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t-Statistic Based Correlation and
Heterogeneity Robust Inference

Rustam IBRAGIMOV
Economics Department, Harvard University, 1875 Cambridge Street, Cambridge, MA 02138

Ulrich K. MÜLLER
Economics Department, Princeton University, Fisher Hall, Princeton, NJ 08544 (umueller@princeton.edu)

We develop a general approach to robust inference about a scalar parameter of interest when the data is
potentially heterogeneous and correlated in a largely unknown way. The key ingredient is the following
result of Bakirov and Székely (2005) concerning the small sample properties of the standard t-test: For
a significance level of 5% or lower, the t-test remains conservative for underlying observations that are
independent and Gaussian with heterogenous variances. One might thus conduct robust large sample
inference as follows: partition the data into q ≥ 2 groups, estimate the model for each group, and conduct
a standard t-test with the resulting q parameter estimators of interest. This results in valid and in some
sense efficient inference when the groups are chosen in a way that ensures the parameter estimators to be
asymptotically independent, unbiased and Gaussian of possibly different variances. We provide examples
of how to apply this approach to time series, panel, clustered and spatially correlated data.

KEY WORDS: Dependence; Fama–MacBeth method; Least favorable distribution; t-test; Variance es-
timation.

1. INTRODUCTION

Empirical analyses in economics often face the difficulty that
the data is correlated and heterogeneous in some unknown fash-
ion. Many estimators of parameters of interest remain valid and
interesting even under the presence of correlation and hetero-
geneity, but it becomes considerably more challenging to cor-
rectly estimate their sampling variability.

The typical approach is to invoke a law of large numbers to
justify inference based on consistent variance estimators: For
an OLS regression with independent but not identically distrib-
uted disturbances, see White (1980). In the context of time se-
ries, popular heteroscedasticity and autocorrelation consistent
(“long-run”) variance estimators were derived by Newey and
West (1987) and Andrews (1991). For clustered data, which
includes panel data as a special case, Rogers’ (1993) clus-
tered standard errors provide a consistent variance estimator.
Conley (1999) derives consistent nonparametric standard errors
for datasets that exhibit spatial correlations.

While quite general, the consistency of the variance estima-
tor is obtained through an assumption that asymptotically, an
infinite number of observable entities are essentially uncorre-
lated: heteroscedasticity robust estimators achieve consistency
by averaging over an infinite number of uncorrelated distur-
bances; clustered standard errors achieve consistency by aver-
aging over an infinite number of uncorrelated clusters; long-
run variance estimators achieve consistency by averaging over
an infinite number of (essentially uncorrelated) low frequency
periodogram ordinates; and so forth. Also, block bootstrap
and subsampling techniques derive their asymptotic validity
from averaging over an infinite number of essentially uncorre-
lated blocks. When correlations are pervasive and pronounced
enough, these methods are inapplicable or yield poor results.

This paper develops a general strategy for conducting infer-
ence about a scalar parameter with potentially heterogenous and
correlated data, when relatively little is known about the precise

property of the correlations. The key ingredient to the strategy
is a result by Bakirov and Székely (2005) concerning the small
sample properties of the usual t-test used for inference on the
mean of independent normal variables: For significance levels
of 8.3% or lower, the usual t-test remains conservative when
the variances of the underlying independent Gaussian obser-
vations are not identical. This insight allows the construction
of asymptotically valid test statistics for general correlated and
heterogenous data in the following way: Assume that the data
can be classified in a finite number q of groups that allow as-
ymptotically independent normal inference about the scalar pa-
rameter of interest β . This means that there exists estimators
β̂j, estimated from groups j = 1, . . . ,q, so that approximately
β̂j ∼ N (β, v2

j ), and β̂j is approximately independent of β̂i for

j �= i. Typically, the estimator β̂j will simply be the element
of interest of the vector θ̂ j, where θ̂ j is the estimator of the
model’s parameter vector using group j data only. The obser-
vations β̂1, . . . , β̂q can then approximately be treated as inde-
pendent normal observations with common mean β (but not
necessarily equal variance), and the usual t-test concerning β

constructed from β̂1, . . . , β̂q (with q − 1 degrees of freedom) is
conservative. If the number of observations is reasonably large
in all groups, the approximate normality β̂j ∼ N (β, v2

j ) is of
course a standard result for most models and estimators, linear
or nonlinear.

Knowledge about the correlation structure in the data is em-
bodied in the assumption that β̂1, . . . , β̂q are (approximately)
independent. In contrast to consistent variance estimators, only
this finite amount of uncorrelatedness is directly required for
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the validity of the t-statistic approach. What is more, by invok-
ing the results of Müller (2008), we show that the t-statistic ap-
proach in some sense efficiently exploits the information con-
tained in the assumption of asymptotically independent and
Gaussian estimators β̂1, . . . , β̂q. Of course, a stronger (correct)
assumption, that is, larger q, will typically lead to more pow-
erful inference, so that one faces the usual trade-off between
robustness and power in choosing the number of groups. In the
benchmark case of underlying iid observations, a 5% level t-
statistic based test with q = 16 equal sized groups loses at most
5.8 percentage points of asymptotic local power compared to
inference with known (or correctly consistently estimated) as-
ymptotic variance in an exactly identified GMM problem. The
robustness versus power trade-off is thus especially acute only
for datasets where an even coarser partition is required to yield
independent information about the parameter of interest.

In applications of the t-statistic approach, the key question
will nevertheless often be the adequate number and composi-
tion of groups. Some examples and Monte Carlo evidence for
group choices are discussed in Section 3 below. The efficiency
result mentioned above formally shows that one cannot dele-
gate the decision about the adequate group choice to the data.
On a fundamental level, some a priori knowledge about the cor-
relation structure is required in order to be able to learn from
the data. This is also true of other approaches to inference, al-
though the assumed regularity tends to be more implicit. For in-
stance, consider the problem of conducting inference about the
mean real exchange rate in 40 years of quarterly data. It seems
challenging to have a substantive discussion about the appropri-
ateness of, say, a confidence interval based on Andrews’ (1991)
consistent long-run variance estimator, whose formal validity is
based on primitive conditions involving mixing conditions and
the like. [Or, for that matter, on Kiefer and Vogelsang’s (2005)
approach with a bandwidth of, say, 30% of the sample size.] At
the same time, it seems at least conceivable to debate whether
averages from, say, 8 year blocks provide approximately inde-
pendent information; business cycle frequency fluctuations of
the real exchange rate, for instance, would rule out the appro-
priateness of 4 year blocks. In our view, it is a strength of the
t-statistic approach that its validity is based on such a fairly
explicit regularity condition. At the end of the day, inference
requires some assumption about potential correlations, and em-
pirical researchers should agonize about the appropriate amount
of regularity that is imposed on the data.

Our paper is related to previous work on inference proce-
dures that do not rely on consistency of the variance estimator.
In a time series context, Kiefer, Vogelsang, and Bunzel (2000)
show that it is possible to conduct asymptotically justified in-
ference in a linear time series regression based on long-run
variance estimators with a nondegenerate limiting distribution.
These results were extended and scrutinized by Kiefer and Vo-
gelsang (2002, 2005) and Jansson (2004). Müller (2007) shows
that all consistent long-run variance estimators lack robustness
in a certain sense, and determines a class of inconsistent long-
run variance estimators with some optimal trade-off between
robustness and efficiency. Donald and Lang (2007) point out
that linear regression inference in a setting with clusters may be
based on Student-t distributions with a finite number of degrees
of freedom under an assumption that both the random effects

and cluster averages of the individual disturbances are approx-
imately iid Gaussian across clusters. Hansen (2007) finds that
the asymptotic null distribution of test statistics based on the
standard clustered error formula for a panel with one fixed di-
mension and one dimension tending to infinity become that of
a Student-t with a finite number of degrees of freedom (suit-
ably scaled), as long as the fixed dimension is “asymptotically
homogeneous.” Recent work by Bester, Conley, and Hansen
(2009) builds on our paper and proposes inference about both
scalar and vector valued parameters based on the usual full
sample estimator, using clustered standard errors with groups
chosen as suggested here and critical values derived in Hansen
(2007). This approach requires the design matrix to be (asymp-
totically) identical across groups. Under this homogeneity, their
procedure for inference about a scalar parameter is asymptoti-
cally numerically identical to the t-statistic approach under both
the null and local alternatives. At the same time, the t-statistic
approach remains valid even without this homogeneity, so from
the usual first-order asymptotic point of view, the t-statistic ap-
proach is strictly preferable.

The t-statistic approach has an important precursor in the
work of Fama and MacBeth (1973). Their work on empirical
tests of the CAPM has motivated the following widespread ap-
proach to inference in panel regressions with firms or stocks as
individuals: Estimate the regression separately for each year,
and then test hypotheses about the coefficient of interest by
the t-statistic of the resulting yearly coefficient estimates. The
Fama–MacBeth approach is thus a special case of our suggested
method, where observations of the same year are collected in
a group. While this approach is routinely applied, we are not
aware of a formal justification. One contribution of this paper is
to provide such a justification, and we find that as long as year
coefficient estimators are approximately normal (or scale mix-
tures of normals) and independent, the Fama–MacBeth method
results in valid inference even for a short panel that is heteroge-
nous over time.

The t-statistic approach generalizes the previous literature on
large sample inference without consistent variance estimation
to a generic strategy that can be employed in different settings,
such as in time series data, panel data, or spatially correlated
data. Due to the small sample conservativeness result, the ap-
proach allows for unknown and unmodeled heterogeneity. In
a time series context, for instance, this means that unlike Kiefer
and Vogelsang (2005), we can allow for low frequency vari-
ability in second moments, and in a panel context, we do not
require the asymptotic homogeneity as in Hansen (2007). Also,
the t-statistic approach is very easy to implement, and does
not require any new tables of critical values. The crucial reg-
ularity condition—the assumption that β̂1, . . . , β̂q are approxi-
mately independent and distributed N (β, v2

j )—is more explicit
and may be easier to interpret than, say, the primitive conditions
underlying consistent long-run variance estimators, or the value
of the bandwidth as a fraction of the sample size in Kiefer and
Vogelsang (2005). Perhaps most importantly from an econo-
metric theory perspective, the t-statistic approach in some sense
efficiently exploits the information contained in this regularity
condition; to the best of our knowledge, this is the first gen-
eral large sample efficiency claim about the test of a parameter
value that does not involve consistent estimation of the asymp-
totic variance.
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The rest of the paper is organized as follows: Section 2 re-
views the small sample result by Bakirov and Székely (2005),
and discusses the large sample validity and consistency of the
t-statistic approach. Section 3 gives examples of group choices
and provides Monte Carlo evidence for time series, panel, clus-
tered, and spatially correlated data. We discuss the efficiency
properties in Section 4, followed by concluding remarks in Sec-
tion 5.

