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Abstract 

 
A general  framework  for the  estimation and  inference  in univariate and  multivariate Generalised  log- 

ARCH-X (i.e.  log-GARCH-X)  models when the conditional density  is unknown  is proposed.  The frame- 

work employs (V)ARMA-X  representations and relies on a bias-adjustment in the log-volatility  intercept. 

The  bias is induced  by (V)ARMA  estimators, but  the  remaining  parameters can be estimated in a con- 

sistent and  asymptotically normal  manner  by usual  (V)ARMA  methods.   An estimator of the  bias and 

a closed-form expression for the asymptotic variance  is derived.  Adding covariates  and/or increasing  the 

dimension  of the model does not change the structure of the problem,  so the univariate bias-adjustment 

procedure  is applicable  not  only  in univariate log-GARCH-X  models  estimated by  the  ARMA-X  rep- 

resentation, but  also  in  multivariate log-GARCH-X  models  estimated by  VARMA-X  representations. 

Extensive  simulations  verify the  properties  of the  log-moment estimator, and  an  empirical  application 

illustrates the usefulness of the methods. 
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1.  Introduction 

 

 
The  Autoregressive  Conditional Heteroscedasticity (ARCH)  class of models due to [1] is useful in a 

wide range of applications. In finance, in particular, it has been extensively  used to model the clustering 

of large  (in  absolute  value)  financial  returns.   Engle  himself,  however,  originally  motivated the  class 

as useful in modelling  the  time-varying conditional uncertainty (i.e.  conditional variance)  of economic 

variables  in general, and of UK inflation  in particular. Other  areas of application include, among others, 

the uncertainty of electricity  prices (e.g.  [2], [3]), the evolution  of temperature data  (e.g.  [4]) and – more 

generally  – positively  valued  variables,  i.e.  so-called Multiplicative Error  Models (MEMs),  see [5] for a 

survey. 

Within  the ARCH class of models exponential versions are of special interest. This is because they en- 
 

able richer autoregressive volatility dynamics  (e.g.  contrarian or cyclical) compared  with non-exponential 
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ARCH models, and because their fitted values of volatility are guaranteed to be positive. The latter is not

necessarily the case for ordinary (i.e. non-exponential) ARCH models, particularly when covariates or

other conditioning variables (“X”) are added to the volatility equation. In fact, the greater the dimension

of X, the more restrictions are needed in order to ensure positivity. Another desirable property is that

volatility forecasts are more robust to jumps and outliers. Robustness can be important in order to avoid

volatility forecast failure subsequent to jumps and outliers. The log-GARCH class was independently

proposed by [6], [7] and [8]. [9] argued against log-ARCH models because of the possibility of applying

the log-operator (in the log-ARCH terms) on zero-values, which occurs whenever the error term in a

regression equals zero. A solution to this problem, however, is provided in [10] for the case where the

zero-probability is zero (e.g. because zeros are due to discreteness or missing values). The solution is

only available when estimation is via the (V)ARMA representation. Finally, two competing classes of

exponential ARCH models are the EGARCH ([11]) and the Beta-t-EGARCH model ([12]). The former

has proved to be much more difficult theoretically (more on this below), and the latter is not – by its

very nature – amenable to the assumption of an unknown conditional density (i.e. the conditional density

must be known).

The assumption that the conditional density is unknown is particularly convenient from a practi-

tioner’s point of view. This is because the user then does not need to worry about changing the condi-

tional density from application to application, or alternatively to work with a sufficiently general density

that will often make estimation and inference numerically more challenging. This explains the attraction

of Quasi Maximum Likelihood Estimators (QMLEs). In the univariate case, consistency and asymptotic

normality of QMLE for GARCH models under mild conditions were first established by [13], and [14]. In

the exponential case, most of the attention has been directed at the EGARCH, whose asymptotic prop-

erties have turned out to be very difficult to establish, see e.g. [15]. Only recently was consistency and

asymptotic normality proved (for the univariate EGARCH(1,1) only) under the complicated condition of

continuous invertibility, see [16]. The log-GARCH model is much more tractable. [17] prove consistency

and asymptotic normality of the Gaussian QMLE for an asymmetric log-GARCH(p, q) model under mild

conditions. Their method does not employ ARMA representations, which means it is more efficient when

the conditional error is normal or close to normal, but not when the conditional density is fat-tailed, see

the asymptotic efficiency comparison in [18]). Moreover, the estimator of [17] cannot handle zero-errors

or missing values in the manner suggested by [10]. Finally, [18] propose an estimator that achieves effi-

ciency for conditional densities that are normal or close to normal, by combining the ARMA-approach

with the Centred Exponential Chi-Squared as instrumental QML-density. In the multivariate case, QML

results have been established for the BEKK model of [19] by [20], for an ARMA-GARCH with constant

conditional correlations (CCCs) by [21], for a factor GARCH model by [22], for a multivariate GARCH

with CCCs by [23], and for a multivariate GARCH with stochastic correlations by [24] under the as-

sumption that the system is estimable equation-by-equation. For exponential ARCH models there are
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no multivariate results. [25] proposed a multivariate exponential ARCH model, the matrix exponential

GARCH, which contains a multivariate version of the EGARCH model. But there are no proofs for the

estimation and inference methods that he proposes.

This paper makes three contributions. It is well-known that all the coefficients apart from the log-

volatility intercept in a univariate log-GARCH specification can be estimated consistently (under suitable

assumptions) via an ARMA representation, see for example [26], and [27]. However, the estimate of the

log-volatility intercept will be asymptotically biased, and the bias is made up of a log-moment expression

that depends on the unknown density of the conditional error. A simple estimator of the log-moment

expression made up of the empirical residuals of the ARMA regression (Section 2.2) is derived. The

implication of this is that the log-volatility intercept can be estimated consistently, and hence that all

the log-GARCH parameters can be estimated consistently via the ARMA representation. An expression

for the asymptotic variance (Section 2.3) of the estimator of the log-moment expression is also derived.

In the second contribution of the paper (Section 2.4), it is shown that the addition of covariates,

i.e. the log-GARCH-X model, does not alter the relation between the ARMA coefficients and the log-

GARCH coefficients. In other words, consistent and asymptotically normal estimation of the ARMA-X

representation will produce exactly the same bias as earlier, and so the bias correction procedure described

above is applicable also for ARMA-X models. Next, a multivariate log-GARCH-X model that admits

time-varying conditional correlations is proposed (Section 3). The model has a VARMA-X representation

with a vector of error-terms. The vector is either IID, which corresponds to the Constant Conditional

Correlation (CCC) case, or independent but non-identical (ID), which corresponds to the time-varying

correlations case. In both cases, however, each entry in the vector of standardised errors is marginally

IID. So the bias-correction from the univariate case can be used equation-by-equation – under suitable

assumptions – subsequent to the consistent estimation of the VARMA-X representation.

In the third contribution (Section 4) the usefulness of the results is illustrated by means of an ap-

plication to the modelling of the uncertainty of electricity prices. Electricity prices are characterised by

autoregressive persistence, day-of-the-week effects, large spikes or jumps, ARCH and non-normal condi-

tional errors that are possibly skewed. For robust (to jumps) forecasts of uncertainty (i.e. volatility) that

accommodate all these characteristics, the log-GARCH-X model is particularly suited. The investigation

shows that estimated volatility can be substantially biased if sufficient ARCH-lags and day-of-the-week

effects are not included.

