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Abstract

We propose a TAR(3,1)-GARCH(1,1) model able to describe two different types of extreme events: a

first type generated by large uncertainty regimes and a second type where extremes come from isolated

dread/joy events. The novelty of this model resides on the definition of the regimes, motivated by the

occurrence of extreme values, and of the threshold variable, defined by the shock affecting the process

one period lagged. The model is able to uncover dependence and clustering of extremes in high and low

volatility periods. By analyzing the period around the crisis of September 11th, 2001 for GM stock prices

we find evidence of predictability of extremes due to correlation in the mean between these observations.

This finding supports the hypothesis of runs of negative returns due to correlation between extreme events

rather to an increase in volatility.
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1 Introduction

In stationary linear time series models the extreme values are generated by the distribution function of

the error term, thereby the importance of assuming distributions with higher kurtosis than the Gaussian

distribution to describe these events. On the other hand for stationary nonlinear (multiplicative) models

extreme observations can be generated either by the volatility process or by the error distribution function.

GARCH models are thought as natural candidates for time series exhibiting clustering of extremes for

they are able to generate this feature by the structure of dependence in the conditional volatility together

with the shape of the error distribution. These processes modeling the conditional volatility, see Engle

(1982) or Bollerslev (1986), are not capable however of producing runs of extremes of positive or negative

sign. In particular, if the error distribution is symmetric these processes satisfy that

P{yt ≤ −v|=t−1} = P{yt > v|=t−1}, (1)

with v some positive value and =t−1 denoting the σ−algebra generated by the set of available information

up to time t-1. This property also holds for more convoluted GARCH type processes as E-GARCH

of Nelson (1991), T-GARCH of Glosten, Jagannathan and Runkle (1993) and Zakoian (1994), or other

related models as the stochastic volatility processes of Taylor (1994) and Harvey, Ruiz and Shephard

(1994). A straightforward extension of these processes are ARMA-GARCH models. These processes

model the conditional mean and make allowance then for mean values different from zero that tilt the

conditional distribution of the time series yt in one or other direction making more likely extreme values

of the same sign of the conditional mean. A positive mean implies, in principle, a higher likelihood of

extreme values in the positive tail. This fact, however, makes difficult for the model to describe periods

of runs of extremes of opposite sign than the mean. In this case one should consider distributions with

heavier tails than the Gaussian distribution. Also, from a finance perspective the statistical significance of

the conditional mean component makes difficult to reconcile these models with theory on market efficiency.

A widely explored alternative that extends ARMA processes is the use of nonlinear models for the

mean. These models are founded on the assumption of different regimes or states of the world and

are used to capture different nonlinear phenomena exhibited by time series without having to entertain

error distributions different from the Gaussian probability law. Examples of these nonlinear phenomena

are asymmetries, time-irreversibility, different tail behavior of the distribution of the data, etc. These

models have enjoyed a great popularity since the early work of Tong and Lim (1980), Tong (1983, 1990),

Tsay (1989) or the general survey of Granger and Teräsvista (1993). For alternatives contemplating the

presence of unit roots for certain regimes see Gonzalez and Gonzalo (1998) and for methods for estimating

and testing for the presence of threshold effects see Chan (1990), Hansen (1996, 2000) or Gonzalo and

Pitarakis (2002). Other family of nonlinear models is Smooth Transition Models (STAR) characterized

by an infinite number of regimes and where the variable under study changes smoothly from one state to
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the other, see Teräsvirta (1994) among others.

Regarding the way in which the regime evolves over time two classes of threshold models can be

distinguished. In the first class regimes are determined by an observable variable, examples of this with

a finite number of regimes are the initial Threshold AutoRegressive (TAR) model of Tong (1978) or

self-exciting processes (SETAR) where the threshold variable is a lagged value of the time series itself.

The models in the second class assume that the regime cannot be observed and are determined by an

unobservable stochastic process. In this class lies the widely studied Markov Switching Models, see

Hamilton (1989), the STOPBREAK model of Engle and Smith (1999) or TIMA models of Gonzalo and

Martinez (2006). In the last two cases the threshold variable is the shock that is not observable although

estimable.

In this paper we claim that runs of very large observations of stationary time series can be under

some conditions predictable for small time periods. In order to accommodate this postulate we propose a

TAR model that has ingredients from both classes of nonlinear threshold models. The threshold variable

is given by the term representing upcoming information into the model but lagged one period. This

variable is not observable by its nature, but can be estimated at time t. The possibility of conditional

heteroscedasticity is also entertained, thus the model that we propose is a TAR(3,1)-GARCH(1,1) process

defined as follows:

yt = α +





ρ1yt−1 + htεt, εt−1 ≤ u1,

ρ2yt−1 + htεt, u1 < εt−1 ≤ u2,

ρ3yt−1 + htεt, εt−1 > u2,

(2)

with εt denoting the shock term, u1 and u2 threshold values defining the TAR (3,1) model, and ht

describing the volatility dynamics of a GARCH (1,1) process driving the error term. Note that the choice

of volatility process is not instrumental for our analysis. Thus, one could choose instead our TAR model

for the mean with a different structure for the volatility dynamics. Nevertheless, given the popularity

and tractability of GARCH models we will restrict ourselves to the GARCH(1,1) case when presenting

theoretical results.

Under certain conditions, u1 and u2 defining the bounds of the sequence of extremes of εt in each tail

and ρ2 = 0, this process makes allowance for dependence of extremes not only produced by high volatility

regimes but by mean dependence produced by the occurrence of extreme shocks. While for economic and

financial time series the first class of extremes is identified with periods of high uncertainty the second one

could well describe, for example, booms and sudden drops in asset prices due to financial distress periods,

periods of peaks in energy prices due to sudden weather variations, or periods of underpriced/overpriced

currencies due to large country-related shocks.

The paper is structured as follows. In Section 2 the model, statistical properties and conditions to

ensure stationarity and geometric ergodicity are introduced. Forecasting properties in the short and long
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run are also studied. Section 3 derives the asymptotic theory of the proposed model. In particular we

develop a new nonlinearity hypothesis test to see the statistical significance of the threshold effect, and

study the consistency and inference for the quasi-maximum likelihood estimators of the model parameters.

Section 4 presents a Monte-Carlo analysis of the performance of size and power of this statistical test for

finite samples. Section 5 introduces an application of the methodology to measure the effect on General

Motors (GM) stock prices of September 11th, 2001. Finally, Section 6 concludes. All proofs are gathered

into a mathematical appendix.

2 A TAR(3,1)-GARCH(1,1) model

We consider the following threshold autoregressive model with three regimes where we make allowance for

conditional heteroscedasticity. The main feature of this model is that the threshold variable is the term

describing shocks but one period lagged. The model is as follows:

yt = α +





ρ1yt−1 + htεt, εt−1 ≤ u1,

ρ2yt−1 + htεt, u1 < εt−1 ≤ u2,

ρ3yt−1 + htεt, εt−1 > u2,

(3)

with u1 and u2 threshold values defining the TAR (3,1) model, ht a process describing the volatility

dynamics of an error term at := htεt driven by a GARCH(1,1) process, that is,

h2
t = β0 + β1a

2
t−1 + β2h

2
t−1, (4)

and {εt} is a sequence of random shocks following a distribution function (d.f.) Fε(·) with mean zero and

variance one. The corresponding density function will be denoted by fε(·). This process can be expressed

more compactly as

yt = α + ρtyt−1 + at, (5)

with ρt = ρ1I(εt−1 ≤ u1) + ρ2I(u1 < εt−1 ≤ u2) + ρ3I(εt−1 > u2), and where I(A) denotes the indicator

function that takes a value of 1 if A is true and zero otherwise. Another alternative is considering as

threshold variable the error term at−1. In this case the threshold values are time varying and depend on

the volatility regime:

yt = α +
[
ρ1I(at−1 ≤ u∗1,t) + ρ2I(u∗1,t < at−1 ≤ u∗2,t) + ρ3I(at−1 > u∗2,t)

]
yt−1 + at, (6)

with u∗j,t = ht−1uj , j = 1, 2, threshold values that depend on the conditional volatility process. For ρ2 = 0,

for example, this representation of the model shows that the structure of dependence in the data is driven

by the occurrence of extreme observations in the shock variable εt independently of the volatility regime.

This is in contrast to standard SETAR methodologies where the dependence structure, and therefore the

occurrence of extremes, is influenced by the volatility regime.
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This process accommodates many different dependence structures and time series dynamics. Our

interest is primarily in describing financial time series. In this case it can be convenient to assume ρ2 = 0.

Some examples are plotted below.
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Figure 2.1. Time series representing three different TAR(3,1)-GARCH(1,1) processes. The left panel
depicts a process with α = 0, (ρ1, ρ2, ρ3) = (−0.7, 0, 0.7) and (β0, β1, β2) = (1, 0, 0). Middle panel for α =
0, (ρ1, ρ2, ρ3) = (−0.7, 0, 0.7) and (β0, β1, β2) = (0.05, 0.10, 0.85); and right panel for α = 0, (ρ1, ρ2, ρ3) =
(0.7, 0, 0.7) and (β0, β1, β2) = (0.05, 0.10, 0.85). The error follows a standard Gaussian distribution. The
threshold values are u1 = −1.64 and u2 = 1.64 and the sample size is n = 1000.

