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L. Corchón, M. Dahm

interprets CSFs as sharing rules and establishes a connection to bargaining and claims7

problems which is independent of the number of contestants. Both approaches provide8

foundations for popular CSFs and guidelines for the definition of new ones.9

Keywords Endogenous contests · Contest success function ·10

Nash bargaining solution · Bargaining with claims11

JEL Classification C72 · D72 · D7412

1 Introduction13

“The strategic approach also seeks to combine axiomatic cooperative solutions and14

non-cooperative solutions. Roger Myerson recently named this task the ‘Nash pro-15

gram’.” (Rubinstein 1985, p. 1151)16

A contest is a game in which players exert effort to win a certain prize. Contests17

have been used to analyze a variety of situations including lobbying, rent-seeking and18

rent-defending contests, advertizing, litigation, political campaigns, conflict, patent19

races, arms races, sports events or R&D competition. A crucial determinant for the20

equilibrium predictions of contests is the specification of the so-called contest success21

function (CSF) which relates the players’ efforts and win probabilities. Justifications22

for a particular CSF can be twofold. A justification can be on normative grounds,23

because it is the unique CSF fulfilling certain axioms, or essential properties. A jus-24

tification can also be positive when it can be shown that the CSF arises from the25

strategic interaction of players, thereby yielding a description of situations when it26

can be expected to be realistic. The purpose of the present paper is to contribute to our27

understanding of CSFs in both dimensions.28

Formally, a CSF associates, to each vector of efforts G, a lottery specifying for each29

agent a probability pi of getting the object. That is, pi = pi (G) is such that, for each30

contestant i ∈ N := {1, . . . , n}, pi (G) ≥ 0, and
∑n

i=1 pi (G) = 1.31

The canonical example of a contest situation is rent-seeking. In a pioneering paper,32

Tullock (1980) proposed a special form of the CSF, namely, given a positive scalar33

R,34

pi =
G R

i
∑n

j=1 G R
j

, for i = 1, . . . , n. (1)35

Gradstein (1995, 1998) postulated the following variation of this form, where, given36

qi > 0 for all i ∈ N ,37

pi = Gi qi
∑n

j=1 G j q j

, for i = 1, . . . , n. (2)38
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Foundations for contest success functions

A generalization that comprises both previous functional forms is, given ai ≥ 0 for39

all i ∈ N ,40

pi =
G R

i qi + ai
∑n

j=1(G
R
j q j + a j )

, for i = 1, . . . , n. (3)41

A different functional form, the logit model, was proposed by Hirshleifer (1989),42

where, given a positive scalar k,43

pi = ekGi

∑n
j=1 ekG j

, for i = 1, . . . , n . (4)44

Note that the four expressions (1)–(4) are specific instances of the following functional45

form46

pi = fi (Gi )
∑n

j=1 f j (G j )
, for i = 1, . . . , n. (5)47

The so-called effectivity functions fi are usually interpreted as determining how48

‘effective’ agent i’s effort is in affecting the win probability of agent i . Most papers49

dealing with contest models in the literature analyze a CSF, which is a special case50

of the additive form in (5) (Nitzan 1994; Konrad 2007). Consequently, the present51

paper will be mainly concerned with deriving foundations for CSFs of this form.52

Notice, for later reference, that in (5) the win probability of any contestant is respon-53

sive to changes in the efforts of all other contestants, if the fi are strictly increas-54

ing.55

However, there are also some CSFs in the literature, which are not special cases56

of the form in (5). The first two consider the case of two contestants and build on the57

idea that only differences in effort should matter—an idea introduced by Hirshleifer58

in (4). Baik (1998) proposed the following form, given a positive scalar σ ,59

p1 = p1(σ G1 − G2) and p2 = 1 − p1. (6)60

Che and Gale (2000) postulate the following piecewise linear difference-form61

p1 = max

{

min

{

1

2
+ σ(G1 − G2), 1

}

, 0

}

and p2 = 1 − p1. (7)62

Recently, Alcalde and Dahm (2007) proposed a CSF in which relative differences63

matter. Given an ordered vector of efforts such that G1 ≥ G2 ≥ · · · ≥ Gn and a64

positive scalar R, the serial CSF is defined as65

pi =
n

∑

j=i

G R
j − G R

j+1

j · G R
1

, for i = 1, . . . , n with Gn+1 = 0. (8)66
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L. Corchón, M. Dahm

In the literature, the outcome of contests has been interpreted to capture two dif-67

ferent situations: as win probabilities or as shares of the prize.1 With this in mind, we68

examine two approaches to CSFs.69

In the first, we postulate the existence of a contest administrator who allocates the70

prize to one of the contestants. However, contestants have incomplete information71

about the type of the contest administrator. We show that this approach can generate72

CSFs for any number of contestants. However, while in the case of two contestants this73

approach can rationalize a large class of CSFs, we show that it runs into difficulties74

when there are more agents.75

Our second approach interprets CSFs as sharing rules, and establishes a connection76

to bargaining and claims problems, which is independent of the number of contes-77

tants. The analysis exploits the observation that these problems are mathematically78

related—but not equivalent—to the problem of assigning win probabilities in contests.79

