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Simple Wald Tests of the Fractional
Integration Parameter: An Overview
of New Results

Juan J. Dolado, Jesus Gonzalo, and Laura Mayoral∗

12.1 Introduction

A well-known feature of tests of I (1) vs. I (0)—or I (0) vs. I (1)—processes is
that they reject their respective null hypotheses very occasionally when the
true DGP for a time series {yt}T

1 is a fractionally integrated, I (d), process. This
is often the case for the Dickey–Fuller (DF)-type tests if 0.5 < d < 1 and for
the KPSS-type tests if 0 < d < 0.5. Given that the microfoundations of I (d)
processes make them quite plausible in practice, this issue can have serious
consequences when analysing the long-run properties of the variables of
interest.1 To mention only a few: (i) shocks could be identified as permanent
when in fact they die out eventually, and (ii) two series could be considered
as spuriously cointegrated when they are independent at all leads and lags
(see, eg, Gonzalo and Lee, 1998). These mistakes are more likely to occur in
the presence of deterministic components like, eg, in the case of trending
economic variables. Additionally, if the true DGP is an I (0) process subject to
structural breaks in its deterministic components, then it could be misinter-
preted as a long-memory process, or vice versa.

∗ We are grateful to Carlos Velasco for many insightful comments. Financial support from
the Spanish Ministry of Education through grants SEJ2006-00369 and SEJ2007-63098, and
also from the Barcelona Economics Program of CREA is gratefully acknowledged. The usual
disclaimer applies.

1 For explanations of the origin of I (d) processes based on aggregration of individual sta-
tionary series with heterogeneous persistence, see Robinson (1978) and Granger (1980), and
for models which mimic some of the key properties of I (d) processes based on the existence
of shocks that die out at a certain probabilistic rate, see Parke (1999) and Diebold and Inoue
(2001). For persuasive macroeconomic applications of these processes, see Michelacci and
Zaffaroni (2000) and Lo and Haubrich (2001).
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In view of these caveats, the goal of this chapter is four-fold. First, we illus-
trate the advantages, in terms of power under fixed alternatives, of recently
proposed Wald tests of I (d0) vs. I (d), d =/ d0, with d0 = 1 or d0 = 0, relative
to well-known LM and semiparametric tests; for simplicity, we do this in a
setup when the time-series has i.i.d. error terms and is free of deterministic
components. Second, we extend the previous procedures to allow for these
components, possibly subject to structural breaks. Third, we derive new LM
and Wald test statistics to test the null that a process is I (d) with constant
long-memory parameter, d, against the alternative of a break in d. Finally,
the Wald tests are extended to account for autocorrelated disturbances in
the DGP.

Specifically, we focus on a modification of the Fractional Dickey–Fuller
(FDF) test by Dolado, Gonzalo, and Mayoral (2002; DGM hereafter) recently
introduced by Lobato and Velasco (2007; LV hereafter) to achieve an improve-
ment in efficiency over the former. Although this test—henceforth denoted
as the EFDF (efficient FDF) test—was originally devised to extend the tradi-
tional DF test of I (1) against I (0) to the broader framework of I (1) against
I (d) processes, with d ∈ [0,1), we show that it can be easily generalized to
cover the case of I (0) vs. I (d), with d ∈ (0,1]. This testing approach relies
upon a simple regression model where both the regressand and the regressor
are filtered to become I (0) under the null and the alternative hypotheses,
respectively.2 The test is based on the t-ratio, tê, of the estimated slope, ê, of
the regressor. Hence, when testing I (1) vs. I (d), ƒyt becomes the dependent
variable. As regards the regressor, whereas DGM choose ƒd yt−1, LV show that
zt−1(d) = (1 − d)−1(ƒd−1 − 1)ƒyt improves the efficiency of the test.3 These tests
belong to the Wald family because their underlying regression models are
estimated under the alternative hypothesis. Thus, non-rejection of H0 : ê = 0
against H1 : ê < 0, implies that the process is I (1) and, conversely, I (d) when
the null is rejected. As shown below, the EFDF test for testing I (0) vs. I (d) is
based on an analogous t-ratio, t̄ , this time in a regression of yt on the regressor

st−1(d) = d−1(1 − ƒd)yt.
To compute either version of the EFDF test, an input value for d is required.

One could either consider a (known) simple alternative, HA : d = dA < 1

2 In the DF setup, these filters are ƒ = (1 − L) and ƒ0 L = L, so that the regressand and
regressor are ƒyt and yt−1, respectively.

3 As explained in DGM (Appendix A; 2002), both regressors can be constructed by filtering
the series {yt}T

t=1 with the truncated version at the origin (with pre-sample shocks set to 0) of
the binomial expansion of (1 − L)d in the lag operator L. Thus, ƒd

+ yt = ”t−1
i=0 i (d) yt−i , where

i (d) is the i-th coefficient in that expansion (for more details, see the end of this section). This
‘deadstart’ fractional process has been popularized, among others, by Robinson and Marinucci
(2001), giving rise to Type-II fractional Brownian motion. Since the limit distributions of the
EFDF tests discussed throughout this chapter are always Gaussian, none of the results depend
on this choice. To simplify the notation, we will omit the truncation subscript in the sequel
and refer to this filter simply as ƒd .
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(or dA > 0) or, more realistically, a composite one, H1 : d < 1 (or d > 0). We
focus here on the latter case where LV (2007) have proved that the use of a
TÍ-consistent estimate (with Í > 0) of the true d suffices to obtain a N(0,1)
limiting distribution of the resulting test.

Under a sequence of local alternatives approaching H0 : d = 1 from below
at a rate of T−1/2, LV (2007, Theorem 1) prove that, under Gaussianity, the
EFDF test of I (1) vs. I (d) is asymptotically equivalent to the uniformly most
powerful invariant (UMPI) test, ie, the LM test introduced by Robinson (1991,
1994) and later adapted by Tanaka (1999) to the time domain. We show that
this result also holds for the I (0) vs. I (d) case. Our first contribution here is to
analyse the properties of Wald and LM tests in the case of fixed alternatives
using the concept of Bahadur’s asymptotic relative efficiency (ARE; see Gourier-
oux and Monfort 1995). Although both tests are consistent and diverge at
the same rate under fixed alternatives, we find that the EFDF test fares better
using Bahadur’s ARE criterion in both setups. This is not surprising, given the
well-known result about the better power properties of Wald tests in a wide
range of models (see Engle 1984). Moreover, when compared to other tests
of I (1) or I (0) vs. I (d) which rely on direct inference about semiparametric
estimators of d, the EFDF test also exhibits in general better power properties,
under a correct specification of the stationary short-run dynamics of the error
term in the auxiliary regression. This is due to the fact that the semiparametric
estimation procedures often imply larger confidence intervals of the memory
parameter, in exchange with less restrictive assumptions on the error term. By
contrast, the combination of a wide range of semiparametric estimators for
the input value of d with the auxiliary parametric regressions involved in the
EFDF test, yields a parametric rate for the Wald tests.4 Thus, in a sense, Wald
tests combine the favourable features of both approaches in improving power
while at the same time they reduce the danger of misspecifying short-run
dynamics.

Following the development of unit-root tests in the past, we investigate how
to implement Wald tests when some deterministic components are considered
in the DGP, a case which is not treated in LV (2007). We first focus on the role
of a polynomial trend of known order since many (macro) economic time-series
exhibit this type of trending behaviour. Our main result is that, in contrast
with the results for most tests for I (1) against I (0) or vice versa, the EFDF test
remains efficient in the presence of deterministic components and maintains
the same asymptotic distribution, insofar as they are correctly removed. This
result mimics the one found for LM tests when these components are present;
cf. Gil-Alaña and Robinson (1997). Next, we examine the cases where there are

4 LV (2006, 2007) have shown that a Gaussian semiparametric estimator, such as the one
proposed by Velasco (1999), suffices to achieve consistency and asymptotic normality in the
analysed Wald tests (see sections 12.2 and 12.3 below) extending the results by DGM (2002)
about parametric estimators.
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structural breaks in the deterministic components, where we devise tests for
I (d) cum constant-parameter deterministic terms vs. I (0) cum breaks in these
components, or in the long-memory parameter, d, as well as other alternative
time-varying schemes for d. Lastly, we show that the previous asymptotic
results obtained for DGPs with i.i.d. disturbances remain valid when the error
term is allowed to be parametrically autocorrelated, as in the (augmented)
ADF setup. In particular, we propose a linear single-step estimation procedure
to account for (parametric) AR disturbances which simplifies the two-step
procedure proposed by LV (2007).

The rest of the chapter is structured as follows. Section 12.2 briefly
overviews the properties of the EFDF tests when the process is either a driftless
random walk or i.i.d. under the null, and derives new results about their power
relative to the power of the LM test under fixed alternatives. Section 12.3
extends the previous results to processes containing trending deterministic
components with constant parameters. Section 12.4 discusses tests to dis-
tinguish between I (0) series whose deterministic terms may be subject to
structural breaks and I (d) processes with constant parameters. Section 12.5
deals with how to test for breaks in the long-memory parameter, d, as well
as some other alternative time varying structures. Section 12.6 explains how
to modify the previous tests when the error terms are autocorrelated. Lastly,
section 12.7 concludes.

Proofs of the main results are in an Appendix, available as supplementary
material to this chapter (see http://dolado-research.blogspot.com/).

In the sequel, the definition of an I (d) process adopted here is the one
proposed by Akonom and Gourieroux (1987) where a fractional process is
initialized at the origin. This corresponds to Type-II fractional Brownian
motion (see the previous discussion in footnote 3) and is similar to the
definitions of an I (d) process underlying the LM test proposed by Robinson
(1994) and Tanaka (1999). Moreover, the following conventional notation
is adopted throughout the chapter: √(.) denotes the Gamma function, and
{i (d)}, with i (d) = √(i−d)

√(−d)√(i+1)
, represents the sequence of coefficients asso-

ciated to the binomial expansion of (1 − L)d in powers of L. The indicator
function is denoted by 1{.}. Finally,

p→ means convergence in probability,
and

w→ denotes weak convergence in D[0,1] endowed with the Skorohod J1

topology.

12.2 The EFDF Test

12.2.1 I(1) vs. I(d)

Following Robinson (1994), we consider an additive model for the process
{yt}T

1 which is generated as the sum of a deterministic component, Ï(t), and
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a stochastic component, ut, that is

yt = Ï(t) + ut, (12.1)

where ut = ƒ−d
εt1{t>0} is a purely stochastic I (d) process, with d ∈ [0,1], and εt

is a zero-mean i.i.d. random variable.
When Ï(t) ≡ 0,5 DGM (2002) developed a Wald-type (FDF) test for testing

the null hypothesis H0 : d = 1 against the composite alternative H1 : d ∈ [0,1),
based on the t-ratio on ˆ to test H0 : ˆ = 0 in the OLS regression model

ƒyt = ˆƒd∗
yt−1 + ıt, (12.2)

where d∗ ≥ 0 is an input value needed to perform the test. If d∗ is chosen
such that d∗ = d̂T , where d̂T is a TÍ-consistent estimator of d, with Í > 0,
DGM (2002) and LV (2006) have shown that the asymptotic distribution of
the resulting t-statistic, t̂ , is N(0,1).

Recently, LV (2007) have proposed the EFDF test based on a modification of
(12.2) that is more efficient while keeping the good finite-sample properties
of Wald tests. Specifically, their proposal is to use the t-statistic, tê, associated
to H0 : ê = 0 in the OLS regression

ƒyt = êzt−1 (d∗) + εt, (12.3)

where zt−1 (d∗) is defined as6

zt−1 (d∗) =

(
ƒd∗−1 − 1

)

(1 − d∗)
ƒyt,

such that ê = (d∗ − 1) and d∗ > 0.5 is an input value needed to implement
the test. Note that, if d∗ is the true integration order of the process, d, then
ê = 0 under H0 : d = 1 and the model becomes a random walk, ie, ƒyt = εt. By
contrast, under H1 : d ∈ [0,1), it holds that ê < 0, and the model becomes a
pure fractional process, ie, ƒd yt = εt.