To ensure the stationarity and ergodicity of the above process we need to impose the following as-

sumptions:

A.1 {εt} is an independent and identically distributed (iid) sequence with mean zero, variance one,

and distribution function Fε with Lebesgue density fε, that is uniformly bounded and uniformly

continuous.

A.2 β0 > 0 and βi ≥ 0 for i = 1, 2.

A.3 E
[
max

(
0, log(ε2

t )
)]

< ∞, for all t.

A.4 E
[
log(β1ε

2
t + β2)

]
< 0, for all t.

A.5 β1 + β2 < 1.

A.6 −∞ < E [log(ρt)] < 0, for all t.

Assumptions A.1 to A.4 or A.1, A.2 and A.5 are conditions for the strict stationarity and ergodicity

of the GARCH process at. Assumption A.6 is a standard condition to show the strict stationarity and

ergodicity of threshold models.

Theorem 1.- Assume that A.1 to A.4 and A.6 hold, then process (3) has a unique strictly stationary

and ergodic solution. Equally, substituting A.3 and A.4 by A.5, the same result is obtained.
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The following proposition sets the conditions to ensure that the first k statistical moments of (3) are

finite. First, define ‖x‖k =
(
E

[|x|k])1/k.

Proposition 1.- Under the assumptions in Theorem 1 and the following conditions

A.7 ‖ρt‖k < 1,

A.8 ‖ε2
t‖k/2 < ∞ and E

[(
β1ε

2
t + β2

)k/2
]

< 1,

the first k statistical moments of {yt, at} defined on process (3) are finite.

Proposition 2.- Under assumptions in Proposition 1 for k = 2, the first statistical moment of process
(3) is

E[yt] =
α

1− E[ρt]
+

E[ρtat−1]
1− E[ρt]

. (7)

If we further assume that the process has zero unconditional mean, the unconditional variance is

V ar(yt) =
V ar(at)

1− E [ρ2
t ]

+
Cov

(
ρ2

t , y
2
t−1

)− E2 [ρtyt−1]
1− E [ρ2

t ]
, (8)

and the unconditional correlation of order one is

Corr(yt, yt−1) = E [ρt] +
Cov(ρt, y

2
t−1)

V ar(yt)
. (9)

Note that the randomness of the autoregressive parameter adds one extra term compared to the

corresponding standard AR(1) process: E[ρtat−1]
1−E[ρt]

in the unconditional mean,
Cov(ρ2

t ,y2
t−1)−E2[ρtyt−1]

1−E[ρ2
t ]

in the

unconditional variance and Cov(ρt,y
2
t−1)

V ar(yt)
in the autocorrelation function of order one.

The expression for the optimal forecast l -periods ahead for the TAR(3,1)-GARCH(1,1) model is also

an extension of the corresponding formulas for the AR(1)-GARCH(1,1) methodology. Thus, the optimal

forecasts one-period ahead of yt using the mean square prediction error criterion are

E[yt+1|=t] = ρt+1yt, (10)

and

V ar (yt+1|=t) = h2
t+1. (11)

Proposition 3.- Under assumptions in Proposition 2 the optimal forecast l-periods ahead, with l > 1, of
process (3) is

E[yt+l|=t] = α
1− E[ρt+1]l−2

1− E[ρt+1]
+ E[ρt+1]l−1ρt+1yt +

l−1∑

i=1

E[ρt+i+1at+i|=t]E[ρt+1]l−i−1. (12)
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Furthermore, as l →∞ the optimal conditional forecast converges to the unconditional mean,

E[yt+l|=t]
L2→ α

1− E[ρt+1]
+

E[ρt+1at]
1− E[ρt+1]

, (13)

with L2 standing for convergence in square norm.

The main advantage of model (3) is its flexibility to describe the dynamics in the mean process. In

contrast to standard TAR models the regimes in our specification depend on the lagged error variable, and

therefore the model can accommodate asymmetries in the likelihood of positive and negative extremes and

in the occurrence of runs of extremes produced by the sign and magnitude of the shock εt−1. The following

proposition entertains, in particular, the probability of runs of extremes in the above TAR model.

Proposition 4.- Under model (3),

Pt−2 {yt ≤ −v, yt−1 ≤ −v} =
∫ x1t

−∞
Fε

(−v − (α + ρ1 (zt−2 + εht−1))
ht (ε)

)
fε (ε) ∂ε

+
∫ x2t

x1t

Fε

(−v − (α + ρ2 (zt−2 + εht−1))
ht (ε)

)
fε (ε) ∂ε

+
∫ x3t

u2

Fε

(−v − (α + ρ3 (zt−2 + εht−1))
ht (ε)

)
fε (ε) ∂ε,

where Ps{At} = P{At|=s}, zt−2 = E [yt−1| =t−2] = α + ρt−1yt−2, x1t = min
{

u1,
−v−zt−2

ht−1

}
, x2t =

min
{
u2,

−v−zt−2
ht−1

}
, x3t = max

{
u2,

−v−zt−2
ht−1

}
, h2

t (ε) = E
[
h2

t

∣∣ εt−1 = ε,=t−2

]
= β0 + β1ε

2 + β2h
2
t−1, and

v denotes a positive threshold. Equally,

Pt−2 {yt ≥ v, yt−1 ≥ v} = 1− Fε

(
v − zt−2

ht−1

)

−
∫ u1

x′1t

Fε

(
v − (α + ρ1 (zt−2 + εht−1))

ht (ε)

)
fε (ε) ∂ε

−
∫ x′3t

x′2t

Fε

(
v − (α + ρ2 (zt−2 + εht−1))

ht (ε)

)
fε (ε) ∂ε

−
∫ ∞

x′3t

Fε

(
v − (α + ρ3 (zt−2 + εht−1))

ht (ε)

)
fε (ε) ∂ε,

where x′1t = min
{

u1,
v−zt−2

ht−1

}
, x′2t = max

{
u1,

v−zt−2
ht−1

}
, x′3t = max

{
u2,

v−zt−2
ht−1

}
.

In a pure GARCH(1,1) model and with Fε(·) being symmetric about zero these two tail probabilities

are identical. In our TAR framework, on the other hand, this will depend on the value of the autoregressive

parameters in each regime, accommodating therefore, the occurrence of clustering of extremes due to large

uncertainty regimes as well as to runs of correlated extremes.
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3 Estimation and Inference for TAR(3,1)-GARCH(1,1) processes

The section is structured as follows. First, we discuss nonlinearity tests in Hansen’s (1996) spirit to

determine statistically the presence of TAR effects of the type described above; and second, the section

describes estimation and related asymptotic properties for the nonlinear TAR(3,1)-GARCH(1,1) model.

3.1 Nonlinearity tests

Following the literature on threshold models we will distinguish two cases. One, in which the threshold

vector u = (u1, u2) is known, and a second case, in which the vector is not identified under the null

hypothesis. In both scenarios the null hypothesis corresponds to the case ρ1 = ρ2 = ρ3, or alternatively

to H0 : γ2 = γ3 = 0, in the following model,

yt = γ0 + γ1yt−1 + γ2yt−1I(εt−1 ≤ u1) + γ3yt−1I(εt−1 > u2) + htεt, (14)

with γ0 := α, γ1 := ρ2, γ2 := ρ1 − ρ2 and γ3 := ρ3 − ρ2 in model (3). We will see below that the

implementation of heteroscedasticity robust tests implies that the choice of process ht is not instrumental

for the nonlinearity test. For simplicity and consistency with previous results we assume ht following a

GARCH(1, 1) process.

The null hypothesis implies no different correlation regimes determined by the magnitude of the stan-

dardized lagged shocks. In this way, we entertain a process that under the null hypothesis is an AR(1)-

GARCH(1,1) model:

yt = γ0 + γ1yt−1 + htεt,

with ht a GARCH(1,1) defined in (4) . Let us denote φ0,H0 for the vector of true parameters (γ0, γ1, β0, β1, β2)

of this model under the null hypothesis. For u known and an observable threshold variable, this composite

test is standard in the literature and appropriate test statistics are heteroscedasticity-robust F−tests and

Wald tests. The special feature of the model under the alternative, an unobserved threshold variable,

implies that to implement the test we need to do a preliminary estimation. Here, we estimate the model

under the null hypothesis by quasi-maximum likelihood (QML) and store the residuals. Then, in a second

stage we estimate model (14) using as proxy for the threshold variables the residual process from the null

AR(1)-GARCH(1,1) model. The rationale for doing this is that under the null hypothesis the residual

sequence converges in probability to the error sequence in (14). It is clear in this case that the regressors

involving threshold variables are not statistically significant.

Further, in order to implement a heteroscedasticity-robust Wald type test as proposed in Hansen

(1996) we use the ordinary least squares (OLS) method. The corresponding OLS vector of estimators

γ̂(u) = (
∑n

t=1 yt−1(u)yt−1(u)′)−1 (
∑n

t=1 yt−1(u)yt) of γ := (γ0, γ1, γ2, γ3)′ ∈ Γ, with Γ a compact set and
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yt−1(u) = (1 yt−1 yt−1I(εt−1 ≤ u1) yt−1I(εt−1 > u2))′, satisfies

√
n(γ̂(u)− γ) d−→ N (0, Σ(u)) (15)

with Σ(u) := M(u, u)−1V (u)M(u, u)−1 defined by M(u, u) := E[yt−1(u)yt−1(u)′], V (u) := E[st(u)st(u)′]

and st(u) := yt−1(u)at, where d→ denotes convergence in distribution.

