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Abstract

Many postulated relations in finance imply that expected asset returns should mono-

tonically increase in a certain characteristic. To examine the validity of such a claim, one

typically considers a finite number of return categories, ordered according to the underlying

characteristic. A standard approach is to simply test for a difference in expected returns

between the highest and the lowest return category. However, such an approach can be

misleading, since the relation of expected returns could be flat, or even decreasing, in the

range of intermediate categories. A new test, taking the entire range of categories into

account, has been proposed by Patton and Timmermann (2010). Unfortunately, the test is

based on the additional strong assumption that the expected returns are necessarily mono-

tonic in the underlying characteristic, either weakly decreasing or strictly increasing. This

assumption can be violated in many applications of practical interest. As a consequence,

it can be quite likely for the proposed test to ‘establish’ strict monotonicity of expected

asset returns when such a relation actually does not exist. We offer some alternative tests

which do not share this problem. The behavior of the various tests is illustrated via Monte

Carlo studies. We also present empirical applications to real data.
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1 Introduction

Many postulated relations in finance imply that expected asset returns should monotonically

increase in a certain characteristic. When the assets are equities, examples of such character-

istics are CAPM beta, book-to-market, size, momentum, and reversal. When the assets are

bonds, examples of such characteristics are maturity and rating quality. The search for new

such characteristics is a never-ending quest, partly in hopes of creating novel trading strategies

to ‘beat the market’.

It is, therefore, of interest to test whether a particular characteristic indeed generates

expected asset returns that are monotonically increasing. Say there are total ofN+1 categories,

ordered according to the underlying characteristic. The postulated relation says that as one

moves up from one category to the next, then the expected return should strictly increase.

(The opposite case of expected asset returns being supposedly monotonically decreasing can

be handled analogously by simply multiplying all returns by negative one or, alternatively, by

reversing the order of the various return categories considered.)

For a long time, the standard in the field has been to simply test for a difference in expected

returns between the highest and the lowest return category. Such a test is easily carried out,

since the parameter of interest is univariate, being the difference between two expected values.

Therefore, a conventional t-test can be applied, though one has to account for potential serial

correlation of returns in computing the standard error that appears in the denominator of the

test statistic.

A new test has been proposed recently by Patton and Timmermann (2010), abbreviated

by PT henceforth. As they point out, simply testing for a difference in expected returns

between the highest and the lowest category can be misleading. It could happen that the

relation of expected returns is flat, or even decreasing, for intermediate return categories while

a positive difference ‘highest minus lowest’ still exists. In this case, providing sufficient data are

collected, the simple t-test is very likely to falsely decide in favor of a monotonic relation. Take

the example of five return categories, ordered from lowest to highest, with respective expected

returns of 1.0, 1.5, 1.1, 1.4 and 1.6. In this example, the overall relation is not monotonic, even

though the difference ‘highest minus lowest’ is positive.

Therefore, a more comprehensive approach is needed to establish a monotonic relation

over the entire range of return categories. When moving from one category up to the next,

the difference in expected returns must be established as significantly positive every time. In

other words, all N expected return differentials ‘higher minus lower’ must be established as

significantly greater than zero. Such a test is more complex, since the underlying parameter

is now an N -dimensional vector rather than a univariate number.

A natural test statistic for the more comprehensive approach is obtained as follows. Compute
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individual t-test statistics for each of the N expected return differentials, where in each case

the alternative corresponds to the expected return differential being positive. Then take the

minimum of the individual test statistics as the overall test statistic. If the resulting min-t

statistic is ‘sufficiently’ large, one decides in favor of a strictly monotonic relation. The statis-

tical question is how to obtain a proper critical value for this test. PT use a bootstrap method,

resampling from a certain least favorable null distribution. Unfortunately, a closer inspection

reveals that the proposed test is only valid, in terms of controlling the probability of a type 1

error, when making an additional assumption. The additional assumption is that if the relation

is not strictly monotonically increasing, it must be weakly monotonically decreasing. That is,

if the expected return differentials are not all strictly positive, then they must be all weakly

negative (meaning less than or equal to zero).

While this additional assumption may hold for certain applications, it certainly cannot

be invoked whenever testing for monotonicity of expected asset returns. When it is possible

a priori that some expected return differentials can be strictly positive while others can be

weakly negative, then the additional assumption is unreasonable. In this more general case,

the PT test is not successful at controlling the rejection probability under the null. In fact,

as shown in Remark B.1, its size can be nearly one! It can decide in favor of the alternative

of a monotonic relation with quite a large probability when in fact such a relation does not

exist. In this paper, we first discuss this problem of the PT test and then offer some alternative

tests that do not share the problem and are, therefore, safer to use in the general scenario of

a relation that might not be systematic.

Having said this, all the new tests we present have the choice of alternative hypothesis

in common with the PT test. The alternative postulates that a monotonic relation (in the

sense of being strictly increasing) exists. In other proposals, this postulate becomes the null

hypothesis instead; for example, see Wolak (1987, 1989) and also Fama (1984). Such an

approach is unnatural, though, if the goal is to establish the existence of a monotonic relation.

By not rejecting the null, one can never claim (quantifiable) statistical evidence in favor of the

associated hypothesis. Hence, we will not include such tests in our paper. For a theoretical

discussion of such tests and some examination of finite-sample performance, see PT.

The remainder of the paper is organized as follows. Section 2 describes the formal set-up

and the testing problem of interest. Section 3 presents various approaches for designing tests

for monotonicity. Section 4 details how the various tests are implemented in practice. Since the

available data is assumed to be a multivariate time series, an appropriate bootstrap method is

used to calculate critical values in a nonparametric fashion. Section 5 examines finite-sample

performance via Monte Carlo studies. Section 6 contains empirical applications to real-life

data. Finally, Section 7 concludes. Mathematical results as well as all figures and tables are

relegated to the Appendix.
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2 Formal set-up and testing problem

Our notation generally follows the notation of PT. One observes a strictly stationary time

series of return vectors rt ≡ (rt,0, rt,1, . . . , rt,N )′ of dimension N + 1. The observation period

runs from t = 1 to t = T , so the sample size is given by T . Denote the expected return vector

by µ ≡ (µ0, µ1, . . . , µN )′ and define the associated expected return differentials as

∆i ≡ µi − µi−1 for i = 1, . . . , N . (1)

To avoid any possible confusion, note that the characteristic according to which the N + 1

return categories are ordered is always assumed to be predetermined and not data-dependent.

We also introduce the following notation for the observed return differentials:

dt ≡ (dt,1, . . . , dt,N )′ ≡ (rt,1 − rt,0, . . . , rt,N+1 − rt,N )′ . (2)

Therefore, letting ∆ ≡ (∆1, . . .∆N )′, one can also write ∆ = E(dt).

The approach proposed by PT specifies a completely flat or weakly decreasing pattern

under the null and a strictly increasing pattern under the alternative:

H0 : ∆i ≤ 0 for all i vs. H1 : ∆i > 0 for all i . (3)

Alternatively, these hypotheses can be expressed as

H0 : ∆i ≤ 0 for all i vs. H1 : min
i

∆i > 0 . (4)

The problem with this approach is that the alternative is not the negation of the null, at

least if the parameter space for ∆ is RN , the N -dimensional Euclidian space. To see this, one

can partition R
N as follows:

R
N = R1 ∪R2 ∪R3 , (5)

with

R1 ≡ {x ∈ R
N : xi ≤ 0 for all i} ,

R2 ≡ {x ∈ R
N : xi ≤ 0 for some i and xj > 0 for some other j} ,

and R3 ≡ {x ∈ R
N : xi > 0 for all i} .

For example, when N = 2, then R1 corresponds to the third quadrant (including the axes),

R3 corresponds to the first quadrant (excluding the axes), and R2 corresponds to the rest of

the real plane (that is, the second plus the fourth quadrant with some axes included and others

excluded).