The rest of the paper is organised as follows. Section 2 presents the univariate log-GARCH model,

the relation between the univariate log-GARCH model and its ARMA representation, and derives the

log-moment estimator and its asymptotic variance. Also, it is shown that the addition of covariates does

not alter the relationship between the log-GARCH and ARMA parameters. Section 3 shows how the ideas

extend to the multivariate case. Section 4 contains our empirical application, and Section 5 concludes.
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2. Univariate log-GARCH

The univariate log-GARCH(p, q) model is given by

εt = σtzt, zt ∼ IID(0, 1), P (zt = 0) = 0, σt > 0, (1)

lnσ2
t = α0 +

p∑
i=1

αi ln ε2t−i +

q∑
j=1

βj lnσ2
t−j , t ∈ Z, (2)

where p is the ARCH order and q is the GARCH order. In finance, εt is often interpreted as return or

mean-corrected return, but more generally it is simply the error in a regression model. Throughout, it is

assumed that εt is observable and known. Of course, this is neither a realistic nor a desirable assumption,

but simply reflects the current state of the theoretical literature. Denoting p∗ = max{p, q}, if the roots

of the lag polynomial 1 − (α1 + β1)L − · · · − (αp∗ + βp∗)Lp
∗

are all greater than 1 in modulus and if

|E(ln z2
t )| < ∞, then lnσ2

t is stable. For common densities like the Student’s t with degrees of freedom

greater than 2, and the Generalised Error Distribution (GED) with shape parameter greater than 1, then

σ2
t will generally be stable as well if lnσ2

t is stable. Practitioners are often interested in the dynamics of

other powers, e.g. the conditional standard deviation. For that purpose, it should be noted that the dth

power log-GARCH(p, q) model can be written as

lnσdt = α0,d +

p∑
i=1

αi ln |εt−i|d +

q∑
j=1

βj lnσdt−j , d > 0, (3)

where α0,d = α0d/2. This means a complete analysis of the dth power log-GARCH model can be

undertaken in terms of the d = 2 representation.

2.1. The ARMA representation

If |E(ln z2
t )| <∞, then the log-GARCH(p, q) model (1)-(2) admits the ARMA(p, q) representation

ln ε2t = φ0 +

p∑
i=1

φi ln ε2t−i +

q∑
j=1

θjut−j + ut, ut = ln z2
t − E(ln z2

t ), (4)

where

φ0 = α0 + (1−
q∑
j=1

βj) · E(ln z2
t ), φi = αi + βi and θj = −βj . (5)

Consistent and asymptotically normal estimates of all the ARMA parameters – and hence all the log-

GARCH parameters except the log-volatility intercept α0 – are thus readily obtained via usual ARMA

estimation methods subject to appropriate assumptions, see e.g. [28]. To estimate α0, the most com-

mon solutions have been to either impose restrictive assumptions regarding the distribution of zt (say,

normality, see e.g. [26]), or to use an ex post scale-adjustment (see e.g. [29], and [30]). What is shown

below is that the ex post scale-adjustment (i.e. formula (6) and its modified version (8)) provides a
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consistent estimate of E(ln z2
t ). Consequently, the final log-GARCH parameter α0 can also be estimated

consistently.

2.2. On consistency

The scale-adjustment employed by [29], and [30], is essentially a smearing estimate (more on this

below). Consider writing (1) as

εt = σ∗t z
∗
t , z∗t ∼ IID(0, σ2

z∗),

where σ∗t is a time-varying scale, not necessarily equal to the standard deviation, and where z∗t does not

necessarily have unit variance. Of course, by construction σt = σ∗t σz∗ and zt = z∗t /σz∗ . Next, suppose

a log-scale specification (e.g. an ARMA specification contained in (4)) is fitted to ln ε2t , with ln σ̂∗2t

denoting the fitted value of the ARMA specification such that σ̂∗t = exp(ln σ̂∗t ), and with the ARMA

residual defined as ût = ln ε2t − ln σ̂∗2t . In order to obtain an estimate of the time-varying conditional

standard deviation, which is needed for comparison with other volatility models, then it is natural to

consider adjusting σ̂∗t by multiplying it with an estimate of σz∗ , say, the sample standard deviation of

the standardised residuals ẑ∗t . Although this argument is fine heuristically, it is not straightforwardly

apparent what underlying magnitude the adjustment actually estimates. It transpires that, in the log-

GARCH model, the log of the scale-adjustment provides an estimate of −E(ln z2
t ). To see this, consider

the scale adjustment and its approximation:

σ̂2
z∗ =

1

T − 1

T∑
t=1

(ẑ∗t − ẑ
∗
t )

2 ≈ 1

T

T∑
t=1

(ẑ∗t )2 =
1

T

T∑
t=1

exp(ût).

The population analogue of the final expression is E[exp(ut)]. Taking the natural log of E[exp(ut)] gives

lnE[exp(ut)] = −E(ln z2
t ) under the assumption that E(z2

t ) = 1, i.e. the identifiability assumption from

(1). This suggests that

− ln

[
1

T

T∑
t=1

exp(ût)

]
(6)

provides a consistent estimate of E(ln z2
t ), due to the continuity of the logarithm function.

The expression in square brackets in (6), i.e. T−1
∑
t=T exp(ût), is well-known as the “smearing

estimate”, see [31]. It provides an estimate of the adjustment needed for an unbiased estimate of E(yt|xt)

when the left-hand side of the estimated model is ln yt. The proof of [31], however, is for static models. In

dynamic models, e.g. when the ût’s are ARMA residuals, then a different proof strategy and additional

assumptions are needed. Complete proofs under mild assumptions that hold under all the configurations

covered in this paper, however, are beyond our scope. For simplicity and convenience, therefore, a

set of minimal assumptions and conditions relied upon throughout is formulated, and a proof of the

key condition (A2) is provided only in the log-ARCH(p) case (recently, [32] prove A2 for an equation-

by-equation least squares estimator of a multivariate log-GARCH-X model with Dynamic Conditional
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Correlations).

Formally, the following assumptions are relied upon:

A1: E(z2
t ) = 1 and |E(ln z2

t )| <∞.

A2: Let ût, t = 1, . . . , T denote the ARMA-residuals resulting from estimating the ARMA representation

(4). Then:

1

T

T∑
t=1

exp(ût)−
1

T

T∑
t=1

exp(ut) = oP (1). (7)

In A1, the first moment condition is simply the identifiability condition from (1), whereas the other

moment condition |E(ln z2
t )| < ∞ is required for the ARMA representation (4) to exist. For the two

most commonly used densities of zt in finance, i.e. N(0, 1) and t, E(ln z2
t ) is finite. Regarding A2, it

immediately implies that (6) is a consistent estimator of E(ln z2
t ) due to the continuity of the logarithm

function. As already noted, though, a complete proof of A2 under all the configurations covered by this

paper is beyond our scope. In the log-ARCH(p) case, however, the proof is relatively straightforward.

Theorem 1. Suppose lnσ2
t = α0 +

∑p
i=1 αi ln ε2t−i in (1)-(2), that ln ε2t is strictly stationary and that A1

holds. The mean-corrected AR(p) representation is then given by (ln ε2t − E(ln ε2t )) =
∑p
i=1 φi(ln ε

2
t−i −

E(ln ε2t )) + ut, where φi = αi as in (5). Define Ỹt = ln ε2t − T−1
∑T
t=1 ln ε2t . Let φ̂1, . . . , φ̂p denote the

OLS estimates of φ1, . . . , φp based on the Ỹt’s, let ût = Ỹt −
∑p
i=1 φ̂iỸt−i for t > p and let ũt = 0 for

0 < t ≤ p. If E(z4
t ) <∞ and |E[(ln z2

t )2]| <∞, then A2 holds.

Proof. See Appendix A.

The Theorem states that A2 holds when the mean-corrected AR(p) representation of a log-ARCH(p)

model is estimated by OLS, which then implies that (6) is a consistent estimator of E(ln z2
t ). Next, it

follows straightforwardly that all the log-ARCH(p) parameters can be estimated via the relationships in

(5), since φ̂0 = (1−
∑p
i=1 φ̂i) ·T−1

∑T
t=1 ln ε2t provides a consistent estimate of φ0 under the assumptions

of the Theorem. Strict stationarity of ln ε2t follows if the roots of the AR-polynomial are all outside the

unit-circle.

2.3. On normality

Our main interest is a consistent estimator of E(ln z2
t ), so that the ARMA-estimates can be used

to consistently estimate all the log-GARCH parameters via the relationships in (5). To this end, the

limiting distribution of the estimator of E(ln z2
t ) is of minor interest. In simulations, however, the limiting

distribution and an expression for the asymptotic variance can be useful in verifying simulation results.