The vector γ̂(u) is, however, an unfeasible estimator of γ that depends on the unobservable vector of

regressors yt−1(u). Let φ̂n,H0 be the QML estimator vector of φ0,H0 and εn,t−1 the corresponding residual

sequence obtained from estimating the null AR(1)-GARCH(1,1) process. Now, we use these residuals to

construct the feasible OLS estimator of γ defined by γ̂n(u) = (
∑n

t=1 ŷt−1(u)ŷt−1(u)′)−1 (
∑n

t=1 ŷt−1(u)yt)

with ŷt−1(u) = (1 yt−1 yt−1I(εn,t−1 ≤ u1) yt−1I(εn,t−1 > u2))′. The following result shows that γ̂n(u)

also converges to the same asymptotic distribution as γ̂(u), making possible to construct a Wald type

test.

Proposition 5.- Assume that ∣∣∣φ̂n,H0 − φ0,H0

∣∣∣ = Op

(
n−1/2

)
.

Hence, under H0 and assumptions in Proposition 1 for k = 8,

sup
u∈U

∣∣√n(γ̂ (u)− γ̂n (u))
∣∣ = oP (1).

Ling and McAleer (2003, Theorem 5.1) gives sufficient conditions for the asymptotic normality of the

QML estimator in AR(1)-GARCH(1,1) processes. Therefore, using the result in Proposition 5 and further

simple algebra we are ready to derive the nonlinearity test for u known. The hypothesis of interest can

be written as H0 : Rγ = 0 with R = [02 I2] a block diagonal matrix where 02 and I2 are the 2 × 2 null

and identity matrices, respectively. The heteroscedasticity-robust Wald test in this case is

T̂n(u) := n(Rγ̂n(u))′
[
RΣ̂n(u)R′

]−1

Rγ̂n(u), (16)

with Σ̂n(u) the empirical version of Σ(u), defined by Σ̂n(u) := M̂n(u, u)−1V̂n(u)M̂n(u, u)−1, where

M̂n(u, u) := 1
n

n∑
t=1

ŷt−1(u)ŷt−1(u)′ and V̂n(u) := 1
n

n∑
t=1

ŝt(u)ŝt(u)′ with ŝt(u) := ŷt−1(u) [yt − γ̂n(u)′ŷt−1(u)].

Theorem 2.- Let T̂n(u) be the Wald test for the null hypothesis H0, for a given vector u known. Under

assumptions in Proposition 5 the Wald statistic satisfies

T̂n(u) d→ χ2
2 (17)

with χ2
2 a chi-square distribution with two degrees of freedom.
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For the most interesting cases, such as testing for nonlinearity when the values of the threshold vector

u are not known, u1 and u2 are nuisance parameters that cannot be identified under the null hypothesis.

In this case Hansen (1996) shows that the composite nonlinearity test is nonstandard. As proposed by this

author, see also Davies (1977, 1987) or Andrews and Ploberger (1994), hypothesis tests for nonlinearity

can be based on the supremum and average of the relevant Wald test statistic computed over the domain

of the nuisance parameter. In our case this is defined by

U =
{
(u1, u2) ∈ R2 s.t. Fε(u1) ∈ (a1, b1) ∧ Fε(u2) ∈ (a2, b2) with 0 < a1 < b1 < a2 < b2 < 1},

and the relevant test statistics are supu∈U T̂n(u) and Aveu∈U T̂n(u) with sup and Ave standing for the supre-

mum and average functionals, respectively. Define now the score function Sn(u) := 1√
n
[M(u, u)]−1

n∑
t=1

st(u),

and the asymptotic covariance function

Σ(u, u∗) := M(u, u)−1V (u, u∗)M(u∗, u∗)−1,

with V (u, u∗) = E[st(u)st(u∗)′] the functional counterpart of V (u). For the results below we need the

following two assumptions:

Assumption A.9: inf
u,u∗∈U

det(Σ(u, u∗)) > 0.

Assumption A.10: The empirical estimators M̂n(u, u) and V̂n(u, u∗) converge uniformly to M(u, u) and

V (u, u∗), respectively, over u, u∗ ∈ U .

In particular assumption A.9 guarantees that the covariance function is well defined, and A.10 with

Proposition 5 ensure that under the null hypothesis,
√

n (γ̂n(u)− γ) = Sn(u)+op(1), uniformly on u. For

u fixed, expression (15) guarantees the weak convergence of Sn(u) to a normal distribution. Now, the

tightness of this process on u ∈ U , shown in Hansen (1996), guarantees the weak convergence of Sn(u) to

a Gaussian process with covariance function Σ(u, u∗), with u, u∗ ∈ U . Under the hypothesis Rγ = 0 we

have that
√

nRγ̂n(u) converges weakly to a zero mean Gaussian process with covariance function

Σ(u, u∗) := RΣ(u, u∗)R′.

Theorem 3.- Under assumptions in Proposition 5, A.9-A.10, and H0 : Rγ = 0, we have

T̂n(u) ⇒ TO, (18)

with TO a chi-square process with zero mean and covariance function Σ(u, u∗). Also,

supu∈U T̂n(u) ⇒ supu∈UTO, and Aveu∈U T̂n(u) ⇒ Aveu∈UTO. (19)
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The distributions of these asymptotic processes depend, in general, on the covariance function Σ;

hence its critical values cannot be tabulated except in special cases. To obtain the p − values of these

two asymptotic tests we propose two possible approximations to the asymptotic distribution: Hansen’s

p− value transformation and a Wild bootstrap approximation. The validity of these asymptotic approxi-

mations follows trivially from Hansen (1996, 1997). In Section 4 we explore the finite-sample accuracy of

these approximations for different data generating processes and for both supremum and average tests.

First, we discuss in the following subsection the asymptotic properties of the estimation procedure

under the alternative hypothesis of nonlinearity.

3.2 Asymptotic Properties of the Parameter Estimators

Once the hypothesis of linearity of the data is rejected we proceed to estimate jointly the parameters of

the whole model by QML. In more detail, define u = (u1, u2), φ = (α, ρ, β), where ρ = (ρ1, ρ2, ρ3) and

β = (β0, β1, β2) , and maximize the following function,

Ln(φ, u) =
n∑

t=1

lt(φ, u),

with

lt(φ, u) = −1
2

ln h2
t (φ, u)− a2

t (φ, u)
2h2

t (φ, u)
,

at(φ, u) = εt(φ, u)ht(φ, u) = yt − (α, ρ)yt−1(u),

h2
t (φ, u) = β0 + β1a

2
t−1(φ, u) + β2h

2
t−1(φ, u),

and h2
0(φ, u) = β0

1−β1−β2
. For a given u = (u1, u2) ∈ U , the solution is φ̂(u), then in order to find the

optimal threshold vector ûn we maximize Ln(φ̂(u), u) with respect to u. Thus, the QML estimator of

(φ, u) is (φ̂(ûn), ûn).

Under the alternative hypothesis of threshold effect the objective function lt(φ, u) is neither differ-

entiable nor continuous with respect to the parameter vector. This discontinuity implies that standard

asymptotic results on consistency and asymptotic normality for the parameter estimators cannot be ob-

tained. In fact, the consistency of the threshold estimator for these models needs to be studied on a

case-by-case basis. Thus, Chan (1993) shows the n-consistency of the OLS estimator of the threshold

value u for standard SETAR processes. For more convoluted processes, as our TAR model, the theoretical

derivation of the convergence rate of the parameter estimators is much more cumbersome. Some related

work can be found in Gonzalo and Martinez (2007). Alternatively, following Politis, Romano and Wolf

(1999, p. 177) and Gonzalo and Wolf (2005), the convergence rate of each estimator can be estimated us-

ing subsampling techniques. We elaborate more on this in the following paragraphs, but first we introduce

some extra assumptions to derive the consistency of the vector (φ̂(ûn), ûn) of parameter estimators.
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Assumption A.11: Let fa|t−1 (a) be the density function of at conditioned on =t−1, then supa fa|t−1 (a) ≤
f. Also, there exists some constant M < ∞ such that |yt| ≤ M almost sure (a.s.), for all t.

Assumption A.12: Let Θ be the parameter space, then (φ, u) ∈ Θ if u ∈ U , |α| ≤ α, 0 < β
0
≤ β0 ≤ β0,

0 ≤ β1 ≤ β1, 0 ≤ β2 and

(π1 + π3) + (π2 − π1π3) < 1,

(π1 + π3)− (π2 − π1π3) > −1,

(π2 − π1π3) > −1,

for π1 = 2f (λ1 + λ2), π2 = 2f (λ1u1 + λ2u2)β
1/2
1 , π3 = β

1/2
2 , with λ1 = (|ρ1|+ |ρ2|)M and λ2 =

(|ρ2|+ |ρ3|) M .

Assumption A.13: Let (φ0, u0) be the true parameters, then: (φ0, u0) = arg max(φ,u)∈Θ E [Ln (φ, u)] .