2. VALIDITY OF t–STATISTIC BASED INFERENCE

2.1 Small Sample Result

Let Xj, j = 1, . . . ,q, with q ≥ 2, be independent Gaussian
random variables with common mean E[Xj] = μ and variances
V[Xj] = σ 2

j . The usual t-statistic for the hypothesis test

H0 :μ = 0 against H1 :μ �= 0 (1)

is given by

t = √
q

X̄

sX
, (2)

where X̄ = q−1 ∑q
j=1 Xj and s2

X = (q−1)−1 ∑q
j=1(Xj − X̄)2, and

the null hypothesis is rejected for large values of |t|. [To be pre-
cise, we define t in (2) to be equal to zero if sX = 0.] Note that |t|
is a scale invariant statistic, that is a replacement of {Xj}q

j=1 by

{cXj}q
j=1 for any c �= 0 leaves |t| unchanged. If σ 2

j = σ 2 for all j,
by definition, the critical value cv of |t| is given by the appro-
priate percentile of the distribution of a Student-t distributed
random variable Tq−1 with q − 1 degrees of freedom.

In a recent paper, Bakirov and Székely (2005) show that for
a given critical value, the rejection probability under the null
hypothesis of a test based on |t| is maximized when σ 2

1 = · · · =
σ 2

k and σ 2
k+1 = · · · = σ 2

q = 0 for some 1 ≤ k ≤ q. Their results
imply the following theorem:

Theorem 1 (Bakirov and Székely 2005). Let cvq(α) be the
critical value of the usual two-sided t-test based on (2) of
level α, that is, P(|Tq−1| > cvq(α)) = α, and let � denote the
cumulative density function of a standard normal random vari-
able.

(i) If α ≤ 2�(−√
3) = 0.08326 . . . , then for all q ≥ 2,

sup
{σ 2

1 ,...,σ 2
q }

P(|t| > cvq(α)|H0) = P(|Tq−1| > cvq(α))

= α. (3)

(ii) Equation (3) also holds true for 2 ≤ q ≤ 14 if
α ≤ α1 = 0.1, and for q ∈ {2,3} if α ≤ α2 = 0.2.
Moreover, define c̃vq(αi) = √

ki(q − 1) cvki(αi)2/√
q(ki − 1) + (q − ki) cvki(αi)2, i ∈ {1,2}, where k1 =

14 and k2 = 3. Then for q ≥ ki + 1, sup{σ 2
1 ,...,σ 2

q } P(|t| >

c̃vq(αi)|H0) = αi.

The usual 5% level two-sided test of (1) based on the usual
t-test thus remains valid for all values of {σ 2

1 , . . . , σ 2
q }, and all

q ≥ 2. Also, by symmetry of the t-statistic under the null hy-
pothesis, Theorem 1(ii) implies conservativeness of the usual
one-sided t-test of significance level 5% or lower as long as

q ≤ 14. For q ≥ 15, however, the rejection probability of a 10%
level two-sided test (or a 5% level one-sided test) under the null
hypothesis is maximized at σ 2

1 = · · · = σ 2
14 and σ 2

15 = · · · =
σ 2

q = 0. So usual two-sided t-tests of level 10% are not auto-
matically conservative for large q, and the appropriate critical
value of a robust test is a function of the critical value of the
usual t-test when q = 14. In the following, our focus is on the
empirically most relevant case of two-sided tests of level 5% or
lower.

One immediate application of Theorem 1 concerns the con-
struction of confidence intervals for μ: a confidence interval
for μ of level C ≥ 95% based on the usual formulas for iid
Gaussian observations has effective coverage level of at least C
for all values of {σ 2

1 , . . . , σ 2
q }. As long as the realized value of

|t| is larger than the smallest cvq(α) for which (3) holds, also
p-values constructed from the cumulative distribution function
of the Student-t distribution maintain their usual interpretation
as the lowest significance level at which the test still rejects. As
stressed by Bakirov and Székely (2005), a further implication of
Theorem 1 is the conservativeness of the usual t-test against iid
observations that are scale mixtures of Gaussian variates: Let
Yj = μ + ZjVj where Zj ∼ iidN (0,1) and Vj is iid and indepen-
dent of {Zj}q

j=1. Then by Theorem 1, the usual t-test based on

{Yj}q
j=1 of the null hypothesis (1) of level 5% or lower is conser-

vative conditional on {Vj}q
j=1, and hence also unconditionally.

The usual t-test of level 5% or lower thus yields a valid test for
the median (which is equal to mean, if it exists) of iid observa-
tions with a distribution that can be written as a scale mixture of
normals. This is a rather large class of distributions: it includes,
for instance, the Student-t distribution with arbitrary degrees of
freedom (including the Cauchy distribution), the double expo-
nential distribution, the logistic distribution, and all symmetric
stable distributions.

More generally, as long as {Vj}q
j=1 is independent of {Zj}q

j=1,
Theorem 1 and the conditioning argument above imply conser-
vativeness of the usual t-test of significance level 5% or lower,
with an arbitrary joint distribution of {Vj}q

j=1.
Figure 1 depicts the null rejection probability of the 5% level

two-sided t-test for q = 4,8, and 16 when (i) there are two
equal sized groups of iid Gaussian observations, and the ra-
tio of their variances is equal to a2: for i, j ≤ q/2, σ 2

i = σ 2
j ,

σ 2
q+1−i = σ 2

q+1−j, and σ 2
1 /σ 2

q = a2 and (ii) all observations ex-
cepts one are of the same variance, that is, for i, j ≥ 2, σ 2

i = σ 2
j ,

and σ 2
1 /σ 2

q = a2. Due to the scale invariance, the description
in terms of the ratio of variances is without loss of general-
ity. Rejection probabilities in Figure 1 (and Figures 2 and 3
in Sections 2.3 and 4.3, respectively) were computed by nu-
meric inversion of the characteristic function of the appropri-
ate Gaussian quadratic form; see Imhof (1961). As can be seen
from Figure 1, for small q, the null rejection probability can be
much lower than the nominal level, but for q = 16, it does not
drop much below 4% in either scenario.

2.2 Asymptotic Validity and Consistency

Our main interest in the small sample results on the t-statistic
stems from the following application: Suppose we want to do
inference on a scalar parameter β of an econometric model in
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Figure 1. Null rejection probabilities of 5% level t-tests with q independent observations.

a large dataset with n observations. For a wide range of mod-
els and estimators β̂ , it is known that

√
n(β̂ − β) ⇒ N (0, σ 2)

as n → ∞, where “⇒” denotes convergence in distribution.
Suppose further that the observations exhibit correlations of
largely unknown form. If such correlations are pervasive and
pronounced enough, then it will be very challenging to consis-
tently estimate σ 2, and inference procedures for β that ignore
the sampling variability of a candidate consistent estimator σ̂ 2

will have poor small sample properties.
Now consider a partition of the original dataset into q ≥ 2

groups, with nj observations in group j, and
∑q

j=1 nj = n. De-
note by β̂j the estimator of β using observations in group j
only. Suppose the groups are chosen such that

√
n(β̂j − β) ⇒

N (0, σ 2
j ) for all j, and, crucially, such that

√
n(β̂j − β) and√

n(β̂i − β) are asymptotically independent for i �= j—this
amounts to the convergence in distribution

√
n(β̂1 − β, . . . , β̂q − β)′

⇒ N (0,diag(σ 2
1 , . . . , σ 2

q )), max
1≤j≤q

σ 2
j > 0. (4)

The asymptotic Gaussianity of
√

n(β̂j − β), j = 1, . . . ,q, typi-
cally follows from the same reasoning as the asymptotic Gaus-
sianity of the full sample estimator β̂ . The argument for an as-
ymptotic independence of β̂j and β̂i for i �= j, on the other hand,
depends on the choice of groups and the details of the applica-
tion.

Under (4), for large n, the q estimators β̂j, j = 1, . . . ,q,

are approximately independent Gaussian random variables with
common mean β and variances σ 2

j /n. Thus, by Theorem 1
above, one can perform an asymptotically valid test of level α,
α ≤ 0.083 of H0 :β = β0 against H1 :β �= β0 by rejecting H0

when |tβ | exceeds the (1 − α/2) percentile of the Student-t dis-
tribution with q − 1 degrees of freedom, where tβ is the usual
t-statistic

tβ = √
q
β̂ − β0

s
β̂

(5)

with β̂ = q−1 ∑q
j=1 β̂j and s2

β̂
= (q − 1)−1 ∑q

j=1(β̂j − β̂)2. By

Theorem 1 and the Continuous Mapping Theorem, this infer-
ence is asymptotically valid whenever (4) holds, irrespective of

the values of σ 2
j , j = 1, . . . ,q. Also, by implication, the confi-

dence interval β̂ ± cv s
β̂

where cv is the usual (1 + C)/2 per-
centile of the Student-t distribution with q − 1 degrees of free-
dom has asymptotic coverage of at least C for all C ≥ 0.917.

