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1. INTRODUCTION

Price-taking behavior is typically invoked as a necessary requirement to ob-
tain the competitive outcome. In this paper, we propose a bargaining foundation
for the Walrasian equilibrium in a small exchange economy where agents are not
price-takers. The bargaining procedure we analyze is a variation of the standard
alternating-offers bargaining: each agent alternatingly sets a price and a constraint
on the quantities to be exchanged, and the respondent either accepts and chooses
the quantities to be traded at the terms of the offer, or rejects and makes an offer
in the next period in which utilities are discounted. We show that competition
and the competitive outcome is obtained even without price-taking behavior when
bargaining frictions vanish. As a result, the outcome does not depend on details
such as relative impatience and bargaining power or outside options. Paradoxically,
by explicitly introducing price-setting as a strategic variable in an otherwise stan-
dard bargaining environment, the competitive outcome is restored. Price-taking
is therefore not a necessary requirement for attaining the perfectly competitive
outcome.

Prices have of course long been recognized as the key driving force in the effi-
cient functioning of markets. In markets with a large number of buyers and sellers,
and provided each of them is small relative to the size of the market, all agents
make their consumption and production decisions taking the price determination
process as given. While in reality sellers very often set prices (from high street
clothing items to supermarket perishables), a seller has no incentive to price his
product above the market price as she will not attract any buyers. This pricing
behavior is therefore accurately modeled by means of a fictitious Walrasian auc-
tioneer. Nevertheless, in many real world markets, some or all agents are effectively
price-setters instead, either because the number of players in the market is small,
or because some players are large relative to the market. In an exchange economy
with two agents for example, the determination of prices through price-setting is
not adequately represented by a Walrasian auctioneer as each of them has market
power.

Rational agents in a two-sided negotiation will nonetheless agree to obtain an
efficient allocation even when they have some market power. Edgeworth (1882)
argues that, depending on the details of the contract between bargaining agents,
any outcome in the set of Pareto-improving efficient allocations (the relevant portion
of the contract curve) is attainable. Given this indeterminacy, standard bargaining
theories have suggested particular outcomes to be selected on the contract curve.
Typically, the outcome that is selected depends on the specifics of the bargaining
procedure. For example, in the case of Nash bargaining, the outcome depends on
the exogenously determined relative bargaining power of each of the agents and on
the outside options chosen. In the case of alternating-offers bargaining (Rubinstein
(1982) and Stahl (1972)), the final outcome depends on the relative impatience
of the bargaining parties. The relatively patient agent will obtain a proportionally
larger share of the surplus.! The important implication is that because the outcome

1Even in the case when both agents become infinitely patient, the rate at which they do so
will determine the final outcome. Binmore, Rubinstein and Wolinsky (1986) establish that the
alternating-offers bargaining solution approaches the Nash bargaining solution with utilities that
reflect the incentives to settle and with the disagreement point properly chosen.
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depends on the specifics of the bargaining procedure, the outcome is not in general
the competitive equilibrium allocation.

In contrast with previous bargaining models, the bargaining procedure we pro-
pose will always converge to a competitive equilibrium allocation, and is therefore
independent of anything other than the preferences and endowments of the agents.
The outcome is completely determined by the primitives of the economy and does
not depend on whether one agent becomes patient at a faster rate than the other
agent, or whether one agent has more bargaining power than the other. This de-
terminacy result delivering the Walrasian outcome is paradoxically driven by the
role played by price-setting in the bargaining. More specifically, the agents alter-
nate in offering a price with a maximum quantity constraint, while the other agent
chooses the quantity traded if she accepts the offer. It is precisely this separation
of the price-setting by the proposer from the quantity decision by the recipient
that is necessary to guarantee the convergence to the Walrasian allocation. This
price-quantity separation is obviously well known in negotiation? and has com-
mon applications in several economic environments such as union-wage bargaining
in the labor economics literature, and standard buy-out provisions in two-person
partnerships.*

Because bargaining ends when an offer is accepted and the quantities to be
traded are chosen, subgame perfection implies that any accepted offer must either
be on the offer curve of the accepting agent,® or it must be equal to the quantity
constraint announced in the offer. Of course, an agent can also reject the offer and
make a counter-offer, which if accepted will lead to an allocation on the offer curve
(or at the quantity constraint) of the accepting agent. Intuitively, when discount
frictions are vanishing, agents must obtain the same utility from accepting an offer
on their own offer curve as from making an offer that is accepted on the other
agent’s offer curve. One such allocation is obviously a Walrasian one, which is an
intersection of both offer curves. Nevertheless, as will be shown below, a necessary
requirement to guarantee convergence to the Walrasian allocation is that offers
include the quantity constraint as well.

In effect, in the absence of the quantity constraint, convergence to the Walrasian
allocation is not guaranteed.® Generically, there will exist at least one other equi-
librium that does not converge to the Walrasian allocation but instead to another,
inefficient allocation. At any such equilibrium, each agent obtains the same utility

2The classic example of separating the ”general” terms of an agreement from the actual choice
of the outcome is the division of a cake by two children: one cuts the cake and the other one
chooses first which piece to eat.

3See Solow and MacDonald (1981) and Farber (1986) amongs others who study and document
such bargaining over wages where the union negotiates the wage and the employer chooses the
level of employment.

4Cramton, Gibbons and Klemperer (1987), and Moldovanu (2001) model such buy-out pro-
visions. When partners decide they want to separate, the provision prescribes that one partner
chooses the price of the shares, and the other partner chooses the quantity traded, i.e. whether
to buy or sell.

5By definition, a point on the offer curve of an agent within the Edgeworth box is an allocation
that maximizes her utility at a given relative price.

6The first paper to explore a bargaining procedure with price offers is Yildiz (2002). While he
finds convergence to the Walrasian equilibrium, in a previous working paper (Davila and Eeckhout
(2002)) we show that such convergence obtains only under very special, non-generic conditions.
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from consuming an allocation on her own offer curve and a different allocation on
the offer curve of the opponent corresponding to a different price. What the quan-
tity constraint does in the bargaining procedure proposed here is to make sure that
one of the agents has an incentive not to stick to an offer that produces inefficient
allocations. She can get away from the inefficient allocation by offering a Pareto
efficient allocation that makes her strictly better off and the other agent not worse
off. The way to obtain that efficient allocation is to restrict the quantities traded
to be smaller than the trades desired by the other agent at the newly offered price.

Our bargaining procedure captures the main aspects of several existing price
setting mechanisms. For example, in commodity futures markets,” the seller of
future contracts will typically announce to a candidate buyer the price for the
contract and how many contracts he has on offer. The candidate buyer can accept
the price offer and choose the number of future contracts as long as it does not
exceed the quantity constraint that was offered initially. The same is true for limit
orders when selling stock. Your limit order guarantees a certain price for the stock,
but you cannot be sure that the order will be filled. Only if there is sufficient demand
at that price will your order be filled (either partially or completely). Another price
setting mechanism that corresponds to the one in our model is that of interest rate
quotations on mortgages. Mortgage lenders typically will offer a rate that is valid
for mortgage amounts up to a maximum. The home buyer can then choose any
mortgage amount below that maximum.

This bargaining procedure, like Nash or alternating-offers bargaining, proposes
a solution to the Edgeworth indeterminacy result by selecting a particular outcome
on the contract curve. However, there is one main difference. In the existing theo-
ries, the indeterminacy does not really disappear in the sense that the bargaining
outcome is a function of a new, exogenously imposed property of the bargaining
procedure (either bargaining power or relative impatience). In other words, Edge-
worth’s indeterminacy still remains, albeit now parameterized by an exogenous
parameter. Our theory derives by means of a specific bargaining protocol a so-
lution that is no longer dependent on any exogenous parameter but only on the
primitives of the economy (preferences and endowments).

The independence of the outcome on an exogenous parameter is crucial for the
application of bargaining procedures in economic theory, for example in equilibrium
search models (for an overview, see Mortensen and Pissarides (1999)). Typically,
due to thick market externalities, search markets are inefficient.® Hosios (1990)
derives a simple condition that needs to hold in order to obtain efficiency. Unfortu-
nately, that condition depends on the specifics of the bargaining procedure (i.e. the
Nash bargaining share if the surplus is divided using Nash bargaining). The policy
prescription therefore depends on one additional parameter. Moreover, information
about that parameter is often hard to obtain, and without knowledge about that
parameter, the policy prescription is indeterminate. In the case the surplus in a
pairwise meeting is split using our bargaining procedure, Hosios’ policy prescription
for efficiency will be completely determinate, independently of bargaining power for
example.

"We are grateful to Dale Mortensen for pointing this out to us.
8Moen (1996) and Acemoglu and Shimer (1999a and b) have proposed theories of search that
are efficient when atomistic firms in a large market announce wages.
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Finally, Gale (1986) establishes a bargaining foundation for the Walrasian equi-
librium outcome in general exchange economies with a continuum of traders and
random pairwise matching. While our setup is completely different, our results
contribute to this literature by extending the bargaining foundation for Walrasian
equilibrium even for economies with a small number of agents. Despite the (only
two) agents being price-setters, the perfectly competitive outcome still obtains.