A main result here follows Dagan and Volij (1993), and shows that the class of CSFs80

given in (5) can be understood as the weighted Nash bargaining solution where efforts81

represent the weights of the agents. We turn then to the framework of bargaining with82

claims (Chun and Thomson 1992) to incorporate explicitly the contestants’ efforts in83

the description of the problem. This allows to associate prominent solution concepts84

in this framework to the previously mentioned class of CSFs and to a generalized85

version of Che and Gale’s difference-form contest (7).86

Both approaches provide foundations for popular CSFs and guidelines for the def-87

inition of new ones. In our view, both types of foundations complement each other88

nicely. For instance, we show that (7) can be understood, on one hand, as contestants89

trying to sway away the contest administrator’s decision in a setting analogous to90

the model of a circular city by Salop (1979). On the other, we show that this CSF91

is also related to the claim-egalitarian solution (Bossert 1993). Both approaches lend92

support to an extension of this CSF to three contestants of the following form. Let93

G1 ≥ G2 ≥ G3 and a and b be positive scalars. If G1 − G3 ≥ a then p3 = 0 and the94

other contestants obtain win probabilities as in (7). Otherwise, let95

pi = 1

3
+ b

(

2Gi − G j − Gk

)

, for i = 1, 2, 3 and i �= j, k. (9)96

However, the requirement that for n = 2 the CSF reduces to (7) implies that (a, b) =97

((3σ)−1, σ/2) in the first and (a, b) = ((2σ)−1, 2σ/3) in the second approach. This98

underlines that the appropriate extension depends on the application and institutional99

details the contest model is intended to capture.100

Foundations for CSFs have been reviewed by Garfinkel and Skaperdas (2007) and101

Konrad (2007). The most systematic approach has been normative and the seminal102

paper is that by Skaperdas (1996). He proposed five axioms and showed that they are103

equivalent to assuming a CSF of the form given in (5) with fi (·) = f (·) for all i ∈ N ,104

where f (·) is a positive increasing function of its argument. Skaperdas also showed105

that if in addition to the other five axioms the CSF is assumed to be homogeneous106

1 A prominent example for the latter is Wärneryd (1998). He analyzes a contest among jurisdictions for

shares of the GNP and compares different types of jurisdictional organization.

123

Journal: 199 MS: 0425 CMS: 199_2008_425_article TYPESET DISK LE CP Disp.:2008/11/18 Pages: 18 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d
 p

ro
o
f

Foundations for contest success functions

of degree zero in G then we obtain (1).2 Our paper contributes to this literature indi-107

rectly by making connections to related problems, which are well understood from a108

normative point of view. For instance, we establish a relationship between Che and109

Gale’s difference-form CSF (7) and the principle of equal sacrifice.110

As for the positive approach, we are not aware of any work understanding CSFs as111

sharing rules as our second approach does.3 However, our first approach is related to112

other works. Assume that efforts are a noisy predictor of performance in the contest.113

When noise enters additively in performance and is distributed as the extreme value114

distribution, we obtain the logit specification (McFadden (1974)). This procedure was115

generalized by Lazear and Rosen (1981) and Dixit (1987) to general distributions.4116

Our approach that differs from these papers by changing performance to the broader117

concept of utility and using a uniformly distributed one-dimensional random variable.118

Epstein and Nitzan (2006) partially rationalize CSFs by analyzing how a contest119

administrator rationally decides whether to have a contest and if a contest takes place120

how he chooses among a fixed set of CSFs. In contrast, in our approach, the admin-121

istrator chooses deterministically, but the contestants face a CSF because of their122

uncertainty about the type of the administrator.123

2 External decider124

2.1 Two contestants125

Assume that one person has to decide to award a prize to one of two contestants. In this126

situation we have in mind that the contestants are uncertain about a characteristic of the127

decider that is relevant for his decision. So contestants exert effort without knowing128

the realization of the characteristic and then the decision-maker decides whom to give129

the prize based both on the contestants’ efforts and his type.130

Let � be the set of states of the world. Let θ be an arbitrary element of �. We assume131

that � = [0, 1] and that θ is uniformly distributed. Let Vi be the decider’s payoff if132

the prize is awarded to contestant i = 1, 2. Vi is assumed to depend on the state of133

the world, i.e. Vi = Vi (θ). This may reflect the uncertainty in the contestants’ minds134

2 An extension of Skaperdas’ result to nonanonymous CSFs is given by Clark and Riis (1998). Skaperdas

also axiomatized the logit model (4).

3 Anbarci et al. (2002) present a model in which a two-party conflict over a resource can either be settled

through bargaining over the resource or through a contest. The contest defines the disagreement point of the

bargaining problem to which three different bargaining solutions are applied (see also Esteban and Sákovics

2006). In contrast, in our framework, we interpret bargaining to be over win probabilities and derive CSFs

as bargaining rules.

4 Hillman and Riley (1989) came close to the idea of a contest administrator. They propose a ‘political

impact’ function that reflects the influence of a player as a function of her effort and a random variable.

They notice that for two agents it is possible to specify a functional form for this function, which yields the

Tullock probability function (see also Hirshleifer and Riley 1992). This was generalized by Jia (2007) to

n > 2. In related work, Fullerton and McAfee (1999) and Baye and Hoppe (2003) offer microfoundations

for a subset of CSFs of the form in (1) in the context of innovation tournaments and patent races following

an analogous procedure.
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L. Corchón, M. Dahm

about the preferences of the decider. We will assume the following single-crossing135

property.136

(SC) V1(θ) is decreasing in θ and V2(θ) is strictly increasing in θ .137

Taking into account the efforts, let Ui (Vi (θ), Gi ) be the decider’s payoff if the prize138

is awarded to contestant i = 1, 2. This function is assumed to be increasing in both139

arguments and for simplicity we will write Ui (θ, Gi ). For the sake of interpretation,140

let Gi be interpreted as the level of advertizement (resp. quality) made (resp. provided)141

by Contestant i = 1, 2. Let142

θ ′ =

⎧

⎪

⎨

⎪

⎩

1 if U1(θ, G1) > U2(θ, G2), ∀θ ∈ �

0 if U1(θ, G1) < U2(θ, G2), ∀θ ∈ �

{θ |U1(θ, G1) = U2(θ, G2)} otherwise.