Assumptions A.11 and A.12 impose conditions on the memory and on the extent of discontinuity of

the TAR-GARCH process. Assumption A.13 is an identifiability condition for the true parameters of the

process. With these assumptions in place we are ready to introduce the next theorem.

Theorem 4.- Let (φ̂(ûn), ûn) = (α̂(ûn), ρ̂(ûn), β̂(ûn), ûn) be the vector of quasi-maximum likelihood esti-

mators of (φ, u) for the TAR(3,1)-GARCH(1,1) process in (3). Then, under assumptions in Theorem 1

and A.11 to A.13, (
φ̂(ûn)− φ(u)

)
= oP (1). (20)

Remark: For the particular case of a TAR(3,1)-IID, condition A.12 boils down to assuming

2f (|ρ1|+ 2 |ρ2|+ |ρ3|)M < 1.

Due to the nonstandard nature of the problem asymptotic theory for general threshold models has not

been widely explored yet. Some few examples are Chan (1993), Hansen (2000) or Gonzalo and Pitarakis

(2002). The distribution of the parameter estimators, and in particular of the estimator of the threshold

value u usually depends on the continuity of the threshold model. Thus, in principle, in the standard

SETAR environment the inference problem can be considered solved when the model is continuous, in this

case ûn and the rest of parameter estimators in the model converge asymptotically to a normal distribution

at a
√

n−rate. In the discontinuous case Chan (1993) shows that n(ûn − u) converges weakly to a non-

degenerate distribution that depends on a very complicated way on a compound Poisson process and that

apparently cannot be consistently estimated. Under more restrictive assumptions such as threshold effect

vanishing asymptotically, the method of Hansen (2000) can be employed. As discussed before, Gonzalo

12



and Wolf (2005) solve this problem by using subsampling techniques to estimate the convergence rate of

the threshold estimator and to approximate the distribution of the parameter estimators. In particular,

these authors extend this technique to situations where the discontinuity of the model is not known and

the inference for the regression parameters of the model becomes very difficult.

The discontinuity of our TAR(3,1)-GARCH(1,1) process implies that the whole vector of parameter

estimators φ̂(ûn) is consistent at a higher rate than
√

n, and therefore one has to rely on asymptotic

results of the type derived in Chan (1993) and Hansen (2000). Also, as in the SETAR case it is not known

whether a bootstrap approach would work. Thereby, following Gonzalo and Wolf (2005) we propose

subsampling methods to estimate the convergence rate and to approximate the exact finite distribution

of the vector (φ̂(ûn), ûn). For sake of space we only present the main results. The interested reader is

referred to Politis, Romano and Wolf (1999).

To this end let Jn(x, F ) = P{τn|θ̂n − θ| ≤ x} be the finite-sample distributions of the standardized

QML estimator θ̂n of the parameter θ, where with an abuse of notation θ̂n and θ stand for any element

of the vector (φ̂(ûn), ûn) and (φ(u), u), respectively. In our case the convergence rate τn is not known,

and needs to be estimated. Define Ĵn(x, F ) = P{τ̂n|θ̂n − θ| ≤ x} and the corresponding subsampling

approximation

Ĵn,b(x, F ) =
1

n− b + 1

n−b+1∑

i=1

I
(
τ̂b|θ̂b,i − θ̂n| ≤ x

)
,

where 1 < b < n is referred to as the block size, θ̂b,i is the QML estimator computed from a subsample of

consecutive observations (yi, . . . , yi+b−1), and τ̂b is the corresponding convergence rate for each subsample.

Given that the rate of convergence is not known this expression cannot be computed. Instead, we define

J̃n,b(x, F ) =
1

n− b + 1

n−b+1∑

i=1

I
(
|θ̂b,i − θ̂n| ≤ x

)
,

and denote by J̃−1
n,b(ν, F ) the ν-quantile of J̃n,b(x, F ). Now, let bi = bnκic for constants 0 < κ1 < . . . <

κI < 1, with b·c denoting the nearest smaller integer value, let νj for j = 1, . . . , J be some points in

(0.5, 1) and let zi,j = log(J̃−1
n,bi

(νj , F )). If τn is of the form τn = nκ we can define the following estimator

τ̂n = nκ̂I,J with κ̂I,J given by

κ̂I,J = −

I∑
i=1

(zi,· − z)(log bi − log)

I∑
i=1

(log bi − log)2
, (21)

where zi,· = 1
J

J∑
j=1

zi,j , ȳ = 1
IJ

I∑
i=1

J∑
j=1

zi,j , and log = 1
I

I∑
i=1

log(bi).

Politis, Romano and Wolf (1999, Theorem 8.2.1) shows that this estimator satisfies

κ̂I,J = κ + oP ((log n)−1). (22)

The following proposition establishes the asymptotic validity of subsampling with an estimated rate

13



of convergence.

Proposition 6.- Assume that (i) Jn(x, F ) converges weakly to a continuous limiting distribution J(x, F );

(ii) b → ∞ and b/n → 0, as n → ∞; (iii) τn = nκ, with 1/2 ≤ κ ≤ 1. Let τ̂n = nκ̂I,J defined in (21),

then,

sup
x∈R

|Ĵn,b(x, F )− J(x, F )| = oP (1). (23)

Let ν ∈ (0, 1), and let ĉn,b(ν) = Ĵ−1
n,b(ν, F ) be the ν-th sample quantile of Ĵn,b(x, F ). Then,

P
{

τ̂n|θ̂n − θ| ≤ ĉn,b(ν)
}
−→ ν, as n →∞. (24)

Thus, the asymptotic coverage probability of the interval θ̂n ± τ̂−1
n ĉn,b(ν) is the nominal level ν.

The proof follows as a special case of Theorem 8.3.1 of Politis, Romano and Wolf (1999, p. 184).

The threshold nature of the TAR(3,1)-GARCH(1,1) process introduced in (3) implies that the maxi-

mum likelihood estimators of the model parameters properly standardized satisfy assumption (i) in propo-

sition 6. Assumption (ii) is standard in subsampling, and can be achieved by a proper choice of the

block size b. Finally, and again due to the threshold nature of the process, assumption (iii) holds with

1/2 < κ ≤ 1.

4 Simulation Experiment

This section consists of a Monte-Carlo simulation experiment to examine the performance of size and

power of the preceding test for finite samples. For completeness, and following Hansen (1996), we explore

the bootstrap and p-value transformation methods for approximating the finite-sample distribution of the

supremum and average tests above discussed.

4.1 Finite-Sample Performance of Nonlinearity Tests

For the first simulation experiment we commence studying the empirical size of the test for three linear

processes in the mean. These are an iid process, a pure GARCH(1,1) process and an AR(1)-GARCH(1,1)

process:

1. yt = εt with εt iid(0,1),

2. yt = at = εtht, and h2
t = β0 + β1a

2
t−1 + β2h

2
t−1 with parameters β0 = 0.05, β1 = 0.10 and β2 = 0.85,

and εt defined as in the previous case.

3. yt = ρyt−1 + at with ρ = 0.20, and at defined as in the previous case.
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The error term is assumed standard Gaussian although other simulation experiments could be de-

veloped to see the robustness of the test to departures from Gaussianity. In all of the experiments the

threshold regime is defined by the following space:

U =
{
(u1, u2) ∈ R2 s.t. Fε(u1) ∈ (0.10, 0.30) ∧ Fε(u2) ∈ (0.60, 0.90)

}
.

Whereas we use n = 250, 500 for the Wild bootstrap approximation we consider n = 250, 500 and

1000 for the p-value transformation. This is due to the poor results obtained from the second method for

small sample sizes. The number of Monte-Carlo simulations for all the experiments is M = 2000. The

following table 4.1 reports empirical estimates of the size at 5% and 10% significance level for the statistic

defined by the supremum of T̂n(u) over the set of possible threshold values.

supu∈U T̂n(u) n=250 n=500 n=1000

size 0.05 0.10 0.05 0.10 0.05 0.10

IID 0.077 0.138 0.068 0.136 0.059 0.116

GARCH(1, 1) 0.090 0.160 0.077 0.133 0.070 0.130

AR(1)−GARCH(1, 1) 0.087 0.145 0.080 0.150 0.070 0.125

Table 4.1. Empirical size at 5% and 10% of the supu∈U T̂n(u) test for n = 250, n = 500 and n = 1000 for
different data generating processes derived from the Hansen p-value transformation. M = 2000 Monte-
Carlo simulations and 500 internal simulation replications (except for the case n = 1000 where we use
300 internal simulation replications).

For the statistic defined by the average of T̂n(u) the results of the simulated size are reported in table

4.2:

Aveu∈U T̂n(u) n=250 n=500 n=1000

size 0.05 0.10 0.05 0.10 0.05 0.10

IID 0.059 0.110 0.057 0.116 0.055 0.120

GARCH(1, 1) 0.069 0.128 0.066 0.113 0.062 0.113

AR(1)−GARCH(1, 1) 0.070 0.122 0.069 0.119 0.058 0.112

Table 4.2. Empirical size at 5% and 10% of the Aveu∈U T̂n(u) test for n = 250, n = 500 and n = 1000
for different data generating processes derived from the Hansen p-value transformation. M = 2000 Monte-
Carlo simulations and 500 internal simulation replications (except for the case n = 1000 where we use
300 internal simulation replications)

The Hansen p − value transformation is too “liberal” for the supremum case. This can be produced

by the definition of the U space. Hansen (1996) observes that the pointwise test statistics are ill-behaved

for extreme values of u, that is, with Fε(u) close to 0 or 1, and proposes a [0.2, 0.8] region for searching
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potential thresholds. Our model, however, focuses on threshold effects on the extremes of the time

series, hence our interest in giving more freedom to the threshold region in order to capture this effect.