In the next section, we lay out the model. In section 3, we present the main re-
sult of convergence to the Walrasian allocation and we illustrate how we obtain it.
Formal proofs are relegated to the Appendix. The results are derived for equilibria
in which there is immediate acceptance. In section 4 we study equilibria with delay
and prove that no such equilibria exist. We then discuss in section 5 the results
in relation to the existing literature and we analyze the differences with other bar-
gaining procedures: bargaining over allocations, Nash bargaining, bargaining over
prices only, bargaining with minimum (instead of maximum) quantity constraints,
and bargaining when there is a fixed cost of delay instead of discounting. Finally,
section 6 finishes with some concluding remarks.

2. THE MODEL

Consider an exchange economy with two agents A and B, each endowed with two
goods 1 and 2 over which they have preferences represented by standard® utility
functions u? and u?. Let e? = (e}, e4') and e? = (ef, ef) be the endowments of
agents A and B respectively, and let e = e 4¢P denote the total endowments. The
vector of goods consumed by A and B is given by 24 = (24}, 24!) and 28 = (28, 25)
respectively.

In general, for given endowments, the allocation is not Pareto efficient and there
will exist gains from trade. The central issue in this paper is to address the question
how those gains from trade are realized. More specifically, we are interested in
establishing whether all gains from trade are completely achieved (i.e. whether the
outcome is efficient) and if so, which of all efficient allocations is obtained.

If both agents are considered to be price-takers, we can solve for an allocation
that exploits all gains from trade by invoking the centralized Walrasian auctioneer.
This auctioneer ”determines” a relative price p representing the terms of trade of,
for instance, good 1 in terms of good 2 (that is, good 2 is treated as the numeraire
good, with its price normalized to one). A Walrasian equilibrium allocation is
any feasible allocation of consumption bundles z4,Z? that maximize each agent’s
utility given a price p announced by the Walrasian auctioneer. The first theorem
of welfare economics establishes the efficiency of the Walrasian equilibrium.

Nonetheless, since the price-taking assumption is not easily justified in a two-
person economy, we propose a bargaining procedure that allows agents to realize
the gains from trade and in which agents set prices. More specifically, we consider
an alternating-offers bargaining game in which, in any given period, one of the

9That is to say, continuous in Rﬁ_, differentiable in Ri |, monotonous in the sense that Du(z) €
Ri ., always, quasi-concave in the sense that D2u(z) is negative semi-definite in the normal space
of Du(z) always, and well-behaved in the boundary in the sense that u=!(a) C R3, for any
acu(Ry,).
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agents offers to the other a relative price at which he is willing to trade up to
some maximum amount (for the remainder of the paper, we will refer to this as the
quantity constraint).!? Thus an offer by A, for instance, consists of a relative price
p? (of good 1 in terms of good 2) and a quantity constraint ¢ on the trade of good
1.'1 Represented in an Edgeworth box, the offer (p“,¢?) corresponds to a linear
segment starting from the endowments point e with slope p# and a first coordinate
with absolute value ¢4. Upon the reception of an offer, the recipient, i.e. B in
this case, can either accept the offer or reject it. If she accepts, she then chooses
her most preferred consumption 2 (p?, ¢4) = (22 (p4, ¢*), 28 (p*, ¢*)) (and hence
her desired trade) at the offered price, without violating the quantity constraint
expressed in the offer. That is to say, she chooses an Z2 (pA, qA) that is a solution
tol2

max u® (z?)

s.t. pt(aP —eP) <0 (1)

zf —ef| < ¢t

xT

If B rejects the offer, B then counter-offers another pair (p?,¢?) with a new rel-
ative price and a new quantity constraint. The utility of both agents A and B is
discounted for every iteration of the bargaining by positive discount factors §4 and
88 not bigger than 1. Not reaching an agreement entails a zero utility to both
agents.

A stationary subgame perfect (SSP) equilibrium with immediate acceptance con-
sists of a pair of offers (p#,¢?) and (p?, ¢P) such that, in every subgame where A
is called to make an offer, A offers (p?,¢?) and this offer solves

max v’ (e — &2 (p?t, ¢?))
st uP (@8 (p?, ¢*)) = 6%uP (e — i (07, ¢7))

(2)

given (p?,¢?), and similarly for (p?, ¢?) given (p*, ¢4).

In effect, from subgame perfection, once B decides to accept A’s offer, she will
choose the consumption bundle 2 (p#, ¢”) that maximizes her utility subject to the
terms of the offer. Therefore, knowing that upon acceptance B chooses &2 (p?, ¢?),
A decides to make an offer that maximizes his utility of consuming e — 22 (p4, ¢?),
provided that the offer induces B to accept it. This requires that B obtains at
least as much utility from accepting the current offer, i.e. u?(Z%(p?4,q?)), as she
would get from rejecting the offer and waiting for her equilibrium offer (p?, ¢?) to

be accepted in the next period, which gives her a utility 6%u? (e — 24 (p?, ¢?)).

It turns out to be the case that there is no loss of generality in focusing on the
SSP equilibria with immediate acceptance. As a matter of fact, in this paper we

10T be precise, we refer to a maximum quantity constraint. We will discuss the case of a
minimum quantity constraint below in section 5.

I For notational convenience, we have chosen to model the quantity constraint by means of
the first coordinate of the vector of trades. This does not suppose any loss of generality as we
could as well have chosen to model it as a maximum restriction on the modulus of the trade, for
example, without any impact whatsoever on the results.

12 Abusing the notation only slightly we let the relative price p# stand for the normalized
vector of prices (p, 1), and similarly for pB.
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will consider all types of SSP equilibria, i.e. whether with immediate acceptance
as defined above by conditions (1) and (2), or with delay. First, we concentrate in
section 3 on equilibria with immediate acceptance, and then we show in section 4
that there are no SSP equilibria with delay whenever agents are impatient.

In the next section we present the result establishing that the outcome of bar-
gaining over prices and quantity constraints converges to a Walrasian allocation as
the agents become infinitely patient. The proofs are provided in the appendix.

3. THE CONVERGENCE RESULT

In this section, we develop the argument that establishes the convergence to a
Walrasian allocation of every SSP equilibrium with immediate acceptance of bar-
gaining over prices and quantity constraints. The key insight is that in exchanging
price and quantity offers, the agents are actually bargaining over some allocations.
Each offer by say player A of a price and quantity constraint (pA, qA) corresponds
to an allocation, in case B accepts the offer. Therefore, in a SSP equilibrium with
immediate acceptance, agents de facto offer allocations, although they are restricted
in the allocations they can offer by the optimal acceptance behavior of the receiver.

In effect, given subgame perfection of the equilibrium, any agent making an
offer anticipates the optimal acceptance behavior by the recipient, and therefore
an offer (p4,¢?) amounts to offering the allocation (e — zZ(p?, ¢?), 2% (p?, ¢?)),
where 22 (p4, ¢?) is the consumption chosen by B given the relative price p# and
the quantity constraint ¢*.

This allows to characterize easily the consumption bundles that might be ac-
cepted at a SSP equilibrium with immediate acceptance. Note first that in the
absence of a quantity constraint ¢ (or equivalently, when the constraint is suffi-
ciently slack), B’s response to A’s offer is to choose the allocation on her offer curve
(i.e. her demand denoted by z”(p*)) which maximizes B’s utility at price p*. Note
also that by means of the quantity constraint ¢, agent A can prevent agent B from
attaining her demand 2% (p?), forcing her to trade less than in the unconstrained
case. Nevertheless, in no instance can A force B to exchange more than necessary
to attain her desired demand z”(p?) at that price. As a consequence, an offer by
A that is responded with an optimal acceptance decision by B will always result in
an allocation (e — 2P, 25) such that

Du®(z")(a” — e”) > 0, (3)

where Du®(2P) is the gradient of u? at 25.

Condition (3) characterizes necessarily the solution to the maximization prob-
lem (1) above, and holds with equality if the maximum exchange constraint does
not effectively constrain B’s choice and with strict inequality otherwise. This is
illustrated in the Edgeworth box in Figure 1 below. Starting from the endowment
e, the solid curve is B’s offer curve. For any price p#, if unconstrained by ¢*, B
will choose the allocation zZ(p?) that maximizes her utility u”, i.e. where the
price schedule is tangent to her indifference curve. But A’s ability to constrain B’s
demand allows A to make offers that will eventually lead B to accept in a bigger
set of allocations, namely anything that is within the area delimited by B’s offer
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curve (say "inside” B’s offer curve as opposed to being "on” B’s offer curve). The
same is true for offers made by B with respect to A’s offer curve.

Figure 1

A SSP equilibrium with immediate acceptance of the bargaining over prices and
maximum trades can then be characterized as a bundle 2” offered by A to B and
a bundle 24 offered by B to A such that 7 solves

max u”( By

DuB (2B) (2P —eB) >0 (4)

uB(zB) > 6BuB (e — z)

€E—X

given x4, and likewise for the offer 4 made by B, given 2. Condition (4) is thus
equivalent to conditions (1) and (2).