(10)143

Under our assumptions θ ′ is well-defined and unique. Moreover, θ ′ equals p1, the144

probability that Contestant 1 gets the prize. We now provide several examples in145

which we solve for p1 as a function of G1 and G2. This way we obtain the CSF as146

arising from the maximization of the payoff function of the decider.147

In these examples, Vi (θ) enters either additively [in the spirit of McFadden (1974)]148

or multiplicatively [as in Hillman and Riley (1989)]. In Examples 1 and 2, the effect149

of a contestant’s advertizement is completely separated from the decider’s bias. The150

function Ui (θ, Gi ) is additively separable in both arguments. Here, the merit of an151

alternative in the decider’s eyes might be positive even when advertizing is zero,152

and vice versa. Moreover, the marginal product of advertizing is independent of the153

decider’s bias. This contrasts with the multiplicative form of Example 3 in which (i)154

a prerequisite for the merit of an alternative is both that the decider likes it (at least a155

little) and that advertiz-ing is positive; and (ii) an increase of the decider’s bias raises156

the marginal product of advertizing. Example 4 is a combination of these two extreme157

cases in the sense that for one contestant the relationship is multiplicative, while for158

the other the effect of advertizing is independent of the bias.159

Example 1 Let U1(θ, G1) = V1(θ) + a1G1 and U2(θ, G2) = V2(θ) + a2G2, where160

a1, a2 > 0. Thus, a1G1 − a2G2 = V2(θ) − V1(θ) ≡ z(θ), say. Since z(·) is invert-161

ible, we get p1 = z−1(a1G1 − a2G2), which is the form in (6) considered by Baik162

(1998).5 Notice that this procedure is identical to the one used in models of spatial163

differentiation to obtain the demand function (see Hotelling 1929).164

Example 2 Let U1(θ, G1) = θ + 2σ G1 − 1/2 and U2(θ, G2) = −θ + 2σ G2 + 1/2,165

where σ is a positive scalar. In this case, it is easily calculated that166

p1 = max {min {1/2 + σ(G1 − G2), 1} , 0} .167

We obtain (7), the family of difference-form CSFs analyzed by Che and Gale (2000).168

5 Alternatively, we may assume that the payoff function of the decider is Ui = Vi (θ) − a j G j , i �= j ,

reflecting the disutility received from the effort made by Contestant 2, if the prize is awarded to Contestant 1.

The same applies to Examplse 2 and 3 by taking U1 = (1 − θ)/ f2(G2) and U2 = θ/ f1(G1).
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Foundations for contest success functions

Example 3 Let U1(θ, G1) = (1 − θ) f1(G1) and U2(θ, G2) = θ f2(G2). Here, we169

obtain p1 = f1(G1)/( f1(G1) + f2(G2)). This is the additive CSF (5) for n = 2.170

Example 4 Let U1(θ, G1) = f1(G1) and U2(θ, G2) = 2θ f2(G2) if θ ≤ 1/2, whereas171

U2(θ, G2) = f2(G2)/(2(1−θ)) if 1/2 ≤ θ < 1. By analogous reasoning as before, we172

obtain p1 = f1(G1)/(2 f2(G2)) if f1(G1) ≤ f2(G2) and p1 = 1− f2(G2)/(2 f1(G1))173

otherwise. This expression is a generalization of the family of serial contests (8) ana-174

lyzed by Alcalde and Dahm (2007).175

To derive a general result concerning what kind of CSFs can be derived from the176

maximization of the payoffs of the decider we will now consider the class of CSF,177

which are C
1 in R

n
++. This leaves outside our study CSFs like (7), but includes (8)178

when n = 2.179

A difficulty in our study is that many well-known CSFs fail to be continuous when180

Gi = 0 all i and constant in its own effort when G j = 0 all j �= i , e.g. (1). A way to181

solve these problems is to stay away from the troublesome boundaries of R
n
+ as we182

do in Definitions 1 and 2.183

Definition 1 pi = pi (G) is regular if for all G ∈ R
n
++, ∂pi (G)/∂Gi > 0 and184

∂pi (G)/∂G j < 0 for all j �= i .185

Notice that the CSFs in (1)–(4) and (6) are regular. The one in (5) is regular if we186

assume, as in Szidarovsky and Okuguchi (1997), that f
′
i (Gi ) > 0 and fi (0) = 0 for187

all i ∈ N . The CSF given in (8) is regular if n = 2.188

Definition 2 The CSF {p1(G), p2(G), . . . , pn(G)} is rationalizable if there is a list189

of payoff functions Ui (θ, Gi ) strictly increasing on Gi , i = 1, 2, . . . , n such that for190

any Ĝ ∈ R
n
++,191

pi (Ĝ) = probability{Ui (θ, Ĝi ) > U j (θ, Ĝ j ),∀ j �= i}, for i = 1, . . . , n.192

We need the following assumption:193

Assumption 1 pi → 1 when Gi → ∞ and pi → 0 when Gi → 0.194

It is easy to check that Tullock’s CSF (1) satisfies Assumption 1 (A.1 in the sequel).195