The hypotheses of (3)–(4) can then also be expressed as

H0 : ∆ ∈ R1 vs. H1 : ∆ ∈ R3 . (6)
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From the particular expression (6), it is now easily appreciated that the alternative is the

negation of the null only under the additional assumption

∆ ∈ R1 ∪R3 . (7)

In other words, it is ruled out a priori that ∆ ∈ R2, namely that some expected return

differentials are less than or equal to zero while others are positive at the same time. In

general, such an assumption is rather restrictive. When N = 2, then R2 already makes up half

of the entire space R
N . But as N increases, the fraction of R2 as part of RN gets even larger.

For general N , this fraction equals 1 − 0.5N−1, which quickly approaches one as N increases.

To be fair, it should be pointed out that most of R2 is not really of concern, only the part

of R2 that is ‘close’ to R3; see Sections 4 and 5.

Remark 2.1 In the light of the previous discussion, the following statement in the conclusions

of PT perhaps needs some clarification:

In this paper, we propose a test that reveals whether a null hypothesis of no system-

atic relation can be rejected in favor of a monotonic relation predicted by economic

theory.

Arguably, a better formulation would have been as follows. “In this paper, we propose

a test that reveals whether a null hypothesis of a weakly monotonic decreasing relation can

be rejected in favor of a strictly monotonic increasing relation predicted by economic theory.”

In fact, this latter formulation is consistent with previous statements in PT such as “the

approach [ . . . ] specifies a flat or weakly decreasing pattern under the null hypothesis and

strictly increasing pattern under the alternative”; see their Section 2.3.

If the goal is to establish (strict) monotonicity of expected asset returns and one allows

for ∆ ∈ R
N a priori, then the hypotheses must be formulated as follows instead:

H0 : ∆ ∈ R1 ∪R2 vs. H1 : ∆ ∈ R3 (8)

and can be also be expressed as

H0 : min
i

∆i ≤ 0 vs. H1 : min
i

∆i > 0 . (9)

In this more general formulation, the null hypothesis indeed corresponds to no systematic

relation.

The distinction between (6) and (8) is of crucial importance for the proper implementation

of the test. This will be explained in detail in the next section.
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Remark 2.2 Postulated relations that imply strictly increasing expected returns can be based

either on economic theory or on empirical findings (that is, so-called market anomalies). In

the context of equity returns, an example of the former is the CAPM beta while examples of

the latter are book-to-market, size, momentum, and reversal. (There may exist certain models

that also imply monotonicity of expected returns for some of the latter examples. Arguably,

such models have often been derived after observing market anomalies in data. As a result,

they do not enjoy the standing of the CAPM in the finance community.)

The CAPM postulates that the expected (excess) return of a stock is a linear function of its

CAPM beta, with the slope of the linear function being positive. Assume now that stocks are

grouped into deciles, say, based on their CAPM beta. Then, if the linearity of the postulated

relation is taken for granted, the expected returns of the ten categories will be either strictly

increasing (namely if the slope of the linear relation is indeed positive) or weakly decreasing

(namely if the slope of the linear relation is non-positive instead). In this case, the correct

formulation of the testing problem is given by (6). On the other hand, if the linearity of the

postulated relation is not taken for granted, the correct formulation of the testing problem is

given by (8) instead.

The same reasoning applies to any other model that postulates that the expected (excess)

return of a stock is a linear function of a certain characteristic. Though if the linearity of the

postulated relation is taken for granted, one would suspect that an even more powerful test

could be devised compared to the MR test. To make an analogy, consider studying the effect

of years of schooling on wages in a regression model. If the form of the relation is not clear, a

standard approach is to group years of schooling into a finite number of categories (0–5, 6–10,

11–15, etc.) and to include a dummy variable per category into the regression model. One

then would have to show that the corresponding coefficients are strictly increasing to establish

a strictly monotonic effect. On the other hand, if the relation is taken for granted as linear,

a simpler (and more powerful) approach is to include years of schooling as a numerical regressor

into the regression model and to then establish the corresponding slope as positive.

When the postulated relation is based on an empirical market anomaly rather than on

economic theory, it seems necessary in general to choose a null hypothesis of no systematic

relation. In this case the correct formulation of the testing problem is given by (8).

3 Designing tests for monotonicity in expected asset returns

It is assumed that estimators ∆̂T,i for the individual expected return differentials ∆i are

available. Here, the subscript T makes it explicit that the estimators depend on the given
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sample size T . The natural estimator for ∆i is simply the corresponding sample mean

∆̂T,i ≡ d̄T,i ≡
1

T

T
∑

i=1

dt,i . (10)

However, the theory also allows for other choices ∆̂T,i, such as robust estimators of means; for

example, see Scherer and Martin (2005, Section 6.3).

Both expressions (4) and (9) initially suggest the following (overall) test statistic

∆̂min
T ≡ min

i
∆̂T,i . (11)

However, as do PT, we instead advocate the use of studentized individual test statistics.

The main reason for studentization is to make sure that the individual test statistics are on

the same scale, which can lead to large power gains; for example, see Hansen (2005) and

Romano and Wolf (2005). The individual test statistic corresponding to ∆i is then given by

tT,i ≡
∆̂T,i

σ̂T,i
, (12)

where σ̂T,i is a standard error for ∆̂T,i. If the data constitute a time series, the standard

error must be robust in that it must account for serial correlation; for example, one can use a

HAC standard error as described in Andrews (1991) or a prewhitened HAC standard error as

described in Andrews and Monahan (1992).

The following shall be assumed throughout, for i = 1, . . . N : the estimator ∆̂T,i is shift-

equivariant and its standard error σ̂T,i is shift-invariant. That is, if the same constant c is added

to all data points d1,i, . . . , dT,i, the estimator ∆̂T,i is shifted by the same amount c, while its

standard error σ̂T,i remains unchanged. This assumption holds true for any reasonable choice

of estimator and standard error.

The (overall) test statistic is then defined as

tmin
T ≡ min

i
tT,i . (13)

Regardless of the choice of test statistic, ∆̂min
T or tmin

T , one decides in favor of the alternative

if the observed value of the test statistic is ‘sufficiently’ large. The difficulty lies in determining

what constitutes ‘sufficiently’ large. That is, how does one determine a proper critical value for

a level α test? In the remainder of the paper, we shall restrict attention to the test statistic tmin
T .

The issues are completely analogous for the alternative choice of test statistic ∆̂min
T .

Remark 3.1 All the tests for testing problem (8) that will be discussed have the following

feature: a necessary condition for deciding in favor of H1 is that tmin
T > 0, which happens if

and only if mini ∆̂T,i > 0. This is a reasonable restriction accepted by the majority of the
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statistics community: to reject H0 in favor of the hypothesis H1 that the true parameter lies in

a certain region, it is necessary that the observed parameter estimate lie in that region as well.

For our purposes, to establish that ∆ ∈ R3 with any statistical significance, it is necessary that

∆̂T ∈ R3 as well. Establishing that ∆ ∈ R3 when instead ∆̂T ∈ R1 ∪R2 would be considered

‘unreasonable’. Such ‘unreasonable’ tests do exist, but most statisticians shy away from them;

for a discussion, see Perlman and Wu (1999).

An additional motivation for this feature is the concept of a monotone test; the term

monotone here has a different meaning compared to the relation of expected returns being

monotonic. In the context of testing problem (8), assume a test rejects H0 based on a vector

of individual test statistics tT ≡ (tT,1, . . . , tT,N )′. Then the test is said to be monotone if it

also rejects H0 based on any other vector of individual test statistics t̃T ≡ (t̃T,1, . . . , t̃T,N )′

which satisfies t̃T ≥ tT . Such a requirement appears reasonable: if t̃T ≥ tT , then t̃T should be

considered at least as significant against H0 as tT . If the requirement of a monotone test is

adopted, it can be shown that the feature of tmin
T > 0 being a necessary condition for rejection

of H0 is rather innocuous; see the end of Subsection 3.1.