Now in order to see the convergence to a walrasian allocations of the SSP equi-
libria with immediate acceptance consider first the case of infinitely patient agents,
i.e. with discount factors 64,97 = 1. Fix any utility level (not necessarily corre-
sponding to a SSP equilibrium with immediate acceptance) that agent B can obtain
from delaying one period at u” = U. Then the problem (4) for agent A reduces to
choosing «? that maximizes A’s utility conditional on B accepting. This problem
is illustrated graphically in Figure 2 for the case in which u? = U is bigger than B’s
utility u?(zP) at the Walrasian allocation. The curves going through e in figure
2 represent the offer curves, the intersection of which is the Walrasian equilibrium
allocation . Since any offer (pA, qA) made by A actually induces B to accept an
allocation ”inside” B’s offer curve and B must at least get u® = U, the set of

feasible allocations therefore corresponds to the shaded area.
8



Figure 2

Now suppose that A offers a price p* as given in Figure 2, and a slack quantity
constraint (i.e. ¢ large) implying acceptance by B at 2 (p?) and giving B a utility
of uB = U. This is clearly not the solution to (4) for A, as he can offer a flatter
price schedule and a binding quantity constraint such that his utility increases while
keeping B’s utility at u? = U. The solution is rather to make an offer (p#,¢*)
leading to the allocation #7. It is immediate that for any such u? = U the optimal
solution requires the tangency of A’s indifference curve to B’s, which of course
implies that it is on the contract curve. It is equally easy to see that for levels of
utility u® = U lower than u?(zP), A’s optimal offer leads to a point on B’s offer
curve.

Therefore, there will be solutions #? parameterized by levels of u? = U that
are either on the contract curve, or on B’s offer curve, as shown in Figure 3 below.
The former is the case when the contract curve is "within” B’s offer curve, as is the
case in Figure 3 to the "left” of the Walrasian allocation, where u? = U is larger
than B’s utility at the Walrasian allocation u”(Z?). In the latter case, A cannot
induce B to accept an offer beyond B’s optimal acceptance decision on her offer
curve. We will refer to the curve £, parameterized by «? = U, as B’s modified
offer curve.

9



Figure 3

xr / contract
——————————————————— / — — — T curve

A

The previous discussion is formalized by the following two auxiliary lemmas.
Lemma 1 establishes first that condition (4) implies that at a SSP equilibrium with
immediate acceptance, no agent leaves to the other agent more utility than what
is strictly necessary to obtain his acceptance, therefore extracting all the rents.
Note that this is not unlike the standard Rubinstein alternating-offers bargaining
solution. Thus, any equilibrium offer will make the recipient exactly indifferent
between accepting it and waiting one more period to have his counteroffer accepted.

Lemma 1. At every SSP equilibrium with immediate acceptance p?, ¢, p?, ¢Z,

A leaves B not more utility than is strictly necessary to obtain his acceptance, that
is to say

uP (&5 (ph,q")) = 6%uP (e — 34 (P, ¢7))

and hence, from A’s problem’s first order conditions
[Du?(e = 2% (p",¢")) = M DuP (2P (p*, ¢))] DEP (p*,¢™) = 0
for some \* > 0. Likewise for B.

Lemma 2 shows by means of Lemma 1 that in a SSP equilibrium with immediate
acceptance, the allocation resulting from the acceptance must be on the offer curve
of the accepting party if inefficient, while any offer that effectively constrains the
demand of the accepting party has to lead to an efficient allocation.

Lemma 2. For every SSP equilibrium with immediate acceptance p*, ¢?, p?, ¢7,

if the offer accepted by A is not on his offer curve, then it is efficient. Likewise for
B.

As a consequence of the previous lemmas, a SSP equilibrium with immediate

acceptance can be characterized according to condition (4) by two allocations

(x4, e — z4) and (e — 2®,2P) (not necessarily distinct) on the agents’ modified

10



offer curves (by Lemma 2) and such that agent A obtains from accepting the allo-

cation (24, e — z4) the same utility as he obtains from waiting one period for B to

accept (e — 2B, 2B) and viceversa.

Consider in particular the case where 64,58 = 1. Since by Lemma 1, 24 and
2P have to be such that each agent leaves the other indifferent between accepting
immediately and delaying the reach of an agreement, then 24 and 2” have to be
on the same indifference curves for both agents. Moreover, by Lemma 2, 24 (resp.
2B) must be either on A’s (resp. B’s) offer curve or on the contract curve above
(resp. below) the Walrasian allocation. This allows us to establish (in the proof
of Theorem 1 below) that every SSP equilibrium with immediate acceptance has
to be Walrasian. In addition, it can easily be seen that x4 and z” satisfy these
conditions simultaneously only if they coincide with the Walrasian allocation. We
turn to this first and then argue intuitively below that every SSP equilibrium has
be Walrasian.

Firstly, for infinitely patient agents (i.e. §4,8% = 1), the Walrasian allocations
like (z4,ZP) in Figure 4 below are the only allocations of SSP equilibria with
immediate acceptance. Note that z4 in Figure 4 maximizes indeed B’s utility
within B’s choice set, which consists of the allocations ”within” A’s offer curve
guaranteeing A at least u(e — %) (the horizontally shaded area) and, similarly,
P maximizes A’s utility within A’s choice set, i.e. the allocations ”within” B’s

offer curve guaranteeing B at least u? (e — Z4)(the vertically shaded area).

Figure 4

A

Secondly, for infinitely patient agents, there is no other allocation that corre-
sponds to a SSP equilibrium with immediate acceptance. Assume on the contrary
there is an allocation (z#,2?) corresponding to a SSP equilibrium with immedi-
ate acceptance. For instance, assume that B is able to guarantee himself a non-
Walrasian level of utility u(e — %) as shown in Figure 5 below. Then x® would
necessarily have to be efficient, which leaves B a constrained set from which to
choose her offer z# within which she cannot actually reach the utility u(e — z4)!

11



Figure 5

A

Theorem 1 summarizes the previous argument.

Theorem 1. Every allocation of a SSP equilibrium with immediate acceptance is
Walrasian, and conversely, whenever the agents are infinitely patient.

The convergence towards Walrasian equilibrium allocations of the allocations
of the SSP equilibria with immediate acceptance as the agents become arbitrarily
patient is then the consequence of Theorem 1 and the upper hemicontinuity of the
correspondence mapping the agents’ discount factors to the set of allocations of
the SSP equilibria with immediate acceptance. This result is stated as Theorem 2
below.

Theorem 2. Every allocation of a SSP equilibrium with immediate acceptance
converges to a Walrasian allocation as the agents become arbitrarily patient.

4. SSP EQUILIBRIA WITH DELAY?

So far, we have concentrated attention on SSP equilibria with immediate accep-
tance. For the remainder of this section, we will analyze SSP equilibria with delay in
which one of the players rejects the offer made by the other player. It is well known
that in generalized bargaining environments with complete information, equilibria
with delay in reaching an agreement may exist (for an exhaustive treatment, see
Merlo and Wilson (1996)). In the bargaining procedure considered here, it turns
out that there is no SSP equilibrium with delay when the agents are impatient. In
order to see this, we first extend the definition of a SSP equilibrium in (1) and (2)
to allow for a delay in the acceptance of an offer. Without loss of generality, and
in line with the argument above, we define equilibrium in terms of the allocations
x4, 2B that result from offers p?, ¢ and p?, ¢B.

In general, a SSP equilibrium consists of two allocations 24 and z? (offered by
B and A respectively) and acceptance rules according to which A rejects any offer
12



that does not allow him to attain at least a utility 64u(e — %), and similarly for
B, that satisfy:

(1) A’s offer 2P is rational, that is to say, given B’s offer 24, either A prefers
B’s acceptance of 2 to B’s rejection, i.e. u?(e —2P) > §4ud(24) and is
making his most preferred offer acceptable to B, i.e. = solves

A

max u B)

DuB (2B) (2P —eB) >0

uB(2B) > §BuP (e — z?)

€E—X

given 2, or else A prefers B’s rejection of 2B to B’s acceptance, i.e. u

2B) < §4uA(24) and is accordingly making an unacceptable offer to B,

A(e_

uB(2B) < 6BuB (e — 2)

and
(2) B’s reply to A’s offer is rational, i.e. u?(z?) > §BuB(e — z4) if B accepts
P, and uB(2P) < 6BuP (e — 24) if B rejects z5.

and similarly for B’s offer z4.

Consider now a candidate SSP equilibrium in which say B rejects and A accepts.
In such equilibrium, A prefers to make an offer ¥ that will be rejected by B, and
hence it gives A a smaller utility u“(e — 27) than the discounted utility 64u4(z4)
he derives from B’s offer x4, i.e.

sAul (z) > ut(e — 2P).

Also A prefers to accept B’s offer 4 because it gives A a higher utility u(z4)
than his discounted utility §4u“ (e — 2) from his own offer, i.e.

u(z?) > §4ut (e — zP).