An important class of models that typically induce (4) with
an appropriate choice of groups are Hansen’s (1982) General-
ized Method of Moments (GMM) models. Suppose the moment
condition is E[g(θ ,yi)] = 0, where g is a known k × 1 vector
valued function, θ is a l × 1 vector of parameters (l ≤ k) and
yi, i = 1, . . . ,n, are possibly vector-valued observations. With-
out loss of generality, assume that the first element of θ is the
parameter of interest β , so that the last l − 1 elements of θ are
nuisance parameters. Denote by Gj the set of indices of group j
observations, such that yi is in group j if and only if i ∈ Gj. As-
sume that the GMM estimator θ̂ j based on group j observations
Gj satisfies

√
n(θ̂ j − θ) = (�′

j� j�j)
−1�′

j� jQj + op(1), (6)

where n−1 ∑
i∈Gj

∂g(a,yi)
∂a |a=θ̂ j

p→ �j, with �j of full rank and
nonstochastic for all j, � j is the nonstochastic full rank limit
of the weighting matrix for the GMM estimator θ̂ j, and Qj =
n−1/2 ∑

i∈Gj
g(θ ,yi) ⇒ N (0,�j). In addition, suppose that

the GMM estimators are asymptotically independent, which
requires (Q′

1, . . . ,Q′
q) ⇒ N (0,diag(�1, . . . ,�q)). These as-

sumptions follow from the usual linearization arguments under
appropriate conditions. As a consequence, (4) holds, so that the
t-statistic approach yields valid inference about β .

For some applications, a slightly more general regularity con-
dition than (4) is useful: Suppose

{mn(β̂j − β)}q
j=1 ⇒ {ZjVj}q

j=1 (7)

for some positive sequence mn → ∞, where Zj ∼ iidN (0,1),
the random variables {Vj}q

j=1 are independent of {Zj}q
j=1 and

maxj |Vj| > 0 almost surely. As discussed in Section 2.1, (7)
accommodates convergences (at an arbitrarily slow rate) to in-
dependent but potentially heterogeneous scale mixtures of stan-
dard normal distributions, such as the family of strictly stable
symmetric distributions, and also convergences to conditionally
normal variates which are unconditionally dependent through
their second moments. Under (7), inference based on tβ remains
asymptotically valid conditionally on {Vj}q

j=1 by the Continuous
Mapping Theorem and an application of Theorem 1, and thus
also unconditionally.
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Under the fixed alternative β �= β0, (4) or (7) imply that s
β̂

=
op(1) and β̂−β = op(1), so that P(|tβ | > cv) → 1 for all cv > 0
and a test based on |tβ | is consistent at any level of significance.
Under fixed heterogeneous alternatives of the null hypothesis
β = β0, with the true value of β in group j given by βj (and

βj �= βi for some j and i), β̂j
p→ βj for j = 1, . . . ,q, and a test

based on |tβ | with critical value cv is consistent if

q(β̄ − β0)
2

(q − 1)−1
∑q

j=1(βj − β̄)2
> cv2, (8)

where β̄ = q−1 ∑q
j=1 βj. Especially for small q and large cv, (8)

might not be satisfied when {βj −β0}q
j=1 are very heterogenous,

even when all βj − β0 are of the same sign. On the other hand,
a calculation shows that for q ≥ 7, a 5% level test is consis-
tent for all alternatives {βj − β0}q

j=1 of equal sign that are no
more heterogeneous (in the majorization sense, see Marshall
and Olkin 1979) than β1 − β0 = · · · = β�q/2
 − β0 = 0 and
β�q/2
+1 −β0 = · · · = βq −β0 �= 0, where �·
 denotes the great-
est lesser integer function.

2.3 Size Control Under Dependence

Tests of level 5% or lower based on tβ are asymptotically
valid whenever (4) holds. As usual, when applying this result
in small samples, one will incur an approximation error, as the
sampling distribution of {β̂j}q

j=1 will not be exactly that of a se-
quence of independent normals with common mean β . In par-
ticular, depending on the application, the estimators from differ-
ent groups β̂j might not be exactly independent. We now briefly
investigate what kind of correlations are necessary to grossly
distort the size of tests based on tβ , while maintaining the as-
sumption of multivariate Gaussianity.

Specifically, we consider two correlation structures for
{β̂j}q

j=1: (i) β̂j are a strictly stationary autoregressive process

of order one [AR(1)], that is, the correlation between β̂i and β̂j

is ρ|i−j|; (ii) {β̂j}q
j=1 has the correlation structure of a random

effects model, that is, the correlation between β̂i and β̂j is ρ for
i �= j. For both cases, we consider the two types of variance het-
erogeneity discussed above, with either two equal-sized identi-
cal variance groups of relative variance a2, or all observations
of equal variance except for one of relative variance a2. Figure 2

Figure 2. Null rejection probabilities of 5% level t-tests with q correlated observations.
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depicts the effective size of a 5% level two-sided t-tests under
these four scenarios. As might be expected, a negative ρ leads
to underrejections throughout. More interestingly, t-tests for q
small are somewhat robust against correlations in the underly-
ing observations. This effect becomes especially pronounced
if combined with strong heterogeneity in the variances: with
a = 5, ρ needs to be larger than 0.4 before the null rejection
probability of a t-test based on q = 4 observations exceeds the
nominal level in both the AR(1) and the random effects model
for both types of variance heterogeneity. But even in the case of
equal variances, the size of a test based on q = 4 observations
exceeds 7.5% only when ρ is larger than 0.18 in the AR(1)
model. So while (4) is the essential assumption of the approach
suggested here, inference based on tβ continues to have quite
reasonable properties as long as the dependence in {β̂j}q

j=1 is
weak, especially when q is small.

3. APPLICATIONS

We now discuss applications of the t-statistic approach, and
provide some Monte Carlo evidence on its performance rela-
tive to alternative approaches. Specifically, we consider time
series data, panel data, data where observations are categorized
in clusters, and spatially correlated data. The Monte Carlo evi-
dence focuses on inference about OLS linear regression coeffi-
cients. This is for convenience and comparability to other sim-
ulation studies in the literature, since the t-statistic approach
is also applicable to instrumental variable regressions and non-
linear models, as noted above. Also, we mostly consider data
generating processes where the variances of the β̂j are simi-
lar. This is again to ensure comparability with other simulation
studies, and it also represents the case where the theoretical re-
sults above predict size control to be most difficult for the t-
statistic approach.

3.1 Time Series Data

With observations ordered in time, the default assumption
driving most of time series inference is that the further apart
the observations, the weaker their potential correlation. For the
t-statistic approach, in absence of more specific information re-
garding the potential time series correlation, this suggests di-
viding the sample of size T into q (approximately) equal sized
groups of consecutive observations: the observation indexed by
t, t = 1, . . . ,T , is element of group j if t ∈ Gj = {s : (j−1)T/q <

s ≤ jT/q} for j = 1, . . . ,q. The smaller q, the less approximate
independence in time is imposed by this group choice.

Consider a GMM setup, as discussed in Section 2.2 above,
with a k × 1 moment condition, a l × 1 parameter vector θ , and
the scalar parameter of interest β is the first element of θ . Un-
der a wide range of assumptions on the underlying model and
observations, the partial-sample GMM estimator θ̂(r, s) com-
puted from the observations t = �rT
, . . . , �sT
 satisfies (see,
e.g., Andrews 1993 and Hansen 2000)

√
T(θ̂(r, s) − θ) ⇒

(∫ s

r
ϒ(λ)dλ

)−1 ∫ s

r
h(λ)dW(λ) (9)

for all 0 ≤ r < s ≤ 1, where ϒ(·) is a positive definite l × l non-
stochastic function, h(·) is a l × k nonstochastic function, and

W is a k × 1 standard Wiener process [cf. Equation (6) above].
For the groups chosen as above, by the Continuous Mapping
Theorem, we obtain

√
T

⎛⎜⎜⎜⎝
θ̂1 − θ

θ̂2 − θ
...

θ̂q − θ

⎞⎟⎟⎟⎠

⇒

⎛⎜⎜⎜⎜⎝
(
∫ 1/q

0 ϒ(λ)dλ)−1
∫ 1/q

0 h(λ)dW(λ)

(
∫ 2/q

1/q ϒ(λ)dλ)−1
∫ 2/q

1/q h(λ)dW(λ)

...

(
∫ 1
(q−1)/q ϒ(λ)dλ)−1

∫ 1
(q−1)/q h(λ)dW(λ)

⎞⎟⎟⎟⎟⎠
so that also {√T(β̂j − β)}q

j=1 are asymptotically independent
and Gaussian. Therefore, whenever (9) holds, t-statistic based
inference is asymptotically valid for any q ≥ 2. The t-statistic
approach can hence allow for asymptotically time varying in-
formation [nonconstant ϒ(·)] and pronounced variability in
second moments [nonconstant h(·)]. In fact, using (7), the t-
statistic approach remains valid even if ϒ(·) and h(·) are sto-
chastic, as long as they are independent of W. In contrast, the
approach of Kiefer and Vogelsang (2002, 2005) requires ϒ(·)
and h(·) to be constant. There is substantial empirical evidence
for persistent instabilities in the second moment of macroeco-
nomic and financial time series: see, for instance, Bollerslev,
Engle, and Nelson (1994), Kim and Nelson (1999), McConnell
and Perez-Quiros (2000), and Müller and Watson (2008). The
additional robustness of the t-statistic approach is thus arguably
of practical relevance.

In fact, the t-statistic based approach suggested here is, to the
best knowledge of the authors, the only known way of conduct-
ing asymptotically valid inference whenever (9) holds, as least
under double-array asymptotics: Müller (2007) demonstrates
that in the scalar location model, for any equivariant variance
estimator that is consistent for the variance of Gaussian white
noise, there exists a double array that satisfies a functional cen-
tral limit theorem which induces the “consistent” variance esti-
mator to converge in probability to an arbitrary positive value.
Since all usual consistent long-run variance estimators are both
scale equivariant and consistent for the variance of Gaussian
white noise, none of these estimators yields generally valid
inference under (9). The general validity of the t-statistic ap-
proach under (9) is thus an analytical reflection of its robust-
ness.