Also the additive CSF (5) satisfies A.1 when fi (Gi ) are strictly positive for strictly196

positive values of efforts, fi → ∞ when Gi → ∞ and fi → 0 when Gi → 0. It197

is fulfilled by the serial CSF in (8) and the form in (6) includes cases where A.1 is198

satisfied. Now we can prove the following:199

Proposition 1 If A.1 holds and p1(G1, G2) is regular, it is rationalizable by a pair200

of payoff functions fulfilling the single crossing condition. If p1(G1, G2) is ratio-201

nalizable by a pair of payoff functions fulfilling the single crossing condition and202

∂pi (G)/∂G j �= 0 for all i, j , it is regular.203

Proof Suppose p1(G1, G2) is regular. Notice that this implies that for any G ∈ R
2
++,204

pi ∈ (0, 1). Let f (p1, G1, G2) ≡ p1− p1(G1, G2). Fix p1 and G2, say p̄1 and Ḡ2. By205
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L. Corchón, M. Dahm

A.1, we have that f ( p̄1, G1, Ḡ2) < 0 for G1 sufficiently large and f ( p̄1, G1, Ḡ2) > 0206

for G1 sufficiently close to zero. By the intermediate value theorem, there is a G1 such207

that f ( p̄1, G1, Ḡ2) = 0. By the definition of a regular CSF this value of G1, say Ḡ1,208

is unique. This means that there is a unique function H such that G1 = H(p1, G2).209

Since ∂ f (p1, G1, G2)/∂G1 < 0, by the implicit function theorem H is continuous210

in the neighborhood of ( p̄1, Ḡ2). Since this point is arbitrary, H is continuous for all211

(p1, G2). Let U1 = G1 and U2 = H(θ, G2). Because p1(G1, G2) is regular, H is212

strictly increasing on θ and G2. Also U1 is strictly increasing on G1 and constant on213

θ so, the SC assumption holds. By construction, θ ′ (as defined in Eq. 10) equals p1;214

thus, p1(G1, G2) is rationalizable.215

Assume now that p1(G1, G2) is rationalizable by a list of payoff functions fulfilling216

the single crossing condition (SC). Rationalizability implies that for any (Ĝ1, Ĝ2) we217

have p1(Ĝ1, Ĝ2) = θ ′ (as defined in Eq. 10). Moreover, as U1 is strictly increasing on218

G1 and by the single crossing condition (SC) U2 is strictly increasing on θ , we have219

that p1 is strictly increasing in G1. The opposite holds when G2 is increased; so, the220

result follows from ∂pi (G)/∂G j �= 0. ⊓⊔221

We show now that the condition that the partial derivatives do not vanish cannot be222

dispensed with.223

Example 5 Consider the following smooth difference-form contest between two con-224

testants:225

p1 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 if G1 − G2 ≥ 1

1
2

+ 1
2

e

{

−(G1−G2−1)2

1−(G1−G2−1)2

}

if 1 > G1 − G2 ≥ 0

1
2

e

{

−(G1−G2)2

1−(G1−G2)2

}

if 0 ≥ G1 − G2 > −1

0 if −1 ≥ G1 − G2

and p2 =1 − p1. (11)226

As in (7), the win probability might be zero–even for positive effort. Contrary to227

(7) it is C
1. Notice that for |G1 − G2| ≤ 1, p1 is strictly monotonic. However,228

when G1 = G2 the derivative vanishes. So, this CSF is not regular. Define U1 =229

G1 +
√

(− ln x)/(1 − ln x) − a, where (x, a) = (2θ, 0) if 0 < θ ≤ 1/2 and230

(x, a) = (2θ − 1, 1) if 1/2 < θ ≤ 1.6 Let U2 = G2. Notice that SC holds. Straight-231

forward manipulations show that this pair of utility functions rationalizes the smooth232

difference-form contest in (11).233

2.2 More than two contestants234

In the case of three contestants, the previous argument does not yield microfounda-235

tions for the additive CSF (5). There are two reasons for that, which are explained236

in Propositions 2 and 3 below. The first result shows that it might be impossible to237

6 One might also define U1 = G1 + 1, when θ = 0.
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Foundations for contest success functions

partition � in n nonempty intervals, which is what is implied by the SC assumption.238

The second result shows that even if such a partition is assumed, the win probability239

of a given contestant might not be responsive to changes in the efforts of all other240

contestants, as in (5). First, we need the following assumption:241

Assumption 2 Ui (θ, Gi ) are continuous and Ui (θ, Gi ) → ∞ when Gi → ∞,242

i = 1, 2, . . . , n.243

This assumption (A.2 in the sequel) is fulfilled in the payoff functions used in244

Examples 1 and 2 before. In the case of Examples 3 and 4, this assumption is fulfilled245

if fi (Gi ) → ∞ when Gi → ∞, which is the case in (1). Thus, it looks like a pretty246

harmless assumption. However, its consequences are not.247

Proposition 2 Under Assumption A.2, and when n = 3, the additive CSF (5) cannot248

be obtained from payoff maximization when SC holds for players 1 and 2.249

Proof Let U ′
3(G3) = max U3(θ, G3), θ ∈ �. The maximum exists and varies contin-250

uously with G3 (by Berge’s maximum theorem). By taking G1 and G2 large enough,251

say G ′
1 and G ′

2, the property (SC) and A.2 imply that there is a θ̄ , such that252

U1(θ, G ′
1) > U

′
3(G3), ∀θ ∈ [0, θ̄ )253

U2(θ, G ′
2) > U ′

3(G3), ∀θ ∈ (θ̄ , 1].254

Thus, player 3 never obtains the prize. Moreover, because U ′
3(·) is continuous in G3,255

small variations in G3 do not affect neither p1 nor p2, thus the result. ⊓⊔256

Similar results can be obtained for n > 3 by extending suitably the SC condition.257