The insight for the higher efficiency of the EFDF test is as follows. Let d∗ = d.
Then under H1, the regression model in (12.2) can be written as ƒyt = ƒ1−d

εt =
εt + (d − 1)εt−1 + 0.5d(d − 1)εt−2 + . . . = ˆƒd yt−1 + εt + 0.5d(d − 1)εt−2 + . . . with
ˆ = d − 1. Thus, the error term ıt = εt + 0.5d(d − 1)εt−2 + . . . in (12.2) is serially
correlated. Although OLS provides a consistent estimator of ˆ, since ıt is
orthogonal to the regressor ƒd yt−1 = εt−1, it is not the most efficient one. By
contrast, the regression model used in the EFDF test does not suffer from
this problem since, by construction, it yields an i.i.d. error term. In order
to distinguish this test from the one proposed in the next subsection for

5 Alternatively, Ï(t) could be considered to be known. In this case, the same arguments go
through after subtracting it from yt to obtain a purely stochastic process.

6 A similar model was first proposed by Granger (1986) in the more general context of
testing for cointegration with multivariate series, a modification of which has been recently
considered by Johansen (2005).
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H0 : d = 0, we denote it in the sequel as the EFDF(1) test. Finally, note that
application of L’Hôpital rule to zt−1(d∗) in the limit case as d∗ → 1 leads to
a regressor equal to −ln(1 − L)ƒyt = ”∞

j=1 j−1ƒyt− j , which is the one used in
Robinson’s LM test (see section 12.2.3).

Theorem 1 in LV (2007), which we reproduce below (as Theorem 12.1) for
completeness, establishes the asymptotic properties of tê.

Theorem 12.1. Under the assumption that the DGP is given by yt = ƒ−d
εt1{t>0},

where εt is i.i.d. with finite fourth moment, the asymptotic properties of the
t-statistic, tê, for testing ê = 0 in (12.3), where the input of zt−1(d̂T) is a TÍ-
consistent estimator of d∗, for some d∗ > 0.5 with Í > 0, are given by:

a) Under the null hypothesis (d = 1),

tê(d̂T)
w→ N (0,1) .

b) Under local alternatives, (d = 1 − „/
√

T),

tê(d̂T)
w→ N (−„h (d∗) ,1) ,

where h(d∗) = ”∞
j=1 j−1 j (d∗ − 1)/

√
”∞

j=1 j (d∗ − 1)2, d∗ > 0.5, d∗ =/ 1.

c) Under fixed alternatives d ∈ [0,1), the test based on tê(d̂T) is consistent.

LV (2007) have shown that the function h(d∗) achieves a global maximum
at 1 where h(1) =

√
2/6, and that h(1) equals the noncentrality parameter of

the locally optimal LM test (see subsection 12.2.2 below).7 Thus, insofar as a
TÍ-consistent estimator of d, with Í > 0, is used as an input of zt−1(d∗), the
EFDF test is locally asymptotically equivalent to Robinson’s LM test.

In practice, the obtained estimate of d could be smaller than 0.5. In these
cases, the input value can be chosen according to the following rule: d̃1T =
max{d̂T , 0.5 + Â}, with Â > 0, for which the test can be easily proved to diverge
under H1.

A power-rate consistent estimate of d can be easily obtained by applying
some available semiparametric estimators. Among them, the estimators pro-
posed by Abadir et al. (2005), Shimotsu (2006a), and Velasco (1999) provide
appropriate choices since they also cover the case where deterministic com-
ponents exist, as we do below.

12.2.2 I(0) vs. I(d)

Although the EFDF(1) test was originally derived for testing I (1) vs. I (d)
processes, it can be easily extended to cover the case of I (0) vs. I (d), with

7 DGM (2002, Theorem 3) in turn obtained that the corresponding distribution under local
alternatives of the FDF test in (12.2) is N(−„, 1). Hence, the asymptotic efficiency of the FDF
test relative to the EFDF(1) test is 0.78 (	 √

6/).
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d ∈ (0,1]. This new test is labelled as the EFDF(0) test in the sequel. As before,
the maintained hypothesis is taken to be (12.1), but now the null is H0 : d = 0,
and the composite alternative H1 : 0 < d ≤ 1.8 We first focus on the simple
case where Ï(t) ≡ 0. Adding and subtracting yt to both sides of (12.1) and
solving for yt, yields

yt = ¯st−1(d) + εt, (12.4)

where

st−1(d) =
1 − ƒd

d
yt,

such that ¯ = d. Like in (12.3), st−1(d) does not contain the current value of yt

since (1 − ƒd) = (dL + 1
2 d(d − 1)L2 − . . .). Under H0, ¯ = 0, while, under H1, 0 <

¯ ≤ 1. When ¯ = 0, the model is yt = εt whereas it becomes ƒd yt = εt for ¯ = d ∈
(0,1]. As in the I (1) vs. I (d) case, equation (12.4) motivates a test of H0 : ¯ = 0
based on the t-statistic of ˆ̄, t̄ , computed in a regression of yt on st−1(d∗),

where d∗ is an input value needed to make the test feasible. Thus, the null is
tested by means an upper-side test based on t̄ . As with the EFDF(1) test, the

limit case as d∗ → 0 implies that st−1(d) → −ln(1 − L)yt = ”∞
j=1 j−1 yt− j , which

again corresponds to the regressor used in the LM test.
In this case, the following theory holds

Theorem 12.2. Under the assumption that the DGP is given by yt = ƒ−d
εt1{t>0},

where εt is i.i.d. with finite fourth moment, the asymptotic properties of the
t-statistic, t̄ , for testing ¯ = 0 in (12.4) where the input of the regressor st−1(d̂T)

is a TÍ-consistent estimator of d∗, for some d∗ < 0.5 with Í > 0, are given by:

a) Under the null hypothesis (d = 0),

t̄ (d̂T)
w→ N (0,1) .

b) Under local alternatives, (d = „/
√

T),

t̄ (d̂T)
w→ N („g (d∗) ,1) ,

where g(d∗) = ”∞
j=1 j−1 j (d∗)/

√
”∞

j=1 j (d∗)2, d∗ < 0.5, d∗ =/ 0.

c) Under fixed alternatives (d ∈ (0,1)), the test based on t̄ (d̂T) is consistent.

It is easy to show that the function g(.) achieves an absolute maximum at 0,
in which case g(0) equals the noncentrality parameter of the locally optimal
Robinson’s LM test. Therefore, if the input of st−1(.), d̂T , is a TÍ-consistent
estimator of d with Í > 0, the test based on t̄ (d̂T) is locally optimal. In

8 Note that if we were to take a null of I (d0), d0 ∈ (0,1], and an alternative of I (0), the EFDF
regression model would be ƒd0 yt = Ò[d−1

0 (ƒ−d0 − 1)]ƒd0 yt + εt , with Ò = −d0. In this case, under
H0, Ò =/ 0, whereas, under H1, Ò = 0.
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practice, to perform regression (12.4) the input value d̃0T = min{d̂T , 0.5 − Â},
with Â > 0, can be employed so that it is always strictly smaller than 0.5.

12.2.3 Power Comparisons Under Fixed Alternatives

As discussed before, the closer competitor to the EFDF test is the LM test
proposed by Robinson (1991, 1994) in the frequency domain, subsequently
extended by Tanaka (1999) to the time domain. In this section we discuss
the power properties of the two competing tests under the case of fixed
alternatives in Bahadur’s ARE sense.9

We start with the LM test, henceforth denoted as LMT , which considers

H0 : Ë = 0 against H1 : Ë =/ 0 for the DGP ƒd0+Ëyt = εt. In line with the hypothe-
ses considered in this chapter, we focus on the particular cases where d0 = 1
and −1 < Ë ≤ 0, and d0 = 0 and 0 < Ë ≤ 1. Assuming that εt ∼ n.i.d. (0,Û2), the
score-LM test is computed as

LMT =

√
6
2

T1/2
T−1∑

j=1

j−1Ò̂ j
w→ N (0,1) , (12.5)

where Ò̂ j = ”T
t= j+1ƒ

d0 yt ƒd0 yt− j/”
T
t=1(ƒd0 yt− j )2 (see Robinson, 1991 and Tanaka,

1999). Breitung and Hassler (2002) have shown that an alternative way to
compute the LM test is as the t-ratio (tÎ) in the regression

ƒd0 yt = Îx∗
t−1 + et, (12.6)

where x∗
t−1 = ”t−1

j=1 j−1ƒd0 yt− j .
Under a sequence of local alternatives of the type Ë = 1 − T−1/2„ with „ > 0

for H0 : d0 = 1, the LMT (or tÎ) test is the UMPI test. However, as discussed
earlier, the EFDF(1) is asymptotically equivalent to the UMPI test whenever
an appropriate estimator of d, d̂T , is used since the limit case as d̂T → 1 in the

filter (ƒd̂T−1 − 1)/(1 − d̂T) yields the linear filter used in the LM test. Similar
arguments hold for the EFDF(0) test, where H0 : d0 = 0, and Ë = T−1/2 „.

In the rest of this section, we analyse the case with fixed alternatives where,
to our knowledge, results are new. In particular, we first derive the noncentral-
ity parameters of two above-mentioned tests under an I (d) alternative where
the DGP is assumed to be ƒd yt = εt. The permissible ranges of d in this analysis
are d ∈ [0,1) for the EFDF(1) test, and d ∈ (0,0.5) for the EFDF(0) test.10 In the

9 The available results in the literature establish the consistency of the Wald and LM tests
and derive their (identical) speed of divergence under fixed alternatives. However, they do
not derive the noncentrality parameters as we do below which can be useful to characterize
power differences for a given sample size.

10 The intuition for why the two cases differ is that, under a fixed I (d) alternative,
the EFDF(1) test proceeds to first-difference the series, so that ƒyt ∼ I (d − 1), and then, all
the variables in regression (12.2) are stationary under the alternative hypothesis of d < 1. The
EFDF(0) treats the series in levels so that yt ∼ I (d) and then, for values of d > 0.5, regression
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case of the EFDF(1) test, H0 : d = 1 and, hence, ƒyt = ƒ−b
εt where b = d − 1 < 0.

Then, the following result holds.

Theorem 12.3. If ƒd yt = εt with d ∈ [0,1), the t-statistic, tê, associated to the
EFDF(1) test satisfies

T−1/2tê
p→ −

(
√(3 − 2d)

√2(2 − d)
− 1

)1/2

:= c1,E F DF (d),

while, under the same DGP, the LM test defined in (12.5) satisfies

T−1/2LMT
p→ −

√
6
2

√(2 − d)
(1 − d)√(d − 2)

∞∑

j=1

√ ( j + d − 1)
j√ ( j + 2 − d)

:= c1,LM(d), (12.7a)

where c1,E F DF (d) and c1,LM(d) denote the non-centrality parameters under the fixed
alternative H1 : d ∈ [0,1) of the EFDF(1) and LM tests, respectively.

Secondly, for the EFDF(0) test, H0 : d = 0, whereby now yt = ƒ−b
εt with b = d.

Then

Theorem 12.4. If ƒd yt = εt with d ∈ (0,0.5), the t-statistic, t̄ , associated to the
EFDF(0) test satisfies,

T−1/2 t̄
p→

(
√(1 − 2d)

√2(1 − d)
− 1

)1/2

:= c0,E F DF (d),

while, under the same DGP, the LM test defined in (12.5) satisfies

T−1/2LMT
p→

√
6
2

√(1 + d)
√(−d)

∞∑

j=1

√ ( j − d)
j√ ( j + d + 1)

:= c0,LM(d), (12.7b)

where c0,E F DF (d), and c0,LM(d) denote the noncentrality parameters under the fixed
alternative H1 : d ∈ (0,0.5) of the EFDF(0) and LM tests, respectively.

