = N (I �K)�R (I �K)

In our case K = bA, and we assume its null space is a one dimensional linear manifold. De�ne the

inner product h�; �i, inducing the by L2 norm, k�k2, so that hg1; g2i =
R
g1 (y; z) g2 (y; z) f (y; z) dydz,

and h�; �iT so that hg1; g2iT =
R
g1 (y; z) g2 (y; z) bf (y; z) dydz for any g1; g2 2 G.

Using implicit function theorem in Banach space, directly extending the results in Magnus (1985),

we shall consider the following appropriately smooth mappings for the eigenvalue and eigenfunctions:

b (A0) = b0;

g (A0) = g0;

so that in some neighborhood of A0

bAg = g; (25)

hg; gi = 1:

Using a di¤erential argument on the Euler equation in (25), we have

dbA0g0 + b0dAg0 + b0A0dg = dg:

Let h0 be the eigenfunction that corresponds to the unity eigenvalue of the operator b0A�0, take an

inner product of h0 with the di¤erentials

db hA0g0; h0i+ b0 hdAg0; h0i+ b0 hA0dg; h0i = hdg; h0i

db hg0; A�0h0i+ b0 hdAg0; h0i+ b0 hdg;A�0h0i = hdg; h0i :

Since b0A�0h0 = h0, we obtain the di¤erential for b as the inner products above reduce to

db = �b20
hdAg0; h0i
hg0; h0i

:

This helps us obtain the rate of convergence for
�bb� b0

�
, where bb satis�es

bb bAbg = bg;
hbg; bgiT = 1;
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which satis�es the (theoretical) normalization constraint w.p.a. 1. From Lemma 5, we saw that� bA� A0

�
g0

' 1

fy;z (y; z)

1

T

X�
m (Xt; Yt; Zt) g0 (Xt; y)�

Z
g0 (x; y)

r (x; y; z)

fy;z (y; z)
dx

�
Kh (y � Yt)Kh (z � Zt)

+
1

fy;z (y; z)

1

T

X
etg0 (Xt; y)Kh (y � Yt)Kh (z � Zt) ;

therefore the leading terms in
�bb� b0

�
areD� bA� A0

�
g0; h0

E
'

Z Z
1

T

X�
m (Xt; Yt; Zt) g0 (Xt; y)�

Z
g0 (x; y)

r (x; y; z)

fy;z (y; z)
dx

�
Kh (y � Yt)Kh (z � Zt)h0 (y; z) dydz

+

Z Z
1

T

X
etg0 (Xt; y)Kh (y � Yt)Kh (z � Zt)h0 (y; z) dydz:

By the change of variable, ignoring the bias terms, the following sums will converge at a regular

parametric rate of 1=
p
T once demeaned:D� bA� A0

�
g0; h0

E
' 1

T

X�
m (Xt; Yt; Zt) g0 (Yt; Zt)�

Z
g0 (x; Yt)

r (x; Yt; Zt)

fy;z (Yt; Zt)
dx

�
h0 (Yt; Zt)

+
1

T

X
etg0 (Xt; Yt)h0 (Yt; Zt) :

Since jhg0; h0ij is bounded above by 1, due to the triangle inequality, and bounded below by 0 since
h0 cannot lie in the null space of A�; we conclude that the rate of convergence for

�bb� b0

�
is 1=

p
T ,

and folloing Lemma 8, with the asymptotic variance �g0h0 .

Instead of generalizing Magnus�result (Theorem 2) to deal with the eigenfunctions. We obtain

the pointwise distribution theory for the eigenfunctions directly from the �rst order condition of a

spectral problem as described below.2

For any given eigenvalue b of the operatorA, the theoretical problem solvesming h(I � bA) g; (I � bA) gi
subject to hg; gi = 1. The �rst order condition of the Lagrangean yields a countable number of sta-
tionary points:3

(I �B)'j = �j'j; (26)

2Magnus�result relies on a less common normalization condition, requiring the inner products between the eigen-

vector and any near-by vectors to be 1.
3A note on the more formal derivation of Equation (26):