Let (6) be modified to

τ̂T = − ln

[
1

T

T∑
t=1

exp(ût − ûT )

]
, (8)
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where ûT is the empirical mean of the ARMA-residuals. The mean-correction term ûT is needed, since

asymptotic normality may not be achieved without it. See e.g. the related discussion in [33], where high

moment partial sum processes of residuals in ARMA models are treated, and where a mean-correction

term is needed for asymptotic normality. In some cases, e.g. when OLS is used to estimate the AR(p)

representation of a log-ARCH(p) model, then ûT is zero by construction, and so (8) equals (6). The

following two assumptions will give us asymptotic normality of (8):

A3: Let {ût}Tt=1 denote the ARMA-residuals resulting from estimating the ARMA representation (4).

Denoting ûT and uT as the averages of ût and ut, respectively:

√
T

[
1

T

T∑
t=1

exp(ût − ûT )− 1

T

T∑
t=1

exp(ut − uT )

]
= oP (1).

A4: E(z4
t ) <∞ and |E[(ln z2

t )2]| <∞.

Condition A3 is slightly stronger than A2, since A3 implies that (8) provides a consistent estimate of

E(ln z2
t ) as long as A1 holds. The moment conditions in A4 are needed for the asymptotic variance of

(8) to be finite.

Theorem 2. Suppose (1)-(2), A1, A3 and A4 hold. Then

√
T
[
τ̂T − E(ln z2

t )
] D−→ N(0, ζ2), where ζ2 = Var (z2

t − ln z2
t ). (9)

Proof. See Appendix B.

The key assumption for asymptotic normality to hold is A3, but a complete proof under all the

configurations covered by this paper is beyond our scope. Just as for consistency in the log-ARCH(p)

case (see Theorem 1), however, a proof of asymptotic normality is relatively straightforward.

Theorem 3. Suppose the assumptions of Theorem 1 hold. If in addition E(u4
t ) <∞, then A3 holds.

Proof. See Appendix A.

Assumption A4 holds under the assumptions of Theorem 1. The condition E(u4
t ) < ∞ is, in fact, a

very weak additional assumption, since it follows from E(e|ut|) < ∞. An extensive set of Monte Carlo

simulations have been performed, of which a small subset is available as supplementary material from

the Webpage of the first author (available as http://www.sucarrat.net/research/lgarchxsims.pdf).

The simulations confirm that the usual ARMA-methods (e.g. Nonlinear Least Squares and Gaussian

QML) provide consistent estimates, and that the empirical standard errors coincide with their asymptotic

counterparts.
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2.4. Log-GARCH-X

Additional covariates or conditioning variables (“X”) can be added linearly or nonlinearly to the log-

volatility specification lnσ2
t without affecting the relationship between the log-GARCH coefficients and

the ARMA coefficients. Specifically, let the log-GARCH-X model be given by

lnσ2
t = α0 +

p∑
i=1

αi ln ε2t−i +

q∑
j=1

βj lnσ2
t−j + g(λ, xt), (10)

where g is a linear or nonlinear function of the conditioning variables xt and a parameter vector λ.

The index t in xt does not necessarily mean that all (or any) of its elements are contemporaneous. If

|E(ln z2
t )| <∞, then (10) admits the ARMA-X representation

ln ε2t = φ0 +

p∑
i=1

φi ln ε2t−i +

q∑
j=1

θjut−j + g(λ, xt) + ut, ut = ln z2
t − E(ln z2

t ), (11)

where the ARMA coefficients are defined as before, i.e. by (5). A complete proof of consistency and

asymptotic normality would of course require precise assumptions on the behaviour of xt, see for example

[32], and Chapter 4 in [34].

One type of conditioning variable that is of special interest in financial applications is leverage or

volatility asymmetry. Table 1 provides simulation results for a simple version of leverage, g(λ, xt) =

λ1I{zt−1<0}, where I{zt−1<0} is an indicator function equal to 1 if zt−1 < 0 and 0 otherwise. Note that

I{zt−1<0} is observable, since I{zt−1<0} = I{εt−1<0}. The simulations show that all the parameters are

estimated consistently, and the second-to-last column shows that the finite sample empirical standard

error of the estimate of E(ln z2
t ) corresponds well to its asymptotic counterpart (last column), both for

the normal and standardised t distributions (see Table 2 for additional simulations).

3. Multivariate log-GARCH

The M -dimensional log-GARCH model is given by

εt ∼ ID(0, Ht), t ∈ Z, (12)

D2
t = diag

{
σ2
m,t

}
, m = 1, . . . ,M, (13)

zt = D−1
t εt, ∀m : zm,t ∼ IID(0, 1), P (zt = 0) = 0, (14)

lnσ2
t = α0 +

p∑
i=1

αi ln ε2t−i +

q∑
j=1

βj lnσ2
t−j , p ≥ q, (15)
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Table 1: Finite sample properties of the LSE via the ARMA representation for a log-GARCH(1,1) with leverage

DGP T m(α̂0) se(α̂0) m(α̂1) se(α̂1) m(β̂1) se(β̂1) m(λ̂1) se(λ̂1) m(τ̂) se(τ̂) ase(τ̂)
A: 500 -0.056 0.146 0.098 0.034 0.765 0.124 0.001 0.138 -1.272 0.078 0.067

1000 -0.021 0.079 0.099 0.023 0.785 0.065 -0.011 0.088 -1.271 0.054 0.054
2000 -0.011 0.048 0.099 0.016 0.795 0.041 -0.008 0.063 -1.270 0.039 0.038

B: 500 -0.101 0.271 0.050 0.032 0.830 0.198 -0.019 0.131 -1.271 0.078 0.067
1000 -0.035 0.101 0.050 0.019 0.877 0.073 -0.016 0.079 -1.273 0.054 0.054
2000 -0.013 0.045 0.050 0.012 0.891 0.039 -0.021 0.044 -1.270 0.038 0.038

C: 500 -0.064 0.157 0.099 0.035 0.756 0.132 -0.013 0.142 -1.384 0.086 0.085
1000 -0.023 0.079 0.100 0.023 0.784 0.064 -0.010 0.094 -1.392 0.060 0.061
2000 -0.009 0.050 0.100 0.016 0.793 0.039 -0.010 0.065 -1.391 0.043 0.043

D: 500 -0.099 0.251 0.049 0.030 0.841 0.173 -0.020 0.137 -1.394 0.092 0.085
1000 -0.038 0.119 0.050 0.018 0.874 0.090 -0.027 0.078 -1.392 0.061 0.061
2000 -0.016 0.051 0.050 0.013 0.889 0.040 -0.022 0.049 -1.390 0.045 0.043

The estimated model is lnσ2
t = α0 + α1 ln ε2t−1 + β1 lnσ2

t−1 + λ1I{zt−1<0}. DGP A: (α0, α1, β1, λ1, τ) =

(0, 0.1, 0.8,−0.01,−1.27) with zt ∼ N(0, 1). DGP B: (α0, α1, β1, λ1, τ) = (0, 0.05, 0.9,−0.02,−1.27) with

zt ∼ N(0, 1). DGP C: (α0, α1, β1, λ1, τ) = (0, 0.1, 0.8,−0.01,−1.39) with zt ∼ standardised t(10). DGP D:

(α0, α1, β1, λ1, τ) = (0, 0.05, 0.9,−0.02,−1.39) with zt ∼ standardised t(10). m(x), sample mean of the estimate x.

se(x), sample standard deviation (division by R instead of R − 1, where R = 1000 is the number of replications). ase(τ̂),

asymptotic standard error of τ̂ (computed as
√
ζ2/
√
T , where ζ2 is given in Theorem 2). Computations in R ([35]) with

the lgarch package version 0.2 ([36]).

where εt, σ
2
t and zt are M × 1 vectors, and where Ht and Dt are M ×M matrices. In (15) we have that

α0 = (α1.0, . . . , αM.0)
′
,

αi =


α11.i · · · α1M.i

...
. . .