However, as the next result shows, even weak generalizations of the SC condition258

cause lack of rationalizability of the additive CSF (5) even if Assumption A.2 is not259

postulated. First let us consider the following generalization of SC.260

Definition 3 A collection of payoff functions Ui (θ, Gi )i = 1, 2, . . . , n satisfies the261

Generalized Single Crossing (GSC) condition when for all G, there is a permutation262

in the set of agents i, j, . . . , k and a partition of �, (�i ,�i j ,� j , . . . , �r ,�rk,�k)263

such that �s = {θ | Us(θ, Gs) > Ur (θ, Gr ), ∀r �= s}, s = i, j, . . . , k, �sh =264

{θ | Us(θ, Gs) = Uh(θ, Gh)}, with all �sh singletons for s, h = i, j, . . . , k.265

Notice that, when n = 2, GSC is implied by SC.266

Proposition 3 When the utility functions satisfy the GSC and are continuous, the267

additive CSF (5) cannot be obtained from payoff maximization.268

Proof We will prove the result for n = 3. The extension to n > 3 is straightforward.269

Without loss of generality, let the permutation of N be 1, 2, 3. Then,270

U1(θ, G1) > U j (θ, G j ), j = 2, 3, ∀θ ∈ �1271

U2(θ, G2) > U j (θ, G j ), j = 1, 3, ∀θ ∈ �2272

U3(θ, G3) > U j (θ, G j ), j = 1, 2, ∀θ ∈ �3.273
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L. Corchón, M. Dahm

Thus, p1 = length �1, p2 = length �2 and p3 = length �3. It is clear that p1 (resp.274

p3) does not depend on G3 (resp. G1) for small variations of this variable. Thus, the275

required functional form cannot be obtained in this case. ⊓⊔276

Notice that the results in Propositions 2 and 3 do not depend on F(θ) being uniform.277

The reason is that given an interval [a, b] different distributions assign different prob-278

ability mass F(b) − F(a). However, in these results, it is crucial that the delimiters279

a and b do not depend on the effort of one contestant. When there are two agents,280

delimiters depend on both contestants, because each agent competes with the other,281

but when there are three or more agents, some agents may compete with a subset of282

other agents and not with all of them.283

Albeit this difficulty in deriving the additive CSF (5) for more than three contes-284

tants, contestants’ uncertainty about the type of the contest administrator seems to285

be a reasonable approach to CSFs. Therefore, it is an important research program286

to find CSFs that are rationalizable according to Definition 2 and to work out the287

consequences of these new functional forms on equilibrium, comparative statics, etc.288

We show now that although this route appears to be promising, it is not free from289

difficulties. We will work out two examples and we will show that in both cases, the290

following holds7
291

• CSFs are neither differentiable nor concave.292

• Despite the symmetric nature of basic data, no symmetric Nash equilibrium exists.293

Example 6 Let U1(θ, G1) = (1−θ)G1, U2(θ, G2) = G22/3 and U3(θ, G3) = θG3.294

Notice that if G1 = G2 = G3, p1 = p2 = p3 = 1/3. We will compute the best reply295

of contestant 1.296

If G22/3 < G3, we have two cases: first, if G1 < G22/3, then p1 = 0; second, if297

G1 ≥ G22/3, then298

p1 =
{

(G1 − G22/3) /G1 if G1 < (G3G22/3) / (G3 − G22/3)

G1/(G1 + G3) otherwise.
299

If G22/3 ≥ G3, we again have two cases300

p1 =
{

0 if G1 < G22/3

(G1 − G22/3) /G1 otherwise.
301

In a symmetric equilibrium Ĝ we have G1 ≥ G22/3 and G1 < (G3G22/3) /302

(G1 − G22/3). Thus, contestant 1 maximizes V (G1 − G22/3)/G1 − G1, where V303

is the value of the prize. If the equilibrium is symmetric, it must be at positive level304

of effort. Thus, the maximum is interior and the first-order condition yields the best305

reply, namely G1 = (V G22/3)1/2.306

For Ĝ1 = Ĝ2, this yields Ĝ1 = V 2/3. We now have to make sure that this payoff is307

larger than the payoff associated to G1 = 0 (yielding a p1 and a payoff equal to 0).308

This is equivalent to Ĝ2 ≤ V 27/100, which contradicts Ĝ1 = Ĝ2 = V 2/3.309

7 This may also happen for n = 2 (see Che and Gale 2000).
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Foundations for contest success functions

Example 6 can be criticized, because the existence of endpoints (0 and 1) makes310

contestants nonsymmetric. For instance, if G1 = G2 = G3, a variation of G2 affects311

p1 and p3, but a variation of G1 only affects p2. Thus, we now adapt the model312

of Salop (1979) of a circular city to our framework. Here, symmetry of the effects313

of efforts is restored, since each contestant affects the win probability of all other314

contestants.315

Example 7 Suppose that three contestants are symmetrically distributed at locations316