To calculate the Gateux derivative in the direction of h, we need look at

h(I � bA) g; (I � bA) gi = hg; gi � b hg;Agi � b hAg; gi+ b2 hAg;Agi ;
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for each eivenvalue-function pair
�
�j; 'j

�
of the linear operator (I � bA)� (I � bA) = I � B, where

B = b (A+ A�) � b2A�A; we let K� denote the adjoint of the operator K. Some comments on the

operator B. Firstly, B is a self-adjoint compact operator. One particular eigenfunction is of B is g0,

corresponding to the isolated eigenvalue 1 (this corresponds to the Lagrange multiplier � = 0), of

which is of our interest. We denote the orthornormal basis from the spectral decomposition of B by�
'j
	
, and their eigenvalues by

�
�j
	
; w.l.o.g. we let '1 = g0 and �1 = 1. Note that g0 is the basis

for the null space of Ab that coincides with the zero spectral value of Ab. For the speci�cs of the

operators A� and A�A, by de�nition of the adjoint:

hAg; hi = E [E [g (Xt; Yt)Rjt+1jYt; Zt]h (Yt; Zt)]

= E [g (Xt; Yt)h (Yt; Zt)Rjt+1]

= E [g (Xt; Yt)E [h (Yt; Zt)Rjt+1jXt; Yt]]

= hg; A�hi ;

so we have that A' = E [' (Xt; Yt)Rjt+1jYt; Zt] ; A�' = E [' (Yt; Zt)Rjt+1jXt; Yt] and A�A' =

E [E [' (Xt; Yt)Rjt+1jYt; Zt]Rjt+1jXt; Yt]. In our parsimonious notation, recall that

A' (y; z) =

Z
' (x; y)m (x; y; z) fxjy;z (xjy; z) dx;

we can write the other terms analogously

A�' (x; y) =

Z
' (y; z)m (x; y; z) fzjx;y (zjx; y) dz;

A�A' (x; y) =

Z Z
' (x0; y)m (x0; y; z0) fxjy;z (x

0jy; z0)m (x; y; z0) fzjx;y (z0jx; y) dx0dz0:

and a similar inner product with (I � bA) (g + th)

h(I � bA) (g + th) ; (I � bA) (g + th)i = hg; gi � b hg;Agi+ t hg; hi � bt hg;Ahi

�b hAg; gi+ b2 hAg;Agi � bt hAg; hi+ b2t hAg;Ahi

+t hh; gi � bt hh;Agi+ t2 hh; hi � bt2 hh;Ahi

�bt hAh; gi+ b2t hAh;Agi � bt2 hAh; hi+ b2t2 hAh;Ahi :

So the Gâteaux derivative of the objective function, taking into account of the normalization constrait that hg; gi = 1
and denoting the Lagrange multiplier by �, is

lim
t!0

h(I � bA) (g + th) ; (I � bA) (g + th)i � h(I � bA) g; (I � bA) gi
t

� � lim
t!0

hg + th; g + thi � hg; gi
t

= 2
�
hg; hi � b (hg;Ahi+ hAg; hi) + b2 hAg;Ahi � � hg; hi

�
= 2

�
hg; hi � b (hA�g; hi+ hAg; hi) + b2 hA�Ag; hi � � hg; hi

�
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The feasible estimator satis�es the analogous conditions when the operators above are replaced

by their empirical counterparts; de�ned by replacing m; fxjy;z and fzjx;y with their nonparametric

counterparts. By de�nition, bg satis�es the following conditions�
I � bB�bg = b�bg; (27)

hbg; bgiT = 1: (28)

Ignoring higher order terms, the main determinants of these equations are

(I �B) (bg � g0)�
� bB �B

�
g0 = b�g0 (29)

�1
2

Z
g20 (y; z)

� bfy;z (y; z)� fy;z (y; z)
�
dydz =

Z
g0 (y; z) fy;z (y; z) (bg (y; z)� g0 (y; z)) dydz:

Let�s denote �
� bB �B

�
g0 by CT and

R
g0 (y; z) f0 (y; z) (bg (y; z)� g0 (y; z)) dydz by DT . bg� g0 also

admits a Fourier expansion with the bases
�
'j
	
; we have

bg (y; z)� g0 (y; z) '
1X
j=1

jT'j (y; z) ;

where jT =

bg � g0; 'j

�
and we can ignore the constant term since bg � g0 is asymptotically zero

mean. We then write (29) as
1X
j=2

jT
�
1� �j

�
'j + CT ' b�g0; (30)

since (I �B)'j =
�
1� �j

�
'j for j � 1. Note that we can also express DT as a Fourier coe¢ cient,

DT = hbg � g0; g0i = 1T . Using the de�nition of the orthornormal basis, by taking inner products of

equation (30) w.r.t.
�
'j
	
, we can then write

b� ' hCT ; g0i ; (31)

bg (y; z)� g0 (y; z) ' DTg0 (y; z)�
1X
j=2



CT ; 'j

�
1� �j

'j (y; z) : (32)

This expression for bg� g0, in particular, has incorporated the normalization constraint, so we should
be able to derive the distribution theory based on the distribution theory of CT and DT . We proceed

to provide the asymptotic expansion for DT and


CT ; 'j

�
.

Here we outline the derivation of this expansion.

1) DT = �1
2

R
g20 (y; z)

� bfy;z (y; z)� fy;z (y; z)
�
dydzZ

g20 (y; z)
� bfy;z (y; z)� fy;z (y; z)

�
dydz =

Z
g20 (y; z)

� bfy;z (y; z)� E bfy;z (y; z)� dydz
+

Z
g20 (y; z)

�
E bfy;z (y; z)� fy;z (y; z)

�
dydz;
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under some smoothness assumptions, the usual change of variables and Taylor�s expansion yield thatR
g20 (y; z)

�
E bfy;z (y; z)� fy;z (y; z)

�
dydz = O (h2) uniformly on any compact subset of S (i.e. the

support of (Yt; Zt)). Similarly we have the following uniform expansion for the stochastic termZ
g20 (y; z)

� bfy;z (y; z)� E bfy;z (y; z)� dydz =

Z
g20 (y; z)

 
1

T

X 
Kh (y � Yt)Kh (z � Zt)

�E (Kh (y � Yt)Kh (z � Zt))

!!
dydz

=
1

T

X�
g20 (Yt; Zt)� E

�
g20 (Yt; Zt)

��
+O

�
h2
�
:

In sum we expect that DT = Op

�
1p
T
+ h2

�
.

2) CT = �
� bB �B

�
g0, from Lemma 5, 6 and 7, it follows that

CT (x; y) ' � b

fx;y (x; y)

1

T

X
etg0 (Xt; ey)Kh (ey � Yt)Kh (ez � Zt) (33)

� b

fx;y (x; y)

1

T

X
etg0 (y; Zt)Kh (x�Xt)Kh (y � Yt)

+
b2

fx;y (x; y)

1

T

X
et

�Z
g0 (x

0; y) fj (x
0; y; Zt) dx

0
�
Kh (x�Xt)Kh (y � Yt) ;

where (ey; ez) = (x; y) such that (ey; ez) 2 R`2 � R`1 to coincide with the indexing of an element
representing (Yt; Zt). Therefore we have thatq

Th`1+`2T CT (x; y)) N (0;�0 (x; y)) :

3) For any 'j:

CT ; 'j

�
' �b 1

T

X
et

Z
'j (ey; ez) g0 (Xt; ey)Kh (ey � Yt)Kh (ez � Zt) deydez

�b 1
T

X
et

Z
'j (x; y) g0 (y; Zt)Kh (x�Xt)Kh (y � Yt) dxdy

+b2
1

T

X
et

Z
'j (x; y)

�Z
g0 (x

0; y) fj (x
0; y; Zt) dx

0
�
Kh (x�Xt)Kh (y � Yt) dxdy

' �b 1
T

X
et'j (Yt; Zt) g0 (Xt; Yt)� b

1

T

X
et'j (Xt; Yt) g0 (Yt; Zt)

+b2
1

T

X
et'j (Xt; Yt)

�Z
g0 (x

0; Yt) fj (x
0; Yt; Zt) dx

0
�
+Op

�
h2
�
;

so we can deduce that


CT ; 'j

�
= Op

�
1p
T
+ h2

�
. In particular, this means that hCT ; '1i = b� =

Op

�
1p
T
+ h2

�
.