Figures 12.1 and 12.2 display the two noncentrality parameters of the LM
and EFDF derived in Theorems 12.3. and 12.4.. Their squares correspond to
the approximate slopes in Bahadur’s ARE so that the test with the greater
slope is asymptotically more powerful. As expected, they behave similarly for
values of d very close to the corresponding null hypotheses. However, despite
being devised as the UIMP test for local alternatives, the LM test performs
worse than the EFDF tests, for a given sample size, when the alternative
is not local: c1,E F DF (d) (c0,E F DF (d)) is much more negative (positive) than
c1,LM(d) (c0,LM(d)) when d departs from its respective nulls. Hence, the ARE
ratio c2

i,E F DF (d)/c2
i,LM(d) is larger than unity, favouring the Wald test. Extensive

(12.3) includes both stationary and nonstationary variables. As a result, the LLN can be
applied on the EFDF(1) test for all d < 1 but only for values of d < 0.5 in the EFDF(0) case. If
d > 0.5, the noncentrality parameter will converge to a random variable.
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FIG. 12.1. Noncentrality parameters of EFDF(1) and LM tests.
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FIG. 12.2. Noncentrality parameters of EFDF(0) and LM tests.
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Monte Carlo evidence supporting this better power performance can be found
in LV (2007) and DGM (2008). The intuition for the worse power of the LM
test is that there is no value for Î in (12.6) that makes et both i.i.d. and
independent of the regressor for fixed alternatives, implying that x∗

t−1 does
not maximize the correlation with ƒd0 yt.

As regards the power of semiparametric estimators, whose confidence inter-
vals could be directly used for inference purposes, both the Fully Extended
Local Whittle (FELW) (see Abadir et al., 2005) and the Exact Local Whittle
estimators (ELW) (see Shimotsu and Phillips, 2005) verify the asymptotic
property:

√
m(d̂T − d)

w→ N
(
0, 1

4

)
for m = o(T

4
5 ). For example, test statistics for

a unit root are based on Ùd = 2
√

m(d̂T − 1)
w→ N(0,1). Therefore, their rate

of divergence under H1 : d < 1 is the nonparametric rate Op(
√

m) which is
smaller than the Op(

√
T) parametric rate achieved by the Wald test. Of course,

this loss of power is just the counterpart of the higher robustness against
misspecification achieved by semiparametric tests.

12.3 Deterministic Components without Breaks

In the case where Ï(t) =/ 0 , DGM (2008) have derived the properties of the
EFDF(1) test when the time-series is generated by (12.1) and Ï(t) verifies the
following condition.

Condition ET (Evolving trend): Ï(t) is a polynomial in t of known order.

Under Condition ET, the DGP is allowed to contain trending regressors in
the form of polynomials (of known order) of t. Hence, when the coefficients
of Ï(t) are unknown, the test described above is unfeasible. Nevertheless, it is
still possible to obtain a feasible test with the same asymptotic properties as
in Theorem 12.1. if a consistent estimate of Ï(t) is removed from the original
process. Indeed, under H0, the relevant coefficients of Ï(t) can be consistently
estimated by OLS in a regression of ƒyt on ƒÏ(t). For instance, consider the
case where the DGP contains a linear time trend, that is

yt = · + ‚t + ƒ−d
εt1{t>0}, (12.8)

which, under H0 : d = 1, leads to the popular case of a random walk with drift.
Taking first differences, it follows that ƒyt = ‚ + ƒ1−d

εt1{t>0}. Then, the OLS
estimate of ‚, ‚̂, (ie, the sample mean of ƒyt) is consistent under both H0 and
H1. In effect, under H0, ‚̂ is a T1/2-consistent estimator of ‚ whereas, under
H1, it is T3/2−d-consistent with 3/2 − d > 0.5 (see Hosking, 1996, Theorem 8).
Hence, if one uses the regression model

ƒ̃yt = êz̃t−1
(
d̂T

)
+ et, (12.9)
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where the input of z̃t−1
(
d̂T

)
is a TÍ-consistent estimator of d with Í > 0, ƒ̃yt =

ƒyt − ƒÏ̂(t), z̃t−1
(
d̂T

)
=

(

ƒd̂T −1−1
)

(1−d̂T) (ƒyt − ƒÏ̂(t)), and the coefficients of ƒÏ̂(t) are

estimated by an OLS regression of ƒyt on ƒÏ(t), then the asymptotic proper-
ties of the EFDF(1) test in (12.9) are identical to those stated in Theorem 12.1..

A similar result holds for the EFDF(0) test but this time using a TÍ-consistent
estimator of d, for d∗ < 0.5, with Í > 0. In this alternative setup of I (0) vs. I (d),
the OLS estimators ·̂ and ‚̂ in the regression in levels of yt on Ï(t) are T1/2−d

and T3/2−d-consistent estimators of · and ‚, respectively. Consequently, the
estimator of the trend slope, ‚̂, is always consistent for d ∈ (0,1] whereas the
estimator of the intercept, ·̂, is only consistent for d ∈ (0,0.5), implying that
the residuals from the OLS detrending procedure in levels are only valid for
d∗ < 0.5. Under fixed alternatives, since the true value of d could well exceed
0.5, one possibility in order to obtain consistent detrended series is to use Shi-
motsu’s (2006a) detrending approach for I (d) processes. This author notices
that if one chooses the initial value of the series, y1, as an estimator of ·, then
it holds that the deviations y1 − ·(= ƒ−d

ε11t>0) are Op(1), implying that its
variance is dominated by the exploding variance of yt when d ∈ (0.5,1]. Thus,
he recommends to use the above-mentioned FELW estimation procedure to
the detrended series in levels ỹt = ẏt − ·̇(d), where ẏt = yt − ·̂ − ‚̂t are the OLS
residuals and ·̇(d) = ˘(d)T−1”ẏt + [1 − ˘(d)]ẏ1. Notice that ·̇(d) is a weighted
average of the two alternative estimators of · earlier discussed with ˘(d)
being a smooth (twice continuously differentiable) weight function such that
˘(d) = 1 for d ∈ (0,0.5).11 Through this alternative detrending procedure, the
difference between ƒd ỹt and εt becomes negligible for any value of d ∈ (0,1].
Therefore, if one considers the regression model

ƒ̃yt = ¯s̃t−1
(
d̂T

)
+ et, (12.10)

where the input of s̃t−1(d̂T) is a TÍ-consistent estimator of d∗, for some d∗ < 0.5
with Í > 0, having used as residuals (ỹt) the ones obtained from an OLS
regression of yt on Ï(t), the asymptotic properties of the EFDF(0) test for
testing ¯ = 0 in (12.10) are identical to those stated in Theorem 12.2.. Likewise,
under fixed alternatives, a similar result holds for cases where d ∈ (0.5,1), this
time using Shimotsu’s (2006a) residuals and d̃0T , as an alternative estimator of
the corresponding input value of the regressor s̃t−1(.).

12.4 Deterministic Components with Breaks

Next we extend the EFDF tests to cover the case where the deterministic
component, Ï(t), of the time-series yt in (12.1) is possibly subject to structural

11 An example of ˘(d) for d ∈ (0.5,1) is (1/2)[1 − cos d].
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breaks, denoted hereafter as ÏB(t). One possibility is to consider breaks both
under the null and the alternative hypotheses discussed in sections 12.2.1
and 12.2.2. In this case, similar two-stage procedures to those described in
section 12.3 could be applied.12 However, it is well known in the statistical
literature that some features of long-range dependence (LRD) can be generated
by either the process being I (d) with smooth deterministic components or by
an I (0) process subject to breaks; see, eg, Bhattacharya et al. (1983), Mikosch
and Starica (2004), and Berkes et al. (2006). Indeed, these studies show that
conventional statistics designed to detect long range dependence behave
similarly under weak dependence with change-points.13

For this reason we focus in the sequel on the pure distinction between
these two alternative models that can account for the observed strong per-
sistence of yt: (i) ut is an I (d) process, with d ∈ (0,1) and Ï(t) is smooth,
and (ii) ut is a short-memory I (0) process and Ï(t) is subject to breaks. The
EFDF approach, where one of the hypotheses encompasses the other, cannot
directly accommodate these two types of models. This is so since the I (d)
hypothesis clearly nests the I (0) one, but then the Ï(t) component cannot
nest ÏB(t) component at the same time. We therefore follow a comprehensive
model approach, whereby non-nested models are tested within an artificially
constructed general model that includes them as special cases. This approach
was advocated by Atkinson (1970) and later taken up under a different guise
by Davidson and MacKinnon (1981) in developing their J-test. In effect, let us
think of two alternative models, denoted as M1 and M2, respectively, defined
as follows

M1 : yt = Ïi
B(t) + εt, (12.11)

and

M2 : yt = Ï(t) + ƒ−d
εt1t>0, with d ∈ (0,1), (12.12)

where Ïi
B(t) is a linear deterministic trend function that may contain breaks

at known or unknown dates (in principle, just a single break at date TB would
be considered) while Ï(t) does not contain breaks. In line with Perron (1989),

12 For tests of I(1) vs. I(0) with breaks under both the null and the alternative, see Banerjee
and Urga (2005), and Kim and Perron (2006). Extensions of these tests to a fractional setup
can be found in DGM (2005), Mayoral (2006), and Shimotsu (2006b).

13 More recently, a similar issue has re-emerged in the econometric literature dealing with
financial data. For example, Ding and Granger (1996), and Mikosch and Starica (2004) claim
that the stochastic components of both the absolute and the squared returns of financial
prices (bonds, exchange rates, options, etc.) are I (0) and explain the evidence about LRD
found in the data as spuriously induced by structural breaks in the parameters of the deter-
ministic components over different subsamples due to significant events, such as the Great
Depression of 1929 or the oil-price shocks in the 1970s. On the contrary, Lobato and Savin
(1998) conclude that the LRD evidence found in the squared returns is genuine and, thus,
not a spurious feature of structural breaks.
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three definitions of Ïi
B(t), i ∈ {A, B, C} will be considered,

Case A : ÏA
B(t) = Ï0 + (Ï1 − Ï0)DUt (˘B) , (12.13)

Case B : ÏB
B(t) = Ï0 + ‚0t + (‚1 − ‚0)DT∗

t (˘B) , (12.14)

Case C : ÏC
B(t) = Ï0 + ‚0t + (Ï1 − Ï0)DUt (˘B) + (‚1 − ‚0)DTt (˘B) . (12.15)

Case A corresponds to the crash hypothesis, case B to the changing growth
hypothesis and case C to a combination of both. The dummy variables
are defined as follows: DUt(˘B) = 1(TB +1≤t≤T), DT∗

t (˘B) = (t − TB)1(TB +1≤t≤T) and
DTt(˘B) = t1(TB +1≤t≤T) where ˘B = TB/T is a fixed value belonging to the subset
of the interval (0,1) that describes the relative location of the break in the
sample.

Then, noticing that M2 can be rewritten as

M2 : yt = yt − ƒd[yt − Ï(t)] + εt, (12.16)

one could follow Davidson and MacKinnon (1981) in considering the follow-
ing linear combinations of M1 and M2

yt = (1 − Ê)Ïi
B(t) + Ê{yt − ƒd[yt − Ï(t)]} + εt, (12.17)

or

yt = (1 − Ê){yt − ƒd[yt − Ï(t)]} + ÊÏi
B(t) + εt, (12.18)

so that two J -tests can be applied, depending on whether M1 or M2 is
considered to be the null hypothesis. In the case where M1 is taken to be
H0 and M2 to be H1, the unknown parameters in {yt − ƒd[yt − Ï(t)]} are not
identified under H0 since Ê = 0. A solution of this problem is to replace the

term {yt − ƒd[yt − Ï(t)]} in (12.17) by {yt − ƒd̂T [yt − Ï̂(t)]}, where d̂T and Ï̂(t)
are consistent under H1, eg, using Shimotsu’s (2006a) estimation procedure
described in section 12.3. Hence, the following regression can be estimated

yt = Ï∗i
B (t) + ÊÌ̃t−1 + εt, (12.19)

where Ì̃t−1 = {yt − ƒd̂T [yt − ˆÏ(t)]} and Ï∗i
B (t) = (1 − Ê)Ïi

B(t). Under H0, it follows
that Ê = 0, and this hypothesis can be tested using a t-test on the coefficient
of Ì̃t−1, tÊ. We will denote this test as the EFDF(B) test.