...

αM1.i · · · αMM.i

 and βj =


β11.j · · · β1M.j

...
. . .

...

βM1.j · · · βMM.j

 , (16)

where ′ is the transpose operator. Equation (12) means that εt is independent with mean zero and a

time-varying conditional covariance matrix Ht. The IID assumption in equation (14) states that each

marginal series {zm,t} is IID(0, 1). Marginal identicality is a key characteristic of the ARCH class of

models, and is needed for (6) (or (8)) to be applicable after estimation via the VARMA representation.

An implication of (14) is that zt ∼ ID(0, Rt), where Rt is both the conditional covariance and correlation

matrix – possibly time-varying – of zt. In other words, the vector zt is ID, but not necessarily IID, even

though each marginal series {zmt} is IID. In the special case where vector zt is IID, then Rt is a Constant

Conditional Correlation (CCC) model. Estimation of the volatilities D2
t does not require that the off-

diagonals of Ht (i.e. the covariances) are specified explicitly. Nor need we assume that εt is distributed

according to a certain density, say, the normal.
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3.1. The VARMA representation

If |E(ln z2
t )| < ∞, then the M -dimensional log-GARCH(p, q) model (15) admits the VARMA(p, q)

representation

ln ε2t = φ0 +

p∑
i=1

φi ln ε2t−i +

q∑
j=1

θjut−j + ut, ut = ln z2
t − E(ln z2

t ), (17)

where

φ0 = α0 + (IM −
q∑
j=1

βj) · E(ln z2
t ), φi = αi + βi, and θj = −βj . (18)

In the special case where vector zt is IID, which implies a CCC model for the correlations (assuming

they exist), then vector ut is IID as well. In this case, it is well-known that the multivariate Gaussian

QMLE provides consistent and asymptotically normal estimates of the VARMA coefficients under suit-

able assumptions, see e.g. [37]. Accordingly, consistent estimation and asymptotically normal inference

regarding all the log-GARCH coefficients – apart from the log-volatility intercept α0 – are available as

well. In order to obtain a consistent estimate of α0, then an estimate of the M × 1 vector E(ln z2
t ) is

needed. Since the process {um,t} is marginally IID for each m, equation-by-equation application of (6)

(or of (8)) after estimation of the VARMA can be used to estimate each element in E(ln z2
t ).

In the case where vector zt is only ID, which is implied by time-varying correlations, then vector ut is

only ID as well. This corresponds to a VARMA model with heteroscedastic error ut. Fewer QML results

are available in this case, e.g. [38]. However, in the special case where the βj matrices are diagonal,

then the M -dimensional VARMA model can be estimated equation-by-equation (along the lines of [24])

by univariate ARMA-X methods, since – equation-by-equation – each error term um,t is IID. Next,

equation-by-equation application of (6) provides an estimate of each element in E(ln z2
t ), and hence of

the log-volatility intercept α0. Table 2 contains simulation results of the case where the correlations

are governed by the Dynamic Conditional Correlations (DCC) model of [39]. The finite sample bias

tends to zero as T increases, and the last two columns show that the empirical sample standard errors

coincide with their asymptotic counterparts as implied by (9). Additional simulations are available from

the Webpage of the first author (available as http://www.sucarrat.net/research/lgarchxsims.pdf).

3.2. Multivariate log-GARCH-X

Just as in the univariate case, the multivariate log-GARCH model permits additional covariates or

conditioning variables in each of the M equations. Specifically, write the multivariate log-GARCH-X

specification as

lnσ2
t = α0 +

p∑
i=1

αi ln ε2t−i +

q∑
j=1

βj lnσ2
t−j + λxt, (19)

10
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Table 2: Finite sample properties of equation-by-equation Gaussian QML of a 2-dimensional log-GARCH(1,1) w/diagonal
matrix β1 when the correlations follow the DCC of [39]

DGP T m(α̂10) m(α̂20) m(α̂11) m(α̂21) m(α̂12) m(α̂22) m(β̂11) m(β̂22) m(τ̂1) se(τ̂1) m(τ̂2) se(τ̂2) ase(τ̂)
A: 1000 -0.065 -0.229 0.046 0.101 0.101 0.048 0.902 0.680 -1.270 0.056 -1.270 0.054 0.054

5000 -0.013 -0.042 0.049 0.100 0.100 0.049 0.900 0.697 -1.271 0.024 -1.270 0.023 0.024
10000 -0.005 -0.023 0.049 0.100 0.100 0.050 0.900 0.698 -1.271 0.017 -1.270 0.017 0.017

B: 1000 -0.029 -0.026 0.098 0.053 0.053 0.097 0.791 0.792 -1.270 0.055 -1.268 0.053 0.054
5000 -0.005 -0.004 0.100 0.051 0.050 0.099 0.799 0.799 -1.270 0.024 -1.270 0.024 0.024

10000 -0.003 -0.002 0.100 0.050 0.050 0.100 0.799 0.799 -1.269 0.017 -1.271 0.017 0.017

The estimated model is lnσ2
t = α0 + α1 ln ε2t−1 + β1 lnσ2

t−1, where α0 = (α10, α20)′, α1 =

(
α11 α12

α21 α22

)
and

β1 = diag(β11, β22). The standardised errors (z1t, z2t)′ are governed by the DCC of [39]: (z1t, z2t)′ ∼ N(0,Σt),

Σt =

(
1 ρt
ρt 1

)
, ρt = q12,t/

√
q1,tq2,t, q12,t = ρ+ a(z1,t−1z2,t−1− ρ) + b(q12,t− ρ), q1,t = 1 + a(z21,t−1− 1) + b(q1,t− 1),

q2,t = 1 + a(z22,t−1 − 1) + b(q2,t − 1) with a = 0.05 and b = 0.9. Estimation proceeds in three steps (the DCC is not

estimated). First, a univariate ARMA-X specification is fitted to each of the two equations with the Gaussian QMLE.

Second, the ARMA-X residuals û1t and û2t, respectively, are used equation-by-equation to estimate τ1 and τ2, respectively,

with formula (8). Finally, the ARMA-X estimates and τ̂1 and τ̂2 are combined using the relationships in (18) to obtain the

log-GARCH estimates. m(x), sample mean of the estimate x. se(x), sample standard deviation (division by R instead of

R − 1, where R = 1000 is the number of replications). ase(x), asymptotic standard error of x (computed as
√
av(x)/

√
T ,

where av(τ̂1) = av(τ̂2) = ζ2, see Theorem 2). In DGP A: α1 = c(0, 0)′, α1 =

(
0.05 0.10
0.10 0.05

)
, β1 = diag(0.90, 0.70) and

ρ = −0.2. In DGP B: α1 = c(0, 0)′, α1 =

(
0.10 0.05
0.05 0.10

)
, β1 = diag(0.80, 0.80) and ρ = 0.4. Computations in R ([35])

with the lgarch package version 0.2 ([36]).

where xt is an L× 1 vector of covariates, and where λ is an M × L matrix. For notational economy, the

covariates xt enter linearly, but in principle they can enter non-linearly as in the univariate case, see (11).

Similarly, index t in xt does not necessarily mean that all (or any) of its elements are contemporaneous.

The VARMA-X representation of (19) is then given by

ln ε2t = φ0 +

p∑
i=1

φi ln ε2t−i +

q∑
j=1

θjut−j + λxt + ut,

with the VARMA coefficients and ut defined as before, i.e. by (18). In other words, the relation between

the VARMA coefficients and the log-GARCH coefficients are not affected by adding λxt to (19). So

VARMA-X methods can be used to estimate all the log-GARCH parameters (under suitable assumptions

on xt) except the log-volatility intercept α0 in a first step, and then in a second step equation-by-equation

application of (6) can be used to estimate each element in E(ln z2
t ) and, hence, the log-volatility intercept

α0. Also here it is useful to distinguish between between the CCC and time-varying correlations cases.

