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1. Introduction

A contest is a game where contestants exert costly and irretrievable e¤ort in or-

der to obtain one or more prizes with some probability. Many real-life situations

comply with such general de�nition. Political parties try to win the elections by

spending resources on political campaigns. Plainti¤ and defendant try to win

a trial by spending money on lawyer�s cost. Armies try to win wars by buy-

ing weapons and hiring soldiers. Lobbyists try to persuade policy makers by

cautiously preparing in�uencing speeches. Students compete for scholarships by

spending time to study hard. Sportsmen try to win sports competitions, or break

world records, by tireless training. Job applicants try to get a job by giving it

all during the assessment day. And also television quizzes, public procurements,

R&D contests, and virtually countless other scenarios comply with the de�nition

of a contest. In fact contests can be regarded as an allocation mechanism on equal

footing as the authority or the market.

Contest literature traces back to the seminal contributions of Tullock (1967,

1980) and Krueger (1974) who studied a particular case of contest - rent-seeking

-, and of Becker (1983) who studied lobbying.2 Complementary surveys over the

literature on contests are: Nitzan (1994), Szymanski (2003), Corchón (2007) and

Konrad (2009). We aim here to provide an up-to-date review of some of the main

contributions in the �eld.

Contests are categorized into two big families. Contests that naturally occur

in order to solve a dispute or a con�ict - political campaign, court trial, war, lobby

-, and contests which are planned and organized by a contest designer in order

2A loose history of the concept of rent-seeking can be found in Tullock (2003).
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to achieve some goal - scholarship, sport, assessment day, television quiz, public

procurement, R&D. In the latter family, the contest can to some extent be planned

ahead by the designer who can choose for instance the number of participants.

The optimal design of contests is considered in Section 7, whereas the rest of the

paper takes the structural elements of the contest as exogenous.

Formally, a contest is described by the following elements.

1. A list of contestants - or agents -, denoted by N = f1; 2; :::; ng.

2. The e¤ort of each contestant, denoted by Gi 2 R+ for contestant i.3

3. A prize whose value for contestant i is denoted by Vi.4 When all contestants

have identical valuation of the prize it will be denoted by V .

4. A mapping from contestants�e¤orts into individual probabilities of winning

the prize, or a share of it in case the prize is divisible. This mapping is

called Contest Success Function (CSF) and for contestant i it is denoted

by pi = pi(G1; ::::; Gn). In Section 2 we discuss the three main CSF, and

its variations and alternatives. In Section 3 we discuss microfoundation of

CSFs.

5. An attitude towards risk of contestants. To the extend of keeping this survey

simple and neat we will assume risk neutrality throughout.5

3E¤ort could be multidimensional, like in Faria et al. (2014).
4As for non-�xed prize, see Chung (1996) and Amegashie (1999a). Prize valuation hetero-

geneities can be equivalently modelled as marginal costs heterogeneities, and they are often
referred to as types of contestants.

5The interested reader can refer to Hillman and Katz (1984), Skaperdas (1991), Skaperdas
and Gan (1995), Konrad and Schlesinger (1997), Cornes and Hartley (2003) and Treich (2010)
for models of contest with risk averse contestants.
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6. A cost function for e¤ort, which for simplicity we assume here to be linear.

Without loss of generality, we also assume that the marginal cost equals 1.

The cost of e¤ort is sunk.6

All in all, a contest can be represented as a normal form game where players

are contestants, strategies are e¤orts, and payo¤s, denoted by �i, are the expected

utility, that is:

�i(G1; ::; Gi; ::; Gn) � pi(G1; ::; Gi; ::; Gn)Vi �Gi (1.1)

For these games the most common notion of equilibrium is the one proposed by

John Nash in 1950, who generalized an idea of Antoine-Agustin Cournot in 1838:

an equilibrium is a situation where there are no unilateral incentives to deviate.7

Hence, an n-tuple (G�1; ::; G
�
i ; ::; G

�
n) is a Nash Equilibrium (NE) if

�i(G
�
1; ::; G

�
i ; ::; G

�
n) � �i(G�1; ::; Gi; ::; G�n); 8Gi 2 <+, 8i 2 N (1.2)

Discussion of properties such as existence and uniqueness of NE and comparative

statics can be found in sections 3 and 4 of Corchón (2007).8 Sections 5 and 6

of the same survey investigate social welfare, and Section 7 analyzes the relation

between rent-seeking, institutions and economic policies.

6A model in which expenses are partially reversible is Siegel (2010), where part of the e¤ort
is sunk and the rest is paid only by the winner of the contest. Despite we focus in this survey
on all-pay contests, there is a complementary strand of the literature considering winner-pay
contests; that is, the e¤ort is exerted only if the contestant wins, see Skaperdas and Gan (1995),
Wärneryd (2000), Corchón and Dahm (2011), Yates (2011) and Alcalde and Dahm (2013).

7An alternative speci�cation including bounded rationality of contestants is analyzed in a
contest model by Anderson et al (1998).

8A recent work by Chowdhury and Sheremeta (2011) shows that uniqueness of NE is lost
when there are externalities in costs.
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In the �rst half of this survey, we present the main ingredients of a contest,

with focus on how e¤orts translate into probabilities of winning (i.e., the CSF).

In the last part of this survey, we focus on some extensions of the basic model,

namely dynamics (Section 4), information (Section 5), and groups (Section 6), we

compute the equilibrium of the popular lottery model of contest with heterogenous

contestants, and we use equilibrium properties to review some results on how the

contest designer optimally designs the contest given her objective function, which

depends on e¤orts and possibly Vi�s (Section 7).9

2. Contest success function

2.1. Standard

In this subsection we present the three most common CSFs. An overview of CSF�s

applications to econometric models can be found in Jia, Skaperdas and Vaidya

(2013).

1. All-pay auction (see Hillman and Riley, 1989).

In this version of the CSF the contestant exerting the highest e¤ort wins

the prize with probability 1. If several contestants exert the highest e¤ort,

it is usually assumed that they have equal probability of winning the prize.