Conversely, if one chooses M2 to be H0 and M1 to be H1, the corresponding
regression model becomes

ƒd yt = ƒdÏ∗(t) − ÊÌ̃t−1(d) + εt, (12.20)

where now Ì̃t−1(d) = {yt − ƒd yt − Ï̂i
B(t)}, Ï∗(t) = (1 − Ê)Ï(t) where d is taken to

be knowns under the null, and Ï̂i
B(t) is estimated in a preliminary regression

under the alternative of I (0) cum breaks. Again, under H0, we have that Ê = 0,
and a t-test, tÊ, could be used to test for this hypothesis.
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For simplicity, we have operated above as if the break dates were known
in regressions (12.17) and (12.18). The more realistic case of unknown breaks
when yt is I (0), are under current investigation following Bai’s (1997) or Bai
and Perron’s (1998) procedures.

Finally, notice that, because non-nested hypothesis tests are designed as
specification tests, rather than as procedures for choosing among competing
models, it is not at all surprising that sometimes they do not lead us to choose
one model over the other. If we would simply wish to choose the best model
between M1 and M2, one could use some information criteria that help to
discriminate between them. This approach is also in our current research
agenda.

12.5 Breaks in the Long-Memory Parameter

Granger and Ding (1996) were the first to analyse the consequences of having
a variable memory parameter d.14 They consider two possible scenarios: (i) dt

is a stochastic process, eg, an AR(1) process with mean d, and (ii) dt switches
between two regimes, eg, yt = Îtx1t + (1 − Ît)x2t, with x1t ∼ I (d1), x2t ∼ I (d2) and
Ît following a 0–1 Markov switching process. Since this chapter is focused on
testing, we consider a different setup. The memory parameter d can take two
values, d1 in a first given proportion of the sample and d2 in the remaining
proportion.

Both stationary and nonstationary fractional roots are considered. Although
it is not difficult to generalize the analysis to allow for breaks in the determin-
istic components as well as short-term correlation in the disturbance terms,
for simplicity we will focus in the sequel only on the case where the error
terms are i.i.d. and no deterministic terms are present. More specifically, we
assume that yt is generated as

(1 − L)d0+ËDt (˘B ) yt = εt1t>0, (12.21)

so that yt is a zero-mean integrated process (with an integer or fractional
integration order), that can be either stationary or nonstationary. The order
of integration of yt is allowed to change along the sample at time TB , with
the dummy variable Dt(˘B) taking a value equal to 1 if ˘B T < t and zero
otherwise. Then, the process yt is I (d + Ë) until TB and I (d) after TB , where Ë
can be either larger or smaller than zero.

Under H0, no change in persistence occurs and therefore H0 : Ë = 0. By con-
trast, under H1, a change in persistence occurs at time TB , that is H1 : Ë < 0 or

14 Detecting a change in the persistence of a process is usually tackled in the context of AR
processes within the I (0)/I (1) framework (see, eg, Busetti and Taylor, 2004), later extended
by Hassler and Scheithauer (2007) to I (0)/I (d), d > 0. Nevertheless, as argued above, this
framework can be too narrow in many empirical applications.

314



978–0–19–923719–7 Ch-12 OUP075-Castle (Typeset by SPi) 315 of 321 February 12, 2009 21:12

Simple Wald Tests of the Fractional Integration Parameter

H ′
1 : Ë > 0, where the first (second) case corresponds to an increase (decrease)

in persistence after TB .
Since, to our knowledge, the LM tests have not been used so far to test

this type of hypothesis, we start by deriving such a test in the present setup.
Under Gaussianity, recall that Tanaka’s (1999) time-domain version of the LM
statistic for testing H0 : d = d0 vs. H1 : d =/ d0 uses the the log-likelihood

L
(
Ë,Û2,˘B

)
= − T

2
log

(
2Û2) − 1

2Û2

T∑

t=1

{
(1 − L)d0+ËDt (˘B ) yt

}2
(12.22)

Thus, an LM test for H0 : Ë = 0 vs. H1 : Ë =/ 0 rejects H0 for large values of

LMT =
∂L

(
Ë,Û2,˘B

)

∂Ë

∣
∣
∣
∣
∣
H0:Ë=0,Û2=Û̂2

= − 1

Û̂2

T∑

t=1

({
log (1 − L) × Dt (˘B)ƒd0 yt

}
ƒd0 yt,

where the estimated variance is Û̂2 = T−1”(ƒd0 yt)2.
Since log(1 − L) = − (

L + L2/2 + L3/3 + . . .
)
, and Dt(˘B) = 0 for t > TB , then

LMT =
1

Û̂2

TB∑

t=2

(
t−1∑

k=1

1
k

ε̂t−k

)

ε̂t = T
TB∑

t=2

(∑t−1
k=1

1
k ε̂t−kε̂t

)

∑T
t=1 ε̂t

2
= T

TB−1∑

k=1

1
k
Ò̂∗

k (ε̂t) , (12.23)

where Ò̂∗
k (ε̂t) =

∑TB
t=k+1 ε̂t−kε̂t/

∑T
t=1 ε̂2

t . Notice that in finite samples Ò̂∗
k (ε̂t) is not

identical to the k-th autocorrelation of residuals since in order to compute the
numerator, only observations previous to the break are considered whereas
all observations are employed to compute the denominator. This difference
vanishes asymptotically. The following theorem describes the asymptotic
properties of the test under local alternatives when the break date is known.

Theorem 12.5. Under the hypothesis of Ë = ‰/
√

T, for a known value of TB and
a fixed ‰ it holds that, as T → ∞,

T−1/2ST (˘B) =
√

T
TB−1∑

k=1

1
k
Ò̂∗

k (ε̂t)
w→ N

(
2

6
‰,

2

6
˘B

)

. (12.24)

Note that, since ˘B < 1, the variance of this distribution is smaller than the
variance in the case where no break occurs. This reflects the fact that only
a fraction of the data is employed but the data is divided by

√
T. Along the

lines of Tanaka (1999), it can also be shown that the test statistic proposed in
(12.23) is locally optimal.

An EFDF test, denoted as EFDF(Bd), can also be constructed for this case.
Following the derivations in section 12.2, one could consider the following
maintained hypothesis

ƒd0 yt = [1 − ƒËDt (˘B ) ]ƒd0 yt + εt, (12.25)
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which can be expressed in EFDF format as

ƒd0 yt = ˇ

[
1 − ƒË

Ë

]

ƒd0 yt Dt (˘B) + εt, (12.26)

where ˇ = Ë. Thus, conditional upon the choice of ˘B , the EFDF(Bd) test would
test H0 : Ë = 0 against H1 : Ë =/ 0 by means of a two-sided test based on the
t-ratio, ť , which is estimated with observations 1, . . . ,T˘B , and whose asymp-
totic distribution, under the null, would be N(0,1) and, under local alterna-
tives, satisfies Theorem 12.5.. To construct the regressor in (12.26), the first

step is to apply the ‘deadstart’ filter Ë−1[ƒd0 − ƒd0+Ë] to {yt}T
t=1; next, the result-

ing filtered series is truncated to the first subsample by means of the dummy
variable, Dt(˘B). If Ë is taken to be unknown, one could use a TÍ-consistent
estimator of d from the first subsample and subtract it from d0 using any of
the estimation procedures discussed above.

This way of testing breaks in the long-memory parameter opens the possi-
bility of testing a wide set of other alternative explanations for time varying
long-memory behaviour. For instance, inspired by Granger and Ding (1996),
the changes in d could be triggered by a strictly stationary and ergodic variable
Wt that characterizes different regimes of the economy. More concretely, we
are interested on testing H0 : yt ∼ I (d) versus HA : yt ∼ I (d) when Wt−1 ≤ r and
I (d + Ë) when Wt−1 > r . Substituting the structural break dummy Dt(˘B) by the
threshold dummy I (Wt−1 > r ) in (12.26) and running the regression

ƒd0 yt = ˇ

[
1 − ƒË

Ë

]

ƒd0 yt I (Wt−1 > r ) + εt, (12.27)

where ˇ = Ë, the corresponding EFDF test for threshold long memory, denoted
by EFDF(Td), is a simple two-sided test based on the t-ratio, ť , whose asymp-
totic distribution, under the null, would be N(0,1) assuming r is known
(eg, r = 0). Further issues stemming from an unknown r are beyond the scope
of this chapter and are subject to current investigation by the authors.

12.6 Allowing for Serial Correlation

Lastly, we generalize the DGPs considered in section 12.2 to the case where
ut follows a stationary linear AR(p) process, namely, ÷p(L)ut = Ât1t>0 with
÷p(L) = 1 − ˆ1L − . . .ˆp L p and ÷p(z) =/ 0 for |z| ≤ 1. This motivates the fol-
lowing nonlinear regression model

ƒd0 yt = ê[÷p(L)xt−1(d)] +
p∑

j=1

ˆ jƒ
d0 yt− j + εt, (12.28)

where x(.) = z(.) or s(.), for the EFDF(1) and EFDF(0) test, respectively. The
new model is similar to (12.3) and (12.4), except for the inclusion of the lags
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of ƒd0 yt and for the filter ÷p(L) in the regressor xt−1(d). Estimation of this
model is cumbersome due to the nonlinearity in the parameters ê and ÷ =
(ˆ1, . . . , ˆp). Compared with the i.i.d. case, LV (2007) claim that a practical
problem arises because the vector ÷ is unknown and therefore the regressor
[÷p(L)xt−1(d)] is unfeasible. For this reason, they recommend applying the
following two-step procedure that allows one to obtain efficient tests also with
autocorrelated errors.

Assuming, for simplicity, that Ï(t) ≡ 0 (or known),15 in the first step, the

coefficients of ÷p(L) are estimated (under H1) by OLS in the equation ƒd̂T yt =
∑p

t=1 ˆ jƒ
d̂T yt− j + at, where d̂T satisfies the conditions stated in Theorems 12.1.

and 12.2.. The estimator of ÷p(L) is consistent with a convergence rate
which depends on the rate Í. The second step consists of estimating by OLS
the equation ƒd0 yt = ê[÷̂p(L)xt−1(d̂T)] +

∑p
j=1 ˆ jƒ

d0 yt− j + vt, where ÷̂p(L) is the
estimator from the first step, and d̂T denotes the same estimated input used
in that step as well. As LV (2007, Theorem 2) have shown, for the I (1) vs.
I (d) case, the tê statistic in this augmented regression is still both normally
distributed and locally optimal, but a similar argument applies to the I (0) vs.
I (d) case. The tests will be denoted as AEFDF(i), i = 1,0, (augmented EFDF)
tests in the sequel.