On the other hand, the MR test of PT for testing problem (6) can easily decide in favor

of ∆ ∈ R3 when ∆̂T ∈ R2; for example, see Subsection 6.1. This feature is due to the artifact

that ∆ ∈ R2 is ruled out a priori by the assumptions of the MR test.

To put these concepts into perspective, consider an example where one test statistic tT,i

is small in magnitude and negative, say equal to −0.05, while all the other tT,j are large in

magnitude and positive, say equal to 5.0. Since the corresponding ∆̂T satisfies ∆̂T ∈ R2, none

of the new tests for testing problem (8) to be discussed decide in favor ofH1. The interpretation

would be that the relation is established as strictly monotonic ‘almost everywhere’ but just

not everywhere. The fact that all the remaining tT,j are highly significant cannot be used to

establish that ∆i > 0 as well. The MR test of PT for testing problem (6) typically decides in

favor of ∆ ∈ R3 in such a situation. Since the possibility of relation which is not systematic is

ruled out on a priori grounds, it can be justified to consider a ∆̂T that lies in R2 as evidence

for ∆ ∈ R3. As discussed in Perlman and Wu (1999), there also exist ‘unreasonable’ tests for

testing problem (8) that can decide in favor of ∆ ∈ R3 in such a situation. However, such a

test cannot have the desirable property of being a monotone test.

The general strategy to compute the critical value for a test against a one-sided (larger than)

alternative at significance level α is to derive the sampling distribution of the test statistic

‘under the null’ and to then take the 1− α quantile of this derived null sampling distribution

as the critical value.

Whether the testing problem is (6) or (8), the null hypothesis is composite, meaning that

there are (infinitely) many parameters ∆ in the null space. Therefore, it is in principle not
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clear under which particular value of ∆ one should derive the sampling distribution ‘under the

null’. One can deal with this dilemma in three ways: use the worst-case parameter under the

null; try and guess the null parameter; or bound the true null parameter.

In the remainder of our discussion, we consider the data generating process (DGP) to be

unknown but fixed, with the possible exception of ∆. For example, when we talk about a

worst-case distribution, as discussed below, we mean worst case with respect to ∆ only but

not with respect to other features of the DGP, such as the correlation structure within the

vector of return differentials dt, the various marginal distributions of the individual return

differentials dt,i, or the dependence structure of the dt over time. All such other features are

considered (unknown but) fixed.

More specifically, one can regard the unknown joint distribution of ∆̂T as that of X +∆,

where X is a random vector with a fixed distribution and ∆ is the unknown parameter.

For example, X could have the multivariate normal distribution with mean vector 0 and

(unknown but) fixed covariance matrix Σ; or it can be multivariate-t; or something else.

Regardless, under our maintained assumption that ∆̂T,i is shift-equivariant while σ̂T,i is shift-

invariant for all i = 1, . . . , N , it then follows that larger values of ∆ lead to larger values

of the test statistic tmin
T . In particular, if ∆1 ≤ ∆2 (with vector inequalities interpreted

componentwise), then P∆1
{tmin

T > c} ≤ P∆2
{tmin

T > c}, for any real number c.

3.1 Worst-case approaches

The worst case under the null corresponds to the parameter ∆0 in the null space that results

in the largest critical value possible. Specifically, if we consider the 1 − α quantile of the

distribution of a given test statistic under ∆0, then the most conservative approach is to

take the largest such critical value as ∆0 ranges over the null hypothesis parameter space.

Intuitively, this specific parameter is the parameter in the null space that is closest to the

alternative space. In other words, it lies on the boundary between the null and the alternative

space. In statistical lingo, it gives rise to the least favorable distribution, where the term

‘favorable’ is to be understood with respect to the ability to reject false hypotheses: the larger

the critical value of the test, the smaller is its power against any given alternative.

The motivation here is quite simple: if one uses the worst-case parameter under the null

to derive the critical value, then test will work for any parameter under the null in the sense

that rejection probability will be at most α, but can be less. This is because, by definition,

the critical value for any other parameter in the null space is at least as large as the critical

value derived from the worst-case parameter.

Crucially, the worst-case parameter under the null depends on the choice of testing problem:
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(6) or (8). For testing problem (6), it is easy to see that the worst-case parameter is given by

∆
WC,(6)
0 ≡ 0 ≡ (0, 0, . . . , 0)′ . (14)

The resulting test is called the MR test (for monotonic relation test) by PT.

But this is no longer true for testing problem (8). Consider the special case N = 2. For

any positive number δ, both the parameters (δ, 0) and (0, δ) will lead to a larger critical value

compared to the parameter (0, 0). (However, which of the two leads to the largest critical value

is not necessarily clear.) Furthermore, increasing δ will increase the two critical values. Taking

this logic to the limit, one realizes that the worst-case parameter is one of the following two:

(∞, 0) or (0,∞).

Remark 3.2 Any parameter ∆ can only have finite entries. What we mean by the worst-case

parameter being equal to (∞, 0), say, is the following. The critical value under the parameter

(∞, 0) is obtained as the limit of the critical value under (δ, 0), as δ tends to infinity. For all

practical purposes, the critical value can be obtained under (δBig, 0) where δBig is a very large

number, such as δBig = 106.

Furthermore, the worst-case parameter is not necessarily unique. For example, the two

choices (∞, 0) and (0,∞) can lead to the same critical value. In such a case, ‘the’ worst-case

parameter is taken to be an arbitrary element of the set of all worst-case parameters.

For a general dimension N , the worst-case parameter for testing problem (8) is of the form

∆
WC,(8)
0 ≡ (∞, . . . ,∞, 0,∞, . . . ,∞)′ . (15)

That is, one of the entries is zero and all the other entries are infinity. In case it is not clear

a priori which particular position of the zero entry leads to the largest possible critical value,

one has to try out all possible positions in principle. However, as will be seen, under mild

regularity conditions, all such least favorable points lead to an asymptotic critical value of

z1−α, the 1− α quantile of the standard normal distribution.

We call the resulting test the Cons test, short for conservative test. A connection to the

generalized likelihood ratio test for testing problem (8) is given in Appendix A.

Recall the concept of a monotone test from Remark 3.1. It can be shown that for testing

problem (8), in an approximate set-up, the Cons test is actually uniformly most powerful

(UMP) among all monotone level α tests; see Appendix B. As the critical value of the Cons

test is positive, this provides another justification to restrict attention to tests which require

tmin
T > 0 as a necessary condition to reject H0 in testing problem (8).
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3.2 Constrained estimation of the null parameter

By design, using the worst-case parameter to derive the critical value of a test leads to conser-

vative inference in general. That is, the rejection probability under an arbitrary parameter in

the null hypothesis parameter space will often be less than the significance level of the test.

Take the example of testing problem (8) with N = 2. If the worst-case parameter is (∞, 0)

but the true parameter is (1, 0), say, than the rejection probability will be strictly smaller

than α (at least for any ‘reasonable’ DGP). This is because the critical value under (1, 0) is

strictly smaller than the critical value under (∞, 0).

Therefore, it would be better to compute the critical value under the true parameter (1, 0).

The dilemma is that the true parameter is not known. It is then tempting to estimate the true

parameter from the data and to use a corresponding parameter to compute the critical value

rather than to use the worst-case parameter. In doing so, the estimate must be constrained to

lie in the null parameter space, of course.

One observes ∆̂T ≡ (∆̂T,1, . . . , ∆̂T,N )′. As discussed before in Remark 3.1, we only have

to consider the case of ∆̂min
T > 0, since any ‘reasonable’ test for testing problem (8) will not

reject if ∆̂min
T ≤ 0. A constrained estimate for the null parameter is then of the form

∆Est
0 ≡ (∆̂T,1, . . . , ∆̂T,i−1, 0, ∆̂T,i+1, . . . , ∆̂T,N )′ . (16)

It is not clear a priori which position for the zero entry will lead to the largest critical value, so

in principle one has to try out all N possibilities. Since this approach is based on the observed

estimate ∆̂T rather than the true parameter ∆, one cannot guarantee that the resulting test

will work (in the sense of ensuring rejection probability of at most α for any null parameter)

for finite samples.