If ut is IID, i.e. the CCC case, then – under suitable assumptions – the multivariate Gaussian QMLE

provides consistent estimates of the VARMA-X representation, see e.g. [34]. If correlations are time-

varying, and if the matrices βj are diagonal, then each equation can be estimated separately in terms of

their ARMA-X representations, see [32].
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4. Application: Modelling the uncertainty of electricity prices

Daily electricity prices are characterised by autoregressive persistence, day-of-the-week effects, large

spikes or jumps, ARCH and non-normal conditional errors that are possibly skewed. [3], [2], and [40] have

proposed univariate and multivariate models that contain some or several of these features. However, in

none of these models is the volatility specification – a non-exponential GARCH – robust to the large spikes

that are a common characteristic of electricity prices. Nor, are they flexible enough to accommodate a

complex and rich heteroscedasticity dynamics similar to that of the mean specification without imposing

very strong parameter restrictions (e.g. non-negativity). Finally, automated model selection with a large

number of variables is infeasible in practice due to computational complexity and positivity constraints.

The log-GARCH-X class of models, by contrast, remedies these deficiencies.

The data consist of the daily peak and off-peak spot electricity prices (in Euros per kw/h) from 1

January 2010 to 20 May 2014 (i.e. 1601 observations before lag-adjustments) for the Oslo region in

Norway. The source of the data is http://www.nordpoolspot.com/, and the sample was determined by

availability: Observations prior to the sample period are not available, and the data were downloaded

just after 20 May 2014. Electricity forwards for this region are traded at the Nord Pool Spot energy

exchange, a leading European market for electrical energy. Factories, companies and other institutions

with electricity consumption may want to shift part of their activity to and from peak hours for efficient

cost management, since the difference between peak and off-peak prices can be very large at times, see the

bottom graphs of Figure 1. As an aid in the decision-making process, forecasts of future prices and of price

uncertainty (i.e. volatility or risk) can, therefore, be of great usefulness. The daily peak spot price S1,t

is computed as the average of the spot prices during peak hours, i.e. S1,t = (St(8am) + · · ·+ St(9pm))/14,

whereas the daily off-peak spot price S2,t is computed as the average of the spot prices during off-peak

hours, i.e. S2,t = (St(0am)+· · ·+St(7am)+St(10pm)+St(11pm))/10. Note that St(8am) should be interpreted

as the electricity price from 8am to 9am, St(9am) should be interpreted as the electricity price from 9am

to 10am, and so on. Graphs of S1,t, S2,t and their log-returns (rt = ∆ lnSt) are contained in Figure 1.

The price and returns figures exhibit the usual characteristics of electricity prices, namely that the price

variability is substantially larger than the variability of, say, stock prices, stock indices and exchange

rates, and that big jumps occur relatively frequently.

The conditional mean is specified as a two-dimensional Vector Error Correction Model (VECM)

augmented with day-of-the-week dummies in both equations (the R-squared of the two equations are

0.26 and 0.17, respectively; more details are available on request). The residuals or mean-corrected

returns from the estimated model are then used for the estimation of the log-volatility specifications.
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The univariate models of the two mean-corrected returns are

log-GARCH-1: lnσ2
t =α0 + α1 ln ε2t−1 + β1 lnσ2

t−1, (20)

log-GARCH-2: lnσ2
t =α0 +

7∑
i=1

αi ln ε2t−i + β1 lnσ2
t−1, (21)

log-GARCH-3: lnσ2
t =α0 +

7∑
i=1

αi ln ε2t−i + β1 lnσ2
t−1 +

6∑
l=1

λlxlt, (22)

log-GARCH-4: lnσ2
1t =α0 +

7∑
i=1

α1.i ln ε21,t−i +

7∑
i=1

α2.i ln ε22,t−i + β1 lnσ2
1,t−1 +

6∑
l=1

λlxlt, (23)

log-GARCH-5: lnσ2
1t =α0 +

7∑
i=1

α1.i ln ε21,t−i +

7∑
i=1

α2.i ln ε22,t−i +

6∑
l=1

λlxlt, (24)

where εt is the mean-corrected return in question, and where x1t, . . . , x6t are six day-of-the-week dummies

for Tuesday to Sunday. In the last two specifications, ε2,t is the mean-corrected off-peak return when

ε1,t is the mean-corrected on-peak return, and vice-versa, ε2,t is the mean-corrected on-peak return when

ε1,t is the mean-corrected off-peak return. Of course, this means that the last two equations could

be considered as an equation-by-equation estimation scheme similar to that of [24], except that we do

not estimate the time-varying correlations. The last specification, i.e. log-GARCH-5, actually refers

to a more parsimonious version than the one displayed. The parsimonious specification is obtained

by automated General-to-Specific (GETS) modelling starting from (24), see [30]. Arguably, the most

important specifications are log-GARCH-4 and log-GARCH-1. The former since it nests all the others,

the latter for benchmarking.

The upper part of Table 3 contains the estimation results of the peak models (an * to the right of the

standard error means the t-ratio is greater than 2 in absolute value). The first striking characteristic is

that volatility is much more volatile (i.e. less persistent) than is usually the case for financial returns. The

ARCH(1) estimate is large and about 0.2 in all models – in daily financial returns it is typically about

0.05 (or lower), and the GARCH(1) estimate falls from about 0.7 in log-GARCH-1 to an insignificant 0 in

log-GARCH-4. Moreover, several additional ARCH-lags and day-of-the-week dummies are significant in

log-GARCH-4. In particular, the results show that the most precise peak return forecasts are produced

on Fridays, whereas the most uncertain ones are produced on Mondays. Also, in addition to several

significant own ARCH-lags, four off-peak ARCH-lags are significant. This means that there is a feedback

effect from off-peak volatility. Altogether, daily intra-week dynamics and day-of-the-week effects account

for all the variation in volatility, as there is little – if any – persistence.

The lower part of Table 3 contains the estimation results of the off-peak models. These are much

more in line with what one usually finds in other financial returns. In log-GARCH-4 the ARCH(1)

and GARCH(1) estimates are 0.092 and 0.845, respectively, which compares with 0.137 and 0.792 in

log-GARCH-1. In other words, the inclusion of lags and day-of-the-week dummies do not affect these
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Figure 1: Daily peak and off-peak spot electricity prices (and their nominal and relative differences) in Euros per Mw/h,
and log-returns for the Oslo area in Norway, 1 January 2010 - 20 May 2014 (1601 observations before lag-adjustments)

estimates very much. However, just as for peak volatiliy, several ARCH-lags and day-of-the-week dummies

are significant. In particular, the most precise forecasts of off-peak return are produced on Fridays – just

as in the peak case, whereas the most uncertain ones are produced on Sundays. Also, just as in the peak

case, there is volatility-feedback, since several (three) peak lags are significant.

Figure 2 contains the fitted standard deviations of the log-GARCH-1 and log-GARCH-4 models,

their nominal difference and their ratio. The bottom graphs, in particular, show that they can produce

fundamentally different volatility forecasts. Specifically, they show that the log-GARCH-1 underestimates

volatility on average, and that the log-GARCH-4 models can produce fitted standard deviations that are

more than twice as big on specific days. In other words, volatility may be seriously underestimated if lag

and day-of-the-week effects are not accommodated.

5. Conclusions

A general and flexible framework for the estimation of and inference in univariate and multivari-

ate Generalised log-ARCH-X (i.e. log-GARCH-X) models when the conditional density is unknown is

proposed. Estimation is via the (V)ARMA-X representation, which induces a bias in the log-volatility

intercept made up of a log-moment expression that depends on the conditional density. An estimator

of the log-moment expression, together with its asymptotic variance, is derived under mild assumptions.