4) Now, ignoring the smaller order terms from equation (29)

(I �B) (bg � g) '
� bB �B

�
g0;
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and transform the equation by the Moore-Penrose pseudoinverse of (I �B), denoted by (I �B)y,

(I �B)y (I �B) (bg � g) ' (I �B)y
� bB �B

�
g0:

By construction of the pseudoinverse, from the singular value decomposition, (I �B)y (I �B)'j =

'j when j > 1, and it takes value 0 when j = 1 since '1 (= g0) spans N (I �B). Using the Fourier

expansion

bg � g0 ' 1Tg0 + (I �B)y (I �B) (bg � g0)

' (I �B)y
� bB �B

�
g0;

where we drop 1T (= DT ) in the last approximation as we showed previously thatDT = Op

�
1p
T
+ h2

�
.

First consider
� bB �B

�
g0 = �CT , recall thatq

Th`1+`2T CT (x; y)) N (0;�0 (x; y)) :

In particular �0 (x; y) takes the following form

�0 (x; y) =
b20� (K)

`1+`2

f 2x;y (x; y)

0BB@
R
�2 (x0; ey; ez) g20 (x0; ey) fx;y;z (x0; ey; ez) dx0

+
R
�2 (x; y; z0) g20 (y; z

0) fx;y;z (x; y; z
0) dz0

+b2
R
�2 (x; y; z0)

�R
g0 (x

00; y) fj (x
00; y; z0) dx00

�2
fx;y;z (x; y; z

0) dz

1CCA :

(34)

This follows from computing the variance of

q
Th`1+`2T CT (x; y) ' �

b0
fx;y (x; y)

q
Th`1+`2T

T

X
et

0BB@
g0 (Xt; ey)Kh (ey � Yt)Kh (ez � Zt)

+g0 (y; Zt)Kh (x�Xt)Kh (y � Yt)

�b
�R
g0 (x

0; y) fj (x
0; y; Zt) dx

0�Kh (x�Xt)Kh (y � Yt)

1CCA ;

by the MDS property, we only need to focus on

E

2664�2 (Xt; Yt; Zt)

0BB@
g0 (Xt; ey)Kh (ey � Yt)Kh (ez � Zt)

+g0 (y; Zt)Kh (x�Xt)Kh (y � Yt)

�b0
�R
g0 (x

0; y) fj (x
0; y; Zt) dx

0�Kh (x�Xt)Kh (y � Yt)

1CCA
23775 :
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we multiply out the square in the bracket and compute the following integrals seperately:

Z Z Z
�2 (x0; y0; z0)

0BB@
g0 (x

0; ey)Kh (ey � y0)Kh (ez � z0)

+g0 (y; z
0)Kh (x� x0)Kh (y � y0)

�b0
�R
g0 (x

00; y) fj (x
00; y; z0) dx00

�
Kh (x� x0)Kh (y � y0)

1CCA
2

fx;y;z (x
0; y0; z0) dx0dy0dz0

=

Z Z Z
�2 (x0; y0; z0) g20 (x

0; ey)K2
h (ey � y0)K2

h (ez � z0) fx;y;z (x
0; y0; z0) dx0dy0

+

Z Z Z
�2 (x0; y0; z0) g20 (y; z

0)K2
h (x� x0)K2

h (y � y0) fx;y;z (x
0; y0; z0) dx0dy0dz0

+b20

Z Z Z
�2 (x0; y0; z0)

�Z
g0 (x

00; y) fj (x
00; y; z0) dx00

�2
K2
h (x� x0)K2

h (y � y0) fx;y;z (x
0; y0; z0) dx0dy0dz0

+2

Z Z Z
�2 (x0; y0; z0)

0BB@
g0 (x

0; ey) g0 (y; z0)Kh (ey � y0)Kh (ez � z0)Kh (x� x0)Kh (y � y0)