Then, for §4 < 1, this last inequality cannot be binding. That is to say, in a SSP
equilibrium in which B rejects and A accepts, B’s offer 2 leaves A more utility
than what would be necessary for having A accept it.

As a consequence, the second constraint of B’s problem is not binding, but since
agent B’s preferences are monotone, then necessarily the first constraint constraint
will be binding at =4, i.e.

Du(zM) (et —2?) =0

and therefore z# has to be on A’s offer curve. Finally, this implies that there always
exists a profitable deviation by A in this candidate equilibrium.

To see this, consider first the case where 24 is not efficient. Then there would be

room for agent A to deviate profitably offering another z’ B which, if accepted by

B, makes both A and B better off. This situation is illustrated in Figure 6 below.

It is easy to see that any offer z’ B by A within the lens formed by the indifference
13



curves corresponding to u“(x4) and u”(e — 24) will lead B to accept the offer.

That is to say, there is a mutually beneficial deviation of A from offering 2.

Figure 6

contract
curve

A

Consider now the case in which x4 is efficient (and hence actually Walrasian)
as in figure 7 below. Then, although there is no allocation that makes both agents
better off, there is still an obvious profitable deviation by A that consists of pre-
empting B’s offer by means of offering 4 himself from the beginning, since he will
accept it anyway, after B’s rejection, paying unnecessarily the cost of the delay .

Figure 7

~ contract
curve

A

Therefore there cannot be a SSP equilibrium with delay for this bargaining game
14



if the agents exhibit the slightest degree of impatience.!® This is stated in the next
lemma.

Lemma 3. Whenever the agents are impatient (5A, 6B < 1), there does not exist
any SSP equilibrium with delay.

In the absence of SSP equilibria with delay, we can now conclude that all SSP
equilibria converge to the Walrasian allocation. The proof follows immediately from
Lemma 3 and Theorem 2.

Theorem 3. Every SSP equilibrium allocation converges to a Walrasian allocation
as the agents become arbitrarily patient.

5. DISCUSSION

In this section, we put our main result in the context of alternative bargaining
procedures. As was mentioned in the introduction, Edgeworth (1882) points out
that depending on the specifics of the bargaining procedure any Pareto improving
allocation on the contract curve can be obtained. First, we illustrate how the stan-
dard alternating-offer bargaining outcome depends on the discount factors, even as
they converge to one. We then point out that also in the case of Nash bargain-
ing, the bargaining power of each agent determines the solution. We then proceed
to argue that bargaining over prices only is not sufficient to obtain a bargaining
foundation for the Walrasian equilibrium in small economies, and that a quantity
constraint is needed. We also illustrate using an example that the quantity con-
straint must be a maximum trade, as other SSP equilibria exist when the constraint
is a minimum trade constraint. And finally, we discuss the case of a fixed cost of
delay as opposed to discounting.

Bargaining over Allocations. In the standard alternating-offer bargaining
model (Rubinstein (1982) and Stahl (1972)), proposers offer an allocation by means
of a share of the surplus that is up for negotiation. As a result, the offer corresponds
to a pair of utilities in which each agent consumes the share agreed upon. Rubinstein
(1982) shows that, for discount factors strictly less than one, there exists a unique
subgame perfect equilibrium of the bargaining game and that it is efficient.

Let 24 (resp. 2P) denote a consumption offered by agent B to agent A (resp.
by A to B). An offer x® made by agent A must be such that, in equilibrium, it
leaves B with at least the same utility as what she could get in the next period:
uB(2B) > 6BuP (e—z?). Likewise for an offer by B: u”(z?) > §4u(e—2?). Since
the agents making an offer will always extract all the rents available to leave the
receiver indifferent between accepting and rejecting, in equilibrium these inequal-
ities hold with equality (see Rubinstein (1982)).1% To represent these equilibrium

IBWhen §4 = §8 = 1, a continuum of SSP equilibria with delay exist (see Appendix). This
is reminiscent of the continuum of equilibria in the Rubinstein alternating offer bargaining game
without discounting and in which subgame perfect equilibria coincide with Nash equilibria.

14Note that in Lemma 1 above we have established a similar property of SSP equilibrium with
immediate acceptance in the bargaining problem we analyze in this paper.
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conditions, we can define therefore two curves of utility profiles P4 and PP that
are transformations of the Pareto frontier P

PA — (’LLA(.CEA),(SB’LLB(ZEB))

pPB (5AuA(a:A),uB(:UB)) :

For example, P indicates the profile of utilities (u?(24), §%u®(2?)) for all feasible
allocations (z4,2?), i.e. with 24 + 2® = ¢, and where B’s utility is discounted by
0B while A’s utility is unchanged. Likewise for PZ. An equilibrium corresponds
therefore to an intersection of the curves of utility profiles P4 and PZ. This is
illustrated in Figure 8.

Figure 8

(Clearly, the solution of the standard alternating offer bargaining game depends
on the discount factors §4,65. For example, as A becomes more and more patient
(64 goes to one), PP converges to the Pareto frontier P. If 62 is kept constant,
then the bargaining solution will be such that A extracts all the rents as the inter-
section of P4 and PP converges to intersection of P with the horizontal axis. More
generally, the outcome of the bargaining as the agents become infinitely patient
depends then on the rate at which each of the §’s converge to one. If §4 converges
faster to one, then the outcome will be proportionally more favorable to A.

Nash Bargaining.  The same remark applies to the axiomatic bargaining
solution proposed by Nash (1953). The Nash solution depends on the details of the
bargaining procedure, both the outside option and the bargaining power of each of
the agents. Here we will briefly illustrate the dependence on the relative bargaining
power of each of the agents. Let o and 1 — « be the bargaining power of agent
A and B respectively. The Nash program then chooses, for a given o € (0,1) the
allocation (z2, 22) that maximizes the Nash product u?(z4)® - u®(2B)1 =% subject
to the feasibility condition 24 + 2% = e. The solution is graphically illustrated in
Figure 9 below.

16



Figure 9

As a changes, the point on the Pareto frontier P that is selected as the solution
to the bargaining problem changes. For a converging to one for example, the
solution converges to the intersection of P with the horizontal axis, i.e. agent A
obtains the entire surplus. Binmore, Rubinstein and Wolinsky (1986) show that
the alternating-offer bargaining solution approaches the Nash bargaining solution
with utilities that reflect the incentives to settle and with the proper disagreement
point chosen.

Bargaining over prices only. The only difference between the problems faced
by the agents in the bargaining protocol in the current paper and the one we
considered in Dévila and Eeckhout (2002) is precisely the presence of the quantity
constraint. The agent making an offer here has the ability to limit the quantities to
be traded chosen by the agent accepting it. This difference turns out to be crucial
to get the convergence of the SSP equilibria of the bargaining game to a Walrasian
outcome as the agents become infinitely patient. In order to see this, let us review
the unconstrained case studied in Davila and Eeckhout (2002) first, and then what
changes in the constrained case.

As before, we can consider the problem of the agents as if they were bargaining
over the allocations implied by the bargaining over the relative price, instead of
bargaining over the price itself. More specifically, note that whenever agent A
makes an offer of a relative price p# he is effectively offering the allocation (e —
zB(pA), 2B (p?)), where zB(p?) is the usual (unconstrained) demand of B at the
relative price pA. In other words, in the unconstrained demand case A is actually
constrained to offer allocations on B’s offer curve, i.e. an x® such that

DuB (2B (2P — eP) = 0.
Now there is no longer any quantity constraint. Therefore an SSP equilibrium of the
bargaining over prices only can also be characterized as a consumption x4 offered
by B to A and similarly a consumption z? offered by A to B such that 4 solves
max u( A4

Du(zM)(z? —e?) =0

ut(z?) > §4ut (e — 2P)

17
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B

given x”, and likewise for B.

This implies that any solution must be on each of the the accepting agent’s offer
curve. When agents are infinitely patient, i.e. for 64,67 = 1, the utility that any
of the agents receives must be the same whether he accepts an offer or whether his
offer is accepted. It is straightforward that the Walrasian allocation (24, z?) solves
the problems above for infinitely patient agents. What is not that obvious is that,
generically in the space of preferences,'® there are inefficient allocations (z4,e —
z4) and (e — 2B, 2P) that satisfy the conditions for a stationary subgame perfect
equilibrium with immediate acceptance as well. The existence of such allocations is
proved in Davila and Eeckhout (2002),¢ and the following Figure 10 exhibits one
such pair of allocations.

Figure 10

B’s offer clirve

A

Note that in Figure 10, in effect, B’s offer £ maximizes B’s utility over the
piece (in solid) of A’s offer curve (in dashes) corresponding to levels of utility for A
at least as big as u”( B) and A’s offer 2P maximizes A’s utility over the piece
(in solid) of B’s offer curve (in dashes) corresponding to levels of utility for B at
least as big as u?(e — z4).

€E—XT

By continuity, for discount factors smaller than but close enough to 1, there
is a stationary subgame perfect equilibrium whose allocations (depending on who
accepts whose offer) are close to the inefficient allocations (z#,e — 24) and (e —
2B, 2B), and moreover converge to these inefficient allocations as the agents become
arbitrarily patient. Hence the lack of convergence towards a Walrasian outcome of
the outcome of bargaining only over prices.