Due to the structure of the problem, the bias-correction procedure is likely to also hold for univariate
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Table 3: Estimation results of the models (20)-(24)

Peak specifications: LogL
1: ln σ̂2

1,t = −0.434 + 0.202
(0.008)∗

ln ε21,t−1 + 0.639
(0.018)∗

ln σ̂2
1,t−1 1890.3

[k=3]

2: ln σ̂2
1,t = −0.976 + 0.232

(0.007)∗
ln ε21,t−1 + 0.124

(0.016)∗
ln ε21,t−2 + 0.053

(0.010)∗
ln ε21,t−3 − 0.010

(0.008)
ln ε21,t−4

+ 0.063
(0.008)∗

ln ε21,t−5 + 0.029
(0.009)∗

ln ε21,t−6 + 0.121
(0.008)∗

ln ε21,t−7 − 0.039
(0.060)

ln σ̂2
1,t−1 1841.9

[k=9]

3: ln σ̂2
1,t = −0.127 + 0.228

(0.007)∗
ln ε21,t−1 + 0.119

(0.021)∗
ln ε21,t−2 + 0.059

(0.013)∗
ln ε21,t−3 − 0.002

(0.009)
ln ε21,t−4

+ 0.064
(0.008)∗

ln ε21,t−5 + 0.018
(0.010)

ln ε21,t−6 + 0.093
(0.008)∗

ln ε21,t−7 + 0.014
(0.086)

ln σ̂2
1,t−1 − 0.749

(0.112)∗
Tuet

− 1.194
(0.071)∗

Wedt − 1.066
(0.071)∗

Thut − 1.268
(0.068)∗

Frit − 0.923
(0.074)∗

Satt − 0.940
(0.068)∗

Sunt 1896.3
[k=15]

4: ln σ̂2
1,t = 0.224 + 0.203

(0.008)∗
ln ε21,t−1 + 0.103

(0.020)∗
ln ε21,t−2 + 0.041

(0.012)∗
ln ε21,t−3 − 0.014

(0.009)
ln ε21,t−4 + 0.046

(0.008)∗
ln ε21,t−5

+ 0.013
(0.009)

ln ε21,t−6 + 0.091
(0.008)∗

ln ε21,t−7 + 0.057
(0.008)∗

ln ε22,t−1 + 0.043
(0.010)∗

ln ε22,t−2 + 0.038
(0.009)∗

ln ε22,t−3

+ 0.013
(0.009)

ln ε22,t−4 + 0.037
(0.008)∗

ln ε22,t−5 + 0.008
(0.009)

ln ε22,t−6 − 0.015
(0.008)

ln ε22,t−7 − 0.013
(0.090)

ln σ̂2
t−1

− 0.773
(0.111)∗

Tuet − 1.208
(0.073)∗

Wedt − 1.019
(0.076)∗

Thut − 1.295
(0.072)∗

Frit − 0.905
(0.081)∗

Satt − 0.863
(0.070)∗

Sunt 1963.0
[k=22]

5: ln σ̂2
1,t = −0.071 + 0.209

(0.008)∗
ln ε21,t−1 + 0.120

(0.008)∗
ln ε21,t−2 + 0.066

(0.007)∗
ln ε21,t−5 + 0.093

(0.007)∗
ln ε21,t−7

+ 0.070
(0.008)∗

ln ε22,t−1 + 0.063
(0.008)∗

ln ε22,t−3 − 0.681
(0.067)∗

Tuet − 1.194
(0.070)∗

Wedt − 0.957
(0.070)∗

Thut

− 1.197
(0.068)∗

Frit − 0.801
(0.069)∗

Satt − 0.857
(0.069)∗

Sunt 1955.5
[k=13]

Off-peak specifications: LogL
1: ln σ̂2

2,t = −0.070 + 0.137
(0.006)∗

ln ε22,t−1 + 0.792
(0.010)∗

ln σ̂2,t−1 1676.0
[k=3]

2: ln σ̂2
2,t = −0.548 + 0.202

(0.008)∗
ln ε22,t−1 + 0.065

(0.012)∗
ln ε22,t−2 + 0.083

(0.008)∗
ln ε22,t−3 + 0.064

(0.008)∗
ln ε22,t−4

+ 0.012
(0.008)

ln ε22,t−5 + 0.107
(0.007)∗

ln ε22,t−6 + 0.170
(0.009)∗

ln ε22,t−7 − 0.103
(0.041)∗

ln σ̂2
2,t−1 1665.9

[k=9]

3: ln σ̂2
2,t = −0.148 + 0.202

(0.008)∗
ln ε22,t−1 + 0.106

(0.024)∗
ln ε22,t−2 + 0.091

(0.012)∗
ln ε22,t−3 + 0.068

(0.012)∗
ln ε22,t−4

+ 0.048
(0.010)∗

ln ε22,t−5 + 0.111
(0.009)∗

ln ε22,t−6 + 0.094
(0.014)∗

ln ε22,t−7 − 0.135
(0.108)

ln σ̂2
2,t−1 − 0.805

(0.110)∗
Tuet

− 1.341
(0.184)∗

Wedt − 0.401
(0.231)

Thut − 1.255
(0.125)∗

Frit − 1.091
(0.232)∗

Satt + 0.540
(0.196)∗

Sunt 1801.3
[k=15]

4: ln σ̂2
2,t = −0.603 + 0.092

(0.008)∗
ln ε21,t−1 − 0.004

(0.012)
ln ε21,t−2 − 0.060

(0.011)∗
ln ε21,t−3 − 0.022

(0.011)
ln ε21,t−4 − 0.013

(0.011)
ln ε21,t−5

+ 0.034
(0.011)∗

ln ε21,t−6 − 0.014
(0.008)

ln ε21,t−7 + 0.155
(0.009)∗

ln ε22,t−1 − 0.085
(0.011)∗

ln ε22,t−2 + 0.030
(0.012)∗

ln ε22,t−3

− 0.005
(0.012)

ln ε22,t−4 − 0.004
(0.012)

ln ε22,t−5 + 0.065
(0.012)∗

ln ε22,t−6 − 0.058
(0.008)∗

ln ε22,t−7 + 0.845
(0.009)∗

ln σ̂2
2,t−1

− 0.152
(0.113)

Tuet + 0.030
(0.092)

Wedt + 1.567
(0.090)∗

Thut − 0.356
(0.091)∗

Frit + 0.858
(0.093)∗

Satt + 2.168
(0.110)∗

Sunt 1849.2
[k=22]

5: ln σ̂2
2,t = −0.047 + 0.087

(0.008)∗
ln ε21,t−1 + 0.081

(0.007)∗
ln ε21,t−2 + 0.179

(0.008)∗
ln ε22,t−1 + 0.078

(0.008)∗
ln ε22,t−3

+ 0.056
(0.008)∗

ln ε22,t−4 + 0.111
(0.008)∗

ln ε22,t−6 + 0.080
(0.008)∗

ln ε22,t−7 − 0.547
(0.059)∗

Tuet − 1.119
(0.061)∗

Wedt

− 0.997
(0.058)∗

Frit − 0.651
(0.061)∗

Satt + 0.839
(0.060)∗

Sunt 1812.6
[k=13]

LogL, Gaussian log-likelihood computed as
∑T
t=1 ln fε(εt; σ̂t), where fε(εt; σ̂t) is the univariate normal density, εt is

the mean-corrected return and σ̂t is the fitted standard deviation (T = 1586 is the number of observations). k, the

number of of log-GARCH parameters (τ not included). Estimation of the ARMA representation is with the LSE without

mean-correction. An asterisk * to the right of the standard error means |t| > 2, where t is the t-ratio. Computations in R

([35]) with the lgarch ([36]) and AutoSEARCH ([41]) packages.
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Figure 2: Fitted standard deviations (SDs) of the univariate log-GARCH-1 and log-GARCH-4 models, and the nominal
differences and ratios between the SDs (computed as log-GARCH-4 minus log-GARCH-1 and log-GARCH-4 over log-
GARCH-1, respectively)

log-GARCH-X models, and – equation-by-equation – in multivariate log-GARCH-X models with time-

varying correlations. An extensive number of simulations support the conjecture. Finally, an empirical

application shows that the methods are particularly useful when the volatility dynamics are complex and

possibly affected by many factors.