We will call the resulting test the Constrained-Estimate (CE) test.

3.3 Constrained bounding of the null parameter

A more conservative approach first constructs an upper joint confidence region for ∆ and then

extracts the null parameter from the corresponding upper limits rather than from the point

estimate ∆̂T . Crucially, to ensure that the resulting test works well in finite samples, one has

to downward adjust the significance level of the test depending on the confidence level used

for the joint confidence region.

More specifically, consider a joint confidence region for ∆ at confidence level 1 − β of the

form

(−∞, ûT,1]× (−∞, ûT,2]× . . .× (−∞, ûT,N ] . (17)

For example, the vector of upper limits ûT ≡ (ûT,1, ûT,2, . . . , ûT,N )′ can be computed by the

single-step method described in Romano and Wolf (2005); for completeness, this method is
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briefly summarized in Appendix C. It satisfies ûT,i > ∆̂T,i, for all i. The constrained bounded

parameter then lies on the intersection of the region (17) together with the null hypothesis

parameter space R1 ∪R2 and, therefore, is of the form

∆Bound
0 ≡ (ûT,1, . . . , ûT,i−1, 0, ûT,i+1, . . . , ûT,N )′ . (18)

Again, it is not clear a priori which position for the zero entry will lead to the largest critical

value, so in principle one has to try out all N possibilities. Crucially, the critical value is now

computed as the 1 − α + β quantile of the corresponding null sampling distribution of tmin
T

to ensure the overall validity of the test in finite samples. The intuition here is that with

probability of (at most) β the confidence region (17) will not contain the true parameter ∆;

and one must then adjust for this fact by decreasing the nominal significance level of the test

from α to α − β. In particular, one must choose β < α in the computation of the confidence

region (17).

We will call the resulting test the Two-Step test, due to its two-step nature. Related two-

step inference procedures have been previously suggested by Loh (1985), Romano and Wolf

(2000), and Hansen (2003), among others.

4 Implementing tests for monotonicity in expected asset returns

Having chosen a specific null parameter ∆0, by any one of the forms (14), (15), (16), or (18),

one is left to derive or approximate the implied sampling distribution of the test statistic tmin
T ,

and to then take the appropriate quantile as the critical value of the test. In general, one takes

the 1 − α quantile; with the exception of the Two-Step test, where one takes the 1 − α + β

quantile instead.

It is not possible to derive the implied sampling distribution analytically. As a feasible so-

lution, the distribution can be approximated via the bootstrap. To this end, create a bootstrap

data set {r∗1, r∗2, . . . , r∗T } by resampling from the observed data {r1, r2, . . . , rT }. Denote the

estimator of ∆i computed from the bootstrap data by ∆̂∗
T,i and let ∆∗

T ≡ (∆̂∗
T,1, . . . , ∆̂

∗
T,N )′.

Similarly, denote the standard error for ∆̂∗
T,i computed from the bootstrap data by σ̂∗

T,i. The

following algorithm details how the critical value of the test is approximated via the bootstrap.

Algorithm 4.1 (Computation of the critical value)

• Generate bootstrap data {r∗1, r∗2, . . . , r∗T } and compute statistics ∆̂∗
T,i and σ̂∗

T,i from these

data, for i = 1, . . . , N

• Compute t∗T,i, for i = 1, . . . , N , defined as:

t∗T,i ≡
∆̂∗

T,i − ∆̂T,i +∆0,i

σ̂∗
T,i

(19)
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• Compute tmin,∗
T ≡ mini t

∗
T,i

• Repeat this process B times, resulting in statistics tmin,∗
T,1 , . . . , tmin,∗

T,B

• The empirical distribution of these statistics tmin,∗
T,1 , . . . , tmin,∗

T,B is the bootstrap approxi-

mation to the sampling distribution of tmin
T under the parameter ∆0

• In particular, the corresponding 1 − α empirical quantile serves as the critical value of

the test; with the exception of the Two-Step test, where one takes the corresponding

1− α+ β empirical quantile instead

Remark 4.1 Which particular bootstrap method should be used to generate the bootstrap

data {r∗1, r∗2, . . . , r∗T } from the observed data {r1, r2, . . . , rT } depends on the underlying DGP.

If the original data are i.i.d., one can use the standard bootstrap of Efron (1979). If the

original data constitute a time series, one needs to employ a proper time series bootstrap and

several choices are available; for example, see Lahiri (2003). Romano and Wolf (2005) suggest

the circular block bootstrap of Politis and Romano (1992) while PT suggest the stationary

bootstrap of Politis and Romano (1994).

Either way, it is important to point out that one simply ‘resamples from the observed data’

as opposed to ‘resampling from some null-enforced data’, where ∆0 is the true parameter. This

is because one adds the number (∆0,i − ∆̂T,i) to the bootstrap estimate ∆̂∗
T,i in the numerator

of the bootstrap test statistic (19) to approximate the sampling distribution of tmin
T under ∆0

in the end, as desired. This approach is (asymptotically) equivalent to instead ‘resampling

from some null-enforced data’ and to then computing the bootstrap test statistic as

t∗T,i ≡
∆̂∗

T,i

σ̂∗
T,i

. (20)

The latter approach is more complicated and could be carried out by some empirical likelihood

method; for example, see Owen (2001).

Remark 4.2 There exists an alternative way to implement the Cons test. Assume the position

of the zero entry in the worst-case parameter (15) is given by i; all the other entries are equal to

infinity. In every bootstrap repetition, the smallest bootstrap t-statistic will then correspond

to entry i, since all other bootstrap t-statistics will be equal to infinity (with probability one):

tmin,∗
T = t∗T,i . (21)

Therefore, the critical value can simply be obtained by using a univariate bootstrap on the

i-th return differentials {d1,i, . . . , dT,i} for the testing problem

H0 : ∆i ≤ 0 vs. ∆i > 0 . (22)
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Again, either the standard bootstrap of Efron (1979) or a time series bootstrap is used

depending on the nature of the data.

In principle, this procedure has to be repeated N times, varying the position of the zero

entry from i = 1 to i = N ; and in the end the largest of the resulting N critical values needs

to be employed.

On the other hand, again, if the sample size is very large and finite-sample considerations

are not really of concern, one can simply take z1−α as the critical value, completely avoiding

the application of a bootstrap.

Of course, so far Algorithm 4.1 is merely a ‘recipe’. Certain conditions are needed to ensure

that the resulting critical value obtained by the bootstrap is a valid approximation. To this

end, we will make use of the following high-level assumptions.

(A1)
√
T (∆̂ − ∆) converges in distribution to N(0,Ω), for some positive definite N × N

matrix Ω with typical element ωi,j .

(A2) The bootstrap consistently estimates this limiting distribution, namely
√
T (∆̂

∗ − ∆̂)

converges in distribution to N(0,Ω) in probability.

(A3) Both
√
T σ̂T,i and

√
T σ̂∗

T,i converge in probability to
√
ωi,i, for i = 1, . . . , N .

These high-level assumptions are rather weak and have been verified for many applications of

interest in the statistics literature.

One can then show the following theorem, the proof of which can be found in Appendix D:

Theorem 4.1 Assume (A1)–(A3) and compute the critical value of the tests as detailed in

Algorithm 4.1. Then, as T → ∞:

(ia) For any ∆ ∈ R1 and for any ∆ ∈ R2 with mini∆i < 0, the limiting rejection probability

of the MR test is no larger than α.

(ib) For any ∆ on the boundary of R2, excluding the origin, the limiting rejection probability

of the MR test is strictly larger than α.

(ic) For any ∆ ∈ R3, the limiting rejection probability of the MR test is one.

(iia) For any ∆ ∈ R1 ∪R2, the limiting rejection probabilities of the Cons, CE, and Two-Step

tests are no larger than α.