However, in DGM (2008) we claim that a feasible single-step procedure in
the case of the AEFDF(1) test can also be applied with the same properties.
In effect, under H1, the process would be ÷p(L)ƒd yt = εt, so that adding and
subtracting the process under H0, ÷p(L)ƒyt, it becomes

ƒyt = ê[÷p(L)zt−1(d)] + [1 − ÷p(L)]ƒyt + εt. (12.29)

The one-step method we propose is based on the following decomposition of
the lag polynomial ÷p(L)

÷p(L) = ÷p(1) +
1

ƒd−1 − 1
÷∗

p(L), (12.30)

where the polynomial ÷∗
p(L) is defined by equating (12.30) to the standard

polynomial decomposition

÷p(L) = ÷p(1) + ƒ÷̃p(L). (12.31)

Hence

÷∗
p(L) = (ƒd − ƒ)÷̃p(L) = ƒd÷̃p(L) − [÷p(L) − ÷p(1)]. (12.32)

Substitution of (12.32) into (12.29), using (12.30) and noticing that
ê = d − 1, ÷p(1) + ÷̃p(0) = 1 and zt−1(d) = ƒd−1−1

1−d ƒyt, yields after some simple

15 For the case where the coefficients of Ï(t) are considered to be unknown, a similar
procedure as that described in section 12.2.1 can be implemented and efficient tests will
still be obtained.
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algebra

ƒyt = ê[÷p(1)] zt−1(d) − ÷̃p(L)[ƒd − 1] ƒyt − [÷̃p(L) − ÷̃p(0)] ƒyt + εt. (12.33)

where notice that the second and third regressors are predetermined since
(ƒd − 1) and [÷̃p(L) − ÷̃p(0)] do not include contemporaneous values of ƒyt.
Hence, a one-step procedure can be implemented in a regression of ƒyt on
zt−1(d), contemporaneous and lagged values of [ƒd − 1] ƒyt and lags of ƒyt,
by means of a t-test on the coefficient of zt−1(d). For example, in the case
of an AR(1) disturbance, ie, ÷1(L) = 1 − ˆL, we have that ÷1(1) = 1 − ˆ and
÷̃1(L) = ÷̃1(0) = ˆ, so that (12.33) becomes

ƒyt = ê(1 − ˆ)zt−1(d) − ˆ[ƒd − 1]ƒyt + εt. (12.34)

A similar one-step testing procedure can be used for the AEFDF(0) test. In
effect, adding and subtracting the process under H0 to the process under H1,
yields

yt = ¯[÷p(L)st−1(d)] + [1 − ÷p(L)]yt + εt. (12.35)

Then, using the decompositions

÷p(L) = ÷p(0) +
1

ƒd − 1
÷∗

p(L), (12.36)

÷p(L) = ÷p(0) + L÷p−1(L), (12.37)

and operating, yields

yt = ¯st−1(d) − ÷p−1(L)
÷p(0)

ƒd yt−1 +
1

÷p(0)
εt, (12.38)

which for the illustrative case of an AR(1) disturbance, ie, ÷1(L) = 1 − ˆL,
becomes

yt = ¯st−1(d) + ˆƒd yt−1 + εt. (12.39)

Following LV (2007), one can show that the asymptotic properties of the two
single-step AEFDF(i=1,2) tests above are identical to those in Theorems 12.1.
and 12.2., except that, under local alternatives (d = 1 − „/

√
T for AEFDF(1)

and d = „/
√

T for AEFDF(0), with „ > 0), we have that tê(d)
w→ N (−„˘,1) and

t̄ (d)
w→ N („˘,1) where

˘2 =
2

6
− κ ′ÿ−1κ, (12.40)

such that κ =
(
κ1, . . . , κp

)′ with κk =
∑∞

j=k j−1c j−k, k = 1, . . . , p, c j ’s are the
coefficients of L j in the expansion of 1/÷ (L), and ÿ = [ÿk, j ], ÿk, j =
∑∞

t=0 ctct+|k− j |, k, j = 1, . . . , p, denotes the Fisher information matrix for ÷ (L)
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under Gaussianity. Note that ˘2 is identical to the drift of the limiting dis-
tribution of the LM test under local alternatives (see Tanaka, 1999). The use
of semiparametric estimators for d is very convenient here, since one can be
agnostic about a parametric specification of the autocorrelation in the error
terms when estimating the input value of d. Although it has not been proved
yet, we conjecture that the single-step procedure can be generalized to deal
with ARMA processes, rather than AR ones, by increasing the number of
regressors in (12.33) or (12.38) at a certain rate, along the lines of DGM (2002,
Theorem 7).

12.7 Concluding Remarks

Long-memory processes have become a very attractive research topic in
econometrics during the last few years, due both to their flexibility and
realistic microfoundations. Indeed, they received a lot of attention from the
theoretical viewpoint but, in our opinion, so far this has not been suffi-
ciently reflected in empirical work. There must be several reasons for this
disconnection. We believe that one of them is that empirical researchers have
found difficulties in implementing many of those theoretical results. Thus,
our main goal in this chapter has been to frame the long-memory testing
procedures in a setup somewhat equivalent to the nowadays familiar unit
roots testing approach (à la Dickey–Fuller): t-statistics in simple time-domain
regressions, with known conventional asymptotic distributions and easy to
implement using standard econometrics softwares. Although our illustrations
have focused on univariate processes, extensions to fully-fledged multivariate
models should not be hard to derive. For example, a first try at applying the
Wald test principles to the reduced-rank analysis in a system of I (1) processes
with fractional cointegrating relationships of order (1 − b), b ∈ [0,0.5), can be
found in Avarucci and Velasco (2007).
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13

When is a Time-Series I(0)?
James Davidson∗

13.1 Introduction

Since the inception of integrated time-series modelling in econometrics, the
question of what constitutes a ‘nonintegrated’ process has remained troub-
lingly elusive. The inferential techniques developed for cointegration and
related analyses require for their validity that the differences of the data series
possess certain critical properties. These properties are nearly the same as
those required for ‘classical’ asymptotics or, in other words, the application
of the central limit theorem to approximate the distribution of regression
coefficients and similar quantities. The project of doing time-series economet-
rics could hardly be viable, one would suppose, unless these properties could
be both clearly delineated, and subject to verification.

Before the advent of cointegration these problems were often resolved
willy-nilly, by an assumption of correct specification in the context of a fairly
heroic conditioning exercise, whereby the explanatory variables in a model
were held to be ‘fixed in repeated samples’. The only stochastic components
left to model (the disturbances) could then be treated as independently and
identically distributed, and their treatment was elementary. However implau-
sible these classical assumptions may always have been, they are manifestly
inadequate to deal with cointegration models, because here it is not possible
to hold the data conditionally fixed. It is the observed series themselves, not con-
structed disturbances, whose distributions must satisfy the critical regularity
conditions.

∗ This chapter shares a title with the first version of a working paper that subsequently
appeared as Davidson (2002). It further explores some themes that the earlier working paper
broached rather briefly. I am glad of this excuse to revive a nice title, although there is in
practice minimal overlap between the content of this chapter and its predecessor.
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13.2 Defining I(0)

Early contributions to the cointegration literature tended to be fairly casual
in their treatment of I(0), perhaps because this component of the the-
ory was viewed as inherited from the pre-existing modelling methodology.
The following definitions are culled from some widely cited articles and
monographs.

1. ‘Definition: A series with no deterministic component which has a
stationary, invertible ARMA representation after differencing d times
is said to be integrated of order d . . .’ (Engle and Granger, 1987,
p. 252).

2. ‘It follows that [. . .] a short-memory series is I(0), as it needs differencing
zero times’ (Engle and Granger, 1991, p. 3).

3. ‘. . . if the series must be differenced exactly k times to achieve station-
arity then the series is I(k), so that a stationary series is I(0)’ (Banerjee,
Dolado, Galbraith, and Hendry, 1993, p. 7).

4. ‘A finite (non-zero) variance stochastic process which does not accumu-
late past errors is said to be integrated of order zero . . .’ (Hendry, 1995,
p. 43).

5. ‘A stochastic process Yt which satisfies Yt − E (Yt) =
∑∞

i=0 Ciεt−i is called
I(0) if [

∑∞
i=0 Ci zi converges for |z| < 1 and]

∑∞
i=0 Ci =/ ,0’ (Johansen, 1995,

pp. 34–35, the condition εt ∼ iid(0,Û2) being understood).

Of these (chronologically ordered) quotations, 2, 3, and 4 can be thought
of as informal and descriptive, while 1 and 5 are intended as more rig-
orous. Even so, it’s interesting to note that they are by no means equiv-
alent. The concepts of stationarity, short memory, and finite variance are
each singled out as ‘defining’ descriptive characteristics, but it is not yet
clear how these might be connected with one another. On the other hand,
the more formal definitions restrict attention to a limited class of linear
models, in which the three characteristics of stationarity, short memory,
and (under Gaussianity) finite variance are united in a single parametric
restriction. Note that in a more general framework it is easy to dispense
with one while retaining another. The inclusion of deterministic components
(eg ‘trend stationarity’) is only one of the many ways these models might be
generalized.

Another approach to definition is the pragmatic one of simply specifying
conditions under which the asymptotic theory is valid; see for example Stock
(1994), Davidson (2002), and Müller (2008). These conditions are of course
what motivate the technical and informal definitions just given, but in many
ways it simplifies the analysis to state the desired properties directly, rather
than conditions sufficient for them. Thus
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Definition 13.1. A time series {xt}∞
t=1 is I(0) if the partial sum process XT defined

on the unit interval by

XT(Ó) = ˘−1
T

[TÓ]∑

t=1

(xt − E xt),0 < Ó ≤ 1 (13.1)

where ˘2
T = Var(

∑T
t=1 xt), converges weakly to standard Brownian motion B as

T → ∞.

This definition first makes it clear that I(0) is an attribute of an infinite sto-
chastic sequence. In other words, it is not a well-defined concept for observed
time-series except in the context of limit arguments as T → ∞. Next, note
that it implies the property ˘2

T ∼ T˘2 for 0 < ˘2 < ∞, because otherwise the
limit process cannot have the Brownian property E (B(s) − B(r ))2) = s − r for
0 ≤ r < s ≤ 1. For full applicability, it might need to be supplemented by the
condition that a consistent estimator of ˘2 exists, which typically will be one
of the class of kernel estimators; see Newey and West (1994) and Andrews
(1991) inter alia. However, the best known sufficient conditions for these twin
convergences, in distribution and probability, are in fact quite similar; see de
Jong and Davidson (2000). It is quite possible that the best conditions actually
coincide. Moreover, Kiefer, Vogelsang, and Bunzel (2002) have shown that
valid inference is possible without consistent variance estimation, although
as pointed out below, their results don’t have application for testing the I(0)
hypothesis, in particular.

What is clear is that a very wide class of processes satisfy these conditions,
of which the cases cited by Engle and Granger (1987) and Johansen (1995),
respectively, form only a small subset.

13.3 Conditions for I(0)

Davidson (2002 and 2006, section 5.5) provides a convenient summary of the
technical conditions that ensure the property given in Definition 13.1 holds.
A set of conditions is given for linear models that are effectively necessary for
I(0), in the sense that convergence to a non-Brownian limit process (fractional
Brownian motion) can be demonstrated in cases where they are violated.

Summability of the autocovariances (though not necessarily absolute sum-
mability) is the fundamental necessary condition for I(0), because on this con-
dition depends the property E (˘2

T) ∼ T˘2. Consider the class of covariance
stationary moving average processes defined by

xt =
∞∑

j=0

aj ut− j ,
∞∑

j=0

a2
j < ∞, ut ∼ i.i.d.(0,Û2). (13.2)
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Since the mth order autocovariance is „m = Û2 ∑∞
j=0 ajaj+m, note that

˘2 =
∞∑

m=−∞
„m = Û2

⎛

⎝
∞∑

j=0

aj

⎞

⎠

2

so that summability of the autocovariances is equivalent to summability of
the moving average coefficients. However, the conditions in (13.2) can be
substantially relaxed by allowing dependence in the process {ut} itself, which
can in its turn be weakly dependent with summable autocovariances. This can
be illustrated by the obvious, though typically redundant, case where

ut =
∞∑

j=0

bjεt− j , εt ∼ i.i.d.(0,Û2).

Then we simply obtain

˘2 = Û2

⎛

⎝
∞∑

j=0

aj

⎞

⎠

2 ⎛

⎝
∞∑

j=0

bj

⎞

⎠

2

and this ‘Russian doll’ layering of the dependence structure could be iterated
any finite number of times.

More pertinent are the cases where ut exhibits some form of nonlinear
dependence. In these cases, restrictions on the autocovariances may need to
be supplemented by more general restrictions on dependence. The simplest
is to let ut be a stationary ergodic martingale difference. A variety of mixing
conditions are also popular in the literature, although these have the drawback
of non-transparency. Being restrictions on the entire joint distribution of the
process at long range, they are difficult to test, either in an efficient manner,
or at all. ‘Geometric ergodicity’ is a property of Markov chains which can be
established for certain nonlinear difference equations (see, eg Tong, 1990). The
condition of ‘near-epoch dependence’ links the distribution of an observed
process to that of the near epoch of a specified underlying forcing process,
which can for example be mixing. However, in a variety of nonlinear models
driven by independent shocks, it is comparatively easy to specify testable (in
principle) parametric restrictions which are sufficient for near-epoch depend-
ence of specified ‘size’ (rate of memory decay) and in turn sufficient for I(0) in
the sense of Definition 13.1. The cases of ARCH and GARCH models, bilinear
models and SETAR models, among others, are analysed in Davidson (2002).