9The contest designer is typically assumed to design the contest ex-ante with commitment.
An exception is Corchón and Dahm (2011), in which the CSF is derived as the optimal reply of
a planner who cannot commit to the CSF.
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Formally,

pi(G1; ::; Gi; ::; Gn) =

8>>><>>>:
1

1
m

0

if Gi > maxfG1; :::Gi�1; Gi+1; :::; Gng

if Gi is one of the m maximum elements of fG1; :::; Gng

if Gi < maxfG1; :::; Gng
(2.1)

In all-pay-auctions (henceforth, APA) there are no equilibria in pure strate-

gies. The reason is that for a given vector of e¤orts contestants have an

incentive to decrease their e¤orts as long as it does not a¤ect their winning

probabilities, i.e., all the way down to 0 if the contestant�s e¤ort was not

the highest one, or to an arbitrarily small epsilon more than the second

highest e¤ort if the contestant�s e¤ort was the highest one. At the same

time, everyone bidding arbitrarily close to 0 is not sustainable in equilib-

rium, because overbidding the highest bid would grant victory, at a very

small cost, thus deviations would be pro�table, once again. Therefore, no

pure-strategy NE exists. For the analysis of NE in mixed-strategies see

Baye, Kovenock and de Vries (1996) in complete information with identical

costs, and Amann and Leininger (1996) in incomplete information with two

contestants. With su¢ ciently many contestants and prizes, Olszewski and

Siegel (2016a) approximate the equilibrium behavior, even for asymmetric

contests with incomplete information that are typically di¢ cult or impossi-

ble to solve. One of the most prominent application of the APA model is

to lobbying; see Baye et al. (1993), who show that a designer interested in

maximizing the sum of bids might bene�t from excluding lobbysts valuing

the prize the most from participating in the contest (the so-called, exclusion
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principle). The family of APAs has been generalized by Siegel (2009), who

only requires that conditional on losing or winning it is better to do so with

a lower investment.

2. The di¤erence-form (Hirshleifer, 1989):

In this CSF the winning probability depends on the di¤erence between a

contestant�s e¤ort and a measure of the other contestants�e¤orts. In the

special case of two contestants, the winning probability depends on the

di¤erence between contestants�e¤orts. Analytically,

pi = Fi(Gi �Gj); i; j = 1; 2; i 6= j (2.2)

Hirshleifer motivates this CSF saying it captures "the tremendous advantage

of being even just a little stronger than one�s opponent" (Hirshleifer 1991,

p. 131). The problem of this CSF is clear when assuming di¤erentiability.

In this case, the �rst-order conditions tell us that, since p2 = 1 � p1, in an

interior equilibrium

F 01(G1 �G2)V1 � 1 = 0 and F 01(G1 �G2)V2 � 1 = 0 (2.3)

where F 0 is the derivative of F . (2.3) implies that - if valuations are di¤erent

- only the contestant with the highest valuation exerts positive e¤ort in

a pure-strategy NE (Baik, 1998). Che and Gale (2000) proposed a non-

di¤erentiable special case of (2.2), namely

p1 = max

�
min

�
1

2
+ s(G1 �G2); 1

�
; 0

�
with p2 = 1� p1 (2.4)
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in which the equilibrium does not necessarily occur in the region where the

CSF is di¤erentiable. Note that when s = 0 the CSF does not change with

e¤orts, and when s ! 1 any arbitrarily small overtaking of rival�s e¤ort

completely changes the outcome of the contest, and in fact (2.4) boils down

to the all-pay auction (2.1). Despite this CSF has the problem spotted above

- namely, at most one contestant exerts positive e¤ort in pure strategy NE

-, it allows to compute mixed strategy NE.10

All these CSFs belonging to the family of (2.2) have the additional problem

that the probabilities of winning depend on the unit of measurement of

e¤orts (dollars or euros, minutes or hours, hundreds or thousands, etc.);

that is, the probability of winning is not homogeneous of degree 0 (HDZ)11.

Alcalde and Dahm (2007) proposed a CSF which maintains the idea of

depending on the di¤erence of e¤orts and at the same time it is HDZ given

that Gj � Gj+1,

pi =
nX
j=i

G�j �G�j+1
j �G�1

, 8i 2 N with Gn+1 = 0 (2.5)

In what follows we will see another attempt to reconcile di¤erence-form CSF

and HDZ, namely (2.8) and (2.10).

3. The ratio-form (Tullock, 1980) and its extensions.

In this case the winning probability for a contestant equals the contestant�s

10If the cost function was strictly convex, e.g. G�i with � < 1, then a pure strategy NE with
positive e¤ort exerted by both contestants exists.
11A function x = f(y) where x 2 R and y 2 Rm is HDZ if f(y) = f(�y) 8� 6= 0.
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e¤ort over the sum of all contestants�e¤orts. Namely,

pi =
Gi

G1 +G2 + :::+Gn
(2.6)

This CSF is also known as lottery-CSF, since it equals the probability of

winning the lottery with
Pn

j=iGj identical tickets when you hold Gi tickets.

A good property of this CSF is that it is HDZ, thus the winning proba-

bilities are not sensitive to changes in the unit of measurement of e¤orts.

Unfortunately, this CSF is discontinuous or unde�ned in 0. This, however,

is a common property of HDZ-CSF (see Corchón, 2000). Usual assumption

is that when all e¤orts equal 0, the probability of winning equals a constant

k 2 [0; 1], and since this situation is never reached in equilibrium of the si-

multaneous complete information contest, it does not a¤ect the outcome of

the game.12 Modelling a contest with the lottery-CSF is highly common and

tractable. Therefore, in Section 7 we focus on this model when computing

the equilibrium and reviewing results on optimal contest design.

Dixit (1987) proposed a natural generalization of (2.6), also known as logit-

CSF:

pi =
�(Gi)Pn
j=1 �(Gj)

(2.7)

An interpretation of �(Gi) is that it measures the impact of Gi in a¤ecting

the outcome of the contest. Thus, the ratio (2.7) measures the relative

impacts of i�s e¤ort on aggregate impacts of all contestants�e¤orts. Several

CSFs proposed in the literature are special cases of (2.7). For instance,

12In fact, if every contestant plays Gi = 0, any arbitrarily small deviation to Gi = " > 0
would grant victory at a negligible cost.
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�(Gi) = G
�
i which we will refer to as the Tullock-CSF, it was proposed by

Gordon Tullock in 1980. In this case, � determines the returns to e¤ort, and

it is often interpreted as a noise parameter, which tells how much of a greater

e¤ort than your rival�s is transformed into a greater probability of winning.