(iib) For any ∆ ∈ R3, the limiting rejection probabilities of the Cons, CE, and Two-Step tests

are one.
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Remark 4.3 An important implication for applied work stems from part (ib) of the theorem.

If ∆ lies on the boundary of R2, excluding the origin (that is, if mini∆i = 0 but maxi∆i > 0),

then the limiting rejection probability of the test is strictly larger than α. In the special case

where the test statistics are asymptotically uncorrelated, the probability of a type 1 error can,

approximately, be as large as α1/N ; see Remark B.1 in Appendix B. So even when ∆ ∈ R2,

the test can decide in favor of ∆ ∈ R3 with quite high probability.

Actually, this is not to be considered a failure of the MR test. As pointed out before, the

MR test is specifically designed for the case where ∆ can a priori only lie either in R1 or in R3.

Instead, it is rather the failure of the applied researcher to apply the MR test to settings for

which it was not designed, namely to settings for which ∆ can a priori also lie in R2. To

interpret the rejection of the null hypothesis for the MR as evidence for ∆ ∈ R3 is then not

necessarily justified.

Remark 4.4 One might feel encouraged by part (ia) of the theorem to trust the MR test also

for ∆ ‘within’ R2, that is, for ∆ ∈ R2 with min∆i < 0. Indeed, the result guarantees that the

limiting rejection probability will be at most α in this case. However, the rejection probability

in finite samples can actually be well above α; see Section 5.

Similarly, the CE test can display rejection probabilities above α in finite samples even

if ∆ ∈ R1 ∪R2. On the other hand, the Cons test and the Two-Step test appear to always

successfully control the probability of a type 1 error; see Section 5.

This shows the importance of considering both the asymptotic properties and the finite-

sample properties of a testing procedure before applying it to real data.

Remark 4.5 The worst-case parameter ∆
WC,(8)
0 for the Cons test is of the form (15), that

is, all entries are infinity apart from a single zero entry. But then it is easy to see that

under Assumptions (A1)–(A3), the limiting critical value of the test is simply z1−α, the 1− α

quantile of the standard normal distribution; regardless of the position of the zero entry. Since

the bootstrap critical value is valid asymptotically only in the first place, one can simply use

z1−α as the critical value of the test, foregoing any application of the bootstrap. Indeed, the

two approaches are equivalent to first order, since the bootstrap critical value will converge

to z1−α in probability. However, it should be pointed out that the computation of the critical

value via the bootstrap typically results in better finite-sample properties of the test, as the

bootstrap is better able to capture skewness; for example, see Hall (1992).

5 Monte Carlo study

This section examines the finite-sample properties of the various tests via Monte Carlo studies;

both in terms of controlling the probability of a type 1 error under the null and in terms of
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power.

The following tests are included in the study:

• (MR) The MR test of PT described in Subsection 3.1

• (CE) The CE test described in Subsection 3.2

• (TwoStep) The Two-Step test described in Subsection 3.3

• (Cons) The Cons test described in Subsection 3.1

We use α = 0.05 as the significance level and β = 0.01 for the Two-Step test. The sample

size is T = 120 always. All empirical rejection probabilities are based on 20,000 simulations.

The number of bootstrap repetitions is B = 499. Return differential vectors dt are generated

in i.i.d. fashion and, accordingly, the standard bootstrap of Efron (1979) is employed.

The individual test statistics tT,i are computed as follows

tT,i ≡
∆̂T,i

σ̂T,i
where ∆̂T,i ≡ d̄T,i ≡

1

T

T
∑

t=1

dt,i and σ̂2
T,i ≡

1

T − 1

T
∑

t=1

(dt,i − d̄T,i)
2 . (23)

5.1 Null behavior for N = 2

We start with the extreme case of N = 2 to more easily judge the effect of correlation within

a return differential vector. The return differentials are generated as

dt =

(

dt,1

dt,2

)

∼ N

((

∆1

0

)

,

(

1 ρ

ρ 1

))

, (24)

with ∆1 ∈ {0, 0.025, 0.05, . . . , 0.45, 0.475, 0.5} and ρ ∈ {−0.5, 0.0, 0.5}.
The parameter ∆ lies on the boundary of region R2 always. For the special case of ∆1 = 0,

it also lies on the boundary of region R1. However, it never lies in region R3, that is, the

alternative of strict monotonicity is never true.

The empirical rejections probabilities (ERPs) of the various tests are presented in Figure 1.

One can see that MR successfully controls the probability of a type 1 error for ∆1 = 0 but

is otherwise liberal. This problem increases as the correlation ρ decreases.

By design, the other three tests are conservative at ∆1 = 0, with their rejection probability

increasing with ∆1.

CE can also be liberal for ρ ∈ {−0.5, 0.0}, though much less compared to MR.

Both TwoStep and Cons are successful in controlling the probability of a type 1 error across

all values of ∆1 and ρ, with Cons approaching the nominal level α slightly faster.
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5.2 Null behavior for N = 10

We continue with the more relevant case of N = 10 and consider two types of dependence

structure for the return differentials. Specifically, the return differentials are generated as

dt ∼ N(∆,Ω) ,

where ∆ = (∆1, . . . ,∆10)
′ and Ω is either the identity covariance matrix of dimension 10 or a

Toeplitz covariance matrix of dimension 10 with typical element ωi,j = 0.9|i−j|. In the former

case, the return differentials of a common period t are mutually independent; in the latter case,

there is strong dependence for return differentials close to each other and weak dependence for

return differentials far apart from each other.

We consider three basic designs for ∆:

• (D1) ∆ = (∆, . . . ,∆,−∆/10, . . . ,−∆/10)′

• (D2) ∆ = (∆, . . . ,∆,−∆)′

• (D3) ∆ = (∆, . . . ,∆, 0)′

with ∆ ∈ {0, 0.025, 0.05, . . . , 0.45, 0.475, 0.5}. In particular, in

• (D1) the last five elements are generally negative, though of a smaller magnitude.

• (D2) the last element is generally negative, and of the same magnitude.

• (D3) the last element is always zero.

When ∆ = 0, then ∆ lies on the boundary of regions R1 and R2 for all three designs.

When ∆ > 0, then: for design 1 and design 2, ∆ lies within region R2; for design 3, ∆ lies

on the boundary of region R2. However, it never lies in region R3, that is, the alternative of

strict monotonicity is never true.

For an illustration in terms of the corresponding vectors of expected returns, which have

dimension N + 1 = 11, see Figure 2; the value ∆ = 0.1 is used there. The point of these

particular designs is to get a feel of how anti-conservative the test of PT can turn in finite

samples when the relation is non-systematic but ‘close’ to systematic.

The empirical rejections probabilities (ERPs) of the various tests are presented in Figure 3

and Figure 4.

One can see that MR is often liberal for all three designs. In particular, for design 3 it is

always liberal except for ∆ = 0. And for large values of ∆, the probability of a type 1 error

rises as high as about 70% for the independent case. But even in design 1, where half of the

expected return differentials are actually negative, albeit at a smaller magnitude, the test is

generally liberal and the probability of a type 1 error can be as high as 15%. The overrejection
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problem is less pronounced for the dependent case (that is, for the Toeplitz covariance matrix)

but still noticeable.

CE is somewhat liberal in design 3 for the independent case, though not for the dependent

case and also never in design 1 or design 2.

The performances of TwoStep and Cons are virtually indistinguishable. In design 3, the

probability of a type 1 error tends to 0.05 as ∆ increases; it never lies above 0.05. In design 1

and design 2, the probability of a type 1 error is rather flat near zero. This holds true both

for the independent and the dependent case. Note here that since ∆ lies within region R2 in

design 1 and design 2 rather than on the boundary, the probability of a type 1 error cannot

approach 0.05 for CE, TwoStep, and Cons.

5.3 Alternative behavior for N = 10 and N = 5

We now turn to performance with respect to power instead.