To further illustrate this lack of convergence to the Walrasian equilibrium allo-
cation if the agents bargain over prices only, we represent the utility pairs obtained
along the offer curves in Figure 11. The ”inverted-U-shaped” solid curve labelled

15More precisely, for an open and dense subset of utility functions with respect to the adequate
topology.

16The conditions above characterizing these allocations are in principle only necessary. We
studied in D&vila and Eeckhout (2002) when they are sufficient a well.
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f4 represents the utility combinations of both agents as we run along A’s offer
curve. Initially, both agents’ utility increases, to reach a maximum at the monop-
oly allocation. Thereafter, B’s utility decreases as A’s utility continues to increase.
Similarly the ”left-U-shaped” solid curve f? represents the pairs of utility running
along B’s offer curve. The curve in dashes represents the Pareto frontier.

An intersection of both curves f4 and f? corresponds'” to a SSP equilibrium
when bargaining only over prices in the case where 64,67 = 1, since it would
amount to the satisfaction of the equations

Ar A A B
u(z”) ( )

o

T =Uu

)

e—x
uP (e — 2?) = uP(2P)

by an 24 on A’s offer curve and an 2 on B’s offer curve. The Walrasian allocation
is hence a SSP equilibrium in this case also, but there is another intersection that is
strictly inside the Pareto frontier. In Dévila and Eeckhout (2002) we show that this
inefficient SSP equilibrium robustly exists even for 64,87 < 1. On the contrary,
as we also show there, with discounting the SSP equilibrium allocation converging
to the Walrasian allocation is no longer guaranteed to exist uniquely, or even to
exist at all: either there is no such SSP equilibrium (the intersection at (a*,u?))
vanishes as 64,07 depart from 1), or if it exists, there is an even number of them
(the intersection at (@, @?)) bifurcates as 64, 6% depart from 1). Which case arises

depends on the path followed by the discount factors towards one.

Figure 11
uB
fA AN (ﬂA, ﬂB)
\\
fB \\\
uB(eB)| L,
uA(eA) u

Note that in the case of bargaining over prices with quantity constraints this
inefficient allocation ceases to be an equilibrium. To see this, observe that (i) offers
immediately accepted by A at a SSP equilibrium that provide A a utility that is
lower than his Walrasian utility @4 will not be bound by the quantity constraint
and, as was shown above (see Lemma 2), they will be on A’s offer curve, while (ii)
offers made to A that provide A a utility that is higher than @# will be bound by

17Provided both curves have negative slopes, which guarantees the subgame perfection of the
equilibrium.
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the quantity constraint, and hence they will be on the contract curve. Likewise for
offers accepted by B.

Therefore, a SSP equilibrium of bargaining over prices with quantity constraints
corresponds to the intersection of the two curves fA and fB shown in Figure 12
below. These curves are composed partly of the offer curve (f# to the left of
(a?, uP) for offers accepted by A) and partly of the Pareto frontier (from (a*,u?)
to its right, for offers accepted by A, and similarly for B). In effect, in the case
where 64,68 = 1, such an intersection amounts to the following equations being
satisfied by a point 4 on A’s modified offer curve and a point ZZ on B’s modified
offer curve.

uA(i’A) = uA(e —zP)
uB(e — #4) = uB(P)
Figure 12
uB
fA \\\ ('U/A, UB)
\\\
\
\
\
\
\
\\
/ B \
uB(eB) | / Y )
u?(e?) u

It follows straightforwardly then that only the Walrasian outcomes correspond
to SSP equilibria of the bargaining game when §4,6% = 1. Note also that every
Walrasian intersection is robust now with the bargaining over prices and quantity
constraints to slight departures of §4,67 from 1. The previous discussion also
shows that the convergence result does not depend on having just two goods, since
independently of the number of goods, in the space of utilities the same pattern
would appear.

Bargaining over prices with minimum quantity constraints. Is there
anything special about the bargaining procedure of alternating price offers with
maximum quantity constraints? As discussed earlier, the quantity constraint is
crucial to guarantee convergence to the Walrasian allocation. But can a case be
made for using minimum quantity constraints, instead of maximum constraints?
The only difference is that whenever an agent, say A, is interested in having his
offer accepted at equilibrium, this offer £ has to be the solution to the only slightly

20



different problem below

max u’( By
DuB (2B (2P —eP) <0

uP (28) > §Pul (e — z?)

€E—x

given . Observe that compared to the problem solved by the agent proposing
a maximum quantity constraint, the inequality in the first constraint is now re-
versed. This means that agent B may be prevented from choosing as little as he
may desire to trade at some offered price. The proofs of Theorems 1 and 2 can
be straightforwardly modified to show that they still hold with minimum rather
than maximum quantity constraints. As a result, there is a SSP equilibrium with
immediate acceptance converging to the Walrasian allocation.

The main difference however is that this is no longer the unique SSP equilibrium
because there also exist SSP equilibria with delay when agents are not perfectly
patient. To see this, consider the same candidate SSP equilibrium as above in
which B rejects the offer 2 made by A, and A accepts the offer 2 made by B.
For the case 64,68 = 1, we show that the 2% on the contract curve such that
u?(z4) = u?(e?) is indeed an SSP equilibrium with delay. This is illustrated in
Figure 13 below.

Note that, independently of the unacceptable offer ” that A may make to B,
by means of imposing a minimum trade, agent B can make an offer that forces A
to accept on the contract curve even though A would prefer to accept on his offer
curve. This implies that the offer made by B and accepted by A is efficient. As a
result, there does not exist any counter-offer 2 by A that B will accept and that
makes both better off. Therefore, there is no profitable deviation. By continuity,
the same is true for discount factors close enough to 1.

Figure 13

A

Clearly, the same argument can be applied to establish that there will exist a SSP
equilibrium with delay where A’s offer 2 is accepted by B and B’s offer is rejected
21



by A. The offer ¥ is on the contract curve and it satisfies u?(2?) = uB(e?). This
is consistent with the characterization of SSP equilibria with delay in Merlo and
Wilson (1995).

Bargaining with a constant cost of delay. In many environments bargaining
parties have preferences for early settlement, but the cost of delay is constant. This
is in contrast with discounting, where the cost of delay is proportional to the value
of the surplus. Examples with a fixed transaction cost per unit of time in the
process of bargaining include bargaining over the phone with a per unit of time
cost of the call, or bargaining that is executed through lawyers who bill by the
hour. Therefore, preferences may be more accurately represented by u(z4) —tc4,
where 24 is a feasible allocation, ¢* is the utility cost of delaying one period, and
t is the number of periods gone by. Similarly for B.

For the case of the standard Rubinstein bargaining model with a pie of size 1
and linear preferences z4 — tc?, fixed costs of delay produce a radically different
result than discounting (see Rubinstein (1982)). Two necessary conditions for a
subgame perfect equilibrium are 22 =1 — 24 — ¢P and 24 =1 — 2P — ¢4, where
24 is the offer accepted by A when B makes the offer, and ¢? is the cost to B
of delaying one period. Basically, if B accepts A’s offer, she has to be indifferent
between 2 and 1 — 24 — ¢B. Let ¢ < ¢P, then it is easy to see in Figure 14 below
that there is no intersection of the horizontally and vertically translated Pareto
frontier. Rubinstein (1982) shows that in that case, player A who is less impatient
will get the entire surplus. This remains true as the costs of delay vanish, whatever
the rate at which ¢ and ¢? converge to 0.

Figure 14

The fact that with constant costs the most patient agent gets the entire surplus
(as in Rubinstein (1982)) is quite specific to the case of linear preferences. This
no longer holds for more general preferences. Consider for example the case where
the utility is not linear, but rather the natural logarithm plus a positive constant
(the constant, when large enough, ensures positive utilities) for both agents. Then
necessary conditions are In(z?) = In(1 — z4) — ¢® and In(z4) = In(1 — 28) — ¢4
and imply 28 = ¢=¢" (1 —24) and 2z = e (1—28). Now for ¢ > 0, we have that

22



e~¢ < 1. Therefore, let d* = e (similarly for B) and we get exactly the same
solution as in the case the standard Rubinstein bargaining game with discounting,
where d4 > dP. This is illustrated in Figure 15:

Figure 15

cA, P

As d4 and dP converge to 1 (i.e. converge to 0), the solutions will be
interior and equal to ((1/(1 + 7)), (r/(1 + r))) where r is the rate at which d’s
converge to 1: r = Ind?/Ind? = ¢4 /cB. This solution is always interior for
¢, c¢P > 0. What this example illustrates is that the ”corner” solution in which
the more patient agent gets the entire surplus when there is a constant cost of delay
is not generic.'®

The same is true in our model of bargaining over prices with maximum quantity
constraints and with general preferences when fixed costs of delay are introduced
instead of discounting. The problem in (4) now can be written as

max u

Ae—a")

DuB(2B)(zP —eP) >0 (4%

uP(28) > uP(e — 2) — B,

Obviously, problem (4’) without cost of delay (¢ = 0) and problem (4) without
discounting frictions (§ = 1) are identical. Therefore Theorem 1 immediately ex-
tends to the case ¢* = ¢® = 0. We do not provide a proof for the counterpart of
Theorem 2, but observe that the proof of Theorem 2 is built on a continuity argu-
ment of the equilibrium correspondence as discounting frictions vanish. Graphically,
in the space of utilities, Theorem 1 derives from the intersections of two graphs.
With small discounting frictions, the SSP equilibria with immediate acceptance
correspond to the intersection of these slightly transformed graphs. Whether that

18For a discussion on more general classes of intertemporal preferences and the axiomatic
approach to delay, see Osborne and Rubinstein (1990)).
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transformation is proportional (as in the case of discounting) or additive (as in the
case of fixed costs) does not alter the outcome.