In other words, the noise can be interpreted as any stochastic factor not in

the hands of the contestants, such as luck, or limited observability of e¤orts

by the contest organizer. If � ! 1, the noise is absent, and an arbitrarily

small overtaking of your rival�s e¤ort will make you win with certainty (the

APA case). If � = 0, the noise is maximum; that is, the contest is a stochastic

process giving to everyone 1=n of probability of winning, regardless of e¤orts.

If � = 1, the noise is intermediate, and (2.6) results.

Amegashie (2006) proposes a di¤erent way to model the noise in the contest:

�(Gi) = Gi+k. The greater is the noise k, the less the outcome of the contest

depends on e¤orts.

Hirshleifer (1989) proposes a CSF which complies both with (2.7) and (2.2):

�(Gi) = e
kGi, with k > 0. In fact, it can be written as di¤erence-form CSF

in the following way

pi =
1Pn

j=1 e
k(Gj�Gi)

(2.8)

This CSF lacks concavity in Gi, and the best reply functions are straight

lines of 45� slope up to a point of discontinuity. As shown by Hirshleifer

(1989), equilibria are either in mixed strategies or corner (if contestants�val-

uations are su¢ ciently asymmetric). These facts undermine its tractability.

In Corchón (2007) the reader can �nd an overview of existence and unique-

ness of NE as well as comparative statics when the CSF is in di¤erence-form
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and valuations are identical, and when valuations are possibly asymmet-

ric and the CSF is the lottery-CSF. Local properties of comparative statics

for the logit-CSF with asymmetric valuations are studied in Acemoglu and

Jensen (2013).

The lottery-CSF admits extensions where e¤orts a¤ect probabilities of win-

ning asymmetrically, e.g.

pi =
�iGi

�1G1 + �2G2 + :::+ �nGn
(2.9)

where �i is the weight of the e¤ort of player i. The di¤erent weights can be

interpreted as di¤erent impacts of e¤orts, or as an unevenly levelled playing

�eld due for instance to a bias, an handicap, or a judging committee biased

towards some contestants. Brown (2011) make use of (2.9) to make the case

that the presence of an outstanding contestant (a "superstar") is associated

with lower performance. Dahm and Porteiro (2008) also make use of (2.9)

to model more accurate information of a political decision-maker lobbied

by competing interests and investigate whether bias in the direction of the

correct decision improves political decisions.

A CSF trying to unify the good properties of the lottery and of the di¤erence

forms is proposed by Beviá and Corchón (2015). When n = 2, their CSF

equals

pi = �+ �
Gi � sGjP2

j=1Gj
(2.10)

where � is the part of probability inelastic to e¤orts - as the noise � in (2.7)

with �(Gi) = G�i discussed above -, � measures the impact of the relative
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e¤orts, and s is how the rival�s e¤ort negatively a¤ect i�s probability of

winning. To guarantee that p1 + p2 = 1 condition 2� + �(1 � s) = 1 is

imposed, and to guarantee non-negative probabilities the maxmin operator

as in (2.4) is assumed. Adding and subtracting sGi to the numerator of

(2.10), we obtain

pi = �� �s+ �(1 + s)
GiP2
j=1Gj

(2.11)

therefore this CSF is an a¢ ne transformation of the ratio CSF (and they

coincide when � = 0 and � = 1, so that s = 0 by condition 2�+�(1�s) = 1).

Beviá and Corchón provide a necessary and su¢ cient condition for existence

of a NE when n = 2, which is � + � � 1:5 when valuations are identical.

Moreover, the NE is unique. When n > 2 and valuations are identical, a

su¢ cient condition for existence of a NE is n � n(� + �) � 1. They also

�nd su¢ cient conditions for the existence of a NE when agents have non

identical valuations.

Note that the tools to analyze games of strategic complementarities or substi-

tutabilities do not apply to contests.13 For instance, in case of (2.9) with n = 2

and normalizing �1 = 1 the best reply function of contestant 1 is

G1 =
p
V �2G2 � �2G2 (2.12)

which is �rst increasing (strategic complements) and then decreasing (strategic

substitutes). It is easy to prove that this property carries over to logit-CSF,

under some very mild conditions (see Dixit, 1987).

13The actions of players are strategic substitute (complements) when they mutually o¤set
(reinforce) one another. See, Bulow, Geanakoplos and Klemperer (1985).
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2.2. Other Contest Success Functions

1. Ties

The CSFs seen so far do no admit intermediate outcomes; either the con-

test is won or lost. Yet, in several of the applications highlighted in the

Introduction, ties are natural and likely outcomes of the contest. There are

wars which reach an impasse without a clear winner, like the one of Korea

(1950-1953) or the one of Iran and Iraq (1980-1988). Trials in Anglo-Saxon

countries could end up with a null verdict or a "hung jury". Ties play an

important role also in sports - such as football, chess and cricket. Finally,

in some procurements the prize (or work) might not be allocated when none

of the contestants meets the minimal quality requirements.

Despite their relevance in contests, only recently the literature started con-

sidering ties. Here we consider n = 2 to avoid having to consider ties

of all the possible sub-groups of n contestants. The �rst contribution is

Blavatskyy (2010), which shows that under a set of axioms inspired by the

work of Skaperdas (1996) - which will be discussed in the next section - the

probability of ties is
1

1 + �1Gr1 + �2G
r
2

(2.13)

where �1; �2 and r are real and positive numbers. The problem of such CSF

is that, as noted by Peeters and Szymanski (2012), it is arguably implausible

that the probability of tie goes to zero as e¤orts of both contestants are

identical and large. They present a CSF where the probability of ties is

given by the relative di¤erence, with the goal of empirically testing it. Jia
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(2012) axiomatizes a CSF where the probability of ties is

G1G2(c
2 � 1)

(G1 + cG2)(G2 + cG1)
(2.14)

where c > 1. Jia shows that there is a unique NE in pure-strategies when

c < 3. Finally, Yildizparlak (2014) presents a CSF which admits ties, and

applies it to four European football leagues (German, Spanish, French and

Italian) with positive results. In his work, the probability of ties is given by

1�
P2

j=1 �(Gj)
k

(
P2

j=1 �(Gj))
k

(2.15)

where �(�) is increasing, concave and di¤erentiable, and k > 1 is the pa-

rameter interpreted as the propensity to ties. When k = 1 the CSF boils

down to the logit-CSF. Yildizparlak shows that there exist a unique NE

in pure-strategies when k < 3. Curiously, the value of k which in theory

maximizes e¤orts, k = 1:44, is very close to the one estimated in the four

European leagues, which is close to 1:5.