Table 1 reports small sample properties of various ap-
proaches to inference. The small sample experiment is the one
considered in Andrews (1991), Andrews and Monahan (1992),
and Kiefer, Vogelsang, and Bunzel (2000) and concerns in-
ference in a linear regression with 5 regressors. In addition
to t-statistic based inference described above with q = 2,4,8,
and 16 and groups Gj = {s : (j − 1)T/q < s ≤ jT/q}, we in-
clude in our study the approach developed by Kiefer and Vo-
gelsang (2005) and usual inference based on two standard
consistent long-run variance estimators. Specifically, we fol-
low Kiefer and Vogelsang (2005) and focus on the quadratic
spectral kernel estimator ω̂2

QS(b) and Bartlett kernel estima-

tor ω̂2
BT(b) with bandwidths equal to a fixed fraction b ≤ 1 of
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Table 1. Small sample results in a time series regression with T = 128

t-statistic (q) ω̂2
QS(b) ω̂2

BT (b)

2 4 8 16 ω̂2
QA ω̂2

PW 0.05 0.3 1 0.05 0.3 1

Size, AR(1)
ρ

−0.5 4.7 4.7 5.0 5.1 10.1 9.4 8.5 6.9 6.1 9.0 7.7 7.5
0 4.9 4.7 4.6 4.8 7.1 8.1 7.3 5.5 5.2 6.7 6.0 6.2
0.5 4.8 4.6 4.6 4.9 10.4 9.9 9.0 6.0 6.1 9.4 7.5 7.0
0.9 4.9 5.1 6.1 7.8 28.9 25.4 26.4 15.2 11.5 29.9 20.5 18.8
0.95 5.1 5.3 7.0 10.2 37.8 32.4 36.3 21.2 14.7 40.3 28.2 25.5

Size, MA(1)
φ

−0.5 4.5 5.0 4.8 4.9 8.4 8.3 7.7 6.0 5.7 7.6 6.9 6.8
0.5 5.0 5.1 5.2 5.4 8.9 8.6 7.9 6.2 6.1 8.1 6.9 6.6
0.9 5.0 4.8 5.0 5.1 9.1 8.3 8.1 6.4 6.1 8.3 6.9 6.8
0.95 4.9 4.8 5.0 5.1 9.1 8.3 8.1 6.4 6.0 8.4 7.0 6.8

Size adjusted power, AR(1)
ρ

−0.5 14.6 37.3 54.0 56.1 56.5 55.2 55.6 37.3 24.3 56.1 46.4 42.3
0 15.1 38.4 53.7 50.0 62.7 60.6 59.0 41.3 27.2 60.7 51.9 47.2
0.5 14.5 38.2 55.9 54.3 57.0 56.2 54.4 40.3 24.9 56.0 48.4 44.2
0.9 17.2 56.7 77.6 78.3 57.5 54.6 58.3 42.7 27.7 58.7 51.4 46.6
0.95 22.1 72.0 88.5 90.6 70.0 65.5 71.5 56.0 35.1 72.0 63.3 57.5

Size adjusted power, MA(1)
φ

−0.5 17.6 45.2 64.9 62.4 71.4 70.2 68.9 49.0 31.6 70.5 59.7 53.6
0.5 16.5 44.5 63.3 64.8 69.3 67.2 67.1 47.1 28.0 68.5 57.7 53.2
0.9 15.5 42.8 60.4 63.3 65.0 63.6 63.1 43.3 26.8 64.1 53.6 49.4
0.95 15.7 42.8 60.4 63.3 64.8 63.6 63.0 43.3 27.0 64.0 53.4 49.1

NOTE: The entries are rejection probabilities of nominal 5% level two-sided t-tests about the coefficient β of the first element of Xt in the linear regression yt = X′
tθ +ut, t = 1, . . . ,T ,

where Xt = (x′
t,1)′ , xt = (T−1 ∑T

s=1 x̄sx̄′
s)

−1/2 x̄t , x̄t = x̃t − T−1 ∑T
s=1 x̃s , and the elements of x̃t are four independent draws from a mean-zero, Gaussian, stationary AR(1) and MA(1)

process of unit variance and common coefficients ρ and φ, respectively. The disturbances ut are an independent draw from the same model as the (pretransformed) regressors, multiplied
by the first element of Xt . Unreported simulations for the other forms of heteroscedasticity considered by Andrews (1991) yield qualitatively similar results. Under the alternative, the
difference between the true and hypothesized coefficient of interest was chosen as 4/

√
T(1 − ρ2) in the AR(1) model and as 5/

√
T in the MA(1) model. See text for description of test

statistics. Based on 10,000 replications.

the sample size, with asymptotic critical values as provided by
Kiefer and Vogelsang (2005) in their table 1. For standard in-
ference based on consistent long-run variance estimators, we
include the quadratic spectral estimator ω̂2

QA with an automatic
bandwidth selection using an AR(1) model for the bandwidth
determination as suggested by Andrews (1991), and an AR(1)
prewhitened long-run variance estimator ω̂2

PW with a second
stage automatic bandwidth quadratic spectral kernel estimator
as described in Andrews and Monahan (1992), where the criti-
cal values are those from a standard normal distribution.

As can be seen from Table 1, the t-statistic approach is re-
markably successful at controlling size, the only instance of
a moderate size distortion occurs in the AR(1) model with
ρ ≥ 0.9 and q ≥ 8. This performance may be understood by
observing that strong autocorrelations (which induce overrejec-
tion) co-occur with strong heterogeneity in the group design
matrices (which induce underrejection) for the considered data
generating process. In contrast, the tests based on the consistent
estimators and the fixed-b asymptotic approach lead to much
more severe overrejections.

For the computations of size adjusted power, the magnitude
of the alternative was chosen to highlight differences. For mod-

erate degrees of dependence, tests based on ω̂2
QA and ω̂2

PW , as
well as on ω̂2

QS(b) and ω̂2
BT(b) with b small have larger size

corrected power than the t-statistic, with especially large differ-
ences for q small. On the other hand, the t-statistic approach
can be substantially more powerful than any of the other tests
in highly dependent scenarios.

The group estimators β̂j, j = 1, . . . ,q, may fail to be ap-
proximately normal because the underlying random variables
are too heavy tailed, so that the limiting law is instead a α-
stable distribution with α < 2. McElroy and Politis (2002)
stress that few options are available for inference in time se-
ries models with such innovations, even for inference about
the location parameter. But as long as, for some sequence mT ,
mT(β̂j − β), j = 1, . . . ,q, are asymptotically independent with
strictly α-stable symmetric limiting distributions, the discus-
sion around Equation (7) implies that the t-statistic approach
remains applicable. Note that this approach does not require
knowledge of mT , which typically depends on the tail index α.
We provide some Monte Carlo evidence on the favorable prop-
erties of the t-statistic approach relative to subsampling stud-
ied by McElroy and Politis (2002) in the supplementary mate-
rials.
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Table 2. Small sample results in a panel with N = 10, T = 50, and time series correlation

Homoskedastic Heteroskedastic

ρx ρu
β−β0√

nT
t-stat clust cl.FE β−β0√

nT
t-stat clust cl.FE

Size
0 0 0 5.0 5.2 5.1 0 4.6 4.9 4.9
0.5 0.5 0 4.9 5.3 5.1 0 4.6 5.5 5.3
0.9 0.5 0 5.3 6.5 6.2 0 4.4 7.7 6.4
0.9 0.9 0 5.0 7.2 6.2 0 4.0 7.9 6.2
1 0.5 0 4.4 8.7 6.8 0 3.8 14.7 8.6

Size adjusted power
0 0 2.5 58.7 60.8 59.7 5 54.6 51.9 52.0
0.5 0.5 3 53.9 55.0 55.1 8 64.7 56.6 58.2
0.9 0.5 8 56.7 71.5 60.8 8 62.0 49.1 48.9
0.9 0.9 0.8 39.4 31.9 38.3 25 62.9 33.6 46.2
1 0.5 12 42.5 83.6 50.8 180 73.7 52.1 45.1

NOTE: The entries are rejection probabilities of nominal 5% level two-sided t-tests about the coefficient β of xi,t in the linear regression yi,t = X′
i,tθ + ui,t, i = 1, . . . ,N, t = 1, . . . ,T ,

where Xi,t = (xi,t,1)′ , xi,t = ρxxi,t−1 +εi,t , xi,0 = 0, εi,t ∼ iidN (0,1), ui,t = ρuui,t−1 +ηi,t , ui,0 = 0, where under homoscedasticity, ηi,t ∼ iidN (0,1) independent of {εi,t}, and under

heteroscedasticity, ηi,t = (0.5 + 0.5x2
i,t)η̃i,t and η̃i,t ∼ iidN (0,1) independent of {εi,t}. The considered tests are the t-statistic approach with groups defined by individuals (“t-stat”);

OLS coefficient based tests with Rogers (1993) standard errors (“clust”); and OLS coefficient based test which includes individual Fixed Effects and Arellano (1987) standard errors
(“cl.FE”). The critical value for the clustered test statistic was chosen from the appropriate quantile of a Student-t distribution with N − 1 degrees of freedom, scaled by

√
N/(N − 1).

Based on 10,000 replications.

3.2 Panel Data

Many empirical studies in economics are based on observing
N individuals repeatedly over T time periods, and correlations
are possible in either (or both) dimensions. In applications, it
is typically assumed that, possibly after the inclusion of fixed
effects, one of the dimension is uncorrelated, and inference
is based on consistent standard errors that allows for arbitrary
correlation in the other dimension (Arellano 1987 and Rogers
1993). The asymptotic validity of these procedures stems from
an application of a law of large numbers across the uncorrelated
dimension. So if the uncorrelated dimension is small, one would
expect these procedures to have poor finite sample properties,
and our approach to inference is potentially attractive.

To fix ideas, consider a linear regression for the case where
N is small and T is large

yi,t = X′
i,tθ + ui,t, i = 1, . . . ,N, t = 1, . . . ,T, (10)

where {Xi,t,ui,t}T
t=1 are independent across i and E[Xi,tui,t] =

0 for all i, t. Suppose that under T → ∞ asymptotics with

N fixed, T−1 ∑T
t=1 Xi,tX′

i,t
p→ �i and T−1/2 ∑T

t=1 Xi,tui,t ⇒
N (0,�i) for all i for some full rank matrices �i and �i. These
assumptions are enough to guarantee that the OLS coefficient
estimators β̂i using data from individual i only are asymptoti-
cally independent and Gaussian, so the t-statistic approach with
q = N groups is valid. Hansen (2007) derives a closely re-
lated result under “asymptotic homogeneity across i,” that is
if �i = � and �i = �, for all i: in that case, the standard t-
statistic for β̂ based on the usual Rogers (1993) standard errors
converges in distribution to a t-distributed random variable with
N − 1 degrees of freedom, scaled by

√
N/(N − 1), under the

null hypothesis. In fact, it is not hard to see that under asymp-

totic homogeneity across i, β̂ , and s
β̂

in (5) of our approach are

first-order asymptotically equivalent to β̂ and the appropriately
scaled Rogers (1993) standard error under the null and local al-
ternatives, so both approaches have the same asymptotic local

power. The advantage of our approach is that it does not require
asymptotic homogeneity to yield valid inference.