6. CONCLUDING REMARKS

In this paper, we have proposed a simple bargaining procedure that achieves the
competitive equilibrium allocation without assuming price-taking behavior. The
procedure is commonly observed, in the sense that negotiating parties often bar-
gain over a price, and that the quantity of trade is chosen separately. The main
contribution of this paper is to show that by always obtaining the Walrasian equi-
librium, the outcome of the bargaining does not depend on specifics such as relative
bargaining powers or impatience, but only on primitives, i.e. preferences and en-
dowments.

This bargaining procedure is of particular appeal when applied in economic the-
ories in which bargaining is a natural component of pairwise negotiation. In search
theory for example, the effectiveness of a policy that restores efficiency (see Ho-
sios (1990)) no longer depends on some exogenous parameter that is often hard
to observe, let alone quantify. Rather, the determinacy of the bargaining outcome
implies that an efficient policy is a function only of the preferences and endowments
of the agents in the economy.

The results derived here hold for economies with two agents only, which makes
the price-taking behavior assumption hard to justify. It remains an open question
whether this bargaining procedure will still generate the Walrasian outcome when
the number of agents is larger than two. We do know though that for the standard
alternating-offer bargaining game a la Rubinstein, the equilibrium in stationary
strategies is unique for games with more than two agents.!® Even so, it remains
to be verified whether our bargaining procedure for more than two agents will lead
to the competitive outcome. At the other extreme, when the number of agents
increases to a continuum and pairs are formed through random matching, then the
bargaining procedure proposed in Gale (1986) will lead to the Walrasian equilibrium
outcome.

19See Herrero (1985) and Sutton (1986). However, in non-stationary strategies, uniqueness is
not guaranteed.
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APPENDIX

Lemma 1. At every SSP equilibrium with immediate acceptance p?, ¢4, p?, ¢7,

A leaves B not more utility than is strictly necessary to obtain his acceptance, that
is to say

uP (&P (p", ")) = 6%uP (e = 24 (p", ¢"))
and hence, from A’s problem’s first order conditions
[Dut(e — 2% (p™, ¢™)) = M Du (@ (p",¢"))] DZ%(p*,¢") = 0

for some A\ > 0. Likewise for B.

Proof. Let (p?,¢?,p?,¢") be an SSP equilibrium with immediate acceptance, then

necessarily
(p*, ") € argmaxu® (e — 27 (5%, ¢"))

uB (@85, ¢%)) > 6%uP (e — 247, ¢"))

Since the constraint qualification condition is satisfied by the problem, the neces-
sarily, for some A4 > 0,

[Dut(e — 2% (p*, ¢*)) = M DuP (&7 (p*, ¢1))] DZ (p*, ¢*)
[Dut(e — 22 (p*,¢)) — M Du” (25 (p?, ¢1)) ]| DE" (0", ¢ (0", ¢?)
AMuP (@8 (p4,¢%) = 6%uP (e — 25 (p?, )]

Y

0
0 (1)
0

Note that
(1) either the quantity constraint is binding for B, i.e.

(4, q") # 2" (p")
(2) or it is not, i.e.
P (pt,q*) = 2" (")
and

(3) either the solution to B’s problem is interior, i.e.
u?(@%(p",¢")) > 6%uP (e — 24 (p", ¢"))

and
Du?(e — #8(p*, ¢*))DEB (p*,¢*) =0

(4) or it is not, i.c.
uP (@8 (p?, q")) = 6%uP (e — 2 (7, ¢7))
and
[Dut(e - 2%(p?, ¢*)) = M DuP (&7 (p?, ¢*))] DZ"(p*,¢") =0

for some A\ > 0.
25



Let us see that (3) cannot hold.

Assume first that (1) holds, i.e. #2(p?,¢?) # 2B(p?). Can (3) hold with (1)?
No, it cannot. In effect, since 8 (p?, ¢?) # 2Z(p?), then D238 (p?,q4) # 0 since
the preferences are monotone. If moreover (3) was the case, since the gradient
Du?(e — 2P(pA,¢?)) is in R2 | then

(31) either both D138 (pA, ¢*) and D,3? (pA q?) are null,

(32) or one of D1Z5(p?,q ) and Dgzv ( A, g?) is null and the other is non-null

and orthogonal to Du?(e — 2 (p?, ¢?)),
(33) or both D1#8(p4,¢?) and Dy7 (pA,q ) are non-null and orthogonal to

Du?(e — 25 (pt,q ))-

Cases (31) and (32) above can be discarded since D232 (p?,¢#) # 0 and also
D1&B(pA,q*) # 0 for monotone preferences. As a consequence, (3) could only
hold with (1) if both D172 (p?, ¢?) and D235 (p?, q ) are non-null and orthogonal
to Du‘(e — 3B (pA,q?)), but thls requlres that D128 (p?,¢4) and DozB(p?A, q¢?)
be collinear, which cannot be since D132 (p4,¢?) is in R2 \ {0} or R? \ {0} and
DoiB (p4, ¢4) is not (note that Do 2 (p?, ¢) is normal to (pA, 1), whichisin R% ).

B (p?). Can (3) hold with (2)?
x ( 4), then Doz B (pA, ¢4) = 0.
4,¢%)) e RZ,, then agaln

Assume now that (2) holds, i.e. & (p ,q?) =
Again no, it cannot. In effect, since (p ,qY) =
If moreover (3) was the case, since Du“(e — 2 (p

(31) either both D1Z5(p4,¢?) and D225 (p# q ) are null,

(32) or one of D1ZB(p4, ¢q ) and D8 (pA, ¢) is null and the other is non-null
and orthogonal to Du“(e — z8(p A, ))

(33) or both D38 (pA,¢?) and DozP(p?,¢*) are non-null and orthogonal to

Du(e —2(p*, q ))-
Case (31) above can be discarded since D% (pA q*) # 0 for monotone prefer-
ences, and also (33) can be discarded since D272 (p“,¢) = 0 because (2) holds.
As a consequence, (3) could only hold with (2) if D35 (p?,¢?) was orthogonal to
Duf(e — B(pA,¢?*)), but Dut(e — 2B (p?,¢?)) € R2, while D128 (p?,¢?) is in
R3 \ {0} or R2 \ {0} and hence they cannot be orthogonal.

Since (3) cannot hold in any case, then necessarily (4) holds. Q.E.D.

Lemma 2. For every SSP equilibrium with immediate acceptance p*, ¢?, p?, ¢®,

if the offer accepted by A is not on his offer curve, then it is efficient. Likewise for
B.

Proof. We need to verify that, for every SSP equilibrium with immediate acceptance

(p*.q".p".q"). whenever #4(p".q") # +4(p?). the allocation (4 (p”.q").

74 (pP, qP)) is efficient.

Let (p?,q%,p%,¢®) be a SSP equilibrium with immediate acceptance. Then
necessarily
(p”,4¢") € argmaxu® (e — i (5", ¢7))
ut (@ (7, 47)) = 6%ul(e — 7 (", ¢"))
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Since the constraint qualification condition is satisfied by the problem, then neces-
sarily, for some A\Z > 0,

[DuP (e — 24 (p”,¢")) — AP Dut (2P (p*, ¢*)) | D2 (7, ¢7)
[DuP (e — 4 (p”,q7)) — AP Dut (% (p*, ¢)) | DZ* (p® . ") (07, ¢7)
AP [ut(@4(p", 47)) — 6%ut(e — 2P (p?, ¢P))]

v

0
0 (1)
0

Assume that 74 (p?, ¢P) # 24 (pP) and that (24 (p?, ¢¥), e —24(p?, ¢P)) is inef-
ficient. Then, by the monotonicity of the preferences, D234 (p?, ¢¥) # 0. Moreover,
D34 (pB,¢P) and D134 (p®, ¢P) are linearly independent when D34 (p?, ¢®) # 0,
since D134 (p?, ¢P) is in R? or R? while D134 (p?, ¢P) is in none of them.

Since pB,¢P > 0, then according to the first order conditions (1) there exists a
linear combination Du®(e — 4 (p?, ¢®)) — ABDu? (2B (pA, ¢?)) of the gradients of
utilities that

(1) is orthogonal to a vector in the cone of positive linear combinations of
D1z4(p?,q") and Daz?(p”, ¢”), and
(2) has a non-negative inner product with D24 (p?, ¢®) and D234 (p?, ¢?).