An early version of this paper ([42]) initiated the larger research agenda of which it is a part. [30]

relies explicitly on the results of this paper, whereas [29] is a precursor. These led to the development

of the R ([35]) software packages AutoSEARCH ([41]) and gets ([43]) for automated General-to-Specific

(Gets) modelling of log-ARCH-X models. An early critique of the log-ARCH class of models was that

the log-ARCH terms in the log-volatility specification may not exist, since the errors of a regression in

empirical practice can be zero. A solution to this problem, however, is proposed in [10]. This solution

is only available when estimation is via the (V)ARMA representation. [18] propose another ARMA-

based QMLE for log-GARCH models (with the centred exponential chi-squared as instrumental density)

that is asymptotically more efficient when the conditional error is normal or close to normal. Finally,

[32] prove the consistency and asymptotic normality of a least squares equation-by-equation estimator

of a multivariate log-GARCH-X model with Dynamic Conditional Correlations by using the VARMA-X

representation.
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(φ̂1, . . . , φ̂p) be the least squares estimator of φ := (φ1, . . . , φp) based on mean corrected observations

(Yt − ȲT )1≤t≤T where ȲT = T−1
∑T
t=1 Yt. Note that

√
T (φ̂

′
− φ′) = OP (1) by standard theory [28]).

Denote γ := Eeu0 and γ̂ = 1
T

∑T
t=1 exp(ût). A3 implies Var (u2

0) = E[(ln z2
1)2]−[E ln(z2

1)]2 <∞ as well as

E exp(u1) = 1/(exp[E ln(z2
1)]) <∞, and A4 implies that Var [exp(u1)] = (Ez4

1 − 1)/({exp[E ln(z2
1)]}2) <

∞, and so Ee2u0 < ∞. To prove Theorem 1, we show what we call Case (i): If Eu2
0 < ∞ and

Eeu0 < ∞, then γ̂ = γ + oP (1). To prove Theorem 3 we prove Case (ii): If Eu4
0 < ∞ and Ee2u0 < ∞,

then
√
T (γ̂ − γ) = T−1/2

∑T
t=1(eut−ūT − γ) + oP (1). Both cases use the following expansions. Let
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δt,T := ût,T −ut. Note that δt,T = −ut when t ≤ p. For t ≤ p we have eût = e0 = 1. Note that the initial

values are asymptotically insignificant. For t ≥ p+ 1, a Taylor expansion shows that

eut+δt = eut + δte
ut + δ2

t

∫ 1

0

(1− x)eut+xδtdx = eut + δte
ut + eutδ2

t

∫ 1

0

(1− x)exδtdx. (A.1)

We follow the main argument in Theorem 1 of [44] to bound δt uniformly in t. Let µ = EY0 = φ0/(1−∑p
i=1 φj), so that that ut = Yt − µ −

∑p
i=1 φi(Yt−i − µ). The definition of ût, as well as addition and

subtraction shows that for t ≥ p+1, we have that ût = ut−(φ̂−φ)′(Yt−1−µ, . . . , Yt−p−µ)−T−1
∑T
s=1(Ys−

µ)(1 −
∑p
i=1 φ̂i) so that δt,T = −(φ̂ − φ)′(Yt−1 − µ, . . . , Yt−p − µ) − T−1

∑T
s=1(Ys − µ)(1 −

∑p
i=1 φ̂i) as

in [44]. [44] shows T−1/2
∑T
s=1(Ys − µ) =

√
T ūT (1−

∑p
i=1 φi)

−1 + ξT with ξT = oP (1), see the proof of

Theorem 1 in [44] immediately before his equation (2.6). For t ≥ p+ 1 we therefore get that

δt,T = −(φ̂
′
− φ′)(Yt−1 − µ, . . . , Yt−p − µ)− ūT +RT (A.2)

where RT = oP (T−1/2) does not depend on t. To see this, note that
√
TRT = (

√
T ūT ) − (

√
T ūT )(1 −∑p

i=1 φi)
−1(1 −

∑p
i=1 φ̂i) + ξT (1 −

∑p
i=1 φ̂i). Since

√
T (φ̂ − φ)′ = OP (1) we have (1 −

∑p
i=1 φ̂i) =

(1−
∑p
i=1 φi)+oP (1). Hence,

√
TRT = (

√
T ūT )−(

√
T ūT )(1−

∑p
i=1 φi)

−1(1−
∑p
i=1 φ̂i)+ξT (1−

∑p
i=1 φ̂i) =

(
√
T ūT )− (

√
T ūT )(1+oP (1))+oP (1) = oP (1), where the last equality follows by the CLT (Central Limit

Theorem), i.e. that
√
T ūT = OP (1). Hence, MT := supp+1≤t≤T |δt,T | ≤ supp+1≤t≤T |(φ̂

′
− φ′)(Yt−1 −

µ, . . . , Yt−p − µ)|+ |ūT |+ |RT | = supp+1≤t≤T |(φ̂
′
−φ′)(Yt−1 − µ, . . . , Yt−p − µ)|+ |ūT |+ oP (T−1/2). We

have Tα supp+1≤t≤T |(φ̂
′
− φ′)(Yt−1 − µ, . . . , Yt−p − µ)| ≤ Tα sup1≤j≤p |φ̂j − φj | supp+1≤t≤T |Yt − µ| =

√
T sup1≤j≤p |φ̂j − φj |Tα−1/2 supp+1≤t≤T |Yt − µ|. Since (Yt) is a strictly stationary linear process with

exponentially decreasing coefficients, Euκ0 <∞ implies EY κ0 <∞ for any κ > 0. Suppose 0 ≤ α < 1/2.

We have Tα−1/2 supp+1≤t≤T |Yt − µ| = oP (1) if Eu
−1/(α−1/2)
0 < ∞, see e.g. Lemma 12.4 of [45]. For

case (i), we know that Eu2
0 < ∞, i.e. α = 0. For case (ii), we know Eu4

0 < ∞, i.e. α = 1/4. For both

cases, we have Tα supp+1≤t≤T |(φ̂
′
− φ′)(Yt−1 − µ, . . . , Yt−p − µ)| = oP (1) since

√
T (φ̂

′
− φ′) = OP (1).

Hence if Eu2
0 < ∞, i.e. case (i), we conclude that MT = supp+1≤t≤T |(φ̂

′
− φ′)(Yt−1 − µ, . . . , Yt−p −

µ)| + |ūT | + oP (T−1/2) = oP (1) since ūT = oP (1) by the LLN (Law of Large Numbers). If Eu4
0 < ∞

we get T 1/4MT = T 1/4 supp+1≤t≤T |(φ̂
′
− φ′)(Yt−1 − µ, . . . , Yt−p − µ)| + T−1/4|T 1/2ūT | + oP (T−1/4).

Because T 1/2ūT = OP (1) by the CLT, we see that T−1/4|T 1/2ūT | = oP (1). For α = 1/4 we conclude

that T 1/4MT = oP (1).

We now show consistency, i.e. case (i). Eq. (A.1) shows that 1
T

∑T
t=1 e

ût = 1
T

∑p
t=1 e

ût+ 1
T

∑T
t=q+1 e

ut+

1
T

∑T
t=q+1 δte

ut + 1
T

∑T
t=q+1 e

utδ2
t

∫ 1

0
(1 − x)exδtdx. Clearly, 1

T

∑p
t=1 e

ût = p/T = oP (1). We have that∫ 1

0
(1−x)exδtdx ≤ e|δt| because for 0 ≤ x ≤ 1 we have (1−x) ≤ 1 and exδt ≤ e|xδt| = ex|δt| ≤ e|δt| so that∫ 1

0
(1−x)exδtdx ≤

∫ 1

0
e|δt| dx = e|δt|. By Eeu0 <∞, the LLN implies that 1

T

∑T
t=p+1 e

ut = Eeu0 + oP (1).

Hence, the triangle inequality implies that |γ̂ − γ| ≤ 1
T

∑T
t=p+1 |δt|eut + 1

T

∑T
t=p+1 e

utδ2
t e
|δt| + oP (1).