The possibility of ties in APA has been analyzed by Gelder et al. (2015).

They characterize the Nash equilibria of a symmetric complete information

setting with two contestants where a tie occurs if neither player outbids the

other by strictly more than a �xed amount, � � 0. When players tie, they

receive an identical fraction of the prize, � 2 [0; 1]. Thus, the CSF can be
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written as follows,

pi(Gi; Gj) =

8>>><>>>:
1

�

0

if Gi �Gj > �

if jGi �Gjj � �

if Gi �Gj < ��

(2.16)

2. Mechanism design

Polishchuk and Tonis (2013) present a novel view to contest design under

informational asymmetry among contestants. The designer picks the CSF.

By means of the revelation principle, they retrieve the optimal CSF. For a

given distribution of types, the CSF which maximizes expected aggregate

e¤orts is the logit-CSF, whereas for other distribution of types they �nd

that the optimal CSF is the additive logarithmic

pi =
1

2
(logGi � logGj) +

1

2
(2.17)

the di¤erence-form CSF of Che and Gale (2000), or the following CSF which

combines the additive and the di¤erence CSF, and which is similar to the

one proposed by Beviá and Corchón (2015)

pi =
2�(Gi)� �(Gj)P2

j=1 �(Gj)
(2.18)

When requiring ex-post optimality, the optimal CSF has similarities with

the famous Clark-Vickrey-Groves mechanism. This is not surprising, given

that contests can be regarded as the allocation of a public good.

A problem with these results is that besides the equilibrium where agents
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truthfully report their valuations, there might coexist others where agents

lie. Furthermore, the optimal CSF depends on the distribution of types,

which is usually unknown. Still lot has to be done to fully understand limits

and advantages of the mechanism design viewpoint to discover new CSFs.

3. Microfoundations of CSF

So far we just assumed the CSF�s functional form, which could be more or less

plausible. The literature provided several ways to microfound some standard

CSFs. Microfoundations are also useful to discover new CSF.

1. Stochastic performance

In this viewpoint, started by Dixit (1987) and Hillman and Riley (1989),

it is assumed that performance is made of two factors: the e¤ort of the

contestant, and a stochastic component which we will denote by �i. For

simplicity, we assume n = 2. Thus, contestant i wins the contest if and

only if �iGi > �jGj. Note that the all-pay auction is a special case (i.e., if

�i = �j).

The general result is given by Jia (2008) which proves that if the stochastic

components follow a inverse exponential distribution the resulting CSF is

the logit-CSF. The works by Fullerton and McAfee (1999) and by Baye and

Hoppe (2003) also o¤er microfoundations for the logit-CSF in the cases of

innovations and patents.

These foundations, although natural, sharply rely on the particular shape

of the cdf of the stochastic component, of which we know very little.
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2. Axiomatic

The axiomatic approach focuses on properties which characterize the CSF.

Here, the seminal work is Skaperdas (1996).14 Skaperdas shows that the

logit-CSF is obtained under the assumptions of 1) imperfect discrimina-

tion (i.e., the probability of winning is always positive if e¤ort is posi-

tive), monotonicity (i.e., the probability of winning increases in e¤ort), 3)

anonymity (the probability of winning depends on an agent�s e¤ort, not on

an agent�s identity), and 4) a form of irrelevance of independent alternatives.

If the extra property of HDZ is added, the Tullock-CSF is obtained. In a

subsequent work by Clark and Riis (1998a), a neat proof generalizes the

one of Skaperdas to asymmetric CSF. A paper by Vesperoni (2013) treats

the case of multiple prizes, and axiomatizes an appropriate CSF for this

context. Münster (2009) extends Skaperdas� axiomatization of the logit-

CSF to group contests. Cubel and Sanchez-Pagés (2014) axiomatize the

di¤erence-form CSF for the case in which the contestants are groups.

3. Contest Designer

As mentioned above, some contests, like sports and public procurements,

are designed and managed by one or several people. We refer to them as

the designer. In this context, the CSF is, to some extent, the direct conse-

quence of the actions of the designer. An early work in this �eld is Epstein

and Nitzan (2006). They assume n = 2 and that the objective of the de-

signer is a weighted average of the social welfare and of contestants�e¤orts.

14The interested reader can �nd explanation and discussion of this microfoundation in Corchon
(2007).
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This latter has a two-fold interpretation: �rst, the e¤orts could improve the

quality of the prize, as the plans for the Olympic games improve the quality

of the Olympic games themselves, and second, e¤orts could be interpreted

as monetary transfers from contestants to the designer. Epstein and Nitzan

study the conditions under which the designer prefers to organize a contest

with a Tullock-CSF or an all-pay auction.

In Corchón and Dahm (2010) the designer could be of various types, un-

known to contestants. In turn, contestants might ignore the bias in the

designer�s preferences (towards one contestant, or another), her way of work-

ing, her ideology, etc. The CSF is simply the best reply of the designer as

perceived by contestants. For instance, consider n = 2 and the designer�s

utility is

U1 = (1� �)�(G1) and U2 = ��(G2) (3.1)

where Ui is the designer�s utility if contestant i wins, � measures the impact

on the designer�s utility, and � is uniformly distributed in [0; 1]. For given

e¤orts, the probability that contestant 1 wins is the probability that U1 > U2

which is �(G1)=(�(G1)+�(G2)), i.e. the logit-CSF. In this case, we say that

the logit-CSF could be rationalized. Corchón and Dahm show that when

n = 2 every CSF could be rationalized, whereas when n > 2 none of the

known CSFs could be rationalized. This is because in the standard CSFs

the probability of winning depends symmetrically on the aggregate e¤orts

of the others. Yet, the competition is much local, such as in some indus-

trial organization models (e.g., the Salop model) where a player�s payment

depends on the payments of the neighboring players.
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In a subsequent work Corchón and Dahm (2011) consider a designer who

cannot commit to a CSF, and can only allocate probabilities of winning once

e¤orts are exerted, which by itself is a CSF. They suppose that the designer

maximizes a CES objective function, where the arguments are the e¤orts,

W (p;G) =

8>>>><>>>>:

 
nX
i=1

(piVi �Gi)1�r
!1=(1�r)

if r 6= 1
nX
i=1

ln (piVi �Gi) if r = 1

(3.2)

If r = 1 the �rst-order conditions give

(piVi �Gi)Vj = (pjVj �Gj)Vi; 8i 2 N (3.3)

Solving this system we obtain

pi =
1�

Xn

j=1
(Gj=Vj)

n
+Gi=Vi 8i 2 N (3.4)

which is a CSF linear in the di¤erences, such as (2.2). The conclusion

carries over to any other r. Finally, they show that the logit-CSF cannot

be rationalized by any designer who maximizes a function of contestants�

e¤orts. Yet, the logit-CSF is obtainable when the designer has an objective

function à la Kahneman-Tversky (1979).