Table 2 provides some small sample evidence for the per-
formance of these two approaches, with the same data gener-
ating process as considered by Kézdi (2004), with an AR(1)
in both the regressor and the disturbances. Since β̂i, condition-
ally on {Xi,t}, is Gaussian with mean β , the t-statistic approach
is exactly small sample conservative for this DGP. Hansen’s
(2007) asymptotic result is formally applicable for |ρx| < 1
and |ρu| < 1, as this DGP then is asymptotically homogeneous
in the sense defined above. With a unit root in the regressors,
however, T−2 ∑T

t=1 Xi,tX′
i,t does not converge to the same limit

across i, so that despite the iid sampling across i, asymptotic ho-
mogeneity fails. These asymptotic considerations successfully
explain the size results in Table 2. The t-statistic approach has
higher size adjusted power for heteroscedastic disturbances, but
this is not true under homoscedasticity.

For panel applications in finance with individuals that are
firms, it is often the cross-section dimension for which uncorre-
latedness is an unattractive assumption (see Petersen (2009) for
an overview of popular standard error corrections in finance).
As noted in the Introduction, if one is willing to assume that
there is no time series correlation, which is empirically plausi-
ble at least for stock returns, then our approach with time peri-
ods as groups becomes the so-called Fama–MacBeth approach:
Estimate the model of interest for each time period j cross sec-
tionally to obtain β̂j, and compute the usual t-statistic for the
resulting q = T coefficient estimates. Our results formally jus-
tify this approach for T small and possible heterogeneity in the
variances of β̂j. Note that the variances may be stochastic and
dependent even in the limit, as in (7), which would typically
arise when regression errors follow a stochastic volatility model
with some common volatility component.

In corporate finance applications, or with overlapping long-
term returns as dependent variable, one would typically not
want to rule out additional dependence in the time dimen-
sion. Under the assumption that the correlation dies out over

D
ow

nl
oa

de
d 

by
 [

21
2.

18
3.

12
8.

14
8]

 a
t 1

8:
19

 2
0 

N
ov

em
be

r 
20

12
 



Ibragimov and Müller: t-Statistic Based Correlation and Heterogeneity Robust Inference 461

time, one could try to nonparametrically estimate the long-run
variance of the sequence {β̂j}T

j=1 using, say, the Newey and
West (1987) estimator. However, this will require a long panel
(T large) to yield reasonable inference. Our results suggest an
alternative approach: Divide the data in fewer groups that span
several consecutive time periods. For instance, with T = 24
yearly sampling frequency, one might form 8 groups of 3 year
blocks, or, more conservatively, 4 groups of 6 year blocks. If
the time series correlation is not too pronounced, then parame-
ter estimators from different groups will have little correlation,
and the t-statistic approach yields approximately valid infer-
ence. We conducted a Monte Carlo study of the performance
of this approach relative to clustering and Fama–MacBeth stan-
dard errors in a panel with both cross sectional and time series
dependence. We found substantially better size control of the
t-statistic approach, but also somewhat smaller size-adjusted
power. See the supplementary materials for details.

If a panel is very short and potential autocorrelations are
large, then it might be more appealing to assume some indepen-
dence in the cross section. For instance, in finance applications,
one might be willing to assume that there is little correlation
between firms of different industries, as in Froot (1989). Under
this assumption, one could collect all firms of the same industry
in the same group to obtain as many groups as there are differ-
ent industries. If the parameter of interest is a regression coef-
ficient of a regressor that varies within industry, then one could
add time fixed effects in each group to guard against interindus-
try correlation from a yearly common shock that is independent
of the other regressors. Alternatively, one can also combine in-
dependence assumptions in both dimensions by, say, forming
twice as many groups as there are industries by splitting each
industry group into two depending on whether t < T/2 or not.
The theoretical results in Section 4.3 below suggest that there
are substantial gains in power (more than 10% for 5% level
tests) of such an additional independence assumption as long
as q ≤ 8. Similar possibilities of group formation might be at-
tractive for long-run performance evaluations in finance (see,
e.g., Jegadeesh and Karceski 2009) for a discussion of infer-
ence based on consistent variance estimation), and panel analy-
ses with individuals as countries and trade blocks or continents
as one group dimension.

Recently, Bertrand, Duflo, and Mullainathan (2004) have
also stressed the importance of allowing for time series correla-
tion in panel difference-in-difference applications. This tech-
nique is popular to estimate causal effects, and it is usually
implemented by a linear regression (10) with fixed effects in
both dimensions. In a typical application, the individuals i =
1, . . . ,N are U.S. states, and the coefficient of interest β multi-
plies a binary regressor that describes some area specific inter-
vention, such as the passage of a law. Donald and Lang (2007)
show that if ui,t has an iid Gaussian random effect structure
for each (potential) preintervention and postintervention area
group, then correct inference is obtained for fixed N by a two-
stage inference procedure using a Student-t critical value with
an appropriate degrees of freedom correction. See Wooldridge
(2003) for further discussion, and Conley and Taber (2005) for
a possible approach when only few states were subject to the
intervention, but many others were not. With the time fixed
effects, it is obviously not possible to apply the t-statistic ap-
proach with groups defined as states. However, by collecting

states into groups defined as larger geographical areas so that
at least one of the states in each group was subject to the in-
tervention, it again becomes possible to obtain estimators β̂j,
j = 1, . . . ,q, from each group and to apply the t-statistic ap-
proach. This leads to a loss of degrees of freedom, but it has
the advantage of yielding correct inference when the preinter-
vention and postintervention specific random effects in ui,t are
independent, but not necessarily identically distributed scale
mixture of standard normals. This is a considerable weakening
of the homogeneous Gaussian assumption required for the ap-
proach of Donald and Lang (2007). Also, if larger geographical
areas are formed by collecting neighboring states, the t-statistic
approach becomes at least partially robust to moderate spatial
correlations. When the number of states in each of these larger
areas is not too small (which for the U.S. then implies a rela-
tively small q), one might appeal to the central limit theorem to
justify the t-statistic approach to inference when the underlying
random effects cannot be written as scale mixtures of standard
normals.

3.3 Clustered Data

A further potential application of our approach is to draw
inferences about a population based on a two-stage (or multi-
stage) sampling design with a small number of independently
sampled primary sampling units (PSUs). PSUs could be vil-
lages in a development study (see, e.g., Deaton 1997, chap-
ters 1.4 and 2.2), or a small number of, say, city blocks in a
large metropolitan area. One would typically expect that obser-
vations from the same PSU are more similar than those from
different PSUs, which necessitates a correction of the standard
errors. Note that PSUs are independent by sample design, so
with PSUs as groups j = 1, . . . ,q, the only additional require-
ment of our approach is that the parameter of interest can be es-
timated by an approximately Gaussian and unbiased estimator
β̂j from each PSU, j = 1, . . . ,q. Of course, this will only be pos-
sible if the parameter of interest is identified in each PSU; in a
regression context, a coefficient about a regressor that only vary
across PSUs cannot be estimated from one PSU only, at least as
long as the regression contains a constant. In such cases, our
approach is still applicable by collecting more than one PSU in
each group.

As a stylized example, imagine a world where the only spa-
cial correlation between household characteristics in the popu-
lation arises through the fact that households in the same neigh-
borhood are very similar to each other, and villages consist of,
say, 30–80 neighborhoods. Consider a two-stage sample design
with a simple random sample of 400 households within 12 vil-
lages as PSUs. Sample means β̂j of household characteristics of
a single PSU are then approximately Gaussian with a mean that
is equal to the national average β , and a variance that is a func-
tion of the number of neighborhoods. This variance is larger
than that of a national simple random sample of the same size,
so ignoring the clustering leads to incorrect inference, while our
approach is approximately correct.

In some instances, it will be more appropriate to assume that
all individuals from the same PSU are similar—think of the ex-
treme case where all households in the same village are identi-
cal. In this case, there is no equivalent to the averaging over the
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neighborhoods, and one cannot appeal to the central limit the-
orem to argue for the approximation β̂j ∼ N (β, v2

j ). This setup
would naturally lead to a random parameter model, where the
household characteristic βj in PSU j is a random draw from the
national distribution. In a slightly more general regression con-
text, this leads to the random coefficient regression model (cf.,
for instance, Swamy 1970)

Yi,j = X′
i,jθ j + ui,j = X′

i,jθ + X′
i,j(θ j − θ) + ui,j

for individual i = 1, . . . ,nj in PSU j = 1, . . . ,q, E[Xi,juj] =
0 and θ j are iid draws from some population with mean θ .
Thought of as part of the disturbance term, X′

i,j(θ j − θ) in-
duces intra-PSU correlations. Now under sufficient regularity
conditions, θ̂ j − θ j

p→ 0 as nj → ∞, and the t-statistic ap-
proach for inference about β (the first element of θ ) remains
valid as long as the distribution of βj − β can be written as
a scale mixture of standard normals. This is a wide class of
distributions, as noted in Section 2.1 above. If nj is not large

enough to make θ̂ j − θ j
p→ 0 a good approximation, but instead

β̂j|βj ∼ iidN (βj, v2
j ), then the t-statistic approach remains valid

as long as βj − β is a scale mixture of standard normals, as
the induced unconditional distribution of β̂j − β then is a scale
mixture of standard normals, too.