Ceteris paribus, it is reasonable to expect that power increases when the number of return

differentials, N , is decreased. If the applied researcher uses a very large number N , then it will

be rather (more) difficult for her to establish a positive expected return differential for each

category.

To examine this effect, we consider the case where the expected return differentials are all

the same and employ N = 10 or N = 5. To keep everything else equal, the expected return

differentials must be twice as large for N = 5 compared to N = 10. This results in what we

call designs 4 and 5:

• (D4) ∆ = (∆, . . . ,∆)′ with ∆ ∈ {0, 0.025, 0.05, . . . , 0.45, 0.475, 0.5}.

• (D5) ∆ = (∆,∆,∆,∆,∆)′ with ∆ ∈ {0, 0.05, 0.1, . . . , 0.95, 1.0}.

For example, ∆ = 0.2 in design 4 with N = 10 corresponds to ∆ = 0.4 in design 5 with N = 5.

In other words, by reducing the number of categories by half, the expected return differentials

must get doubled.

Also for N = 5 we consider two cases for the covariance matrix Ω of the return differentials:

the identity covariance matrix of dimension 5 or a Toeplitz covariance matrix of dimension 5

with typical element ωi,j = 0.8|i−j|.

In both designs 4 and 5, the parameter ∆ lies on the boundary of regions R1 and R2

when ∆ = 0 and in region R3 when ∆ > 0. So the alternative of strict monotonicity is generally

true, with the exception of ∆ = 0.

The empirical rejections probabilities (ERPs) of the various tests are presented in Figure 5

and Figure 6. Naturally, MR has the highest power, followed by CE, followed by Cons and

TwoStep.
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One can see that for all tests the power increases when N is reduced from N = 10 to N = 5,

but on relative terms the most for TwoStep and Cons. For the independent case, take the

combination (N = 10,∆ = 0.2) in design 4 that corresponds, one-to-one, to the combination

(N = 5,∆ = 0.4) in design 5. While before the power of those two tests in design 3 was slightly

below 0.05, it has now risen to almost one in design 4.

It is also noteworthy to point out that the differences in power are generally much reduced

for the case of dependent returns (that is, when the covariance matrix of the return differentials

is a Toeplitz matrix); see Figure 6 versus Figure 5.

In applied work, researchers often construct either N + 1 = 10 or N + 1 = 5 categories

based on portfolio sorts using either deciles or quintiles, respectively. For testing monotonicity

of expected asset returns, it would then be preferable to use quintiles instead of deciles in terms

of the power of the tests. On the other hand, if monotonicity can be established for a larger

value of N , this can be considered more convincing evidence. In the end, if the choice of N is

not predetermined, then it is up to the applied researcher to use her judgment in selecting a

suitable number.

5.4 Overall recommendations

When the parameter space for ∆ is RN , the MR test is not recommended. The test can decide

in favor in favor of ∆ ∈ R3 with probability much exceeding the nominal significance level

when in fact ∆ /∈ R3. This especially happens when ∆ lies on the boundary of R2. However,

it can also happen even when ∆ lies within R2.

The CE test has related problems, though to a much smaller extent. Still, we would not

recommend it for general use.

The only two tests that are safe to use in general are the Two-Step and the Cons tests.

The performance of these two tests is rather similar. Since the Cons test is much easier to

implement, it is the one we recommend for practical use.

The situation is different when it is known a priori that ∆ ∈ R1 ∪ R3. In this case,

the MR test successfully controls the probability of a type 1 error. And since the MR test has

the highest power of all four tests, it is then the preferred one.

Regardless, in terms of the power of the tests it is advisable to keep the number of return

categories N + 1 to a ‘reasonable’ minimum. For example, basing portfolio sorts on quintiles

rather than on deciles will result in higher power of the various tests.

6 Empirical applications

In this section, we revisit two of the empirical applications of PT before considering some

additional new ones.
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6.1 Revisiting two empirical applications of PT

PT present two main empirical applications: one application concerning equity returns based

on portfolios formed on CAPM beta and another application concerning bond term premia

based on maturity. Their two corresponding plots of sample average returns and sample average

term premia, respectively, according to return categories are reproduced in Figure 7.

We first turn to the application concerning equity returns. As detailed in their Subsec-

tion 4.1, the MR test of PT decides in favor of a monotonic relation, that is, in favor of the

alternative ∆ ∈ R3. In contrast, since it is clear from the upper half of Figure 7 that ∆̂T ∈ R2,

none of the new tests presented in this paper decide in favor of ∆ ∈ R3; see Remark 3.1.

Instead, all these tests ‘accept’ the null hypothesis of ∆ ∈ R1 ∪ R2. In view of these contra-

dictory results, the question then becomes whether the linearity of the relation between the

CAPM beta of a stock and its expected return is taken for granted or not; see Remark 2.2.

We next turn to the application concerning bond term premia. As detailed in their Subsec-

tion 4.3, the MR test of PT does not decide in favor of a monotonic relation, that is, in favor

of the alternative ∆ ∈ R3. Since it is clear from the lower half of Figure 7 that ∆̂T ∈ R2, the

new tests presented in this paper all agree with this conclusion.

6.2 Additional empirical applications

We present three additional empirical applications where we consider the effect of short-term

reversal; here, short-term reversal is one-month reversal. We do this separately for small-

size firms, mid-size firms, and large-size firms. To this end, we use a data set provided by

Kenneth R. French labeled “25 Portfolios Formed on Size and Short-Term Reversal (5 x 5)”.1

In particular, we consider monthly average value-weighted returns from 01/1927 until 12/2010.

In total, there are 25 portfolios. We use the first five, which correspond to quintile portfolios

formed on short-term reversal for small-size firms, the middle five, which correspond to quintile

portfolios formed on short-term reversal for mid-size firms, and the last five, which correspond

to quintile portfolios formed on short-term reversal for large-size firms. The sample size is

T = 1, 008.

The test statistics are obtained as

tT,i ≡
∆̂T,i

σ̂T,i
where ∆̂T,i ≡ d̄T,i ≡

1

T

T
∑

t=1

dt,i (25)

and the standard errors σ̂T,i are computed via a kernel method using the quadratic-spectral

kernel and the automatic choice of bandwidth proposed by Andrews (1991). The critical

values of the tests are computed via Algorithm 4.1. We employ the circular block bootstrap

1Data available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data−library.html.
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of Politis and Romano (1992) with a block size of b = 12, based 10,000 bootstrap resamples

always. The choice b = 12 seems justified as none of the data display strong serial correlation.

(The qualitative results, in terms of rejecting the null hypothesis or not, remain unchanged if

a block size of b = 24 is used instead.)

The average returns on quintile portfolios formed on short-term reversal are displayed

in Figure 8. For all three firm sizes, the observed relation is strictly monotonic decreasing.

However, the ‘steepness’ of the relation diminishes in magnitude as the firm size goes up.

Since the observed relations are strictly monotonic decreasing rather than increasing, all

return differentials were multiplied by negative one before feeding the data to the testing

procedures. The results of the MR and Cons tests, for a nominal level of α = 0.05, are

presented in Table 1. Both tests establish a strictly monotonic relation for small-size firms and

fail to do so for large size-size firms. However, the test results differ for mid-size firms: the

MR test establishes a strictly monotonic relation while the Cons test does not.

7 Conclusions

In many instances, empirical research in finance seeks to address whether a strictly monotonic

increasing relation exists between an asset’s expected return and some underlying characteristic

of interest. For example, in the context of equity returns, such a characteristic might be CAPM

beta, size, book-to-market, momentum, or reversal; in the context of bond returns, such a

characteristic might be maturity or rating quality. If this characteristic is ordered into more

than two categories, then a convincing test needs to establish monotonicity over all categories.

In other words, a simple test of “high minus low”, only comparing the two most extreme

categories, is not convincing.