4. Other foundations

Corchón and Dahm (2010) assume that contestants bargain over the out-

come of the contest as in lawsuits for the ownership of resources. In this case
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it is best to interpret pi as the share of the resources allocated to contestant

i. Inspired by a result in Dagan and Volij (1993), they microfound the logit-

CSF as the result of the (asymmetric) Nash bargaining solution where e¤orts

are the weights of each agent. Also, they establish a connection to the bar-

gaining problems with claims where e¤orts induce "aspiration" �i(Gi). They

�nd that the proportional problem to the bargaining problem induces the

logit-CSF while the claim-egalitarian solution induces the di¤erence-form

CSF and relative claim-egalitarian solution induces the CSF (2.5).

Skaperdas and Vaidya (2012) microfound the ratio and the di¤erence-form

CSF considering a setting where contestants produce "evidence" from which

a Bayesian judge infers the guilt of a defendant.

4. Dynamic contests

The contest models analyzed so far do not take into consideration the dynamic

component of several real life contests. For instance, many television contests have

an eliminatory stage which leads to the �nal among a reduced number of partici-

pants. The same occurs in several football and tennis leagues where participants

play in eliminatory rounds. These are called eliminatory contests. The seminal

paper on elimination contests is Rosen (1986).15 It could also occur that the con-

test is made of several stages, contestants obtain an outcome in each stage, and

the contest is won by the contestant with the greatest overall outcome, or with

15On elimination contests see also the subsequent works, Amegashie (1999b) and Konrad and
Gradstein (1999).
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the greatest stage outcome. The former occurs in leagues (football, basketball)

or in the election of the candidate for the republican or democratic parties at the

White House. Wars often consist of several consecutive battles. The latter occurs

in innovation races, where �rms produce innovations of stochastic value in each

period, and the �rm which managed to produce the innovation of the greatest

value wins the contest, see Taylor (1995). These contests are usually called races.

A survey of the literature is in Konrad (2012). It seems reasonable to expect

that, in a race with a unique �nal prize where one contestant accumulates a sig-

ni�cant advantage, all contestants loosen their e¤orts; the advantaged contestant

because she needs not much e¤ort in order to win, and the contestants lagging

behind because they would need big e¤ort to catch up. This is what Konrad

calls the "discouragement e¤ect". A consequence of this is called "New Hamp-

shire e¤ect"; the �rst and preliminary results of the elections of a candidate for

the USA presidency are a good predictor of the winner, see Klumpp and Polborn

(2006). This is due to the discouragement e¤ect which magni�es the advantage of

the winners of the early stages of the contest. This is generalized in the so-called

Matthew e¤ect, coined by the famous sociologist Robert K. Merton, which takes

its name from the biblical Gospel of Matthew, "the rich get richer and the poor

get poorer", where wealth is meant metaphorically to refer to fame or status.

Thus, an already famous scholar tends to receive more citations than less known

scholars, despite similar quality works.

But the discouragement e¤ect, important as it is, is not a general property of

dynamic games. For instance, if the loser is concerned with the magnitude of the

defeat, a �rst battle defeat could actually incentivize the loser to exert more e¤ort

in subsequent battles, in order to avoid a dishonorable defeat, see Sela (2011).
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Möller (2012) and Beviá and Corchón (2013) consider 2-period contests where the

�rst period has a positive e¤ect on the probability of winning in the second period,

and players have an incentive to exert e¤ort. Therefore, the discouragement e¤ect

only occurs when the initial di¤erence between the two contestants is su¢ ciently

large. The Matthew e¤ect occurs with the ��s in (2.9), but not with the received

share of the prize. Hence, contestants who are initially advantaged by the CSF,

tend to be even more advantaged in the second period, and in turn this incentivizes

them to exert less e¤ort in the second period, which reduces their advantage. A

generalization of these issues to models with more than 2 periods has been pursued

by Luo and Chie (2016).

Besides scheduling the stages of the contest sequentially, several real life con-

tests have simultaneous subcontests nature, where the winner is the one winning

the vast majority of subcontests. Fu, Lu and Pan (2015) establish that in multi-

battle team contest where the contest success function is homogeneous of degree

zero (which nests both the logit-CSF and the APA), the outcomes of past bat-

tles do not a¤ect the outcome of future battles, and that aggregate e¤ort and

contest outcome are not a¤ected by the temporal structure of the contest - simul-

taneous or (partially) sequential battles - or its feedback policy. Besides playing

simultaneously or sequentially across subcontests (battle�elds), one can think of

contestants playing sequentially within the same contest. This case is analyzed by

Morgan (2003), who �nds that sequential contests are ex ante Pareto superior to

simultaneous contests, and that if contestants can choose between simultaneous

or sequential contest before types realizations, the latter is chosen in any subgame

perfect equilibrium. Leininger (1993) covers the case where contestants choose

the timing of the contest after types realizations, and the main �nding is that
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contestants agree to move in a particular sequencial order. Extension of these

results to the asymmetric information setting has been carried out by Fu (2006).

The incentives to precommit to e¤ort are analyzed in Dixit (1987): in a two-player

contest, he �nds that the stronger (weaker) contestant will want to precommit to

a higher (lower) level of e¤ort than the Nash-level without precommitment. Baik

and Shogren (1992) extend Dixit�s model to allow for endogenous order of move,

and �nd that the weak contestant plays �rst.

5. Asymmetric information

Sometimes the assumption that contestants perfectly know each others is rea-

sonable. In the �nal of the 2015 Champions League, it was widely well known

that Barcelona and Juventus had much di¤erent strengths (1e on Juventus�vic-

tory yielded 5.88e, 1e on Barcelona�s victory yielded 1.63e).16 Other times, the

assumption of complete information is questionable; in job interview candidates

often ignore who the other candidates are, in warfare the amount of resources or

the military technologies owned by each party are often private information, or

in a research contest scientists have often a very limited knowledge of the set of

contestants. Predictions of models sharply change when dropping the complete

information assumption.