(l1, l2, l3) = (0, 1/3, 2/3) on the unit circle, which is now our set of states of the317

world. Assume that Ui (θ, Gi ) = u − k |li − θ | + Gα
i , where u, k and α are pos-318

itive scalars and α ≤ 1. Notice that when effort levels are similar, the relevant319

competition is pairwise: 1 competes only with 2 (resp. 3) for θ ∈ [0, 1/3] (resp.320

θ ∈ [2/3, 1]), while only 2 and 3 compete for θ ∈ [1/3, 2/3]. Thus, the state of the321

world for which, given efforts, the decider is indifferent between candidates 1 and 2322

is323

θ12 = 1

6
+ 1

2k

(

Gα
1 − Gα

2

)

.324

A similar reasoning in the case of 1 and 3 yields325

θ13 = 5

6
+ 1

2k

(

Gα
3 − Gα

1

)

.326

This implies that p1 = θ12 + 1 − θ13. To determine the CSF in general, suppose327

without loss of generality that G1 ≥ G2 ≥ G3. If Gα
1 − Gα

3 ≥ k/3, then we obtain a328

generalized version of Che and Gale’s two-player contest [given in (7)]329

p1 = min

{

1

2
+ 1

k
(Gα

1 − Gα
2 ), 1

}

, p2 = 1 − p1 and p3 = 0;330

and otherwise331

pi = 1

3
+ 1

2k

(

2Gα
i − Gα

j − Gα
k

)

, for i = 1, 2, 3 and i �= j, k.332

Assume α < 1. A symmetric equilibrium Ĝ requires that Ĝ1 maximizes 1’s payoffs,333

given Ĝ2 and Ĝ3 and that Ĝ1 = Ĝ2 = Ĝ3. Thus, Ĝ1 maximizes p1V − G1, where334

V is the value of the prize. If the maximum is interior, Ĝ1 = (αV/k)1/(1−α). Thus,335

if payoffs of 1 for this value of efforts are negative, 0 effort is the best reply and no336

symmetric equilibrium exists.337

Note that it is straightforward to extend the last example to more than three con-338

testants. The so derived CSF can be seen as an extension of Che and Gale’s linear339

difference-form [given in (7)] to more than two contestants [see (9)].340
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2.3 An alternative notion of rationalizability341

The simple setting considered so far might be adapted in several ways to yield the342

additive CSF (5) when there are more than three contestants: (i) The type of the343

contest administrator might be multidimensional; (ii) the distribution function might344

be nonuniform; (iii) the rationalizability notion might be different. Given that (i)345

and (ii) have already be explored (e.g. in Hillman and Riley 1989), we pursue now346

(iii).347

Consider a situation where a contest administrator cares not only about the effort348

of the winner of the contest but also about the effort of others. One might think of349

the promotion of workers in a firm based on their performance or of firms competing350

for a research prize based on R&D investment, which generates new knowledge. In351

such a situation, the type of the decider represents how much he values the effort of a352

particular contestant relative to the others. We present an example yielding a special353

case of the additive CSF (5) for three contestants. This example can easily be extended354

to more agents and to more general effectivity functions.355

Example 8 Let U1 = (1 − θ)G1 − θ(G2 + G3), U3 = θG3 − (1 − θ)(G1 + G2) and356

normalize U2 = 0. We have that357

U1 ≥ U2 ⇔ θ ≤ θ12 ≡ G1

G1 + G2 + G3
,358

U1 ≥ U3 ⇔ θ ≤ θ13 ≡ 2G1 + G2

2(G1 + G2 + G3)
,359

U3 ≥ U2 ⇔ θ ≥ θ23 ≡ G1 + G2

G1 + G2 + G3
.360

This yields361

p1 = θ12 = G1

G1 + G2 + G3
,362

p2 = θ23 − θ12 = G2

G1 + G2 + G3
,363

p3 = 1 − θ23 = G3

G1 + G2 + G3
.364

3 CSFs as sharing rules365

Inspired by the second interpretation of the outcome of a contest as shares of the366

prize, we establish now a connection to bargaining and claims problems. This can be367

interpreted as contestants bargaining over all possible assignments of win probabili-368

ties or over shares. If no agreement is reached, all win probabilities are zero. In our369

approach, a variation in effort only affects the share of the prize. A more complete370

theory might consider that the size of the prize is also affected. This allows taking371

into account the opportunity cost of effort (see Anbarci et al. 2002; Garfinkel and372

Skaperdas 2007).373
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Foundations for contest success functions

3.1 ‘Classical’ bargaining374

A contest problem is a vector f (G) = ( f1(G1), . . . , fn(Gn)) with at least two entries,375

each of which is strictly positive.8 Since we consider a fixed vector of efforts G, we376

will simply use the notation fi instead of fi (Gi ) and f instead of f (G). An alloca-377

tion in a contest problem is a n-tuple p = (p1, . . . , pn) ∈ R
n with 0 ≤ pi ≤ 1 and378

∑n
i=1 pi = 1. A CSF is a function that assigns a unique allocation to each contest379

problem.380

We define now a bargaining problem associated with each contest problem. A bar-381

gaining problem is a pair (S, d) where S ⊂ R
n is a compact convex set, d ∈ S, and382

there exists s ∈ S such that si > di , i = 1, . . . , n. The set S, the feasible set, consists383

of all utility vectors attainable by the n contestants through unanimous agreement.384

The disagreement point d is the utility vector obtained if there is no agreement. In our385

context, it seems natural to define386

S =
{

p ∈ R
n

∣

∣

∣

∣

∣

0 ≤ pi ≤ 1 and

n
∑

i=1

pi ≤ 1

}

and d = 0.387

A bargaining solution is a function ψ assigning to each bargaining problem (S, d)388

a unique element in S. We are interested in the weighted Nash solution with weights389