Nevertheless, the empirical size seems to converge to the nominal size for the three processes and two test

statistics.

This phenomenon, on the other hand, is less important for the Wild Bootstrap approximation for

which we report simulations for n = 250, 500 and M=2000 in tables 4.3 and 4.4.

supu∈U T̂n(u) n=250 n=500

size 0.05 0.10 0.05 0.10

IID 0.056 0.107 0.054 0.107

GARCH(1, 1) 0.051 0.110 0.058 0.108

AR(1)−GARCH(1, 1) 0.062 0.113 0.066 0.111

Table 4.3. Empirical size at 5% and 10% of the supu∈U T̂n(u) test for n = 250, n = 500 for different
data generating processes derived from the Wild bootstrap p-value approximation. M = 2000 Monte-Carlo
simulations and 500 internal simulation replications.

Aveu∈U T̂n(u) n=250 n=500

size 0.05 0.10 0.05 0.10

IID 0.043 0.096 0.052 0.101

GARCH(1, 1) 0.044 0.094 0.049 0.100

AR(1)−GARCH(1, 1) 0.046 0.092 0.054 0.099

Table 4.4. Empirical size at 5% and 10% of the Aveu∈U T̂n(u) test for n = 250, n = 500 for different
data generating processes derived from the Wild bootstrap p-value approximation. M = 2000 Monte-Carlo
simulations and 500 internal simulation replications.

Finally, we present power results for the test when we use the Wild bootstrap approximation. For

that, we consider two different models. In both cases the conditional mean is given by:

yt = 0.20yt−1I(εt−1 ≤ −1.70)− 0.20yt−1I(εt−1 > 1.70) + at.

In the first case, at = εt, in the second one at = εtht with h2
t = 0.05 + 0.10a2

t−1 + 0.85h2
t−1. In both

cases, εt is iid N(0, 1). The results are in tables 4.5 and 4.6.

supu∈U T̂n(u) n=250 n=500

size 0.05 0.10 0.05 0.10

TAR− IID 0.332 0.476 0.664 0.779

TAR−GARCH(1, 1) 0.257 0.382 0.527 0.657
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Table 4.5. Empirical power at 5% and 10% of the supu∈U T̂n(u) test for n = 250, n = 500 for different
data generating processes derived from the Wild bootstrap p-value approximation. M = 2000 Monte-Carlo
simulations and 500 internal simulation replications.

Aveu∈U T̂n(u) n=250 n=500

size 0.05 0.10 0.05 0.10

TAR− IID 0.431 0.562 0.776 0.857

TAR−GARCH(1, 1) 0.339 0.467 0.643 0.742

Table 4.6. Empirical power at 5% and 10% of the Aveu∈U T̂n(u) test for n = 250, n = 500 for different
data generating processes derived from the Wild bootstrap p-value approximation. M = 2000 Monte-Carlo
simulations and 500 internal simulation replications.

Note that in both examples and for both test statistics the power grows with the sample size, however

the average test statistic seems to be more powerful. Regarding the structure of the volatility process

we observe more power of the nonlinearity test against homoscedastic alternative processes. To obtain

a better insight about the power of both test statistics for the Wild bootstrap approximation method

we carry out another two Monte Carlo experiments where different values of (ρ1, ρ2, ρ3) and (u1, u2) are

considered. The family of models under the alternative:

yt = ρyt−1I(εt−1 ≤ −u)− ρyt−1I(εt−1 > u) + at,

are indexed in the first case by ρ, with ρ = i/10 for i = 0, 1, . . . , 9 and u = 1.7; and by u in the second

case, with u = 1.5+ i/10 for i = 0, 1, . . . , 6 and ρ = 0.2, 0.5. For simplicity, we only consider in these cases

at = εtht with h2
t = 0.05 + 0.10a2

t−1 + 0.85h2
t−1 and a sample size n = 250. As in previous cases, εt is

iid N(0, 1). The empirical size of the test is reported in Figure 4.1. As expected, the power of the test

is increasing with ρ, although it stabilizes close to one after ρ = 0.60. However the power is quite stable

respect to the threshold parameter u.
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uFigure 4.1. Empirical power at 5% and 10% of the supu∈U T̂n(u) and Aveu∈U T̂n(u) tests for n = 250
and different data generating processes: on the left the power is indexed by ρ, on the right by u. The power
is derived from the Wild bootstrap p-value approximation with M = 300 Monte-Carlo simulations and 200
internal simulation replications.

The following section explores the suitability of these nonlinear processes for modeling financial returns.

17



5 Empirical application: Predicting in crises episodes

After the bombing attacks that shook the US in September 11th, 2001 the stock exchanges all around the

world fell dramatically not only that day but during a short period of time after the attack. It is striking

however to observe that this drop in asset prices worldwide elapsed only a short period of time, five to

ten days and then markets went back to normal. The following plot represents the sequences of prices

and log-returns rt = 100 (lnPt − lnPt−1) of General Motors (GM ) stocks for this episode. The data are

collected from Yahoo-Finance.
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Figure 5.1. The left and right panel depict the prices and log-returns, respectively, of GM stocks for the
period 03/01/2000− 31/12/2003. The arrows points to September 11th, 2001.

In this section the TAR-GARCH methodology is applied to determine statistically if the returns on

the days following this event were predictable or not. If the events simply sparked an increase in volatility

as stated by the leverage effect investors were better off by conserving their assets than to exposing to

adverse movements of prices before the realization of the buy/sale order. In contrast, if these events were

sparked by an extreme shock investors could have predicted future returns just after the shocks.

The following table reports the estimates of the different candidate models above studied. The analysis

comprises 1004 observations.
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Model GARCH(1, 1) AR(1)−GARCH(1, 1) TAR(3, 1)−GARCH(1, 1)

α 0.104
(0.069)

0.108
(0.070)

0.183
(0.072)

ρ1 - −0.052
(0.031)

0.072
(0.043)

ρ2 - −0.052
(0.031)

−0.031
(0.061)

ρ3 - −0.052
(0.031)

1.225
(0.027)

β0 0.117
(0.033)

0.117
(0.033)

0.087
(0.069)

β1 0.079
(0.012)

0.076
(0.012)

0.080
(0.050)

β2 0.902
(0.014)

0.904
(0.014)

0.908
(0.105)

Log lkl 2252.3 2251.1 2659.8

Table 5.1. u1 = −0.919, u2 = 0.785. Estimates for September 2001 subsample (01/01/2000-31/12/2003),
n=1004. p-value of Hansen test (supu∈UTn(u)=0.046, p-value of Aveu∈UTn(u)=0.064). The standard
errors of the different estimates are in brackets. In the TAR(3,1)-GARCH(1,1) column these values cor-
respond to the subsampling exercise for b = 500 and M = n− b + 1.

While the linear AR(1)-GARCH(1,1) model points towards a negative conditional mean process the

nonlinear TAR-GARCH model also reflects this effect for the middle regime but describes as well two

outer regimes where observations have a different and stronger dependence structure. The number of

extremes in the sequence of shocks is 200 for the lower threshold and 128 for u2. Hence, there is sufficient

information in the samples to believe that there is positive dependence between series of positive extremes

and between runs of negative extremes. The case of positive extremes is more significant. There is

statistical evidence of nonlinearity and thereby of the presence of different regimes for the conditional mean

process. Both supremum and average Hansen tests and the corresponding bootstrap counterpart tests

(supu∈UTn(u)=0.024, and Aveu∈UTn(u)=0.048) are found significant at 10%, and the likelihood function

of the TAR model is substantially larger than that of the GARCH and AR-GARCH models. Further,

this is also observed from the standard deviation estimates obtained from the subsampling approximation

with b = 500, see Politis, Romano and Wolf (1999, p. 95) for details on how to estimate the standard

deviation via subsampling methods.

Therefore, although the magnitude of the lower regime autoregressive parameter is small we believe

that the nonlinearity of this model supports the presence of dependence in both extreme regimes, and

therefore provides evidence to claim that the sequence of extreme observations after the bombing attacks

of September 11th were positively correlated. It is also worth mentioning that these effects could have

been more significant if NYSE would have not interrupted trading in the floor for one week after the

attack.
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Finally, a simple visual inspection of the histogram of the residuals, figure 5.2, also supports the

statistical significance of the TAR(3, 1)−GARCH(1, 1) model.
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Figure 5.2. Histograms for the residuals sequence from AR(1)-GARCH(1,1) (left panel) and from TAR(3,1)-
GARCH(1,1) (right panel) for the period 03/01/2000− 31/12/2003.

6 Conclusions

This paper introduces a new class of nonlinear threshold models. Its novelty resides on two features of

the model that make it different from previous TAR methodologies. First, the regimes are motivated by

the occurrence of extreme values, and second, the threshold variable determining the regime is defined by

the shock affecting the process in the preceding period. In this way this process is able to describe two

types of dependence, linear dependence derived from the occurrence of extreme shocks and clustering of

large observations derived from the occurrence of high volatility periods.