The need for clustering might arise in a more subtle way de-
pending on the relationship between the sampling scheme and
the population of interest. For example, suppose we want to
study labor supply based on a large iid sample from U.S. house-
holds, which are located in, say, 12 different regions. Similar to
the example above, assume that each region consists of, say,
30–80 different metropolitan and rural areas, and that the char-
acteristics of these areas induce similar behavior of households,
so that there are effectively about 500 different types of house-
holds. Of course, in a large sample, we will have many observa-
tions from the same area, which are quite similar to each other.
Nevertheless, the usual (small) standard errors, based on the to-
tal number of observations, are applicable by definition of an
iid sample for statements about labor supply in the current U.S.
population. But if the study’s results are to be understood as
generic statements about labor supply, then the relevant popu-
lation becomes households in all kinds of circumstances, and
the iid sample from U.S. households is no longer iid in this
larger population. Instead, it makes sense to think of the 12 re-
gions as independently sampled PSUs of this superpopulation,
and apply our approach with the regions as groups. As pointed
out by Moulton (1990), ignoring this clustering often leads to
very different results.

3.4 Spatially Correlated Data

Inference with spatially correlated data is usually justified
by a similar reasoning as with time series observations: more
distant observations are less correlated. With enough assump-
tions on the decay of correlations between distant observations,
consistent parametric and nonparametric variance estimators of
spatially correlated data can be derived—see Case (1991) and
Conley (1999). “Distance” here can mean physical distance be-
tween geographical units (country, county, city, and so forth),
but may also be thought of as distance in some economic sense.
Conley and Dupor (2003), for instance, use metrics based on

input-output relations to measure the distance different sectors
of the U.S. economy.

For the t-statistic approach suggested here, an assumption of
correlations decaying as a function of distance suggests con-
structing the q groups out of blocks of neighboring observa-
tions. If the groups are carefully chosen, then under asymp-
totics where there are more and more observations in each
of the q groups, most observations are sufficiently far away
from the “borders.” The variability of the group estimators is
thus dominated by observations that are essentially uncorrelated
with observations from other groups. Furthermore, the averag-
ing within each group yields asymptotic Gaussianity for each
β̂j, so that under sufficiently strong regularity conditions, the
t-statistic based inference is valid. Bester, Conley, and Hansen
(2009) provide such sufficient primitive conditions for linear
regressions.

We investigate the relative performance of the t-statistic ap-
proach and inference based on consistent variance estimators in
a Monte Carlo exercise as follows: We are interested in con-
ducting inference about the mean β of n = 128 observations
which are located on a rectangular array of unit squares with
8 rows and 16 columns (two checker boards side by side). The
observations are generated such that in the Gaussian case, the
correlation of two observations is given by exp(−φd) for some
φ > 0, where d is the Euclidian distance between the two obser-
vations. We also consider disturbances with a mean corrected
chi-squared distribution with one degree of freedom. As can be
seen from Table 3, the t-statistic approach is more successful at
controlling size than inference based on the consistent variance
estimators. The asymmetry in the error distribution has only a
relatively minor impact on size control. Size corrected power of
the t-statistics increases in q, but is always smaller than the size
corrected power of tests based on nonparametric spatial con-
sistent variance estimators suggested by Conley (1999) with a
small bandwidth b ≤ 2, which includes the OLS variance esti-
mator as a special case.

4. EFFICIENCY OF t–STATISTIC BASED INFERENCE

We now turn to a discussion of the efficiency properties of
the t-statistic based approach to large sample inference. We
start by establishing a small sample optimality result for the
t-statistic in Section 4.1. This in turn yields a corresponding
large sample “efficiency under robustness” result by an appli-
cation of the recent results in Müller (2008), as discussed in
Section 4.2. In particular, these results imply the impossibil-
ity of using data dependent methods to automatically select
the number or composition of groups while maintaining robust-
ness. Finally, in Section 4.3, we compare the efficiency of the
t-statistic based approach to inference to the benchmark case
of known (or, equivalently, correctly consistently estimated) as-
ymptotic variance.

4.1 Small Sample Result

Theorem 1 provides conditions under which the usual small
sample t-test remains a valid test. We now turn to a discussion
of the small sample optimality of the t-statistic (2) when the un-
derlying Gaussian variates Xj ∼ N (μ,σ 2

j ) are not necessarily
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Table 3. Small sample results in a location problem with spatial correlation, n = 128

t-statistic (q) ω̂2
UA(b) ω̂2

WA(b)

2 4 8 16 0 2 4 8 2 4 8

Size, Gaussian errors
φ = ∞ 5.0 5.0 5.1 5.1 5.5 6.2 7.9 13.2 8.1 14.9 19.1
φ = 2 5.1 5.4 5.9 7.5 15.1 11.0 10.4 15.8 8.0 14.9 21.0
φ = 1 5.6 7.5 10.6 16.9 39.8 26.4 19.6 22.8 16.5 17.4 25.0

Size, mean corrected chi-squared errors
φ = ∞ 5.0 5.4 5.7 6.3 6.5 7.1 8.4 13.4 8.8 14.7 19.1
φ = 2 5.5 6.5 7.0 8.0 13.5 10.9 11.1 16.2 9.5 16.0 21.7
φ = 1 5.7 9.5 12.8 17.9 35.3 25.8 20.6 23.8 17.9 19.5 26.9

Size adjusted power, gaussian errors
φ = ∞ 15.4 40.0 56.8 64.1 68.8 67.7 65.1 60.8 62.5 41.1 31.3
φ = 2 15.6 43.0 59.0 67.5 71.3 70.8 67.8 62.4 68.1 46.2 31.8
φ = 1 15.4 41.1 57.1 64.0 69.6 67.7 63.9 57.8 66.4 49.7 30.8

Size adjusted power, mean corrected chi-squared errors
φ = ∞ 15.5 34.8 52.0 60.3 67.8 67.0 63.0 58.8 59.7 36.2 29.4
φ = 2 14.1 36.9 59.8 69.5 76.9 75.3 70.8 63.3 70.3 43.0 31.3
φ = 1 15.2 35.7 52.3 64.7 79.3 72.4 62.2 53.3 65.0 39.4 28.4

NOTE: The entries are rejection probabilities of nominal 5% level two-sided t-tests about β in the model yi,j = β + ui,j , i = 1, . . . ,8, j = 1, . . . ,16. Under Gaussian errors, ui,j are

multivariate mean zero unit variance Gaussian with correlation between ui,j and ul,k given by exp(−φ
√

(i − l)2 + (j − k)2), and the mean corrected chi-squared errors were generated

by ui,j = �−1
χ2−1

(�(ũi,j)), where ũi,j are the Gaussian model disturbances, � is the cdf of a standard normal and �−1
χ2−1

is the inverse of the cdf of a mean corrected chi-squared

random variable. The considered tests are the t-statistic approach with groups of spatial dimension 8 × 8, 8 × 4, 4 × 4, and 2 × 4, at the obvious locations; and inference based on
ȳ = n−1 ∑8

i=1
∑16

j=1 yi,j with two versions of Conley’s (1999) nonparametric spatial consistent variance estimators of bandwidth b: a simple average ω̂2
SA(b) of all cross products of

(yi,j − ȳ)(yk,l − ȳ), i, k = 1, . . . ,8, j, l = 1, . . . ,16, of Euclidian distance d ≤ b, and a weighted average ω̂2
WA(b) of these cross products, with weights w(i, j, k, l) = 1[w̃(i, j, k, l) >

0]w̃(i, j, k, l) and w̃(i, j, k, l) = (1 − |i − k|/b)(1 − |j − l|/b) [cf., equation (3.14) of Conley (1999)]. Alternatives where chosen as β − β0 = c/
√

n with c = 2.5, 3.4, 5.7 under Gaussian
disturbances and c = 3.5, 4.7, 8 under chi-squared errors for φ = ∞, 2, 1, respectively. Based on 10,000 replications.

of equal variance. Recall that if the variances are identical, then
the usual two-sided t-test is not only the uniformly most pow-
erful unbiased test of (1), but also the uniformly most powerful
scale invariant test (see Ferguson 1967, p. 246). For a signifi-
cance level of 5% or lower, Theorem 1 shows that the null re-
jection probability for the t-test never exceeds the nominal level
for heterogeneous variances. So if we consider the hypothesis
test

H0 :μ = 0 and {σ 2
j }q

j=1 arbitrary against
(11)

H1 :μ �= 0 and σ 2
j = σ 2 for all j

and restrict attention to scale invariant tests, then the least fa-
vorable distribution for the q dimensional nuisance parameter
{σ 2

j }q
j=1 is the case of equal variances. In other words, the usual

t-test is the optimal scale invariant test of (11) for any given
alternative μ �= 0 when the level constraint is most difficult to
satisfy. By theorem 7 of Lehmann (1986, pp. 104–105), we thus
have the following result.

Theorem 2. Let α and q be such that (3) holds. A test that
rejects the null hypothesis for |t| > cvq(α) is the uniformly most
powerful scale invariant level α test of (11).

If one is uncertain about the actual variances of Xj, and con-
siders the case of equal variances a plausible benchmark, then
the usual 5% level t-test maximizes power against such bench-
mark alternatives in the class of all scale invariant tests. Since
the one-sided t-test is also known to be the uniformly most pow-
erful invariant test under the (sign-preserving) scale transfor-
mations {Xj}q

j=1 → {cXj}q
j=1 for c > 0 (Ferguson 1967, p. 246),

the analogous result also holds for the one-sided t-test of small
enough level.

Note that this optimality result is driven by the conservative-
ness of the usual t-test. For α = 10% and q = 20, say, accord-
ing to Theorem 1, the critical value of the t-statistic must be
amended to induce conservativeness. The resulting test is thus
not optimal when σ 2

j = σ 2 for all j under both H0 and H1. It is
also not optimal against the worst case alternative with 14 vari-
ances identical and 6 variances zero—the optimal test against
such an alternative would certainly exploit that if 6 equal real-
izations of Xj are observed, they are known to be equal to μ.