α.390

Definition 4 Let αi > 0 for all i = 1, . . . , n. The α-asymmetric Nash solution is391

defined as392

ψα = arg max
p∈S

n

�
i=1

(pi − di )
αi .393

In this framework, it is natural that the effort of a contestant determines his394

bargaining position. Suppose that efforts affect the exponents of the weighted Nash395

bargaining solution as defined before. For simplicity, let α = f . The next result is396

parallel to one obtained by Dagan and Volij (1993) in a different framework.9397

Proposition 4 The α-asymmetric Nash solution for α = f induces the additive CSF398

(5).399

Proof Let f be a contest problem; consider the associated bargaining problem and400

let ψα = p∗. The first-order conditions of the maximization problem defining the401

asymmetric Nash solution with d = 0 imply that402

p∗
j = α j

αi

p∗
i , for all i, j ∈ N .403

8 If fi (Gi ) = 0 for some contestant i , assign zero win probability to this agent and consider the reduced

vector in which the entry corresponding to agent i is missing.

9 In the literature, the weighted Nash solution has also been interpreted as a decider maximizing a payoff

function. This is another example of the connections between the approaches taken in Sect. 2 and here.
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Given the Pareto optimality of the asymmetric Nash solution, we have that
∑n

j=1404

p j =1. This implies p∗
i = αi/

∑n
j=1 α j . ⊓⊔405

Since the preceding result sheds light on the additive CSF (5) from a very different406

angle than the approach of the previous section, it is of interest on its own right. How-407

ever, it also opens the door to understand CSFs as the outcome of strategic bargaining408

models based on Rubinstein’s alternating offers game. Since it is well known that409

under certain conditions the asymmetric Nash solution can be supported by such a410

game, it follows that alternative conditions thought to reflect reasonable properties of411

underlying institutional details can yield alternative CSFs.412

3.2 Bargaining with claims413

It might seem odd that, while the effort vector f defines a contest problem, this414

information is not used in the description of the associated bargaining problem (S, d).415

If we want to incorporate this information in the description of the problem, the rel-416

evant framework is the one of bargaining problems with claims (Chun and Thomson417

1992).10 A contest-bargaining problem is then a triple (S, d, f ) with the following418

interpretation: contestants bargain over all possible assignments of win probabilities.419

The contestants’ effectivity functions translate individual effort into an ‘aspiration420

point’ f . Thus, f (G) measures the social merit that society or the decider awards to421

the vector of efforts G.422

If no unanimous agreement is reached, all win probabilities are zero. A contest-423

bargaining solution φ assigns to each such triple a unique element in S. A maximal424

point p of S is a point such that
∑n

j=1 p j = 1. The proportional solution is defined425

as follows.426

Definition 5 The proportional solution φP is defined as the maximal point p of S on427

the segment connecting the disagreement point d and the aspiration point f .428

Proposition 5 The proportional solution induces the additive CSF (5).429

Proof Let f be a contest problem; consider the associated bargaining problem with430

claims and let φP = p∗. The line that passes through the two points d and f is431

the set of vectors x of the form x = (1 − t)d + t f , with t ∈ R. Since d = 0,432

x = t f . Given that p∗ is a maximal point, we have that t = 1/
∑n

j=1 f j . This433

implies p∗
i = fi/

∑n
j=1 f j . ⊓⊔434

The richer description of bargaining problems with claims has allowed to define an435

alternative solution that also explicitly builds on the aspiration point f . Bossert (1993)436

analyzes the claim-egalitarian solution. For the purpose of the next proposition, it suf-437

fices to consider the case of two contestants. The following definition is adapted to438

our context, because in contest problems there is no upper bound on individual effort439

levels, that is, f .440

10 Notice that a contest problem is not equivalent to a bargaining problem with claims. One important

difference is that in contest problems there is no upper bound on individual effort levels, that is, f .
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Foundations for contest success functions

Definition 6 Let n = 2 and fh ≥ fl , h, l = 1, 2. The claim-egalitarian solution φE
441

is defined as the maximal point p of S such that fh − ph = fl − pl if fh − fl ≤ 1.442

Otherwise ph = 1 and pl = 0.443

The claim-egalitarian solution selects a point on the Pareto frontier of S such that444

the loss of each contestant compared with his aspiration level is the same for all agents445

(if such a point exists). This is an egalitarian solution in the sense that the absolute446

amount each agent has to give up is equalized across contestants. The next proposition447

says that this idea is the same as saying that only differences in effort matter.448

Proposition 6 For n = 2, the claim-egalitarian solution induces a generalization of449

Che and Gale’s difference-form CSF, that is,450

φE
i = pCG ′

i (G) = max

{

min

{

1

2
+ 1

2

(

fi − f j

)

, 1

}

, 0

}

for i = 1, 2.451

Proof The fact that if | fi − f j | ≥ 1 then φE
i = pCG ′

i (G) is obvious. Suppose452

| fi − f j | ≤ 1. Since p j = 1 − pi , we have fi − pi = f j − (1 − pi ). Rearranging453

yields the desired expression. ⊓⊔454

Notice that when fi (Gi ) = 2σ Gi , for i = 1, 2, where σ is a positive scalar, we455

obtain (7), the class of linear difference-form functions analyzed by Che and Gale456