But these two conditions cannot be satisfied simultaneously. In effect, since the
allocation (24(p?,¢?),e — 34 (p?, ¢P)) is inefficient, then the condition

[Du®(e =24 (", ¢7)) = AP Du (&P (p*, ¢*)] DEA (07, %) (07, ") = 0
can only hold with
[DuB (e — F(pP, ¢P)) — ABDUA(iB(pA,qA))}DjA(pB’qB) >0
and (p?,¢P) > 0, if
[Du® (e — &4(p®,¢")) — AP Du? (2" (p*, ¢*))| DE* (p", ¢") = 0
but then D34 (p?, ¢P) and D124 (p?, ¢P) are linearly dependent!

Therefore, if 24 (p?, ¢P) # 24 (p?), then (24 (p?, ¢P),e— 34 (p?, ¢P)) is efficient.
Q.E.D.

Theorem 1. Every allocation of a SSP equilibrium with immediate acceptance is
Walrasian, and conversely, whenever the agents are infinitely patient.

Proof. Let (p?,q*,p?,qP) be a SSP equilibrium with immediate acceptance when
the agents are infinitely patient, i.e. with 64 =1 = §B. Then

(1) either for some agent, say A, his demand is effectively constrained, i.e.
40", q") # =2 (p7)

(2) or for both agents the demand is unconstrained, i.e.
4 (p",¢%) = 2" (p")
(", q") = 2P (™).



If (1), then by Lemma 2 the allocation (Z4(p?,¢?),e — 24 (p?,¢?)) is efficient
and, since 24 (p?, ¢®) # x4 (p?), non-walrasian. Moreover,

@ 0",¢%),e =i (0", 4")) = (e = %", ¢"), 3% (0", ¢"))
since by Lemma 1 the constraints are binding, i.e.

uw (@3 (PP, ¢")) = ut(e — 2" (p*, ¢"))

Ble—3(p”,q"))

u =u
which means that the allocation (24 (p?,¢?),e — 24(p?,¢?)) and the allocation
(e—xB(pA,q1), 28 (p?, ¢?)) are, within the Edgeworth box, located on the same in-
difference curve for each of the two agents. Since (24(p?, ¢®),e—z4(p?, ¢P)) is effi-
cient, it is the only allocation providing A and B the levels of utility u? (4 (p?, ¢?))
and uP(e — 24(p?, ¢P)) respectively, from which the equality of the two allo-
cations offered follows. But at an efficient, non-Walrasian allocation such that

4 (p?,¢") # 24 (p?), it holds
DuP (e — & (p”,q"))(e* — 2 (p",¢7)) <0
because
Dut (4 (p”,¢")) (@4 (p",¢"%) —e*) > 0

since 24 (p?, ¢P) # 24 (p?), and the gradients Du? (4 (p?, ¢®)) and Du® (2B (p*4, ¢4))
are collinear because of the efficiency of the allocation. Nevertheless, it must also
hold

Du® (&P (p*, ¢")) (@ (0, ¢*) — %) > 0

because of the maximum trade constraint in B’s choice upon acceptance of A’s
offer, and

P, q") =e— (", ¢"),
that is to say,
DuP (e — 24 (p”, ¢"))(e? — 24 (p",¢P)) > 0

which contradicts the inequality above. Therefore (1) cannot hold and necessarily
(2) holds, i.e.
#4(p", ¢") = 22 (")

Moreover, the choice (p?,¢?) of agent B, for instance, necessarily satisfies the
necessary Kuhn-Tucker conditions of his optimization problem, i.e.

DuP (e =i (p",q")) = AP [Dut (@ (07, ¢7)) + D> (24 (7, ¢")) (4 (0, ¢7) — )]
+ A7 Dut (@ (p”, ¢"))
or equivalently, since (2) holds,
DuP (e — 24 (pP)) = A7 D*u (@ (pP)) (24 (p7) — &)

+ (AP + A5 Dut (2 (pP))
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for some AP, AP > 0, given that at 2 (p?) both constraints of B’s problem equiv-
alently written in terms of allocations

2z € max u®P(e — &%)
pA

Dut (@) (@4 —e?) >0
ut (@) > ut(e — 28 (p?, ¢))

€E—X

are binding. Therefore, since Du“(z4(p?)) is orthogonal to (z?(p?) — e#) and
the Hessian D?u? (24 (p?)) is negative semidefinite in the space orthogonal to the
gradient Du?(z4(p?)) and AP > 0, then

DuP (e — 2 (pP))(a (p”) — )
=M (@ (p") — e D*ut (2 (pP)) (@ (p) — €
+ (AL + 20 Du? (2 (pP)) (2 (pP) — )

= (@4 (pP) — ) D2l (2 (p7)) (= () —
<0

)

)

that is to say,
Du®(e — 2 (p™)) (@ (p”) — e*) < 0.
Since also
Du(z4(p")) (= (p") — &) = 0
and both Du?(z(p?)) and Duf(e — 24 (p?)) are in R% ., then, without loss of

generality, in the case A’s marginal rate of substitution at e? is smaller than B’s
marginal rate of substitution at e? (i.e. when z{}(p?) — ef! < 0),2°

Diu®B(e — z4(pP)) S Diu? (z(p?))
DouB(e — x4 (pB)) = Dout(xA(pB))

Similarly, in this same case (where ¥ (p?) — e® > 0), from the Kuhn-Tucker

conditions of agent A’s problem follows that

Diuf(e — 2B(p?)) _ DiuB(2B(p?))

B( g
Doul(e — 2B(pA)) = DauB(xB(p4))

But the two previous inequalities can only be satisfied along with the conditions

from Lemma 1 only if

(@ (pP).e — 2t (p?)) = (@™, 27*) = (e — 2P (p™), 2" (p?))

20 A similar symmetric argument holds if A’s marginal rate of substitution at e is bigger than
B’s marginal rate of substitution at e? (i.e. when mf (pB) — 6‘14 > 0).
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and
DluA(acA*) B DluB(SEB*)
DQUA(.IA*) o DQUB(xB*)'

i.e. only if the two allocations coincide and are Walrasian.

In effect, if for instance

DiuB(e — 24 (pP))  Diud(z4(p?))
DoyuB (e — z4(p?))

i.e. A’s marginal rate of substitution at the allocation implicitly proposed by B is
smaller than B’s marginal rate of substitution, then

DiuA(e — 2B(p?)) S Dyu® (2P (p?))
Doul(e — zB(pA)) = DouB(xB(p4))

i.e. A’s marginal rate of substitution at the allocation implicitly proposed by A
is bigger than B’s marginal rate of substitution because of the convexity of the
preferences. This would contradict the inequality above that follows from the Kuhn-
tucker conditions of A’s problem.

A similar argument can be made for any other strict inequality. As a conse-
quence,

i.e. both (z4(p?),e — z4(p?)) and (e — 2B(p?), 2B (p?)) are efficient. This along
with the conditions

implies the conclusion.

The converse statement holds straightforwardly, since Z? solves the convex pro-
gram

max u

Ae—2P)

uB(2B) > uB(e — z4)

B

and also it satisfies Duf(z8)(z8 — eB) = 0. As a consequence, ZZ necessarily also

solves
max u’( By
uB(2B) > uP(e — 74)

DuP (2B (2P — eP) > 0.

€e—X

A similar argument holds for z4. Q.E.D.
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Theorem 2. Every allocation of a SSP equilibrium with immediate acceptance
converges to a Walrasian allocation as the agents become arbitrarily patient.

Proof. Since every SSP equilibrium with immediate acceptance allocation is Wal-
rasian whenever 64,67 = 1, the correspondence from discount factors (§4,5%) to
allocations of SSP equilibria with immediate acceptance is compact-valued and up-
per hemicontinuous, and there are generically finitely many Walrasian allocations,
then the conclusion follows.

In effect, consider the correspondence I' that assigns to each pair of discount
factors (64,65) the corresponding allocations of SSP equilibria with immediate
acceptance, that is to say such that

r'(64,68) = {(xA,xB) eR2 xR%| 24 + 2P =e? + P and

(x4, 2P) € arg max uB(e — 1) x arg max u(e — i’B)}
xX X
DuA(34)(34—e4)>0 DuB($B) (2B —eB)>0
uA(2A)—6Aud(e—xB)>0 uB(£B)—§BuB(e—z4)>0

Note that I'(64,6%) is the restriction to the feasible allocations of the set of fixed
points of the correspondence

(x4, 2804, 65) = arg max uP (e — 1) x arg max u?(e — &P)
x x
DuA(34)(84—e4)>0 DuB (28)(#8 —eB)>0
uA(24)—6Aud(e—xB)>0 uB (£B)—§BuB(e—x4)>0

Note also that the Theorem of the Maximum guarantees that

argmax uf(e — #4)
pA
DuA(zA4)(24—e4)>0

ud (2A4)—64uA(e—zB)>0

is a compact-valued, upper hemicontinuous correspondence that depends on all
(x4, 28,84,8P) — since the function maximizing u”® depends continuously on &4
and trivially on all 24,25, 64,67 also and the correspondence defined by the con-
straints

Q4 (x4, 25,64,68) = {3* € RL |Du?(2) (2 — e*) > 0 and
ut(34) — 64t (e — 2P) > 0}
is continuous and compact-valued when constrained to the feasible allocations—
and similarly for the second arg max.