Einy et al. (2010) provided an example where the Bayesian equilibrium does

not exist, despite the payo¤ functions given types are quasiconcave.17 Einy et

al. (2015) show that in the special case of logit-CSF, a Bayesian equilibrium in

16Source: http://www.oddsportal.com/soccer/europe/champions-league-2014-2015/results/
17This is due to the fact that the sum of quasiconcave functions needs not to be quasiconcave,

thus the expected utility is not quasiconcave, and an best reply functions are not convex valued.
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pure-strategies exists. When a contestant has greater information than her rival

the equilibrium is unique, and the contestant with greater information expects

greater payo¤, although wins the prize with lower probability. Thus, similarly to

the case of levelling the playing �eld, the contestant with a competitive advantage

makes the most out of it, and exerts less e¤ort.

Corchón and Yildizparlak (2013) study war as a game where the declaration

of the war itself signals information over the type of contestant. Despite the fact

that contestants could transfer resources to level the inequalities and so incentivize

peace, war is sometimes unavoidable and could occur with very little asymmetric

information.18. See Jackson and Morelli (2011) and Baliga and Sjostrom (2011)

for surveys on the theory of con�icts applied to warfare.

A recent literature endogenizes the information. Suppose that the designer

knows contestants�types, but each contestant a priori knows only her own type,

and not her rival�s one. This is the case in several grant contests, job interviews,

chess championships, and many others. If the designer maximizes expected aggre-

gate e¤orts, should she disclose contestants�information on types to each other?

While the answer for a revenue maximizing auctioneer is always positive (see the

"linkage principle" by Milgrom and Weber, 1982), in contests this is not always

the case. In fact, Serena (2016b) shows that when the distribution of types is

binary (Vh with probability p, Vl � Vh with probability 1 � p), the designer is

strictly better-o¤ precommitting to fully disclose when p 2 (0:5; 1), and to fully

conceal when p 2 (0; 0:5). The intuition relies on the following simpli�ed reason-

ing. When p is very high, concealment would be severely detrimental in that a

18Under complete information, the transfers yield peace unless the initial distribution of re-
sources is greatly heterogenous, see Beviá and Corchón (2010).

24



low type would not only believe of being against a high type, but also believe that

her high type rival believes of having to �ght hard because likely to be against

another high type. This yields a disproportionate discouragement of the low type.

On the other hand, when p is very low, concealment would be very bene�cial

in that a high type would believe of being against a low who believes of being

against another low and thus does not give up on exerting e¤ort, which has a

positive impact on the high type�s e¤ort. Note that this second e¤ect is possible

only under asymmetric information.

The role of information in a common and uncertain value contest is considered

in Wärneryd (2003). He �nds that if the two contestants are evenly informed

on the value of the prize they are competing for, the equilibrium e¤orts can be

greater than if only one of the two contestants fully informed about the value of

the prize.

6. Contest among groups

There are plenty of real life situations where contestants are group, rather than

individuals. Groups of scientists join forces to make a breakthrough and win a

research contest. Members of political parties work together in order to win the

elections. The probability of a group to win the contest depends on the aggregate

e¤ort of the members of the group. This creates a free rider�s problem. Mancur

Olson (1985) conjectured that if contributions of group members are voluntary,

the small groups are more capable to cope with the free rider�s e¤ect. This is

referred to as the group size paradox: smaller groups are more e¤ective in group

contests. In general, this paradox is not true - see Corchón (2007) and the original
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references therein -, because when a group admits a new member, two e¤ects

occur: on the one hand, the e¤ort of the old members decreases, on the other

hand the e¤ort of the new member is added. The second e¤ect might dominate,

as in Cournot models, where entry reduces incumbents�output, but increases total

output. Nitzan and Ueda (2009) show conditions for the existence (non-existence)

of the group-size paradox.

Katz et al. (1990) analyze group contest where groups vary in number of

members and the prize is a pure public good. They �nd that when all members

are identical, all groups exert the same aggregate e¤ort regardless of asymmetries

in group size, and that groups with greater valuations Vi tend to exert more e¤ort,

and thus wins with greater probability. Their analysis is run under (2.6), where

Gi is the sum of the e¤orts of group i�s members. Nti (1998) generalizes the CSF

of Katz et al. (1990) to (2.7).

A strand of the literature analyzes what happens when groups can design

internal rules to incentivize e¤orts - such as internal reward schemes, see Nitzan

and Ueda (2011). In Lee and Kang (1998), intra-group sharing rules is determined,

and then individual outputs are chosen - under (2.6) - and the contest is associated

with externalities in that each member�s cost of rent seeking is negatively or

positively a¤ected by the aggregate e¤ort. They �nd that if this e¤ect is positive,

the rent is more dissipated in the collective contest than in the individual contest.

A further step ahead has been made thanks to the contribution of Vázquez-Sedano

(2014), who applies mechanism design to the group contest sharing rule.

A key ingredient of group contest is how e¤orts of the group members are

aggregated. Three cases are the most prominent in the literature:

� best-shot contest, where group performance depends on the best performer
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within the group; see for instance Chowdhury et al. (2013) for the Tullock

contest, and Barbieri et al. (2014) for the APA.

� contests where contestants� e¤orts are perfect substitute; see for instance

Katz et al. (1990) and Baik (2008) for the Tullock CSF, and Baik et al.

(2001), Topolyan (2014) for the APA.

� weakest link contests, where group performance depends on the worst per-

former within the group; see for instance Lee (2012) for the Tullock contest,

and Chowdhury et al. (2016) for the APA.

Combinations of the above three ways of aggregating contestants�e¤orts can

be found in Kolmar and Rommeswinkel (2013) and Chowdhury and Topolyan

(2015, 2016).

7. Equilibrium and Optimal Contest Design

Several CSFs have been discussed in this survey. In this section we focus on the

lottery-CSF, one of the most prominent and tractable way of modelling contests,

and its generalizations. We start with the analysis of the equilibrium of such a

game, and we then draw conclusions on how to optimally design such contest. For

the optimal design of contest, the broadly prevailing fashion is to assume that the

contest designer maximizes the sum of contestants�e¤orts. That is, the designer

aims to stimulate competition among contestants, and equally bene�ts from every

contestant�s e¤ort. Serena (2016a) proposes as alternative the maximization of

e¤ort of the winner: the designer of an architectural contest only bene�ts from

the e¤ort exerted behind the winning entry (which is the only project that will
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eventually be implemented). Despite other alternative objective functions are

present in the literature,19 we mostly focus here on the maximization of the sum

of e¤orts and of the e¤ort of the winner.