The model is flexible in what is able to describe a variety of dependence structures; asymmetries in

the probabilities in the tails, in the sequences of runs of extremes, etc. This is particularly interesting for

modeling financial time series for this model is able to replicate in a parsimonious way the stylized facts

commonly encountered in these series, including the absence of linear correlation, but accommodating

at the same time the possibility of linear correlation in the extremes. This fact led us in the empirical

application to study the consequences of the September 11th terrorist attack in GM stocks. Using our

TAR-GARCH method we find evidence of predictability of extremes after this event due to correlation in

the extremes and not to an increase in the underlying volatility.
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MATHEMATICAL APPENDIX:

Proof of Theorem 1: The strict stationarity and ergodicity of at and ρt together with assumption A.6
are sufficient conditions for the unique strictly stationary and ergodic solution of (3). This is shown
in Brandt (1986). In order to prove the strict stationarity and ergodicity of at Kristensen (2006) uses
assumptions A.1 to A.4 and Ling and McAleer (2003) A.1, A.2 and A.5.

Proof of Proposition 1: From equation (5) and Theorem 1,

yt = ρtyt−1 + at =
∞∑

j=0

at−j

j−1∏

i=0

ρt−i.

with
∏−1

i=0 ρt−i = 1 by convention. Denote ‖ρt‖k = λ1. Then, from the Minkowsky inequality, indepen-
dence of εt and strict stationarity of at:

‖yt‖k ≤
∞∑

j=0

‖at−j

j−1∏

i=0

ρt−i‖k = ‖at‖k +
∞∑

j=0

‖ρt−jat−j−1‖k‖
j−1∏

i=0

ρt−i‖k

≤ ‖at‖k +
∞∑

j=0

λj
1‖ρt−jat−j−1‖k ≤ (1− λ1 + maxi |ρi|) ‖at‖k

(1− λ1)
,

with λ1 < 1 by assumption A.7. Then, it is sufficient to show that ‖at‖k < ∞, to prove Proposition 1.
For that,

‖at‖k = ‖a2
t‖1/2

k/2

‖a2
t‖k/2 = ‖ε2

t h
2
t‖k/2 = ‖ε2

t‖k/2‖h2
t‖k/2

‖h2
t‖k/2 ≤ β0 + ‖β1ε

2
t−1 + β2‖k/2‖h2

t−1‖k/2 ≤
β0

(1− λ2)

with λ2 = ‖β1ε
2
t + β2‖k/2 < 1 and ‖ε2

t‖k/2 < ∞ by assumption A.8, which proves that ‖at‖k < ∞.

Proof of Proposition 2: Now we derive the first two moments of the process yt = α+ρtyt−1 +at, with
at = htεt, when the assumptions in Proposition 1 hold for k = 2.

E[yt] = α + E[ρtyt−1]. (25)

Replacing yt−1 in the above expression we obtain

E [yt] = α + E [ρtyt−1] = α + E [ρt (α + ρt−1yt−2 + at−1)] .

Now, using the stationarity of the process ρtyt−1 and the independence of ρt from ρt−1yt−2 it is simple
to see that

E [yt] =
α

1− E [ρt]
+

E[ρtat−1]
1− E [ρt]

.

Now in order to obtain E[yt] = 0 the intercept must be α = −E[ρtat−1]. For that case, the unconditional
variance is

V ar (yt) = E
[
y2

t

]
.

Also,
V ar (yt) = V ar (ρtyt−1) + V ar (at) .
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Note that
V ar (ρtyt−1) = E

[
ρ2

t y
2
t−1

]− E2 [ρtyt−1] ,

and
E

[
ρ2

t y
2
t−1

]
= Cov(ρ2

t , y
2
t−1) + E

[
ρ2

t

]
E

[
y2

t−1

]
.

Then
E

[
y2

t

]
= Cov(ρ2

t , y
2
t−1) + E

[
ρ2

t

]
E

[
y2

t−1

]− E2 [ρtyt−1] + V ar (at) ,

and by stationarity (V ar (yt) = E
[
y2

t

]
= E

[
y2

t−1

]
) we obtain

V ar (yt) =
V ar (at)
1− E [ρ2

t ]
+

Cov
(
ρ2

t , y
2
t−1

)− E2 [ρtyt−1]
1− E [ρ2

t ]
.

Finally, for the first order autocorrelation we compute first the autocovariance of order one that yields,

Cov(yt, yt−1) = E [ρt] V ar (yt) + Cov(ρt, y
2
t−1),

given that E[ρty
2
t−1] = Cov(ρt, y

2
t−1) + E[ρt]E[y2

t−1]. Hence the first order autocorrelation is

Corr(yt, yt−1) = E [ρt] +
Cov(ρt, y

2
t−1)

V ar (yt)
.

Proof of Proposition 3: Under assumptions in Proposition 2 the optimal forecast l -periods ahead, with
l > 1, of the process yt = α + ρtyt−1 + htεt are

E[yt+l|=t] = α (1 + E[ρt+l|=t] + E[ρt+lρt+l−1|=t] + . . . + E[ρt+l · · · ρt+2|=t]) +
E[ρt+lρt+l−1 · · · ρt+2|=t]ρt+1yt + E[ρt+lat+l−1|=t]+

E[ρt+lρt+l−1at+l−2|=t] + . . . + E[ρt+lρt+l−1 · · · ρt+2at+1|=t].

This expression can be simplified given that the shock sequence εt and in turn ρt are iid. Also, using
that ρt+1 and ρt+2at+1 are stationary sequences and at+1 a martingale difference sequence the preceding
expression reads as

E[yt+l|=t] = α
l−1∑
i=0

E[ρt+1]i + E[ρt+1]l−1ρt+1yt +
l−1∑
i=1

E[ρt+i+1at+i|=t]E[ρt+1]l−i−1.

Thus,

E[yt+l|=t] = α 1−E[ρt+1]
l−2

1−E[ρt+1]
+ E[ρt+1]l−1ρt+1yt +

l−1∑
i=1

E[ρt+i+1at+i|=t]E[ρt+1]l−i−1.

As l →∞ the optimal conditional forecast converges to the unconditional mean in L2.

E[yt+l|=t]
L2−→ α

1− E[ρt+1]
+

E[ρt+1at]
1− E[ρt+1]

. (26)

This is equivalent to show that
∥∥∥E[yt+l|=t]− α+E[ρt+1at]

1−E[ρt+1]

∥∥∥
2
→ 0. Note that it is sufficient to prove that

l−1∑

i=1

‖E[ht+i|=t]− E [ht+i]‖2 |E[ρt+1]|l−i−1 → 0, (27)

when l → ∞, given that E[ρt+1at] = E[ρt+1εt]E [ht]. To prove this result we use asymptotic theory for
L2 − mixingales, defined as follows: a zero mean process xt is a L2 − mixingale if ‖E [xt|=t−m]‖2 ≤
‖ct‖2 γ (m) , with γ (m) → 0, see Davidson (1994) or McLeish (1975). Using A.8 for k = 2 it can be
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proved that xt = ht − E[ht] is a L2-Near Epoch Dependence (L2-NED, see Davidson (1994) or McLeish
(1975)) on εt of size −∞. Further, from Theorem 17.5 of Davidson (1994) and A.8, the process xt is a
L2-mixingale with ‖ct‖2 ≤ ch < ∞ and γ (m) = λm

3 with λ3 = (β1 + β2) < 1. Then, expression (27) has
the following upper bound that satisfies

l−1∑

i=1

γ (i) ‖ct‖2 |E[ρt+1]|l−i−1 ≤
l−1∑

i=1

λl−1
4 ‖ct‖2 ≤ (l − 1)λl−1

4 ch,

with λ4 = max {λ3, E(ρt)}. By A.7, 0 ≤ λ4 < 1. Then, the upper bound goes to 0 and (26) immediately
follows.

Proof of Proposition 4: By Bayes’ theorem

P{yt ≤ −v, yt−1 ≤ −v} =P{yt ≤ −v ∩ yt−1 ≤ −v ∩ εt−1 ≤ u1}
+ P{yt ≤ −v ∩ yt−1 ≤ −v ∩ u1 < εt−1 ≤ u2}
+ P{yt ≤ −v ∩ yt−1 ≤ −v ∩ εt−1 > u2},

where v denotes a positive threshold. By operating on the first expression on the right term we obtain
the following result:

Pt−2{yt ≤ −v ∩ yt−1 ≤ −v ∩ εt−1 ≤ u1} =
∫ x1t

−∞
Fε

(−v − (α + ρ1 (α + ρt−1yt−2 + εht−1))
ht (ε)

)
fε (ε) ∂ε.

Operating in the same way with the other summands we obtain the first part of Proposition 4. The second
part of the proposition is obtained in the same way, taking into account that

Pt−2{yt ≥ v, yt−1 ≥ v} =Pt−2{yt−1 ≥ v}
− Pt−2{yt ≤ v|yt−1 ≥ v, εt−1 ≤ u1}Pt−2{yt−1 ≥ v, εt−1 ≤ u1}
− Pt−2{yt ≤ v|yt−1 ≥ v, u1 < εt−1 ≤ u2}Pt−2{yt−1 ≥ v, u1 < εt−1 ≤ u2}
− Pt−2{yt ≥ v|yt−1 ≥ v, εt−1 > u2}Pt−2{yt−1 ≥ v, εt−1 > u2},

given that Pt−2{yt−1 ≥ v, εt−1 ≤ u1} + Pt−2{yt−1 ≥ v, u1 < εt−1 ≤ u2} + Pt−2{yt−1 ≥ v, εt−1 > u2} =
Pt−2{yt−1 ≥ v}.