�b0g0 (x0; ey) �R g0 (x00; y) fj (x00; y; z0) dx00�Kh (ey � y0)Kh (ez � z0)Kh (x� x0)Kh (y � y0)

�b0g0 (y; z0)
�R
g0 (x

00; y) fj (x
00; y; z0) dx00

�
Kh (x� x0)Kh (y � y0)Kh (x� x0)Kh (y � y0)

1CCA fx;y;z (x
0; y0; z0) dx0dy0dz0

Note that we collect the cross-terms together. It is easy to see that the integral of these terms will

be negligible since it involves integration over more variables than the square terms, and the leading

terms of these integrals is the following sum:

=
� (K)`1+`2

h`1+`2T

Z
�2 (x0; ey; ez) g20 (x0; ey) fx;y;z (x0; ey; ez) dx0

+
� (K)`1+`2

h`1+`2T

Z
�2 (x; y; z0) g20 (y; z

0) fx;y;z (x; y; z
0) dz0

+b20
� (K)`1+`2

h`1+`2T

Z
�2 (x; y; z0)

�Z
g0 (x

00; y) fj (x
00; y; z0) dx00

�2
fx;y;z (x; y; z

0) dz + o

�
1

h`1+`2T

�
:

So we expect thatq
Th`1+`2T (bg (x; y)� g0 (x; y)) = (I �B)y

�q
Th`1+`2T CT (x; y)

�
+ op (1) ;

as T !1.

However, in practice, we do not know what is the true value of b. We replace the unknown b by

an estimated one. In such case, all of the previous arguments still hold with little modi�cations since

the eigenfunctions will necessarily satisfy the following feasible �rst order condition

�
I � eB�bg = b�bg;

and the fact that bb converge to the true discounting factor at a parametric rate. So that (b�; bg) is
an eivenvalue-function pair of the linear operator

�
I � eB�, where eB = bb� bA+ bA�� � bb2 bA� bA. The

32



distribution theory for functions satisfying such condition is outlined above for �xed b. When b is

random, we have�
I � eB�bg =

�
I �bb� bA+ bA���bb2 bA� bA�bg

=
�
I �bb� bA+ bA���bb2 bA� bA�bg + ��bb� b0

�� bA+ bA��� �bb2 � b20

� bA� bA�bg
=

�
I � bB�bg +Op

����bb� b0

���� ;
where bB is de�ned previously (for b = b0). It then follows that (assume we undersmooth and ignore

the biases), the asymptotic distribution is determined by

bg � g0 ' (I �B)y
� bB �B

�
g0;

which also coincides with the �nite dimensional formula of Magnus (1985).
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Table 1: Eigenvalue discount factors by bandwidth

Risk Free Asset j = 1 Risky Asset J = 2
h h=2 2h 4h

0:9693 0:7650 0:9544 0:8824

0:9107 0:7650 0:9544 0:8824

0:9107 0:6909 0:9076 0:7477

0:8268 0:5229 0:9076 0:7477

0:8268 0:5229 0:8660 0:6330

0:7679 0:4760 0:8660 0:4250

0:7679 0:4760 0:8016 0:4250

0:6261 0:4503 0:8016 0:4096

0:6261 0:4503 0:7716 0:4096

0:5868 0:3185 0:7716 0:3988

h h=2 2h 4h

0:8962 0:7938 0:9954 0:8349

0:8962 0:7938 0:9954 0:8349

0:8809 0:6493 0:9455 0:6743

0:8809 0:5943 0:9455 0:5570

0:8085 0:5943 0:8937 0:5570

0:8085 0:4881 0:8937 0:4389

0:7758 0:4881 0:8209 0:4389

0:7758 0:4505 0:8209 0:4339

0:6076 0:4505 0:7871 0:4339

0:6076 0:408 0:7871 0:2737
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Figure 1: Estimates of the Marginal Utilities (bandwidth = h)

Figure 2: Estimates of the Marginal Utilities (bandwidth = h/2)
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Figure 3: Estimates of the Marginal Utilities (bandwidth = 2h)

Figure 4: Estimates of the Marginal Utilities (bandwidth = 4h)
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