By concavity of the lottery-CSF in own e¤ort, the second-order conditions of

utility maximization are satis�ed, and thus the NE can be computed from �rst-

order conditions. Order contestants by prize valuation V1 � V2 � ::: � Vn > 0.

Only the �rst m � n contestants exert positive e¤orts in the unique equilibrium,

and for them,

p�i = 1�
m� 1

Vi

 
mP
j=1

1
Vj

! , G�i =
m� 1
mP
j=1

1
Vj

2666641� m� 1

Vi

 
mP
j=1

1
Vj

!
377775 , and ��i =

2666641� m� 1

Vi

 
mP
j=1

1
Vj

!
377775
2

(7.1)

m is characterized by the greatest i such that G�i � 0 (see Fullerton and

McAfee, 1999). As for contestants i = m + 1; :::; n, in equilibrium G�i = p�i =

��i = 0. In other words, they quit, because competition is too tough and their

prize valuation not su¢ ciently high. Several conclusions can be drawn from (7.1).

First, note that the sum of e¤orts simpli�es to

nX
i=1

G�i =
m� 1
mP
j=1

1
Vj

19Falconieri et al. (2004), Palomino and Sákovics (2004), and Vrooman (2012) consider the
maximization of competitive balance, understood as the uncertainty of the contest outcome:
uncertainty thrills the interest of the audience of sport events. Azmat and Möller (2009) consider
a contest designer who wants to attract participation - as in online communities where users
contribute to the content.
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and thus it "closely approximates the harmonic mean of individuals�valuations

as the number of contestants increases" (see Hillman and Riley, 1989). Under a

mild technical condition on the distribution of Vi�s,20 Fullerton and McAfee (1999)

show that, if the designer can set an entry fee E, the total cost of achieving a

desired sum of e¤orts (including the collected entry fees) is minimized at m� = 2.

If the designer cannot set and collect entry fees, Fang (2002) shows that exclusion

of contestants is not bene�cial to a designer interested in maximizing the sum

of e¤orts.21 This result is due to the fact that excluding contestants has two

e¤ects: (i) the e¤ort of the excluded contestant is not exerted any longer, and (ii)

individual e¤orts change (increase or decrease according to the type of excluded

contestant). Fang�s results show that (i) is always stronger than (ii) in a¤ecting the

sum of e¤orts. On the other hand, consider a designer who maximizes expected

winning e¤ort; that is, a designer interested in maximizing the quality of the

winning entry. Then (i) does not a¤ect per se the expected winning e¤ort, whereas

(ii) might increase the expected winning e¤ort (necessary and su¢ cient conditions

for this to happen are provided by Serena, 2016a).

When contestants have identical valuations Vi = V 8i 2 N , it is trivial to see

that G�i > 0 8i 2 N (i.e., no one quits: m = n), and in the unique NE:

p�i =
1

n
; G�i =

n� 1
n2

V; and ��i =
V

n2
(7.2)

20The technical condition is that m
Vm

 
mP
j=1

1
Vj

!
is non-decreasing, which is for instance satis�ed

if Vi is constant, if there are constant increments to valuations, or proportional increments to
valuations.
21This result is in sharp contrast with the above mentioned exclusion principle, see Baye et

al. (1993).
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From (7.2) it is immediate to see that individual e¤ort increases with the prize

and decreases with the number of contestants. Thus, a designer who maximizes

the e¤ort of the winner (and cannot set and collect entry fees) should exclude

contestants so as to have a 2-player contest. On the other hand, a designer

who maximizes the sum of e¤orts (i.e., n�1
n
V ), bene�ts from increasing n, and

thus should be concerned with ways to stimulate participation and advertize the

contest. Furthermore, lim
n!1

P
j2N
G�j = lim

n!1
V ; thus, if both V and Gi�s are money,

contestants tend to spend all in all an amount of money that equals the prize at

stake, as the number of contestants grow large. Tullock named this property "full

rent dissipation".

We conclude this section discussing the role of noise in the CSF and of levelling

the playing �eld.

7.1. Noise

As discussed, a tractable model to include a variable amount of noise in the

contest is (2.7) with �(Gi) = G�i . Noise in the winner selection process is naturally

embedded in many real-life applications. The designer of a research contest has

limited time or money to carefully evaluate every little detail of the submitted

projects, thus there is a probability of making the mistake of not selecting the

highest e¤ort as winner of the contest. In sport competitions, even the weakest

player has usually a positive chance of winning thanks to the inherent stochasticity

of sport competitions, for instance if a player get sick on the day of the match, or if

an inexperienced archer happen to be lucky with shooting outcomes at an archery

contest. The noise is either exogenous (good or bad luck in sport competitions)

or � to some extent � endogenous (amount of time spent on evaluating projects
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by the designer of a research contest). When it is endogenous, it is relevant to

understand whether more or less noise is bene�cial to the contest designer. For

simplicity, a common assumption is that � 2 [0; 1], which is always su¢ cient to

make CSF concave and thus the �rst-order approach valid.22 In particular, the

unique NE under � 2 [0; 1] of the symmetric Tullock contest is

p�i =
1

n
; G�i =

�(n� 1)V
n2

; and ��i =
V (n� �(n� 1))

n2
(7.3)

Note that (7.3) generalizes (7.2). When the number of contestants grows large

(i.e., n ! 1), the property of "full rent dissipation" fails to hold if the contest

is su¢ ciently noisy (i.e., � < 1), since total e¤ort tends to �V . The negative

e¤ect of the noise carries over to a contest where the designer maximizes the

e¤ort of the winner. Additionally, contestants are worsen o¤ by the presence

of noise, since individual and total utilities decrease in �. Thus, the noise is

detrimental in a contest among identical contestants. Yet, in a contest among

heterogeneous contestants, the noise could have the positive e¤ect of giving hope

to the low-type, which in turn stimulate e¤ort of the high-type and is bene�cial

to the contest organizer. An easy way to see this positive e¤ect of the noise is

to consider a 2-players contest with heterogenous valuations: V1 > V2 > 0. The

unique equilibrium is

G�i = �
V �1 V

�
2

(V �1 + V
�
2 )
2Vi (7.4)

which can be proved to be concave in �. Additionally, routine algebra shows

22Pérez-Castrillo and Verdier (1992) �nd the noise threshold �� such that in a Tullock contest
a pure strategy NE exists i¤ � 2 [0; ��]. They �nd that �� 2 (1; 2) and it depends on contestants�
valuations. The case of � > 2 is tricky, and only mixed strategy NE exist; see Baye, Kovenock
and de Vries (1994), Alcalde and Dahm (2010) and Ewerhart (2015).
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that