Proof of Proposition 5: To obtain the result in Proposition 5 it is sufficient to study the convergence

in probability to zero of 1√
n

n∑
t=1

at[yt−1(u)− ŷt−1(u)]. In particular we concentrate on showing this for one

element of the vector, namely, at [yt−1I(εt−1 ≤ u)− yt−1I(εn,t−1 ≤ u)]; for the remaining terms the result
is analogous. This process, using further notation in Koul and Ling (2006), can be expressed as

1√
n

n∑
t=1

atyt−1 [I(εt−1 ≤ u)− I(εt−1 ≤ u + ubn,t−1 (x̂) + cn,t−1 (x̂))]

where x̂ = n1/2
(
φ̂n,H0 − φ0,H0

)
, bn,t (x̂) =

ht(φ0,H0+n−1/2x̂)−ht(φ0,H0)
ht(φ0,H0)

, cn,t (x̂) =
µt(φ0,H0+n−1/2x̂)−µt(φ0,H0)

µt(φ0,H0)
,

and µt (φ0,H0) the AR(1) mean process. In order to prove this result we need to show the weak convergence
of the empirical process

Kn(u, x) =
1√
n

n∑
t=1

atyt−1Ψt−1 (ς) , ς ∈ H,
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where ς = (u, x) ; H := (u, u)× (
b, b

)5
and Ψt−1 (ς) := I(εt−1 ≤ u + ubn,t−1 (x) + cn,t−1 (x)), with bn,tand

cn,t random variables which are =t−1 measurable. For the rest of the proof we define the following distance,
d (X,Y ) = max1≤i≤k |Xi − Yi|1/4 with X, Y ∈ Rk.

Lemma A1.- If the following assumptions W.1 and W.2 hold,

W.1 For each n ≥ 1 and ς ∈ H, {(at, yt−1, bn,t−1 (x) , cn,t−1 (x)) : 1 ≤ t ≤ n} is a strictly stationary and
ergodic process. The sequence {atyt−1Ψt−1 (ς) ,=t−1, 1 ≤ t ≤ n} is a square-integrable martingale
difference sequence for each ς ∈ H. Also, there exists a function C (ς1, ς2) on H ×H to R such that
uniformly in (ς1, ς2) ∈ H ×H,

n−1
n∑

t=1

a2
t y

2
t−1Ψt−1 (ς1)Ψt−1 (ς2) = C (ς1, ς2) + oP (1) . (28)

W.2 For every δ > 0 there exists a finite partition Bδ = {Hk; 1 ≤ k ≤ N(δ,H, d)} of H with Nδ :=
N(δ,H, d) being the elements of such partition, such that

∞∫

0

√
log (Nδ)dδ < ∞, (29)

and

sup
δ∈(0,1)∩Q

CVn (Bδ)
δ2

= OP (1) , (30)

with

CVn (Bδ) = max
k

n−1
n∑

t=1

E

[
sup

(ς1,ς2)∈Hk×Hk

|atyt−1Ψt−1 (ς1)− atyt−1Ψt−1 (ς2)|2
∣∣∣∣∣=t−1

]
, (31)

then it follows that
Kn(ς) =⇒ K∞(ς),

with K∞(ς) a Gaussian process with zero mean and covariance function given by C (ς1, ς2) .

Proof of Lemma A1. It follows from Theorem A1 in Delgado and Escanciano (2007).

A consequence of the asymptotic tightness of Kn(ς)(= Kn(u, x)) is that if x̃ converges in distribution
to x0, then

sup
u∈U

|Kn(u, x̃)−Kn(u, x0)| = oP (1) .

Therefore, for x̃ = n1/2
(
φ̂n,H0 − φ0,H0

)
, under H0, conditions W.1 and W.2, and given that sup

1≤t≤n
bn,t (x0) =

oP (1) and sup
1≤t≤n

cn,t (x0) = oP (1) , it follows from Lemma A1 that

sup
u∈U

∣∣∣∣∣
1√
n

n∑
t=1

atyt−1 [I(εt−1 ≤ u)− I(εt−1 ≤ u + ubn,t−1 (x0) + cn,t−1 (x0))]

∣∣∣∣∣ = oP (1) .

This and the previous results prove that

sup
u∈U

∣∣∣∣∣
1√
n

n∑
t=1

atyt−1 [I(εt−1 ≤ u)− I(εn,t−1 ≤ u)]

∣∣∣∣∣ = oP (1) ,

and

sup
u∈U

∣∣∣∣∣
1√
n

n∑
t=1

at[yt−1(u)− ŷt−1(u)]

∣∣∣∣∣ = op (1)
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which proves Proposition 5. We only need to show that conditions W.1 and W.2 are satisfied in our case.

In particular, the proof of (28) follows from the assumptions in Theorem 1 and a uniform law of large
numbers, see Jennrich (1969, Theorem 2). The proof of W.2 is more cumbersome. From the compactness
of H we have ∞∫

0

√
log (N (δ,H, d))dδ < ∞.

Now, let Bδ be a partition of H δ−balls with respect to d. Thus (29) holds for such partition. We shall
prove that (30) is also satisfied for such partition. Given that εt does not depend on ς and is iid, CVn (Bδ)
in (31) is upper bounded by

max
1≤k≤Nδ

n−1
n∑

t=2

E
(
a2

t y
2
t−1

∣∣=t−1

)
sup

(ς1,ς2)∈Hk

(Ψt (ς1)−Ψt (ς2))
2 ≤

(
n−1

n∑
t=2

E2
(
a2

t y
2
t−1

∣∣=t−1

)
)1/2 (

max
1≤k≤Nδ

sup
(ς1,ς2)∈Hk

n−1
n∑

t=2

(Ψt (ς1)−Ψt (ς2))
4

)1/2

.

From conditions in Proposition 1 for k = 8 we obtain that E
[
E2

(
a2

t y
2
t−1

∣∣=t−1

)]
< ∞, and therefore,

n−1
∑n

t=2 E2
(
a2

t y
2
t−1

∣∣=t−1

)
= OP (1) . Now, for the second right term let us define the following difference

of indicators:

Ψ̃t (ςk, δ) = I(εt ≤ uk + δ4 (1 + bn,t−1 (xk) + vn,t−1 (xk)) + ukbn,t−1 (xk) + ukvn,t−1 (xk) + cn,t−2 (xk) + wn,t−1 (xk))−
−I(εt ≤ uk − δ4 (1 + bn,t−1 (xk)− vn,t−1 (xk)) + ukbn,t−1 (xk)− ukvn,t−1 (xk) + cn,t−2 (xk)− wn,t−1 (xk)),

where vn,t (x) := supd(x,s)<δ |bn,t (x)− bn,t (s)| and wn,t (x) := supd(x,s)<δ |cn,t (x)− cn,t (s)|. We also

introduce the conditional distribution function Ft−1 (ςk, δ) = E
(

Ψ̃t (ςk, δ)
∣∣∣=t−1

)
. Without loss of gener-

ality suppose that uk ≥ 0 (for the opposite case the expression can be bounded in a similar way). Using
the monotonicity of the indicator function we obtain

max
1≤k≤Nδ

sup
(ς1,ς2)∈Hk

n−1
n∑

t=2

(Ψt (ς1)−Ψt (ς2))
4 ≤ max

1≤k≤Nδ

n−1
n∑

t=2

Ψ̃t (ςk, δ)

≤ max
1≤k≤Nδ

n−1
n∑

t=2

[
Ψ̃t (ςk, δ)− Ft−1 (ςk, δ)

]
+ max

1≤k≤Nδ

n−1
n∑

t=2

Ft−1 (ςk, δ) .

Now the first term of the last inequality is the sum of a martingale difference sequence and can be easily
proved that is op (1) . The second term, using that maxe fε (e) ≤ f < ∞, by A.1, and the mean value
theorem, can be upper bounded as

max
1≤k≤Nδ

n−1
n∑

t=2

Ft−1 (ςk, δ) ≤ 2f max
1≤k≤Nδ

n−1
n∑

t=2

[
δ4 (1 + bn,t−1 (xk)) + ukvn,t−1 (xk) + wn,t−1 (xk)

]

≤ 2fδ4 + op(1),

where the last inequality follows from assuming that

E

(
max

1≤k≤Nδ

bn,t−1 (xk)
)

= oP (1)

E

(
max

1≤k≤Nδ

vn,t−1 (xk)
)

= oP (1)

E

(
max

1≤k≤Nδ

wn,t−1 (xk)
)

= oP (1) .
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These last three conditions are shown in Koul (2002) in a similar context. With this we have proved that

CVn (Bδ) = δ2OP (1) ,

and therefore (30) is satisfied.