Using |δt| ≤MT we get that |γ̂ − γ| ≤MT
1
T

∑T
t=p+1 e

ut +M2
T e

Mt 1
T

∑T
t=p+1 e

ut + oP (1), which is oP (1)
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because MT = oP (1) and T−1
∑T
t=p+1 e

ut = Eeu0 + oP (1) = OP (1).

Let us now show asymptotic Normality, i.e. case (ii). From eq. (A.1), we see that
√
T (γ̂ − γ) =

1√
T

∑T
t=p+1(eut − γ) + 1√

T

∑T
t=p+1 δte

ut + 1√
T

∑T
t=p+1 e

utδ2
t

∫ 1

0
(1 − x)exδtdx + oP (1). The last sum is

oP (1). To see this, we again use
∫ 1

0
(1 − x)exδtdx ≤ e|δt| combined with T 1/4MT = oP (1) and see

that
∣∣∣ 1√

T

∑T
t=p+1 e

utδ2
t

∫ 1

0
(1− x)exδtdx

∣∣∣ ≤ M2
T e

MT 1√
T

∑T
t=p+1 e

ut =
(
T 1/4

T 1/4MT

)2

eMT 1√
T

∑T
t=p+1 e

ut =

(T 1/4MT )2eMT 1
T

∑T
t=p+1 e

ut , which is oP (1) because (T 1/4MT )2 = [oP (1)]2 = oP (1) by continuity, that

eMT = eoP (1) = e0 + oP (1) = 1 + oP (1) = OP (1), and by the LLN we have T−1
∑T
t=p+1 e

ut = OP (1).

We have therefore shown that
√
T (γ̂ − γ) = T−1/2

∑T
t=p+1(eut − γ) + T−1/2

∑T
t=p+1 δte

ut + oP (1) =

T−1/2
∑T
t=1(eut − γ) + T−1/2

∑T
t=p+1 δte

ut + oP (1). For the sum with δt, we apply eq. (A.2), and get

T−1/2
∑T
t=p+1 δte

ut = −(φ̂
′
− φ′)T−1/2

∑T
t=p+1(Yt−1 − µ, . . . , Yt−p − µ)eut − ūT

(
T−1/2

∑T
t=p+1 e

ut

)
+

RTT
−1/2

∑T
t=p+1 e

ut . Since Yt−j and ut are independent for j ≥ 0, we get T−1
∑T
t=p+1(Yt−1−µ, . . . , Yt−p−

µ)eut = E[(Y−1 − µ, . . . , Y−p − µ)eu0 ] + oP (1) = (0, 0, . . . , 0)Eeu0 + oP (1) = (0, 0, . . . , 0) + oP (1).

Hence, (φ̂
′
− φ′)T−1/2

∑T
t=p+1(Yt−1 − µ, . . . , Yt−p − µ)eut =

√
T (φ̂

′
− φ′)[(0, 0, . . . , 0) + oP (1)], which is

oP (1) because
√
T (φ̂

′
− φ′) = OP (1). Recalling RT = oP (T−1/2) implies that RTT

−1/2
∑T
t=p+1 e

ut =

(T 1/2RT )T−1
∑T
t=p+1 e

ut = oP (1)[Eeu0+oP (1)] = oP (1).We further have that ūT

(
T−1/2

∑T
t=p+1 e

ut

)
=

√
T ūT [Eeu0 +oP (1)] =

√
T ūTEe

u0 +oP (1)
√
T ūT =

√
T ūTEe

u0 +oP (1) since
√
T ūT = OP (1). In conclu-

sion we get
√
T (γ̂−γ) = T−1/2

∑T
t=1(eut−γ)−

√
T ūTEe

u1+oP (1). We now complete the proof by showing

that T−1/2
∑T
t=1(eut−ūT −Eeu0) fulfils exactly the same expansion as we found for

√
T (γ̂− γ). We have

T−1/2
∑T
t=1(eut−ūT − Eeu0) = T−1/2

∑T
t=1 e

−ūT eut −
√
TEeu0 = e−ūT (T−1/2

∑T
t=1 e

ut) −
√
TEeu0 =

e−ūT (T−1/2
∑T
t=1 e

ut − Eeu0 + Eeu0) −
√
TEeu0 = e−ūT (T−1/2

∑T
t=1[eut − Eeu0 ]) + e−ūT

√
TEeu0 −

√
TEeu0 = eoP (1)(T−1/2

∑T
t=1[eut −Eeu0 ]) + [e−ūT −1]

√
TEeu0 . Since Ee2u0 <∞, the CLT implies that

T−1/2
∑T
t=1[eut−Eeu0 ] = OP (1) and hence eoP (1)T−1/2

∑T
t=1[eut−Eeu0 ] = (1+oP (1))T−1/2

∑T
t=1[eut−

Eeu0 ] = T−1/2
∑T
t=1[eut −Eeu0 ] + oP (1)T−1/2

∑T
t=1[eut −Eeu0 ] = T−1/2

∑T
t=1[eut −Eeu0 ] + oP (1). The

delta method gives [e−ūT − 1]
√
TEeu0 =

√
T [e−ūT − e0]Eeu0 = −

√
T ūTEe

u0 + oP (1) and the conclusion

follows.

Appendix B. Proof of Theorem 2

Let τ̃T = − ln[T−1
∑T
t=1 exp(ut−uT )]. Assumption A4 and the smoothness of the logarithm function

imply that τ̂T and τ̃T have the same behaviour up to oP (T−1/2). Denoting τ = E ln(z2
1) = − lnEeut ,

this means
√
T (τ̂T − τ) =

√
T (τ̃T − τ) + oP (1). By Slutsky we only need show that ∆̃T =

√
T (τ̃T − τ)

is asymptotically normal. We have that τ̃T = − lnT−1
∑T
t=1 e

ut−ūT = ūT − lnT−1
∑T
t=1 e

ut , so ∆̃T =
√
T ūT +

√
T
[
f
(

1
T

∑T
t=1 e

ut

)
− f(Eeu1)

]
, where f(x) = − lnx, with f ′(x) = −1/|x|. By the smooth-

ness of f , the delta method implies that ∆̃T =
√
T ūT + f ′(Eeu1)

√
T
[

1
T

∑T
t=1 e

ut − Eeu1

]
+ oP (1) =

(f ′(Eeu1), 1) 1√
T

∑T
t=1

(
eut − Eeu1ut

)
+ oP (1). By the multivariate CLT, we have that 1√

T

∑T
t=1(eut −

Eeu1 , ut)
′ d−→ (X,Y )′ ∼ N((0, 0)′,Cov (eu1 , u1e

u1)). Hence, ∆̃T
d−→ f ′(Eeu1)X + Y , which is mean zero
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normal with variance equal to

ζ2 = (f ′(Eeu1))
2

Var X + Var Y + 2f ′(Eeu1) Var (X,Y ) =
Var [exp(u1)]

[E exp(u1)]2
+ Var (u1)− 2

E[u1 exp(u1)]

E exp(u1)
.

Using that Var [exp(u1)] = (Ez4
1−1)/

{
exp[E ln(z2

1)]
}2

, E exp(u1) = 1/ exp[E ln(z2
1)], Var (u1) = E[(ln z2

1)2]−

[E ln(z2
1)]2 and E[u1 exp(u1)] =

{
E[(ln z2

1)z2
1 ]− E ln(z2

1)
}
/ exp[E ln(z2

1)], we obtain

ζ2 = E[(ln z2
1)2]− [E(ln z2

1)]2 + (E(z4
1)− 1)− 2E[(ln z2

1)z2
1 ] + 2E(ln z2

1).

From A4 we have that E(z4
1) < ∞ and E[(ln z2

1)2] < ∞, and the Cauchy-Schwarz inequality implies

that |E[(ln z2
1)z2

1 ]|2 ≤ (E[(ln z2
1)2])(Ez4

1). So ζ2 is finite. Finally, the expression simplifies to ζ2 =

Var (z2
1 − ln z2

1).
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