As a cartesian product of compact-valued, upper hemicontinuous correspon-
dences, ® is compact-valued and upper hemicontinuous itself (see Lemma Al in
Appendix below).
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Since
F(&A,éB):{(A 2B) e R2 x R% | 2 + 2% = e + ¢ and
(JZA .’IJB) E(I)( A B 5A 5B>}

and ® is compact-valued and upper hemicontinuous, then I' is upper hemicontinu-
ous itself (see Lemma A3 in Appendix). Q.E.D.

Lemma 3. Whenever the agents are impatient (5A, 6B < 1), there does not exist
any SSP equilibrium with delay.

B) in which, for instance,
(p*,¢*). Then it must

Proof. Consider a candidate SSP equilibrium (p4, ¢*
B rejects and A accepts. Let 24 = £4(p?, ¢P) an
be the case that

a*,pP,q
daxB =38

(1) B’s offer is rational, that is to say B is interested in having A to accept x4,
i.e.
B( A) > 5BUB($B)

u - \e—x

and 2 is the offer acceptable to A preferred by B, i.e.

:EAEII}aXU (e — &%)
ut (@) (@t —e?) >0
uA(:U ) > 64ut(e — zP))

(from what follows the rationality of A’s acceptance) and
(2) A’s offer is rational, that is to say A is interested in having B to reject z2,
i.e.
sAul () > ut(e — 2P)

and accordingly makes an unacceptable offer to B, i.e.

uB( B) <5BUB( A)

X €e—

(from what follows the rationality of B’s rejection).

Therefore, since in such equilibrium A prefers to make an offer z? that will be
rejected by B, i.e.
sAul (z) > ut(e — 2P)

and it must be rational for A to accept B’s offer 24, i.e.
u?(z4) > 64ut (e — zP)
then, since 64 < 1, necessarily
ut(z?) > s4ut(e — 2B).
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This implies that the second constraint in

z? € argmax uP (e — #4)
FA

Dut (e (24 —e?) >0

u? (34 > ul(e — 2P)

is not binding and hence B’s offer # must allow B to attain the highest possible
utility, i.e. # must be B’s monopoly offer. On the other hand, from the mono-
tonicity of u® it follows that necessarily the other constraint must be binding, i.e.
Du?(z?)(z? — e) = 0, and hence necessarily 4 = z4(p#), that is to say z* is
on A’s offer curve.

Since we also assume that u* is such that at any Walrasian equilibrium allocation
the agents’ offer curves are transversal to A’s indifference curve, then 24 is on A’s

offer curve but not a Walrasian allocation. Therefore, (z#,e — 24) is inefficient.

This leaves room for A deviating profitably offering an #® which if accepted by B
(therefore deviating from the candidate equilibrium strategy) makes both A and B
better-off. Q.E.D.

Lemma Al. If X,Y are metric spaces and I'y,T's € P(Y)X are upper hemicon-
tinuous, then I'y X I'y is upper hemicontinous.

Proof. Assume that I'; x I'y is not upper hemicontinous. Then there exists B C Y?2
open such that its upper inverse by I'; x 'y, i.e. (I'y X Fg)jrl(B), is not open. Thus
there exists € (I'1 x I'2)7"(B), i.e. satisfying I'1(z) x I'z(z) C B, such that, for
all € > 0, there exists ' € B.(z) such that 2’ ¢ (I'; x ['s)7'(B), i.e.

Fl(x’) X Pg(ﬁl) ¢ B.

Therefore, there exists (y1,y2) € I'1(2') x T'a(2') such that (y1,y2) ¢ B.

On the other hand, since I'1(z) x I's(z) C B and B is open, then there exist
Bi1, By € Y open such that (see Lemma A2 below)

Pl(iL‘) X FQ(.’E) C Bl X B2 CcB

and hence (y1,y2) ¢ By X Ba, i.e. for some i = 1,2, y; ¢ B;. As a consequence,
there exists B; C Y open such that I';(z) C B;, i.e.

z e (T) 7' (By)
and, for all ¢ > 0, there exists o’ € B.(z) such that I';(z') ¢ By, i.e.
' ¢ (L)' (B).

That is to say, for some B; open (I';)7'(B;) is not open, which contradicts the
assumption that I'; is upper hemicontinuous. Q.E.D.
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Lemma A2. IfY is a metric space, A1, As CY, B CY?, and
A; x Ay C B,
then there exists B, Bo C' Y open such that

AIXA2C31XBQCB.

Proof. Assume not. Then, for all By, By open such that A; x Ay C By X B,
Bl X B2 gZ B.

In particular let, for all i = 1,2 and all n € N, Bl' = Uz,ca,B1(%;). Then, for all
n € N, BT', BY are open and such that

Ay x Ay C BY x By,

and hence
B! x By ¢ B.

Therefore, for each positive integer n there exists

(z7,25) € B X By = Uz e, B1(Z1) X Ug,ea,B1 (2)
such that («%,x%) ¢ B. That is to say, for each n there exist (Z},25) € A; X Ay and
(1,23) € B1(a7) x B1(23) such that (27, 23) ¢ B. But then, since (a7, 23) €
B1(z}) x B1(Z%), necessarily

lim d((z7,23), (T7,25)) =0

n—oo

while (Z7,2%) € A1 x Ay C B with B open, and (z},25) ¢ B! Q.E.D.

Lemma A3. If X,Y are metric spaces and ® € P(X)X*Y is compact-valued and
upper hemicontinuous, then I' € P(X)Y such that

I'(y) = {:U eX|ze CI)(:U,y)}

is upper hemicontinuous.

Proof. Assume that I' is not upper hemicontinuous at some y. Then there exist
{yn} — y,  and {x,} — x such that z,, € I'(y,) for all n € N, while z ¢ I'(y).
That is to say, for all n € N, z,, € ®(x,,,y,,) while z ¢ ®(z,y). As a consequence,
since ® is compact-valued, then ® is not upper hemicontinuous at (z,y)! (in effect,
should ® be upper hemicontinuous at (z,y), since (2, yn) — (,Y), T, € P(y, yn),
and @ is compact-valued, then there would exist a convergent subsequence xj,(y)
whose limit 2’ would be in ®(x,y). But since {x, } itself is convergent to z, then
necessarily ' = = and hence z € ®(z,y)!) Q.E.D.
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A Continuum of SSP equilibria exist when 64,67 =1

Consider the extreme case in which both agents are infinitely patient, i.e. when
64,68 = 1. We show that there is a continuum of SSP equilibria in which, for
instance, B rejects the offer being made while A accepts.

In effect, let A’s offer o8 satisfy the constraint Du®f (2B)(z? — eB) > 0 (ie. 2B
is within B’s offer curve) and also be such that Du“(e —x%)(e? —28) > 0 (in such
a way that e — 2 is strictly within A’s offer curve) and u?(e — z%) > u?(z4) (i.e.
A is offering an allocation of resources that guarantees him at least his Walrasian
equilibrium utility). Let also B’s offer 24 maximize B’s utility subject to the
constraint Du?(z4)(z4 — e4) > 0 and u?(z4) > u?(e — 2P), in such a way that
x4 satisfies and u?(z?) A( B) actually. Note that, on the one hand, since
2B is within B’s offer curve and strictly within A’s offer curve, then necessarily
uB(2B) < uP(e — 24), and on the other hand, since 27 guarantees A at least A’s

walrasian equilibrium utility, 4 must lead to an efficient allocation.
Note that for such offers 4 and z7Z,

(1) A’s offer 2B is rational since

u?(e — 2P) <ut(z?)

=u\e—x

i.e. A does not prefer B to accept B given B’s offer 24 (in particular this
inequality is satisfied with equality), and, by construction,
uB(2B) < uP(e — z?)
in such a way that accordingly A is making an unacceptable offer to B
(2) B’s offer 2 is rational since

uB (e — ) > uP(2P)

and A 5 A
a” € argmax u (e — %)
X

Dut (e (24 —e?) >0
ut(34) > ut(e — zB)

i.e. B prefers A to accept x# and this is B’s most preferred offer aceptable
to A, given A’s offer 2, nonetheless,
(3) B’s rejection is rational since

uB(2B) < uP(e — z?)

and
(4) A’s acceptance is rational since

uA(mA) > uA(e — mB)

Finally, note that, since the allocation eventually agreed upon (i.e. the one resulting
from A accepting B’s offer ) is efficient, then there is no room for any profitable
deviation by any player.

Note also that, since the choice of ” we started with is arbitrary within an
uncountable set of 27’s satisfying Du®? (x8)(z? —eP) > 0, Du?(e—2P)(e4 —28) >
0, and u?(e — %) > u*(z4), then there is uncountably many such equilibria which
are moreover efficient.
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