Proof of Theorem 2: From expression (15) and the result in Proposition 5 we have that

√
n(γ̂n(u)− γ) d→ N (0, Σ(u)) . (32)

By a law of large numbers and arguments similar to those in Proposition 5, Σ̂n(u) is a consistent estimator
of the asymptotic variance Σ(u). Therefore,

√
nΣ̂−1/2(u)(γ̂n(u) − γ) d→ N(0, 1). It is immediate to see

now that T̂n(u) converges weakly to a centered χ2
2 distribution.

Proof of Theorem 3: The proof immediately follows from Theorem 2, assumptions A.9 and A.10, and
the tightness of the process Sn(u) that follows from the uniform convergence in Proposition 5. The weak
convergence of the supremum and average tests follows from the continuous mapping theorem.

Proof of Theorem 4: Given assumption A.13 the consistency of
(
φ̂, ûn

)
is given by the following result

sup
φ,u∈Θ

|Ln (φ, u)− E [Ln (φ, u)]| p−→ 0, (33)

where Θ is the parametric space defined in A.12. Define B (φ, u, δ) =
{

φ̃, ũ ∈ Θ : d
(
(φ, u) ,

(
φ̃, ũ

))
≤ δ

}

with d (.) any distance, and

l∗t (φ, u) ≥ sup
{

lt

(
φ̃, ũ

)
: φ̃, ũ ∈ B (φ, u, δ)

}

l∗t (φ, u) ≤ inf
{

lt

(
φ̃, ũ

)
: φ̃, ũ ∈ B (φ, u, δ)

}
.

The result in (33) follows from the following conditions (see Theorem of Andrews 1987):

C.1 Θ is a compact metric space.

C.2

a) lt (φ, u) , l∗t (φ, u) and l∗t (φ, u) are random variables, ∀φ, u ∈ Θ, ∀t and ∀δ sufficiently small (where δ

may depend on φ, u).

b) l∗t (φ, u) and l∗t (φ, u) satisfy pointwise strong (weak) laws of large numbers, ∀φ, u ∈ Θ and ∀δ suffi-
ciently small (where δ may depend on φ, u).

C.3 For all φ, u ∈ Θ

lim
δ→0

sup
n≥1

∣∣∣∣∣n
−1

n∑
t=1

[E (l∗t (φ, u))− E (lt (φ, u))]

∣∣∣∣∣

and likewise with l∗t (φ, u) replaced by l∗t (φ, u) .

Now we prove conditions C.1−C.3 for our model using the assumptions of Theorem 4. Condition C.1
can be proved straightforward from the definition of Θ. Moreover, it can be proved that max1≤j≤3 |ρj | <
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ρ < ∞ and 0 < β2 < 1. Now we define l∗t (φ, u) and l∗t (φ, u) in our case. For that, we need the following
processes:

dat (φ, u, δ) := δC + M (|ρ1|+ |ρ2|) Ī1t (φ, u) + M (|ρ2|+ |ρ3|) Ī2t (φ, u) ;

dht (φ, u, δ) :=
δC

1− β
1/2
2

+
t−1∑

i=1

β
i−1
2

2 β
1/2
1 dat−i (φ, u, δ) ,

Iit+1 (φ, u) := 1 (uiht (φ, u)− Λ (φ, u, δ) < at (φ, u) < uiht (φ, u) + Λ (φ, u, δ)) ;

Λ (φ, u, δ) := uidht (φ, u, δ) + δCh + dat (φ, u, δ) ;

h
2

:=
β0 + β1 (α + 2M)2

1− β2

,

with C any finite constant independent of φ, β2 = sup
{∣∣∣β̃2

∣∣∣ : φ̃ ∈ B (φ, u, δ)
}

. Then it follows from above
that there exists some C < ∞ such that

sup
φ̃,ũ∈B(φ,u,δ)

∣∣∣at (φ, u)− at

(
φ̃, ũ

)∣∣∣ ≤ dat (φ, u, δ) and sup
φ̃,ũ∈B(φ,u,δ)

∣∣∣ht (φ, u)− ht

(
φ̃, ũ

)∣∣∣ ≤ dht (φ, u, δ) .

Using the law of iterated expectation (LIE) and the Mean Value Theorem it is easy to prove that

∥∥Iit (φ, u)
∥∥

1
≤ 2f [δC1 + ui ‖dht−1 (φ, u, δ)‖1 + ‖dat−1 (φ, u, δ)‖1]

with C1 < ∞. Using again the LIE and the previous result

‖dat (φ, u, δ)‖1 ≤ δC2 + 2f (λ1u1 + λ2u2) ‖dht−1 (φ, u, δ)‖1 + 2f (λ1 + λ2) ‖dat−1 (φ, u, δ)‖1

‖dht (φ, u, δ)‖1 ≤
δC3

1− β
1/2
2

+
t−1∑

i=1

β
i−1
2

2 β
1/2
1 ‖dat−i (φ, u, δ)‖1

with C2, C3 < ∞. Therefore

‖dat (φ, u, δ)‖1 ≤ δC4 + 2f (λ1 + λ2) ‖dat−1 (φ, u, δ)‖1 +
t−1∑

i=2

2f (λ1u1 + λ2u2) β
i−2
2

2 β
1/2
1 ‖dat−i (φ, u, δ)‖1

≤ δC5 + π1 ‖dat−1 (φ, u, δ)‖1 +
t−1∑

i=2

π2π
i−2
3 ‖dat−i (φ, u, δ)‖1

with C4, C5 < ∞. Rewriting the previous equation

‖dat (φ, u, δ)‖1 ≤ δC5 (1− π3) + (π1 + π3) ‖dat−1 (φ, u, δ)‖1 + (π2 − π1π3) ‖dat−2 (φ, u, δ)‖1 ,

and therefore, under the conditions of assumption A.12 it can be shown that there exits Ca, Ch < ∞ such
that

‖dat (φ, u, δ)‖1 ≤ δCa

‖dht (φ, u, δ)‖1 ≤ δCh.
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Now define

l∗t (φ, u) := −1
2

ln h2
t (φ, u) + 2

dht (φ, u, δ)
β

0

− 1
2
e2
t (φ, u) + 2 (2M + α) h

dat (φ, u, δ) + (2M + α) dht (φ, u, δ)
β2

0

= lt (φ, u) + 2 (2M + α)hβ−2

0
dat (φ, u, δ) + 2

[
(2M + α)2 h + β

0

]
β−2

0
dht (φ, u, δ)

l∗t (φ, u) := −1
2

ln h2
t (φ, u)− 2

dht (φ, u, δ)
β

0

− 1
2
e2
t (φ, u)− 2 (2M + α) h

dat (φ, u, δ) + (2M + α) dht (φ, u, δ)
β2

0

= lt (φ, u)− 2 (2M + α)hβ−2

0
dat (φ, u, δ)− 2

[
(2M + α)2 h + β

0

]
β−2

0
dht (φ, u, δ) .

Thus, there exists C∗ < ∞ such that

lim
δ→0

sup
n≥1

∣∣∣∣∣n
−1

n∑
t=1

[E (l∗t (φ, u))− E (lt (φ, u))]

∣∣∣∣∣ ≤
2

[
(2M + α)2 h + β

0

]

β2

0

lim
δ→0

sup
n≥1

∣∣∣∣∣n
−1

n∑
t=1

E (dht (φ, u, δ))

∣∣∣∣∣ +

2 (2M + α)h

β2

0

lim
δ→0

sup
n≥1

∣∣∣∣∣n
−1

n∑
t=1

E (dat (φ, u, δ))

∣∣∣∣∣

≤
2

[
((2M + α) + 1) (2M + α)h + β

0

]

β2

0

lim
δ→0

δC∗ = 0.

The same result can be shown for l∗t (φ, u) . With this result condition C.3 is proven. Finally, to prove C.2
we prove that l∗t (φ, u) and l∗t (φ, u) with mean µ∗t and µ∗t, respectively, are L1 −NED of size −∞ with
constants d∗t ¿ ‖l∗t (φ, u)− µ∗t ‖ and d∗t ¿ ‖l∗t (φ, u)− µ∗t‖ on εt, which is α−mixing of size −∞ (given
that these are iid). The details of the proof are similar to those in Davidson (2002) and hence omitted
for sake of space. With this result we can apply Theorem 20.19 of Davidson (1994) for at = t and q = 2.

Note, however, that to use this theorem we must prove

∞∑
t=1

∥∥∥∥
l∗t (φ, u)− µ∗t

t

∥∥∥∥
4/3

2

< ∞,

and the same result for l∗t (φ, u)− µ∗t. This inequality is upper bounded as follows:

∞∑
t=1

∥∥∥∥
l∗t (φ, u)− µ∗t

t

∥∥∥∥
4/3

2

≤
∞∑

t=1

t−4/32 ‖l∗t (φ, u)‖4/3
2 ≤ max

t
2 ‖l∗t (φ, u)‖4/3

2

∞∑
t=1

t−4/3 < ∞,

given that maxt 2 ‖l∗t (φ, u)‖2 < ∞ from previous results. The same result applies to l∗t (φ, u)−µ∗t. Then,
from Theorem 20.19 of Davidson (1994)

1
T

T∑
t=1

(l∗t (φ, u)− µ∗t )
a.s.−→ 0,

1
T

T∑
t=1

(l∗t (φ, u)− µ∗t)
a.s.−→ 0,

satisfying both processes a strong law of large numbers and proving C.2 b).
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