4.2 Asymptotic Efficiency and the Choice of Groups

Suppose the n observations in the potentially correlated large
data set are of dimension � × 1, so that the overall data Yn is
an element of R

�n. In general, tests ϕn of H0 :β = β0 are se-
quences of (measurable) functions from R

�n to the unit inter-
val, where ϕn(yn) ∈ [0,1] indicates the probability of rejection
conditional on observing Yn = yn. If ϕn takes on values strictly
between zero and one then ϕn is a randomized test. As usual in
large sample testing problems, consider the sequence of local
alternatives β = βn = β0 + μ/

√
n, so that the null hypothesis

becomes H0 :μ = 0. Under such local alternatives, (4) implies

{√n(β̂j − β0)}q
j=1 ⇒ {Xj}q

j=1 (12)

where Xj, j = 1, . . . ,q, are as in the small sample Section 4.1
above, that is Xj are independent and distributed N (μ,σ 2

j ). Fur-
thermore, by the Continuous Mapping Theorem, it also holds
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that {
β̂j − β0

β̂ − β0

}q

j=1
⇒ {Rj}q

j=1 =
{

Xj

X̄

}q

j=1
, (13)

where X̄ = q−1 ∑q
j=1 Xj. The interest of (13) over (12) is that

{Rj}q
j=1 is a maximal invariant of the group of transformations

{Xj}q
j=1 → {cXj}q

j=1 for c �= 0, so that in the “limiting problem”

with {Rj}q
j=1 observed, Theorem 2 implies that a level-α test

based on |t| = √
qR̄/sR = √

qX̄/sX with R̄ = q−1 ∑q
j=1 Rj and

s2
R = (q − 1)−1 ∑q

j=1(Rj − R̄)2 maximizes power against al-

ternatives with μ �= 0 and σ 2
j = σ for j = 1, . . . ,q as long as

α ≤ 0.083.
Let Fn(m,μ, {σ 2

j }q
j=1) be the distribution of Yn in a spe-

cific model m with parameter β = β0 + μ/
√

n and asymp-
totic variance of β̂j equal to σ 2

j ; think of m as describing
all aspects of the data generation mechanism beyond the pa-
rameters μ and {σ 2

j }q
j=1, such as the correlation structure of

Yn. The unconditional rejection probability of a test ϕn then
is

∫
ϕn dFn(m,μ, {σ 2

j }q
j=1), and the asymptotic null rejection

probability is lim supn→∞
∫

ϕn dFn(m,0, {σ 2
j }q

j=1).
The weak convergences (12) and (13) obviously only hold for

some sequences of underlying distributions Fn(m,μ, {σ 2
j }q

j=1)

of Yn, that is some models m. The assumption (12) is an as-
ymptotic regularity condition that restricts the dependence in
Yn in a way that in large samples, each β̂j provides indepen-
dent and Gaussian information about the parameter of interest
β . The plausibility of this assumption in any given application
depends on the functional relationship between {β̂j}q

j=1 and the
data Yn, and the properties of Yn. The convergence (13) is a
very similar, but slightly weaker regularity condition. Denote
by MX

0 and MR
0 the set of models m for which (12) and (13)

hold under the null hypothesis of μ = 0, respectively, (so that
MX

0 ⊂ MR
0 ), and analogously, denote by MX

1 and MR
1 the set

of models m for which (12) and (13) hold pointwise for every
μ �= 0. A concern about strong and pervasive correlations in
Yn of largely unknown form means that little is known about
properties of Fn(m,μ, {σ 2

j }q
j=1). In an effort to obtain robust in-

ference for a large set of possible data generating processes m,
one might want to impose that level-α tests ϕn are asymptoti-
cally valid for all m ∈ MX

0 or m ∈ MR
0 , that is,

lim sup
n→∞

∫
ϕn dFn(m,0, {σ 2

j }q
j=1) ≤ α

for all m ∈ M0 and {σ 2
j }q

j=1 with max
j

σ 2
j > 0 (14)

for M0 = MX
0 or M0 = MR

0 . The robustness constraint (14)
is strong, as the asymptotic size requirement is imposed for all
m ∈ M0, which is attractive only if (12) or (13) summarize all
knowledge about properties of Yn that are relevant for inference
about β .

Denote by ϕ∗
n (α) = 1[|tβ | > cvq(α)] the R

�n �→ {0,1} test
of asymptotic size α that rejects for large values of |tβ | as
defined in (5), and note that, by scale invariance, tβ can also

be computed from the observations {(β̂j − β0)/(β̂ − β0)}q
j=1.

As discussed in Section 2.2, the test ϕ∗
n (α) satisfies (14) for

M0 = MX
0 as long as α ≤ 0.083, and scale invariance implies

that (14) also holds for M0 = MR
0 . What is more, for any data

generating process satisfying (13) under the alternative with
μ �= 0, that is, for any m ∈ MR

1 or m ∈ MX
1 , ϕ∗

n (α) has local as-
ymptotic power limn→∞

∫
ϕ∗

n (α)dFn(m,μ, {σ 2
j }q

j=1) for μ �= 0
equal to the power of the small sample t-test 1[|t| > cv(α)] in
the “limiting problem” (1) with {Xj}q

j=1 (or {Rj}q
j=1) observed.

An asymptotic efficiency claim about the t-statistic approach
now amounts to the statement that no other test ϕn satisfy-
ing (14) has higher local asymptotic power. The following the-
orem, which follows straightforwardly from the general results
in Müller (2008) and Theorem 2 above, provides such a state-
ment for the case of equal asymptotic variances.

Theorem 3. (i) For any test ϕn that satisfies (14) for M0 =
MR

0 and α ≤ 0.083, lim supn→∞
∫

ϕn dFn(m,μ, {σ 2}q
j=1) ≤

limn→∞
∫

ϕ∗
n (α)dFn(m,μ, {σ 2}q

j=1) for all μ �= 0, σ 2 > 0 and

m ∈ MR
1 .

(ii) Suppose there exists a group of transformations Gn(c)
of Yn that induces the transformations {β̂j − β}q

j=1 →
{c(β̂j − β)}q

j=1 for c �= 0. For any test ϕn that is invariant

to Gn and that satisfies (14) for M0 = MX
0 and α ≤ 0.083,

lim supn→∞
∫

ϕn dFn(m,μ, {σ 2}q
j=1) ≤ limn→∞

∫
ϕ∗

n (α)dFn(m,

μ, {σ 2}q
j=1) for all μ �= 0, σ 2 > 0, and m ∈ MX

1 .

Part (i) of Theorem 3 shows the t-statistic approach to be as-
ymptotically most powerful against the benchmark alternative
of equal asymptotic variances among all tests that provide as-
ymptotically valid inference under the regularity condition (13).
Part (ii) contains the same claim under the slightly more natural
condition (12) when attention is restricted to tests that are ap-
propriately invariant. For example, in a regression context, an
adequate underlying group of transformations is the multiplica-
tion of the dependent variable by c. Also, the analogous asymp-
totic efficiency statements hold for one-sided tests based on tβ
of asymptotic level smaller than 4.1%.

Note that this asymptotic optimality of the t-statistic ap-
proach holds for all models in MX

1 and MR
1 , that is, when-

ever (12) and (13) holds with μ �= 0. In other words, for any
test that has higher asymptotic power for some data-generating
process for which (12) and (13) holds with μ �= 0 and equal as-
ymptotic variances, there exists a data generating process satis-
fying (12) and (13) with μ = 0 for which the test has asymptotic
rejection probability larger than α.

In particular, this implies that it is not possible to use data-
dependent methods to determine an appropriate q: Suppose one
is conservatively only willing to assume (13) to hold for some
small q = q0, but the actual data is much more regular in the
sense that (13) also holds for q = 2q0, with each group divided
into two subgroups. Then any data dependent method that leads
to higher asymptotic local power for this more regular data nec-
essarily lacks robustness in the sense that there exists some data
generating process for which (13) holds with q = q0, and this
method overrejects asymptotically. Thus, with (13) viewed as
a regularity condition on the underlying large dataset, the t-
statistic approach efficiently exploits the available information,
with highest possible power in the benchmark case of equal as-
ymptotic variances.
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4.3 Comparison With Inference Under Known Variance

We now turn to a discussion of the relative performance of
the t-statistic approach as outlined in Section 2.2 and infer-
ence based on the full sample estimator β̂ with

√
n(β̂ − β) ⇒

N (0, σ 2) and known σ 2 > 0. When (12) or (13) summarizes
the amount of regularity that one is willing to impose, then this
is a purely theoretical exercise. On the other hand, one might be
willing to consider stronger assumptions that enable consistent
estimation of σ 2, and it is interesting to explore the relative gain
in power.

With σ̂ 2 p→ σ 2, the standard approach to testing the null hy-
pothesis β = β0 is to reject when |zβ | exceeds the critical value
for a standard normal, where zβ is given by

zβ = √
n
β̂ − β0

σ̂
= √

n
β̂ − β0

σ
+ op(1) (15)

under the null and local alternatives. In this case, a comparison
of the asymptotic power of a test based on tβ with the asymp-
totic power of a test based on zβ approximates the efficiency
cost of the higher robustness of inference based on tβ .

To investigate this issue, we consider the class of GMM mod-
els as discussed in Section 2.2 under exact identification (k = l).
Under the assumptions made there, the simple average of the q

group estimators θ̂ = q−1 ∑q
j=1 θ̂ j satisfies

√
n(θ̂ − θ) = q−1

q∑
j=1

�−1
j Qj + op(1) ⇒ N (0, �̄q), (16)

where �̄q = q−2 ∑q
j=1 �−1

j �j(�
′
j)

−1. In contrast, the full sam-

ple GMM estimator θ̂ which solves n−1 ∑n
i=1 g(θ̂ ,yi)

′g(θ̂ ,

yi) = 0, satisfies under the same assumptions

√
n(θ̂ −θ) =

( q∑
j=1

�j

)−1 q∑
j=1

Qj +op(1) ⇒ N (0,�q), (17)

where �q = (
∑q

j=1 �j)
−1(

∑q
j=1 �j)(

∑q
j=1 �′

j)
−1. In general,

this full sample GMM estimator is not efficient: with heteroge-
neous groups, it would be more efficient to compute the optimal
GMM estimator of the q conditions E[g(θ ,yi)] = 0 for i ∈ Gj,
j = 1, . . . ,q. But this efficient full-sample estimator requires the
consistent estimation of the optimal weighting matrix, which
involves �j, j = 1, . . . ,q. This is unlikely to be feasible or ap-
propriate in applications with pronounced correlations and het-

erogeneity, so that the relevant comparison for θ̂ is with θ̂ as
characterized in (17).