@G�1
@�

T 0 () @G�2
@�

T 0 () ~V � + 1 T �
�
~V � � 1

�
log ~V � (7.5)

where ~V = V1
V2
> 1. Thus, consider the extremes of the interval � 2 [0; 1]: if

�! 0, @G
�
i

@�
> 0, whereas if � = 1, @G

�
i

@�
< 0 if ~V is larger than 4:68 (or equivalently,

smaller than 1
4:68
). In other words, if there is su¢ cient heterogeneity of types, the

optimal noise for a designer which maximizes individual e¤ort or sum of e¤orts is

�� 2 (0; 1). The intuition is that too much noise makes the probability of winning

inelastic to e¤ort and thus equilibrium e¤orts are small, whereas too little noise �

if contestants are su¢ ciently asymmetric � gives no hope of winning to the low-

type, who thus exert very little e¤ort. Considering instead the expected winning

e¤ort, the same conclusion carries over and the optimal ��� 2 (0; 1), but it could

be proved that this new optimal level of noise is greater than the one maximizing

sum of e¤orts.

For general properties of the optimal � including both the range for which a

pure strategy exists and the range for which it does not, thus any � > 0, see Wang

(2010).

7.2. Levelling the playing �eld

As discussed, a tractable model to include the possibility of levelling the playing

�eld is (2.9).23 If the designer could choose �i�s so as to maximize the sum of

e¤orts, she would perfectly level the playing �eld, that is to give an advantage

to the low types so as to make contestants equally likely to win in equilibrium,

23Note that there are other ways to level the playing �eld besides by biasing the CSF choosing
�i�s., for instance, by means of an extra prize (see Dahm and Esteve, 2016).
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and thus maximize competition for the prize, see Franke (2012a). This is because

in equilibrium the strategies in the best reply of the strong player are strategic

complements. Thus raising the best reply of the disadvantaged player increases

the e¤ort of both players. Such policies do positively a¤ect e¤orts in real life

tournaments: see Brown (2010) and Franke (2012b) for such evidence in golf

tournaments, Calsamiglia, Franke and Rey-Biel (2013) for such evidence in Sudoku

tournaments, Levitt (1994) for such evidence in campaign expenditures in US

House elections. If instead the designer could choose �i�s so as to maximize the

e¤ort of the winner, then it is optimal to leave the high-type more likely to win

in equilibrium (Serena, 2016a). The intuition is as follows. A perfectly levelled

playing �eld achieves the maximum of the e¤ort of both contestants. If instead

the playing �eld is not perfectly levelled, in particular such that the high-type is

more likely to win in equilibrium, then two e¤ects � one positive and one negative

� simultaneously arise: the negative e¤ect is that both contestants exert their

non-maximum e¤ort, and the positive e¤ect is that the probability of winning of

the high-type (whose e¤ort is the greatest) increases. Serena (2016a) shows that

this trade o¤ yields the optimality of leaving some degree of advantage to the

high-type in a contest where the designer maximizes the e¤ort of the winner.

Despite in general levelling the playing �eld is good for a contest designer,

Brown and Chowdhury (2014) show theoretically that when sabotage can be pos-

sible, levelling the playing �eld may increase sabotage, which is detrimental to

the contest designer. They support the theory with horse racing data. They show

that a handicap in horse racing (in which favourite horses carry extra weights

in the saddle) works well in terms of increasing competition. However, that also

increases the unwanted interruptive behaviour of the jockeys such as bumping on
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other horses, making obstacle, and running dangerously.

8. Further topics

This survey would be incomplete without mentioning some other topics analyzed

by the literature. In particular, recent surveys do a commendable job in covering

these topics.

1. Testing the theoretical results is an important milestone of the analysis of

contests. Yet, empirical analysis of contests are somehow problematic in

that e¤orts are not directly observable in the �eld.24 A discussion of the

problems is found in Jia, Skaperdas and Vaidya (2013). For this reason,

experimental results have been booming in the recent years. One of the

predominant �nding of experimental results on contests is a signi�cant over-

bidding as opposed to the Nash equilibrium. Several explanations have been

provided, mostly based on modi�ed utility function (including for instance

non-monetary utility from winning the contest, or preferences over payo¤s

relative to other contestants) or on subject�s irrational behaviors (subjects�

proneness to mistakes, or subjects� judgmental bias such as the hot hand

fallacy). Overbidding in group contests with intra-group punishment op-

portunities is perhaps the sharpest one relative to theoretical predictions, as

documented by Abbink et al (2010). For a comprehensive recent survey on

experimental results on contests see Dechenaux, Kovenock, and Sheremeta

(2015).

24An empirical test of CSFs is Hwang (2012), who proposes and tests a combination of di¤er-
ence and ratio CSF using data from seventeenth-century European battles and the World War
II.

34



2. In many real life contests, besides exerting costly e¤ort to increase their

probability of winning, players might exert costly e¤ort to "sabotage" the

rival�s likelihood of winning. A recent survey on sabotage in contests is

Chowdhury and Gürtler (2015).

3. Multi-winner contests in which more than one player can win at most one

prize is one area that is under researched and emerging. Seminal contribu-

tions on multi-winner contests are Clark and Riis (1998b) and Moldovanu

and Sela (2001). The latter studies the optimal prize structure in multi-

winner contests, and its main �ndings are con�rmed and generalized in large

contests (i.e., with su¢ ciently many contestants) by Olszewski and Siegel

(2016b). When the contest is not an all-pay auction, there is more than

one way of formulating the probability of ending up nth in the contest, and

thus win the nth-prize. CSF in that area are proposed by Berry (1993) who

suggests to pick up k winners simultaneously among n (> k) players. Clark

and Riis (1996) provide with a sequential mechanism in which k winners are

picked up sequentially one by one. Chowdhury and Kim (2016) on the other

hand propose a sequential mechanism in which (n� k) losers are taken out

sequentially one by one. See Sisak (2009) for a survey.
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