The obvious difficulty with Definition 13.1 is that it specifies an asymptotic
property that cannot be verified in any finite sample. Summability of the
autocovariances can never be resolved, one way or the other, from sample
information. It is not unreasonable to ask whether sample autocorrelations
‘look’ summable, in the sense that they decline at such a rate as the lag
increases that some implicit smoothness constraint must be violated, were
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they to behave differently at long range. However, a number of authors have
examined difficult cases that place our ability to make this discrimination in
doubt, even in large samples.

Leeb and Pötscher (2001) consider processes ut that are covariance sta-
tionary, and for which there exists no covariance stationary process vt such
that ut = ƒvt—in other words, are not over-differenced. They exhibit cases
having these properties, yet lacking a spectral density (ie, the spectral dis-
tribution function is non-differentiable) which also lack the characteristic
property (necessary for Brownian asymptotics) that the partial sum variance
increases proportionately to sample size. Accordingly, such processes cannot
be regarded as I(0). Their results emphasize the fact that attributes such as
‘stationary’ or ‘short memory’, cannot substitute for Definition 13.1.

Müller (2008), on the other hand, considers processes generated by expan-
sions of the form

Y(s) =

√
2



∞∑

k=1

gk sin(s(k − 1
2 ))Ók, s ∈ [0,1] (13.3)

where Ók ∼ i.i.d.N(0,1). Setting gk = 1/(k − 1
2 ) defines a Brownian motion (see

Phillips, 1998) and sampling it at T points s = 1/T, . . . ,1, yields a discrete inte-
grated series. On the other hand, setting gk = 1 yields, in the corresponding
manner, a sample of Gaussian white noise. The interesting cases are found by
setting gk = 1 for k = 1, . . . ,n, for some n < ∞, and gk = 1/(k − 1

2 ) for k > n. For
quite modest values of n, one can obtain a series that appears stationary, yet
is also highly autocorrelated at long range. By letting n increase with T in just
the right way, one can manufacture a series which is I(0) on Definition 13.1,
yet the probability of rejection in any of a wide class of tests for (in effect)
summable covariances converges to 1. This example is again artificial, but
it illustrates the pitfalls that await those who seek to test the conditions
embodied in the definition. As we show in more detail in the next section,
there are always cases for which no sample is large enough to discriminate
effectively.

13.4 Testing I(0)

Testing the hypothesis embodied in Definition 13.1 has been called an
‘ill-posed’ inference problem, and a number of recent research contributions
have highlighted different aspects of the difficulty.

Consider three possible approaches to the testing problem. 1) perform
a test in the context of a specified parametric or semiparametric model;
2) test a specific restriction on the sample distribution, such as the value
of the spectrum at zero; 3) construct a nonparametric statistic whose null
distribution depends directly on the conditions of Definition 13.1. In practice
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these approaches will to a large degree overlap, but it is instructive to consider
the difficulties implicit in each. A fourth approach is to devise a consistent
criterion for choosing between the specific alternatives of I(0) and I(1); see
Stock (1994) and Corradi (1999). However, these latter methods have a rather
specialized application, since they are predicated on the assumption that
these two cases exhaust the possibilities. Given the existence of fractionally
integrated processes in particular, this assumption appears unduly restrictive
for our purposes.

13.4.1 Parametric Hypotheses

Start with the parametric framework. In an autoregressive or ARMA model,
the null hypothesis takes the form ‘the largest autoregressive root lies strictly
inside the unit circle’.1 The size control problems are immediately obvious, for
the null hypothesis is defined by a non-compact set in the parameter space,
say Ÿ0, whose closure contains the leading case of the alternative (the unit
root). If a test is consistent, then as sample size increases

size = sup
˘∈Ÿ0

P˘(test rejects) → 1.

One can certainly test the hypothesis that the largest autoregressive root lies
in a specified stable region which does not have 1 as a boundary point. This
approach has the virtue that a failure to reject the restricted hypothesis implies
a failure to reject the I(0) hypothesis at at most the same significance level.
However, it does not tell us how to interpret a rejection and hence it cannot
be considered as a test of I(0) in the strict sense.

Another approach which has proved popular is to embed the I(0) case in
the class of I(d) models, where d represents the fractional integration (long
memory) parameter. Note that d =/ 0 is incompatible with Definition 13.1,
since the limit of the normalized partial sum process is a fractional Brownian
motion. The LM-type tests of Robinson (1991), Agiakloglou and Newbold
(1994), Tanaka (1999), and Breitung and Hassler (2002) are all of this form.
These tests are constructed, in effect, as functions of the sample autocovari-
ances. One might also construct a confidence interval for the parameter d
itself, using either a parametric or a semiparametric procedure—see Robinson
(1994), Geweke and Porter-Hudak (1983), Moulines and Soulier (2000) inter
alia. Being based on the periodogram, these estimators can again be thought
of as functions of the sample autocovariances. The problem with all these
tests is that autoregressive components, if present, assume the role of nuisance
parameters. Local dependence is known to induce small sample bias in these

1 There is also the parametrization which places stable roots outside the unit circle, but
it is convenient for expository purposes to adopt the parametrization in which root and lag
coefficient coincide in the AR(1) case.
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estimators, so that conventional significance tests for d have to be treated with
caution.2 For correct asymptotic size, these tests require that autoregressive
components be controlled for by some method of pre-whitening. A valid test
of d = 0 requires that any such autoregressive roots are in the stable region.
However, a unit root is, of course, observationally equivalent to the case d = 1.
The previous problem of size control now re-emerges in a new form. If the
prewhitening is done consistently, these tests must have power equal to size
against the alternative of a unit root.

13.4.2 ‘Ill-posed’ Estimation Problems

A number of authors including Blough (1992), Dufour (1997), Faust (1996,
1999), Pötscher (2002), and Müller (2005, 2008) have investigated a class of
estimation problems in which testing of integration order (whether I(0) or
I(1)) features prominently. As Dufour points out, there are two distinct cases
that give rise to similar difficulties in practice. One is a failure of identification
at points of the parameter space; in other words, the existence of observa-
tionally equivalent points. The second case is where the object of interest is
a function of the underlying parameters, and the parameter space contains
points of discontinuity of this function.

Of the various analyses offered in these papers, Faust (1996, 1999) demon-
strates the second case neatly, as follows. Consider the class of processes
in (13.2). For the purposes of the argument let the shocks be Gaussian,
and since a0 = 1 is not imposed there is no loss of generality in assuming
εt ∼ NI (0,1). Define A = {a0, a1, a2, . . .} to be a point in the space of square-
summable sequences � ⊂ �∞. Let the distance ‖·‖ be defined on � such that

‖A1 − A2‖ =
√∑∞

j=0
(a1 j − a2 j )2.

If {A1,A2, . . .} defines a sequence in � such that ‖Ak − A‖ → 0, and the corres-
ponding stochastic sequences are {Xkt} such that

Xkt =
∞∑

j=0

akjεt− j

then the distributions of the {Xkt}, say {PAk ,k ≥ 1}, converge weakly to PA,
the distribution of {Xt}. To demonstrate this, it is sufficient in view of the
Gaussianity to show that the autocovariances of the processes converge.
Given A, let Am = {0, . . . ,0,am,am+1, . . .} ∈ �, and note that

∥
∥Am

k − Am
∥
∥ → 0 if

2 Davidson and Sibbertsen (2009) suggest a pre-test for bias.

328



978–0–19–923719–7 Ch-13 OUP075-Castle (Typeset by SPi) 329 of 342 February 12, 2009 21:14

When is a Time-Series I(0)?

‖Ak − A‖ → 0. Also note that if „km = E (Xkt Xk,t−m) then for each m ≥ 0,

∣
∣„km − „m

∣
∣ =

∣
∣
∣
∣
∣
∣

∞∑

j=0

akjak, j+m −
∞∑

j=0

ajaj+m

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∞∑

j=0

akj (ak, j+m − aj+m) +
∞∑

j=0

aj+m(akj − aj )

∣
∣
∣
∣
∣
∣

≤ ∥
∥Am

k − Am
∥
∥ ‖Ak‖ + ‖Ak − A‖ ‖Am‖ → 0 as k → ∞,

using the triangle and Schwarz inequalities. In other words, if ‖Ak − A‖ is
small then the difference between the distributions of {Xkt} and {Xt} is corre-
spondingly small. Now consider the sequence Ak = {a1,a2, . . . ak,0,0, . . .}, such
that Ak → A ∈ � but suppose

∑∞
j=0 aj = ∞. The sums

∑∞
m=0 „km are accord-

ingly diverging as k → ∞. {Xkt} is an I(0) sequence for each k, but the
limit is not I(0) in spite of lying arbitrarily close in distribution to I(0)
sequences.

The implications for tests of the I(0) hypothesis should be clear. Supposing
we seek to construct a confidence interval of level · for the spectral den-
sity at 0, say f (0) = −1( 1

2„0 +
∑∞

m=1 „m). Let (Ÿ,�,Ï) represent the probability
space generating the process innovations, and also let � represent the Borel
sets of the real line. An ·-level confidence interval depending on a sample
{X1, . . . ,XT} is a measurable mapping CT(·) : � × Ÿ �−→ � such that

inf
�

PA ( fA(0) ∈ CT(·)) ≥ 1 − ·.

In words, a valid CT(·) needs to contain fA(0) with probability at least 1 − ·,
no matter how the data are generated. It is evident that for any · > 0, CT(·)
is unbounded. More alarmingly, this is also the case if attention is confined
just to the subset �0 = {A ∈ � : fA(0) < ∞}, since this set is not compact, as
demonstrated. Note that � ⊂ �0 (the closure of �0). Every non-summable
element of � can be constructed as the limit of a sequence of summable
elements, and � = �0. The closure of the set of square-summable sequences
contains the non-square-summable sequences.

This property of confidence intervals holds for any finite T. A standard
kernel estimator of fA(0) should tend in distribution to the normal, with
variance shrinking at the rate KT/T where KT is the bandwidth. However,
the implied approximate confidence interval is an arbitrarily poor approxi-
mation to the true confidence interval. There exist data generation processes
arbitrarily close to A for which the kernel estimate is diverging at the rate KT ,
and has no well defined limiting distribution.
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A closely related analysis considers the distribution of the difference
processes xt = ƒXt, having the representation

xt =
∞∑

j=0

a∗
j εt− j

where a∗
0 = a0 and a∗

j = aj − aj−1 for j ≥ 1. Denote the generic sequence con-
structed in this way from an element A of � by A∗ ∈ �. If A ∈ �0 then
A∗ ∈ �∗

0, where �∗
0 is the subset of � having the property

∑∞
j=0 aj = 0. If

attention is restricted to exponential lag decay processes, having the property
∑∞

j=m aj = O(am), we may further say that {Xt} is I(0) if and only if the difference
process belongs to �∗

0. Evidently, sequences of elements of � − �∗
0 can be

constructed whose limits lie in �∗
0. In other words, there exist sequences of

non-I(0) processes whose weak limits are I(0).
Pötscher (2002) points out that the existence of such points implies that

consistent estimation is not a uniform property with respect to the parameter
space. In other words, letting Ë̂T denote an estimator of f (0) the quantity
supA∈� E A|Ë̂T − fA(0)|2 is infinite, for every T ≥ 1. A more subtle implication
of the Faust–Pötscher analysis is that � − �0 is dense in �. Every model A
with fA(0) < ∞ is arbitrarily close to a case A′ with fA′ (0) = ∞. Now, it might
be thought that this result depends on the parameter space being explicitly
infinite dimensional. Parametric representations of linear processes, such as
the ARMA(p, q), are defined by subspaces of �, (the images of mappings from
» ⊂ �p+q+1 to �) which, it might be hoped, exclude most problematic regions.
However, Pötscher shows that even the ARMA(1, 1) class contains problematic
points such that the uniform consistency criterion fails. Hence it also fails for
every superset thereof.