(2000). Notice that it is straightforward to extend the last result to more than two con-457

testants [see (9)].11 Interestingly, this recommendation differs in the minimal effort458

necessary to obtain a nonzero share and in the marginal effect of effort from the one459

based on Example 7.460

Definition 6 equalizes losses based on absolute claims. This creates the ‘kink’ and461

the nonresponsiveness of Che and Gale’s CSF to effort when the difference in aspi-462

ration levels is high enough. Considering relative claims, this can be avoided. Notice463

that fi/ fh (for i = 1, . . . , n) indicates the percentage contestant i’s aspiration level464

fi constitutes of the highest level fh .465

Definition 7 Let n = 2 and w.l.o.g. denote fh = max{ f1, f2}. The relative466

claim-egalitarian solution φRE is defined as the maximal point p of S such that467

f1/ fh − p1 = f2/ fh − p2.468

The relative claim-egalitarian solution selects a point on the Pareto frontier of S469

such that the loss of each contestant compared with this ‘relative claim point’ is the470

same for all agents. The next proposition relates this idea to the serial CSF.12
471

11 For n = 3 and f1 ≥ f2 ≥ f3, it is natural to require the following. If f1 − f2 ≥ 1, then p1 = 1

and p2 = p3 = 0. If f1 − f3 ≥ 1 > f1 − f2, then φE is the maximal point p of S such that p3 = 0

and f1 − p1 = f2 − p2. Lastly, when f1 − f3 < 1, then φE is the maximal point p of S such that

f1 − p1 = f2 − p2 = f3 − p3.

12 This reasoning can easily be extended to more contestants. However, the requirement that fi / fh − pi =
fi+1/ fh − pi+1 for all i = 1, . . . , n − 1 does not always yield welldefined win probabilities. A way out

is the following. Consider an ordered vector f1 ≥ f2 ≥ · · · ≥ fn and rescale the ‘relative claim point’ to

make the pairwise comparisons fi /(i · fh) − pi = fi+1/(i · fh) − pi+1 for all i = 1, . . . , n − 1. This

coincides with Definition 7 when there are two agents and yields a generalization of the serial CSF for any

number of contestants.
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Proposition 7 For n = 2 and f1 ≥ f2, the relative claim-egalitarian solution induces472

a generalization of the serial CSF, that is,473

φRE
i = pS′

i (G) =
2

∑

j=i

f j − f j+1

j · fh

for i = 1, 2 and f3 = 0.474

Proof W.l.o.g. assume f1 ≥ f2. We have that 1− p1 = f2/ f1 − p2 = f2/ f1 −1+ p1.475

This can be rewritten as p1 = 1 − f2/(2 f1) = ( f1 − f2)/ f1 + f2/(2 f1). Since φRE
476

must be a maximal point, we obtain p2 = f2/(2 f1). ⊓⊔477

4 Concluding remarks478

In line with two prominent interpretations of the outcome of contests, this paper has479

investigated foundations for prominent CSFs based on two different approaches. The480

first analyzes the implications of contestants’ incomplete information concerning the481

‘type’ of the contest administrator. The second understands CSFs as sharing rules482

and makes a connection to bargaining and claims problems. Both approaches provide483

foundations for popular CSFs and guidelines for the definition of new ones. The results484

of this paper suggest two lines for future research on CSFs.485

On the normative side, the implications of linking the problem of assigning win486

probabilities in contests to bargaining, claims and taxation problems are twofold.487

It might yield an improved understanding of existing CSFs. For instance, pro-488

portionality principles have been defended at least since the philosophers of ancient489

Greece. Therefore, it seems possible to obtain different characterizations of the addi-490

tive CSF (5) using ideas of characterizations of proportionality stressed in these related491

problems.13
492

It suggests guidelines for the definition of new CSFs, since different normative prin-493

ciples might lead to the formulation of different classes of CSFs. A case in point here494

is the claim-egalitarian solution that gives a recommendation as to how to extend the495

difference-form functions analyzed by Che and Gale (2000) to more than two contes-496

tants. On the positive side, the implications for future research parallel the normative497

ones.498

Solution concepts in bargaining, claims and taxation problems that can be related to499

popular CSFs might yield rationales for the latter. An example is to link contests with500

the Bilateral Principle that has proved a fruitful way to incorporate Luce’s Choice501

Axiom into game theory. Dagan et al. (1997) have provided a game form captur-502

ing the non-cooperative dimension of the consistency property of bankruptcy rules.14
503

An adaptation of their result in our framework shows that the additive CSF (5) can be504

13 Note that the class of problems in which win probabilities are assigned has a particularly simple structure.

This implies that a characterization of a solution for a larger class of problems does not need to characterize

a solution for contests.

14 Notice that a contest problem is not equivalent to a bankruptcy problem in which the estate is equal

to one, since in contest problems there is no lower bound on the sum of individual effort levels, that is,
∑n

j=1 f j .
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supported by a pure strategy subgame perfect equilibrium of a certain non-cooperative505

game.506

By incorporating realistic details of contest situations, novel CSFs can be derived.507

Examples are the recommendation of the circular model in Example 7 as to how to508

extend Che and Gale’s difference-form function to more than two contestants or the509

effects of modifying Rubinstein’s alternating offers bargaining game.510

Lastly, we remark that there is no straightforward generalization of the single-cross-511

ing property that would generalize the results of Sect. 2.1 to more than two contestants.512

In any case, there might be a way to allow for conditional preferences over subsets of513

players (e.g. in the spirit of Luce’s Choice Axiom) that would allow for a representation514

theorem. We leave this to future research.515
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