In a recent paper, Patton and Timmermann (2010) propose a general test, taking all cate-

gories of the underlying characteristic into account. Compared to previous related proposals,

they are, to our knowledge, the first ones to postulate a strictly increasing monotonic relation

as the alternative hypothesis of test, rather than as the null hypothesis. This is the correct

formulation if, indeed, the goal is to establish strict monotonicity with a quantifiable statistical

significance.

On the other hand, they postulate a weakly decreasing monotonic relation as the null hy-

pothesis. Compared to allowing, more generally, for a non-systematic relation under null, this

approach results in a smaller critical value of the test and thereby in higher power. Unfortu-

nately, if a non-systematic relation is actually possible in case the alternative is not true, this

test does not successfully control the probability of a type 1 error (that is, of falsely rejecting

the null). As a result, it can become quite likely to ‘establish’ a strictly monotonic increasing

relation when in reality it does not exist.

21



In this paper, we have proposed some alternative tests that allow for a non-systematic

relation under the null and successfully control the probability of a type 1 error. These tests

do not require modeling the dependence structure of the time series nor the covariance matrix

of the observed return differentials. A suitable bootstrap method is used to implicitly account

for these unknown features of the underlying data generating mechanism.

As is unavoidable, such tests have lower power compared to the test of Patton and Timmermann

(2010). However, if a non-systematic relation cannot be ruled out based on a priori knowledge,

then this lower power is the price one must be willing pay to avoid the chance of falsely estab-

lishing strict monotonicity of expected asset returns (beyond the desired significance level of

the test).
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A Connection to the quasi likelihood ratio test

Suppose X ∼ N(µ,Ω), with Ω a known positive definite matrix. For testing problem (8)

applied to the vector µ, namely

H0 : µ ∈ R1 ∪R2 vs. H1 : µ ∈ R3 , (26)

the generalized likelihood ratio (QLR) test rejects for large values of

supµ∈RN exp
[

−1
2(X − µ)′Ω−1(X − µ)

]

supµ∈R∁
3

exp
[

−1
2(X − µ)′Ω−1(X − µ)

] , (27)

where R∁
3 = R1∪R2. Assume that X > 0, or the test accepts H0 anyway. Since the supremum

in the numerator occurs when µ = X, the QLR test rejects for large values of

inf
µ∈R∁

3

(X − µ)′Ω−1(X − µ) . (28)

In the case where Ω is a diagonal matrix, the infimum occurs at some µ that satisfies

µi = 0 for some i ∈ {1, . . . , N} and µj = Xj for all j ∈ {1, . . . , N} with j 6= i . (29)

The resulting value of (28) is then miniX
2
i /ωi,i, and rejecting for large values is equivalent to

rejecting for large miniXi/
√
ωi,i.

In case Ω is not known, but a suitable estimator Ω̂ = diag(ω̂1,1, . . . , ω̂N,N ) is available,

a feasible version of the QLR test rejects for large values of miniXi/
√

ω̂i,i.

In the set-up of the paper, Assumptions (A1)–(A3) imply the following approximate sam-

pling distribution, at least for large sample sizes:

∆̂T
·∼ N(∆,Ω/T ) or, equivalently,

√
T∆̂T

·∼ N(
√
T∆,Ω) , (30)

where the symbol
·∼ denotes “is approximately distributed as”.

Hence — with
√
T∆̂T playing the role of X, with

√
T∆ playing the role of µ, and

with
√
T σ̂T,i playing the role of ω̂i,i — the test statistic tmin

T of (13) can be considered a

feasible QLR test statistic under the assumption of a diagonal covariance matrix Ω. And

hence the Cons test of Subsection 3.1 can be interpreted as a feasible QLR test for testing

problem (8).

The assumption of Ω being diagonal does not generally hold true for our application.

It is, therefore, natural to consider the following feasible QLR test statistic under an arbitrary

covariance matrix Ω:

inf
∆∈R∁

3

(∆̂T −∆)′Ω̂
−1

(∆̂T −∆) , (31)

where Ω̂ is a suitable estimator of Ω.
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Unfortunately, the choice of test statistic (31) results in a test which can be liberal in finite

samples; at least when Ω̂ is the natural estimator of Ω, namely the sample covariance matrix

of the observations d1, . . . ,dT .
2 This finding is in line with previous results in the literature

that show that tests based on quadratic test statistics using the inverse of a sample covari-

ance matrix are often liberal in finite samples; for example, see Hayashi (2000, Section 3.5),

Ren and Shimotsu (2009), and the references therein.

B Test based on minimum is UMP among monotone tests

As in Appendix A, assume X ∼ N(µ,Ω), where Ω is a known positive definite matrix.

Consider the testing problem (8) applied to the vector µ, namely

H0 : µ ∈ R1 ∪R2 vs. H1 : µ ∈ R3 . (32)

Restrict attention to monotone tests as described in Remark 3.1. Thus, if a test based on X

rejects H0, then it must also reject H0 based on any X ′ ≥ X.

Theorem B.1 Consider the above testing problem. Among monotone level α (nonrandomized)

tests with monotone increasing rejection region,3 the test that rejects when miniXi/
√
ωi,i ≥

z1−α is uniformly most powerful (UMP), where z1−α is the 1 − α quantile of the standard

normal distribution.

Proof: Let R ⊂ R
N be the rejection region of the claimed UMP test, so

R ≡ {x : min
i

xi/
√
ωi,i ≥ z1−α} . (33)

Assume there exists another test with monotone increasing rejection region R′ that has better

power against even one alternative µ ∈ R3. Then, it cannot be the case that R′ ⊆ R, or the

test based on R′ could not have better power (as it would never reject unless the test based

on R did). Hence, R′ must include a point y ≡ (y1, . . . , yN )′ /∈ R. Therefore, for at least some

j, it holds true that yj <
√
ωj,jz1−α. Let

R′′ ≡ {x : x ≥ y} . (34)

Since R′ is assumed monotone, it must be the case that R′′ ⊆ R′. But then, the supremum of

the probability of a type 1 error of the test based on R′ satisfies

sup
µ∈R1∪R2

Pµ{R′} ≥ sup
µ∈R1∪R2

Pµ{R′′} . (35)

2Results of corresponding Monte Carlo studies are not included in the paper, but are available from the

authors upon request.
3A region R ⊆ R

N is called monotone (increasing) provided the following condition holds: if x ∈ R and

x
′
≥ x, then necessarily x

′
∈ R as well.
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The right hand side is bounded below by Pµ{R′′} with µ satisfying µi = 0 for some i and

µj = B for all j 6= i, where B is some large value. As B → ∞, this probability becomes

Pµi=0{Xi ≥ yi} > Pµi=0{Xi ≥
√
ωi,i · z1−α} = α . (36)

This is a contradiction, as the test would not be level α.

The argument actually applies to any family of distributions Fθ that are stochastically in-

creasing in a parameter θ, meaning Pθ1
{R} ≤ Pθ2

{R} whenever R is a monotone (increasing)

region region and θ1 ≤ θ2. This holds true for any multivariate location model.

In particular, under our maintained assumptions, an approximate multivariate normal lo-

cation model applies to the vector of test statistics tT = (tT,1, . . . , tT,N )′, at least when the

sample size T is large. And, therefore, in an approximate set-up, the Cons test is UMP among

all monotone level α tests for testing problem (8).