13.4.3 The ARMA(1,1) Process

Consider the element of � defined by

(1 − ˆL)Xt = Û(1 − ¯L)εt

so that a0 = Û and aj = Û(ˆ − ¯)ˆ j−1 for j ≥ 1. Consider initially just the AR(1),
by fixing ¯ = 0, and note that the sequence Ak defined by setting ˆ = ˆk for
ˆk = 1 − 1/k lies in �0, with limit A ∈ � − �0. In this case A /∈ �, and there is
also a failure of the weak convergence of the distributions. The discontinuity
in the space of probability measures at the stationarity boundary is a familiar
feature of this class. However, as noted previously, the null hypothesis of I(0)
is represented by the open set Ÿ0 = {ˆ :

∣
∣ˆ

∣
∣ < 1}, such that the leading case

of the alternative ˆ = 1 lies in its closure. It follows that if a test of I(0) is
defined by a statistic sT and a critical region WT , such that the hypothesis of
I(0) is rejected if sT ∈ WT , then for any T ≥ 1 the power of the test against the
alternative ˆ = 1 can never exceed the size defined as sup

A∈Ÿ0
PA(sT ∈ WT).
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A special feature of the ARMA(1,1) class, closely related to the present
problem although distinct from it, is the existence of the set of unidentified
structures with ˆ = ¯. Having the same likelihood corresponding to the case
ˆ = ¯ = 0, all these structures represent i.i.d. data, although the case ˆ = ¯ = 1
is arbitrarily close in model space to I(1) cases with ˆ = 1, ¯ < 1. Pötscher
(2002) considers the following example. Construct a sequence of coefficient
pairs, {ˆk, ¯k} such that the sequence of spectral densities is

fk(˘) =
Û2

2

1 + ¯2
k − 2¯k cos˘

1 + ˆ2
k − 2ˆk cos˘

.

Choose M ≥ 0, and set 0 < ˆk < 1 and ¯k = 1 − M(1 − ˆk), also requiring ˆk >

(M − 1)/M in the cases with M > 1 so that ¯k > 0. Otherwise, {ˆk} can be
an arbitrary sequence converging to 1. Note that ¯k ↑ 1 as ˆk ↑ 1, and also
that along these sequences, fk(0) = 1

2 −1 M2Û2 for every k. Except at the limit
point, the sequences of models have ˆk

=/ ¯k and hence they are technically
identified, but depending on the path chosen they can have effectively any
non-negative spectral density at 0, in spite of being arbitrarily close to one
another as the limit is approached.

As in the examples of the previous section, a confidence interval for f (0)
must be either unbounded, or have level zero. For a more familiar insight
into this issue, consider the one parameter IMA(1, 1) class of models, defined
by the MA parameter ¯. This has nonsummable lag coefficients for every
¯ ∈ (−1, 1), yet the case ¯ = 1, lying in closure of this set, defines the i.i.d. case.
Be careful to note that the fact this point is unidentified in the ARMA(1,1) class
is irrelevant, for it is perfectly well identified in the IMA class. This problem is
related strictly to the discontinuity of f (0) as a function of ¯.

13.4.4 Nonparametric Tests

The most popular procedures for checking I(0) involve computing statistics
that address the question of summability of the autocovariances directly.
Among tests in this class are the modified R/S test (Lo, 1991), the KPSS test
(Kwiatkowski et al., 1992), the LM test of Lobato and Robinson (1998), the
V/S test of Giraitis et al. (2003), the ‘remote autocorrelations’ test of Harris
et al. (2008), and the increment ratio test of Surgailis et al. (2008). Except for
the last, these tests all depend on an estimator of the long run variance of the
process, which is assumed finite under the null hypothesis. In fact, it is true
to say that the properties of the tests are completely defined by the properties
of these variance estimators. It is necessary to specify the null by specifying a
finite lag, beyond which the sum of the autocovariances is either exactly zero
or arbitrarily close to zero. Different choices of truncation point effectively
define different null hypotheses, all of which are strictly contained in the ‘I(0)
hypothesis’ proper.
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The force of this point is nicely illustrated by the fact that the KPSS statistic,
if constructed using the Bartlett kernel with bandwidth set equal to sample
size, has a degenerate distribution with value 1

2 (see Kiefer and Vogelsang,
2002). In other words the KPSS test can be viewed as comparing two variance
estimators, respectively imposing and not imposing a truncation point smaller
than sample size. The problem is there are T − 1 such comparisons that can be
made in a sample of size T, and no formal constraints on the proper choice.
Since the null hypothesis imposes no finite truncation point, as such, the test
is bound to be oversized for any finite truncation; equivalently, there is always
a valid truncation point which sets power equal to size.3

13.5 Fingerprinting I(0)

The literature surveyed in this chapter may appear to place a question mark
over large areas of econometric practice. If there are serious problems in
discriminating between I(0) models and alternatives, what is the future for
methods of analysis which depend critically on making this assessment reli-
ably at the outset? Indeed, some authors have evidenced a certain satisfaction
at pouring cold water on the efforts of time-series analysts in this area.

Before going too far in this pessimistic direction, however, we do well to
remind ourselves of the actual question usually being posed. In almost every
application, this is: ‘Will asymptotic distribution results based on the assump-
tion of I(0) provide more accurate approximate inferences than alternatives,
in my sample?’ Call this Question 1. It is clearly a different question from the
following, which we will call Question 2: ‘Will the distributions obtained by
extending my sample indefinitely match the asymptotic distributions implied
by the I(0) hypothesis?’ It is Question 2 that has proved to be difficult to
answer in the conventional manner. However, this is of little concern if
there is no actual prospect of extending the sample indefinitely, and if there
were then the difficulties would resolve themselves by the same token. As to
Question 1 it is, arguably, reasonable to be guided by the popular adage: ‘If it
walks like a duck, and quacks like a duck, then (let’s assume) it’s a duck.’

The problem is to find an independent yardstick by which to judge, in
a simulation experiment for example, whether the answer to Question 1 is
affirmative. Linking back to Definition 13.1, this is essentially the question
of whether the partial sums of the process approximate to Brownian motion
in a sufficiently large sample. A natural approach to answering this question
is to formulate a real-valued statistic whose limiting distribution corresponds
to a unique functional of Brownian motion. Unfortunately, most statistics

3 Interestingly, 1
2 actually exceeds the 5% critical value of the limiting KPSS null distribu-

tion, so there always exists a truncation to guarantee rejection under both null and alternative
at the nominal 5% level.

332



978–0–19–923719–7 Ch-13 OUP075-Castle (Typeset by SPi) 333 of 342 February 12, 2009 21:14

When is a Time-Series I(0)?

known to converge to pivotal Brownian functionals (for example, the Dickey–
Fuller statistic and variants) are dependent on unknown scale factors, and
embody estimates of the long-run variances. As previously noted, invoking
these would tend to make the problem circular.

There is one nice exception, however. Consider the statistic T−1�̂T where

�̂T =
∑T

t=1 U 2
t

T
∑T

t=1 u2
t

where Ut = u1 + · · · + ut, and either ut = xt − x̄ with x̄ denoting the sample
mean, or ut = xt − ‰̂

′
zt where zt is a vector of deterministic regressors, such as

intercept and time trend. For simplicity we consider only the former case, but
the extension is very easily handled. Note that �̂T is similar to the KPSS sta-
tistic, except that the variance estimate is not autocorrelation-corrected. This
statistic is proposed by Breitung (2002) as a nonparametric test of I(1). Suppose
that vt ∼ I(0) with mean 0 and long-run variance Û2 < ∞, and xt =

∑t
s=1 vs.

Then (by definition)

T−1/2x[T·]
d→ ÛW(·)

where W is standard Brownian motion, and accordingly, by the continuous

mapping theorem, T−1�̂T
d→ Œ0 where

Œ0 =

∫ 1
0

(∫ Ù
0 W(s)ds − Ù

∫ 1
0 W(s)ds

)2
dÙ

∫ 1
0 W(Ù)2dÙ −

(∫ 1
0 W(Ù)dÙ

)2 . (13.4)

Breitung points out that under the alternative hypothesis ut ∼ I(0), T−1�̂T =
Op(T−1), and hence, using the lower tail as a rejection region yields a consist-
ent test of I(1) against the alternative of I(0).

The test does not provide a consistent test against the alternative of I(1 + d)
for d > 0 (and hence by implication a test of I(0) applied to the partial sums)
because the distribution of T−1�̂T has bounded support. In fact, it never
exceeds 1/2 regardless of the distribution of {xt} (see Davidson, Magnus,
and Wiegerinck, 2008). However, consider the case where vt is I (d) for d > 0.
If d < 1

2 , then under mild assumptions on the increments (see for example
Davidson and de Jong, 2000) we have the result

T−d−1/2
[TÙ]∑

s=1

vs
d→ ÛWd(Ù)

where Û is the long-run variance of the fractional differences (1 − L)dvt, and
Wd is fractional Brownian motion as defined by Mandelbrot and Van Ness
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(1968) for − 1
2 < d < 1

2 . The Breitung statistic then has the limit

Œd =

∫ 1
0

(∫ Ù
0 Wd(Ê)dÊ − Ù

∫ 1
0 Wd(s)ds

)2
dÙ

∫ 1
0 Wd(Ù)2dÙ −

(∫ 1
0 Wd(Ù)dÙ

)2 . (13.5)

On the other hand, if 1
2 < d < 3

2 then

T−d−1/2
[TÙ]∑

s=1

vs
d→

∫ Ù

0
Wd−1(Ê)dÊ, 0 ≤ Ù ≤ 1

and

Œd =

∫ 1
0

(∫ Ù
0

∫ ·
0 Wd−1(Ê)dÊd· − Ù

∫ 1
0

∫ ·
0 Wd−1(Ê)dÊd·

)2
dÙ

∫ 1
0

(∫ Ù
0 Wd−1(Ê)dÊ

)2
dÙ −

(∫ 1
0

∫ Ù
0 Wd−1(Ê)dÊdÙ

)2 . (13.6)

Be careful to note how the extra normalization factors T−2d cancel in the ratio,
as does Û, so that these distributions remain Op(1) and free of nuisance param-
eters other than d. These distributions have been tabulated by simulation
for four values of d, using 1000 NID(0,1) drawings to represent the vs (see
Figure 13.1). While any I(0) process vs must yield (13.4) in the limit, it is
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FIG. 13.1. Breitung (2002) statistic with cumulated I(d) increments. The case I(1) is
Breitung’s null distribution. (Kernel density plots from 1 million replications.)
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Table 13.1. KPSS rejections in Gaussian AR(1) models with parameter ˆ, in 100,000 replica-
tions. The last row shows the Kolmogorov–Smirnov statistic for comparison of partial sums
with the Breitung distribution

T 50 100 200

ˆ 0.3 0.5 0.7 0.9 0.5 0.7 0.9 0.7 0.9

KPSS: Bw = 4 0.062 0.087 0.145 0.270 0.095 0.172 0.403 0.189 0.509
Bw = 12 0.043 0.043 0.051 0.080 0.055 0.077 0.174 0.087 0.236
Andrews 0.044 0.029 0.011 0.028 0.041 0.026 0.003 0.043 0.010
N–W 0.060 0.077 0.112 0.212 0.073 0.114 0.264 0.115 0.316

K–S for T −1�̂T 0.727 1.486 2.786 6.790 0.737 1.434 4.404 0.802 2.401

clear that the passage to the limit may be substantially different, depending
on the strength of dependence. Thus, the distribution of T−1�̂T where vt is an
autoregressive process, with a root close to unity, is likely to resemble Œ1 more
closely than Œ0 in samples of moderate size.

The idea to be explored here is to use the null distribution of Breitung’s
statistic to fingerprint (the partial sums of) an I(0) process. If the latter dis-
tribution cannot be distinguished from the former, in a sample of given size,
it is a reasonable conjecture that the dependence in the process is innocuous
from the point of view of applying asymptotic inference. Of course, this is by
no means the only statistic that might be used for this purpose, but it does
have two notable advantages, independence of scale parameters and bounded
support. The latter is a particularly convenient feature for implementing a
comparison of distributions.