Comparing �̄q with �q, we find that while
√

n-consistent

and asymptotically Gaussian, the estimators θ̂ and θ̂ (and thus β̂

and β̂) are not asymptotically equivalent. The asymptotic power
of tests based on tβ and zβ thus not only differ through differ-
ences in the denominator, but also through their numerator. The
relationship between �̄q and �q is summarized in the following
theorem, whose proof is given in the Appendix:

Theorem 4. Let Qk be the set of full rank k × k matri-
ces, and let Pk ⊂ Qk denote the set of symmetric and positive
definitek × k matrices. For any q ≥ 2:

(i) Let ι be the k ×1 vector with 1 in the first row and zeros
elsewhere. Then inf{�j}q

j=1∈Qq
1,{�j}q

j=1∈P q
1
�̄q/�q = 0,

inf
{�j}q

j=1∈P q
k ,{�j}q

j=1∈P q
k

ι′�qι

ι′�̄qι
= 0 and

inf
{�j}q

j=1∈P q
k ,{�j}q

j=1∈P q
k

ι′�̄qι

ι′�qι
=

{
1/q2 if k = 1
0 if k ≥ 2.

(ii) For any {�j}q
j=1 ∈ Qq

k there exists {�̄j}q
j=1 ∈ P q

k so that

�q − �̄q is positive semidefinite for {�j}q
j=1 = {�̄j}q

j=1, and for

any {�j}q
j=1 ∈ P q

k there exists {�j}q
j=1 ∈ P q

k so that �q − �̄q is

negative semidefinite for {�j}q
j=1 = {�j}q

j=1.

(iii) If �j = � for j = 1, . . . ,q, then �̄q = �q for all {�j}q
j=1.

Part (i) of Theorem 4 shows that very little can be said in
general about the relative magnitudes of the asymptotic vari-

ances of β̂ and β̂ . Only for k = 1 and �j restricted to positive
numbers there exists a bound on the relative asymptotic vari-
ances, and this bound is so weak that even for q as small as
q = 4, one can construct an example where the local asymp-
totic power of a two-sided 5% level test based on |tβ | greatly
exceeds the local asymptotic power of a test based on |zβ | for
almost all alternatives, despite the much larger critical value for
|tβ | (which is equal to 3.18 for q = 4 compared to 1.96 for |zβ |).
What is more, as shown in part (ii), it is not possible to deter-

mine whether θ̂ is more efficient than θ̂ without knowledge of
{�j}q

j=1, and vice versa in the important special case where �j

are symmetric and positive definite. (There exist {�j}q
j=1 /∈ P q

k

that make θ̂ the more efficient estimator for all possible values
of {�j}q

j=1; for instance, for k = 1 and q = 2, let �1 = 1 and
�2 = −1/2.)

When �j = � for all j, however, the two estimators become
asymptotically equivalent. This special case naturally arises
when the groups have an equal number of observations n/q,
and the average of the derivative of the moment condition is
homogenous across groups. One important setup with this fea-
ture is the case of underlying iid observations. With �j = �,√

n(θ̂ − θ) = √
n(θ̂ − θ) + op(1) and β̂ and β̂ are asymptoti-

cally equivalent (up to order
√

n) under the null and local alter-
natives. There is thus no asymptotic efficiency cost for basing

inference about β on β̂ associated with the reestimation of the
last k − 1 elements of θ in each of the q groups. The asymp-
totic local power of tests based on tβ and zβ simply reduces to
the small sample power of the t-statistic (2) and the z-statistic
z = √

qX̄/σ̄q in the hypothesis test (1), where σ 2
j is the (1, 1)

element of �−1�j�
−1 and σ̄ 2

q = q−1 ∑q
j=1 σ 2

j . Figure 3 depicts
the power of such 5% level tests for various q and the two sce-
narios for the variances considered in Figures 1 and 2 above.
The scale of the variances is normalized to ensure σ̄ 2

q = 1, and
the magnitude of the alternative μ is the value on the abscissa
divided by

√
q, so that the power of the z-statistic is the same

for all q.
When all variances are identical (a = 1), the differences in

power between the t-statistic and z-statistic are substantial for
small q, but become quite small for moderate q: The largest
difference in power is 32 percentage points for q = 4, is 13 for
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Figure 3. Power of 5% level t-tests and z-tests with q independent observations.

q = 8, and is 5.8 for q = 16. In both scenarios and all con-
sidered values of a �= 1, the maximal difference in power be-
tween the z-statistic and t-statistic is smaller than this equal
variance benchmark, despite the fact that the t-statistic under-
rejects under the null hypothesis when variances are heteroge-
neous. When �j = � for all j, the loss in local asymptotic power
of inference based on tβ compared to zβ is thus approximately
bounded above by the largest loss of power of a small sample
t-statistic over the z-statistic in an iid Gaussian setup. Interest-
ingly, for very unequal variances with a = 5, the t-statistic is
sometimes even more powerful than the z-statistic. This is pos-
sible because the z-statistic is not optimal in the case of unequal
variances. Intuitively, for small realizations of the high variance
observation, s2

X is much smaller than σ̄ 2
q , and the t-statistic ex-

ceeds the (larger) critical value more often under moderate al-
ternatives.

To sum up, in an exactly identified GMM framework, tests
based on tβ and zβ compare as follows: Both tests are consistent
and have power against the same local alternatives. Without ad-
ditional assumptions on �j—the sample average of the deriva-
tive of the moment condition in group j—little can be said about
their local asymptotic power, as either procedure may be the

more powerful one, depending on the values of �j, the group
j asymptotic covariance. In the important special case where
�j = � for all j, the largest gain in power of inference based
on 5% level two-sided zβ over tβ is typically no larger than the
largest difference in power between a small sample z-statistic
over a t-statistic for iid Gaussian observations. By implication,
as soon as q is moderately large (say, q = 16) there exist only
modest gains in terms of local asymptotic power (less than 6
percentage points for 5% level tests) of efforts to consistently
estimate the asymptotic variance σ 2.

5. CONCLUSION

This paper develops a general strategy to deal with inference
about a scalar parameter in data with pronounced correlations
of largely unknown form. The key assumption is that it is pos-
sible to partition the data into q groups, such that estimators
based on data from group j, j = 1, . . . ,q, are approximately in-
dependent, unbiased and Gaussian, but not necessarily of equal
variance. The t-statistic approach to inference provides in some
sense efficient inference under this regularity condition. What

D
ow

nl
oa

de
d 

by
 [

21
2.

18
3.

12
8.

14
8]

 a
t 1

8:
19

 2
0 

N
ov

em
be

r 
20

12
 



Ibragimov and Müller: t-Statistic Based Correlation and Heterogeneity Robust Inference 467

is more, this inference remains valid also when the group esti-
mators have a joint distribution that can be written as a mixture
of independent Gaussian distributions with means equal to the
parameter of interest. The t-statistic approach may therefore be
used also for group estimators that are approximately symmet-
ric stable or of statistically dependent stochastic variances. De-
spite its simplicity, the proposed method is thus applicable in a
wide range of models and settings.

APPENDIX

Proof of Theorem 4

(i) For the first claim, let �1 = ξ − (q − 1), �1 = 1 and
�j = �j = 1 for j = 2, . . . ,q for some ξ > 0. Then �̄q/�q =
ξ2(q − 1 + (1 − q + ξ)−2)/q2, so that �̄q/�q → 0 as ξ → 0.

For the second claim, let �1 = �1 = Ik, and �j = ξIk, �j =
ςIk for j = 2, . . . ,q, for some ς > 0, ξ > 0, so that

∑q
j=1 �j =

((q − 1)ς + 1)Ik. Then

�q = ξ(q − 1) + 1

((q − 1)ς + 1)2
Ik and

�̄q = 1 + (q − 1)ξ/ς2

q2
Ik.

Letting ξ = 1 and ς → 0 proves the second claim, and with
ξ = ς4 and ς → 0 we find ι′�̄qι/ι

′�qι → 1/q2.
Also, for k ≥ 2, let �1 = diag(A, Ik−2) ∈ Pk with A =

((1, 1
2 )′, ( 1

2 ,1)′), �1 = �1 diag(1, ξ, Ik−2)�1 and �j = �j = Ik
for j = 2, . . . ,q. Then

ι′�̄qι = 1/q and

ι′�qι = −3 − 4q + 16q3 + 4ξ(q − 1)2

(1 − 4q2)2

so that ι′�̄qι/ι
′�qι → 0 as ξ → ∞.

We are thus left to show that for k = 1, �̄q/�q ≥ 1/q2 for
all positive numbers {�j}q

j=1 and nonnegative numbers {�j}q
j=1.

But

�q =
( q∑

j=1

�j

)−2 q∑
j=1

�j ≤
( q∑

j=1

�2
j

)−1 q∑
j=1

�j

≤
q∑

j=1

�−2
j �j = q2�̄q.

(ii) Note that for any real full-column rank matrix X,
X(X′X)−1X′ is idempotent, so that I − X(X′X)−1X′ is posi-
tive semidefinite. Therefore, for any real matrix Y of suitable
dimension, Y′Y − Y′X(X′X)−1X′Y is positive semidefinite.

For the first claim, let �̄j = �j�
′
j. Then �̄q = q−1Ik,

and �q = (
∑q

j=1 �j)
−1(

∑q
j=1 �j�

′
j)(

∑q
j=1 �′

j)
−1. It suffices to

show that �−1
q − �̄

−1
q is negative semidefinite, and this fol-

lows from the above result with Y = (Ik, . . . , Ik)
′ and X =

(�1, . . . ,�q)
′.

For the second claim, let �j = �j. Then �̄q = q−2 ∑q
j=1 �−1

j

and �q = (
∑q

j=1 �j)
−1, and the result follows by setting Y =

(�
−1/2
1 , . . . ,�

−1/2
q )′ and X = (�

1/2
1 , . . . ,�

1/2
q ).

(iii) Immediate from �̄q = q−2�(
∑q

j=1 �j)�
′ and∑q

j=1 �j = q�.
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