Remark B.1 Consider the multivariate normal model of this section, specializing to the case

where Ω is the identity matrix. Testing problem (6) applied to the vector µ becomes

H0 : µ ∈ R1 vs. H1 : µ ∈ R3 . (37)

The exact finite sample analogue of the MR test of PT in this case would be to reject when

minXi ≥ cN (1− α), where the critical value is determined by

Pµ=0{min
i

Xi ≥ cN (1− α)} = α . (38)

Therefore, [1− Φ(cn(1− α))]N = α, or

cN (1− α) = Φ−1
(

1− α1/N
)

. (39)

It follows that, if the correct null hypothesis is instead specified by (32), the probability of

a type 1 error is maximized by maximizing

Pµ{minXi ≥ cN (1− α)} (40)

over µ ∈ R1 ∪R2. This probability is maximized when one µi = 0 and the remaining µj tend

to ∞. It follows that the maximum probability of a type 1 error of the MR test is exactly

Pµ1=0

{

X1 ≥ Φ−1
(

1− α1/N
)

}

= 1− Φ
[

Φ−1
(

1− α1/N
)

]

= α1/N , (41)

which is bigger than α, unless N = 1, and it approaches one as N increases. Clearly, such a

test does not control the type 1 error for our formulation (32) of the testing problem and is

much too liberal.
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C Joint confidence region for ∆

This section briefly summarizes the single-step method described in Romano and Wolf (2005)

to compute the upper limits ûT ≡ (ûT,1, ûT,2, . . . , ûT,N )′ utilized in Subsection 3.3. Specifically,

they are of the form

ûT,i ≡ ∆̂T,i + d̂1 · σ̂T,i . (42)

Here, d̂1 is a (consistent) estimate of d1, which is defined as the 1− β quantile of the sampling

distribution of the random variable

max
i

(∆̂T,i −∆i)

σ̂T,i
. (43)

The following algorithm details how d1 is approximated via the bootstrap.

Algorithm C.1 (Computation of d̂1)

• Generate bootstrap data {r∗1, r∗2, . . . , r∗T } and compute statistics ∆̂∗
T,i and σ̂∗

T,i from these

data, for i = 1, . . . , N

• Compute max∗T ≡ maxi(∆̂
∗
T,i − ∆̂T,i)/σ̂

∗
T,i

• Repeat this process B times, resulting in statistics max∗T,1, . . . ,max∗T,B

• The 1− β empirical quantile of these B statistics is the bootstrap estimate d̂1

For motivation and further details, the reader is referred to Romano and Wolf (2005, Section 4).

D Proofs

Proof of Theorem 4.1: Denote the correlation matrix corresponding to the limiting

covariance matrix Ω of Assumption (A1) by Π, with typical element πi,j , that is

πi,j =
ωi,j√

ωi,i · ωj,j
. (44)

Define centered statistics by

vT,i ≡
∆̂T,i −∆i

σ̂T,i
, (45)

and let vT ≡ (vT,1, . . . , vT,N )′. Then vT converges in distribution to N(0,Π). Let y ≡
(y1, . . . , yN )′ be a random variable with distribution N(0,Π) and let ymin ≡ mini yi. Also,

denote by c1−α the 1− α quantile of the distribution of ymin.

Furthermore, since

tT,i ≡
∆̂T,i

σ̂T,i
= vT,i +

∆T,i

σ̂T,i
, (46)
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it holds that

tT,i converges in distribution to















−∞ if ∆i < 0

N(0, 1) if ∆i = 0

∞ if ∆i > 0

. (47)

(Here, in the first case and in the third case, convergence in distribution is actually equivalent

to convergence in probability.)

To prove part (ia), first consider the case ∆ = 0. It then follows that tmin
T converges in

distribution to ymin and that the critical value of the test converges to c1−α in probability.

Hence, the rejection probability converges to α. Any other parameter ∆ considered satisfies

mini∆i < 0, in which case tmin
T converges to −∞ in probability, resulting in a limiting rejection

probability of zero.

To prove part (ib), any parameter ∆ considered satisfies mini∆i = 0 and maxi∆i > 0.

Let I(∆) ≡ {i : ∆i = 0}. Then tmin
T converges in distribution to ymin

I(∆)
≡ mini∈I(∆) yi. Note

that ymin
I(∆)

is stochastically larger than ymin, since I(∆) is a strict subset of {1, . . . , N}. The
rejection probability thus converges to P{ymin

I(∆)
> c1−α} > P{ymin > c1−α} = α.

To prove part (ic), any parameter ∆ considered satisfies mini∆i > 0, in which case tmin
T

converges to ∞ in probability, resulting in a limiting rejection probability of one.

To prove part (iia), any parameter ∆ considered satisfies mini∆i ≤ 0. To start out,

consider the Cons test. The critical value converges to z1−α in probability. But, in the limit,

the distribution of the test statistic tmin
T is (weakly) stochastically smaller than the standard

normal distribution for all values of ∆ considered. So the limiting rejection probability of

the test cannot exceed 1 − α. Next, consider the CE test. Since ∆̂T converges in to ∆ in

probability, the following is not difficult to show. First, if mini∆i < 0, then the limiting

rejection probability is zero; see Remark 3.1. Second, if ∆ contains one zero entry and the

remaining entries are positive, the critical value converges to z1−α in probability and the

limiting rejection probability is equal to α. Third, if ∆ contains several zero entries and the

remaining (if any) entries are positive, let again I(∆) ≡ {i : ∆i = 0}. The test statistic

tmin
T converges in distribution to mini∈I(P ) yi. Denote the 1− α quantile of the distribution of

mini∈I(P ) yi by cI(P ),1−α. Then, for any ǫ > 0, the probability that the critical value of the

test will be smaller than cI(P ),1−α − ǫ converges to zero. As a result, the limiting rejection

probability of the test cannot exceed α. Finally, consider the Two-Step test. Denote by E the

set in the sample space on which the joint confidence region (17) contains the true parameter∆.

Hence, on the set E, the employed critical value is (weakly) larger compared to computing the

critical value under the true parameter. As a result, the limiting rejection probability cannot

exceed the nominal level of the test, which is α − β. Assume without loss of generality that

on the set E∁ (that is, on the complement of the set E), the test always rejects. By design of

the joint confidence region (17), the limiting probability of E∁ cannot exceed β. In sum, the
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limiting rejection probability cannot exceed α− β + β = α.

To prove part (iib), any parameter ∆ considered satisfies mini∆i > 0, in which case tmin
T

converges to ∞ in probability, resulting in a limiting rejection probability of one. Note here

that for all three tests considered, the critical value converges to z1−α in probability.
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Small Size, tmin
T = 2.02

Test MR Cons

Critical Value 0.20 1.60

Mid Size, tmin
T = 1.33

Test MR Cons

Critical Value 0.13 1.67

Large Size, tmin
T = 0.10

Test MR Cons

Critical Value 0.17 1.88

Table 1: Test results for equity returns corresponding to the three panels of Figure 8. The

nominal level is α = 0.05. All return differentials were multiplied by negative one before feeding

the data to the two testing procedures.
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Figure 1: Empirical rejection probabilities (ERPs) for various tests in dimension N = 2 as a

function of ∆1, where ∆ = (∆1, 0).
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Figure 2: Vectors of expected returns, for ∆ = 0.1, corresponding to the three null designs

detailed in Subsection 5.2.
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Figure 3: Empirical rejection probabilities (ERPs) under H0 for various tests in dimension

N = 10 as a function of ∆, where the three designs are detailed in Subsection 5.2. The

covariance matrix of the return differentials is the identity matrix.
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Figure 4: Empirical rejection probabilities (ERPs) under H0 for various tests in dimension

N = 10 as a function of ∆, where the three designs are detailed in Subsection 5.2. The

covariance matrix of the return differentials is a Toeplitz matrix.
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Figure 5: Empirical rejection probabilities (ERPs) under H1 for various tests in dimensions

N = 10 and N = 5 as a function of ∆, where the two designs are detailed in Subsection 5.3.

The covariance matrix of the return differentials is the identity matrix.
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Figure 6: Empirical rejection probabilities (ERPs) under H1 for various tests in dimensions

N = 10 and N = 5 as a function of ∆, where the two designs are detailed in Subsection 5.3.

The covariance matrix of the return differentials is a Toeplitz matrix.

37



Figure 7: Reproduction of Figure 1 and Figure 2 of Patton and Timmermann (2010).
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Figure 8: The upper panel displays average monthly value-weighted returns on quintile port-

folios formed on short-term reversal for small-size firms, from January 1927 to December 2010.

Similar for the middle and lower panel; except that mid-size firms and big-size firms, respec-

tively, are used instead.
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