In Table 13.1, data have been simulated from five I(0) processes, the
Gaussian AR(1) with coefficients ˆ = 0, 0.3, 0.5, 0.7, and 0.9, and three sample
sizes, T = 50, 100, and 200. In all these cases the correct answer to Question 2
is affirmative. The KPSS test has been computed for these series with HAC
variance estimator computed using the Bartlett kernel and four choices of
bandwidth, two fixed, and two selected by data-based ‘plug-in’ methods
as proposed by, respectively, Andrews (1991) and Newey and West (1994)
(denoted N–W in the table).4 To provide critical values, 1.5 million Gaussian
i.i.d. samples were used to construct tabulations for each choice of T, so
ensuring that all features of the data and test procedure, except the depend-
ence, are correctly modelled. Viewed as attempts to answer Question 2, all
of these procedures appear to represent an unsatisfactory compromise. Only

4 The plug-in formulae have the form bandwidth = 1.447(·T)1/3 where · = ·A and · = ·NW,
respectively, and ·A = 4Ò̂2

/(1 − Ò̂)2(1 + Ò̂)2 where Ò̂ is the first-order autocorrelation coefficient,
and ·NW = [2

∑[nT ]
j=1 j „̂ j /(„̂0 + 2

∑[nT ]
j=1 „̂ j )]

2 where „̂ j is the jth order sample autocovariance.
Here, [.] is the floor function, and nT = 3(T/100)2/9 so that [n50] = 2, and [n100] = [n200] = 3.
Newey and West advocate a pre-whitening step using an autoregression before applying their
kernel estimator, but this step has been omitted here.
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the Andrews method is never over-sized, but its power against a unit root
alternative appears in doubt.

The last row of the table shows the Kolmogorov–Smirnov tests of the
Breitung distributions generated from the Monte Carlo replications for each
case, using the tabulations from the i.i.d. data to provide the benchmark
distributions. Those cases exceeding the asymptotic 5% critical value, of 1.35,
are shown in boldface in the table.5 Suppose we take rejection on this test
as a negative answer to Question 1. On this criterion, only the case ˆ = 0.3 is
included in the null hypothesis in a sample of size 50. In a sample of size 100,
ˆ = 0.5 enters the acceptance region, and in a sample of 200, so does ˆ = 0.7.
The point to be emphasized here is that the KPSS tests are even less satisfactory
as a means for answering Question 1 than for answering Question 2. Except
for the Andrews method, which has no power, the rejection rates for a given
ˆ all increase with sample size, whereas on the criterion of Question 1, as
indicated by the last row, we should like them to decrease. It is, manifestly,
the evidence contained in the last row of Table 13.1 that we should most
like to possess, when evaluating Question 1. The next section attempts to
operationalize this insight.

13.6 A Bootstrap Test of I(0)

A test of I(0) in the sense of Question 1, based directly on the comparison of
fingerprinting distributions, might be implemented by the following steps.

1. Formulate and fit a model of the data generation process.

2. Use this estimate to simulate the series many times and tabulate the
Breitung statistic T−1�̂T for the partial sums.

3. Use the Kolmogorov–Smirnov test to compare the distribution of this
statistic with the benchmark case based on independent increments.

Given an implementation of Step 1, which we discuss in detail below, Step 2
might be performed using a Gaussian random number generator, or by boot-
strap draws from the Step 1 residuals. In the latter case it is very important
to generate the benchmark distribution from the same sample as the test
distribution, to avoid a spurious difference. The drawings are recoloured by
the estimated filter to create the test distribution, and used unfiltered to
create the benchmark. Note that differences in the variances of the two
draws are unimportant, since scale effects cancel in the construction of the
Breitung statistic. For Step 3, the benchmark distribution should preferably
be estimated in parallel with matching sample size, and compared by the

5 For clarity the table shows only the most extreme cases of the null hypothesis, as
indicated by the K–S statistic.
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two-sided Kolmogorov–Smirnov test. This is to ensure that it is exclusively
the dependence that influences the test outcome, not the accuracy of the
asymptotic approximation.

Estimation of the DGP is clearly the trickiest step, in effect the counter-
part of the bandwidth selection problem in conventional tests, although the
constraints it imposes are different and generally more favourable. Note that
nonparametric methods for bootstrapping under dependence, such as the
block bootstrap or Fourier bootstrap, are not attractive in this context because
of the problem of matching the distributions under the null hypothesis. Given
a suitable estimator of the autocovariance function, it would be feasible to
simulate using the Choleski method or the circulant embedding algorithm
(Davies and Harte, 1987). However, this estimation problem is precisely the
source of the difficulties described in section 13.4.2. Therefore, parametric
modelling as in Step 1 appears the most promising approach.

For power against unit and near-unit root autoregressive alternatives, an
autoregressive model naturally suggests itself. However, this is a less attract-
ive option from the point of view of detecting fractional alternatives, since
unrestricted estimation of a hyperbolic AR(∞) lag structure poses obvious
efficiency problems. Therefore it seems important that the autocorrelation
model contain a fractional integration component. One possibility is to fit
an ARFIMA model to the data, although there are well-known identification
and numerical problems involved in simultaneously fitting an autoregressive
root and fractional d parameter. Multi-modal and poorly conditioned like-
lihoods are commonly encountered in these models. For the purposes of a
Monte Carlo study, where a routine of model checking and evaluation at each
replication is not feasible, three options have been compared. The first is a
sieve autoregression, using the Akaike criterion to select the AR order from
the set 0, . . . ,[0.6T1/3]. The second is to fit an ARFI(1,d) two-parameter model
by nonlinear least squares. The third alternative considered is to fit a truncated
fractional model, of the form

xt = −
min(Ù,t−1)∑

j=1

bj xt− j + et

where bj = ( j − d − 1)bj−1/j , with b0 = 1, and the fitted parameters are d and Ù.
Think of this as a restricted version of the sieve autoregression, parsimoniously
approximating either a low-order autoregressive alternative with Ù small, or a
fractional alternative with Ù large.

Table 13.2 shows the results of replicating these three test procedures, using
500 bootstrap draws to generate the test distributions at Step 2. For four
sample sizes, T = 50, 100, 200, and 500, the rows of the table show the results
for these three estimation methods augmented by the ‘True’ model, where
the known data generation process has been used to create the bootstrap
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Table 13.2. Bootstrap I(0) test: Rejection rates for the Kolmogorov–Smirnov test of
Breitung’s statistic in 5000 replications

T Test Size
(Nominal
5% Test)

Power

AR(1): ˆ FI: d

0.3 0.5 0.7 0.9 0.3 0.5 0.7

50 True 0.050 0.206 0.682 0.997 1 1 1 1
Sieve AR 0.068 0.164 0.492 0.828 0.975 0.293 0.672 0.924
ARFI(1,d) 0.174 0.064 0.092 0.305 0.797 0.383 0.622 0.861
Trunc. FI 0.129 0.135 0.366 0.730 0.964 0.458 0.733 0.926

100 True 0.050 0.085 0.207 0.673 1 1 1 1
Sieve AR 0.054 0.086 0.204 0.557 0.962 0.105 0.479 0.846
ARFI(1,d) 0.153 0.073 0.092 0.193 0.810 0.554 0.758 0.730
Trunc. FI 0.095 0.112 0.168 0.473 0.953 0.548 0.761 0.877

200 True 0.050 0.069 0.098 0.261 0.986 1 1 1
Sieve AR 0.050 0.071 0.096 0.249 0.867 0.197 0.516 0.857
ARFI(1,d) 0.165 0.080 0.096 0.155 0.602 0.842 0.914 0.855
Trunc. FI 0.094 0.077 0.063 0.139 0.818 0.750 0.862 0.884

500 True 0.050 0.050 0.056 0.075 0.381 1 1 1
Sieve AR 0.050 0.050 0.056 0.074 0.344 0.070 0.208 0.755
ARFI(1,d) 0.143 0.083 0.109 0.159 0.369 0.960 0.975 0.928
Trunc. FI 0.081 0.044 0.035 0.045 0.283 0.890 0.967 0.985

replications. This test is of course infeasible in practice, but it provides a
yardstick against which to gauge the effectiveness of the alternative feasible
methods.

The table entries show the proportion of rejections in the Kolmogorov–
Smirnov test comparing the distribution of Breitung’s statistic constructed
from the re-coloured data with that of the statistic constructed from the same
number of i.i.d. bootstrap drawings. Each statistic was first tabulated under the
null hypothesis from 10,000 replications using i.i.d. normal drawings, so as to
provide correct critical values for each sample size. Taking the critical values
for the 5%-level ‘True’ test as the yardstick (so that these table entries are 0.05
by construction, note) the first column of the table shows the estimated sizes
of the nominal 5% tests. The remaining columns show estimates of the true
powers (using the null tabulations to provide critical values) against seven
alternatives, based on 5000 replications of each case. The cases are four AR(1)
processes with parameter ˆ and three ARFIMA(0,d,0) processes, with i.i.d.
Gaussian shocks and zero start-up values in each case.

Some important points of interpretation need to be borne in mind, in
studying this table. In the limiting case as T → ∞, we should expect to find
power = size for each of the four cases of the I(0) hypothesis, and power = 1
for each of the three cases of the I(d) alternative. In finite samples, however,
rejection in the I(0) cases is not an incorrect outcome. The issue is whether
the autocorrelation is strong enough to put asymptotic inference criteria into
question. The infeasible ‘True’ cases represent the ideal outcomes from this
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point of view, against which the feasible tests can be judged. If this test were
to be adopted as a pre-test before a conventional inference procedure, we can
even see it as a means of discriminating between data sets which (by chance)
tend to satisfy our validity criteria, from those which violate it. Failure to reject
can be conjectured to indicate that subsequent tests with these data may not
be too badly sized.

In the event, the truncated fractional model appears to have the best all-
round performance. The sieve AR method performs generally closest to the
infeasible test in the I(0) cases, but has poor power properties against the
fractional alternatives. The ARFI method suffers the worst from spurious
rejection and so diverges furthest from the ‘True’ benchmark under I(0),
while the truncated fractional method appears to offer the best compromise
in both cases. Of course, this is chiefly due to the fact that it gives a good
approximation to both the AR(1) and FI alternatives tested. To determine how
it performs in a more general setting calls for more experiments. In practical
implementations (as opposed to a Monte Carlo experiment) the test should be
performed following the specification and estimation of a time-series model
by the investigator, and so tailored more accurately to the data set in question.

13.7 Concluding Remarks

The hypothesis that a time-series is I(0) has been justly described as an
‘ill-posed’ problem for statistical investigation. A number of studies have
shown that this question, as conventionally posed, is unsuited to stand-
ard methods of inference. This chapter suggests that there are more suitable
hypotheses to test, relating directly to the implications of the distribution of
the data for asymptotic (ie, approximate) inference. A convenient asymptoti-
cally pivotal statistic is used as a yardstick, to assess how far data features such
as local dependence affect the distribution, in a sample of given size. The null
hypothesis under test is not ‘I(0)’ in the strict sense, but the arguably more
useful hypothesis that the assumption of I(0) is innocuous from the point of
view of the asymptotic approximation of test distributions.

It’s important to emphasize that this test is strictly of the properties of a
model (or DGP), not a direct test on an observed series, as such. The link
between the model and the data has to be supplied by the explicit modelling
exercise, which is accordingly the key component of the procedure. The
reported Monte Carlo results, which show simple models fitted mechanically
to series with a known simple structure, need to be interpreted with care
in this light. Whereas reproducing the observed autcorrelation structure of
the data is a key requirement, don’t overlook the fact that (for example) an
uncorrelated IGARCH process is a case of the alternative. Power against such
cases depends on a suitable choice of model. In view of the cited result of
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Müller (2008), there are bound to be cases which defy the ability of popular
time-series models to capture the dependence structure, although being non-
causal it is questionable whether processes of the type (13.3) can feature in
observed economic time-series. It will be useful to compare the performance of
the test in alternative DGPs, especially with nonlinear dynamics, and also to
calibrate the performance of conventional tests, such as the Dickey–Fuller, in
conjunction with bootstrap ‘pre-testing’. Among other important questions is
whether the Breitung statistic is the best candidate for comparison, or whether
a range of benchmarks might be implemented. Such exercises must however
be left for future work.
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