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Rank − 1/2: A Simple Way to Improve the OLS
Estimation of Tail Exponents
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Department of Economics, Harvard University, Littauer Center, 1805 Cambridge St., Cambridge, MA 02138
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Despite the availability of more sophisticated methods, a popular way to estimate a Pareto exponent is still
to run an OLS regression: log(Rank) = a − b log(Size), and take b as an estimate of the Pareto exponent.
The reason for this popularity is arguably the simplicity and robustness of this method. Unfortunately, this
procedure is strongly biased in small samples. We provide a simple practical remedy for this bias, and
propose that, if one wants to use an OLS regression, one should use the Rank − 1/2, and run log(Rank −
1/2) = a − b log(Size). The shift of 1/2 is optimal, and reduces the bias to a leading order. The standard
error on the Pareto exponent ζ is not the OLS standard error, but is asymptotically (2/n)1/2ζ . Numerical
results demonstrate the advantage of the proposed approach over the standard OLS estimation procedures
and indicate that it performs well under dependent heavy-tailed processes exhibiting deviations from
power laws. The estimation procedures considered are illustrated using an empirical application to Zipf’s
law for the United States city size distribution.

KEY WORDS: Bias; Heavy-tailedness; OLS log-log rank-size regression; Power law; Standard errors;
Zipf’s law.

1. INTRODUCTION

The last four decades have witnessed rapid expansion of
the study of heavy-tailedness phenomena in economics and fi-
nance. Following the pioneering work by Mandelbrot (1960,
1963) (see also Fama 1965 and the papers in Mandelbrot 1997),
numerous studies have documented that time series encoun-
tered in many fields in economics and finance are typically
thick-tailed and can be well approximated using distributions
with tails exhibiting the power law decline

P(Z > s) ∼ Cs−ζ , C, s > 0, (1.1)

with a tail index ζ > 0 (see the discussion in Čížek, Härdle,
and Weron 2005; Rachev, Menn, and Fabozzi 2005; Gabaix
2009; Ibragimov 2009, and references therein). Here f (s) ∼
g(s) means that f (s) = g(s)(1 + o(1)) as s → ∞. Through-
out the paper, C denotes a positive constant, not necessarily the
same from one place to another. Let

Z(1) ≥ · · · ≥ Z(n) (1.2)

be decreasingly ordered observations from a population satis-
fying power law (1.1). Despite the availability of more sophis-
ticated methods (see, among others, the reviews in Embrechts,
Klüppelberg, and Mikosch 1997; Beirlant et al. 2004), a pop-
ular way to estimate the Pareto exponent ζ is still to run the
following OLS log-log rank-size regression with γ = 0:

log(t − γ ) = a − b log Z(t), (1.3)

or, in other words, calling t the rank of an observation, and Z(t)

its size:

log(Rank − γ ) = a − b log(Size)

[here and throughout the paper, log(·) stands for the natural
logarithm]. With N denoting the total number of observations,
regression (1.3) with γ = 0 is motivated by the approximate
linear relationships log( t

N ) ≈ log(C)− ζ log(Z(t)), t = 1, . . . ,n,

implied by the empirical analogues of relations (1.1). The rea-
son for the popularity of the OLS approach to tail index estima-
tion is arguably the simplicity and robustness of this method.
In various frameworks, the log-log rank-size regressions of
form (1.3) in the case γ = 0 and closely related procedures
were employed, among other works, in Rosen and Resnick
(1980), Alperovich (1989), Krugman (1996), Eaton and Eck-
stein (1997), Brakman et al. (1999), Dobkins and Ioannides
(2000), Davis and Weinstein (2002), Levy (2003), Levy and
Levy (2003), Helpman, Melitz, and Yeaple (2004), Soo (2005),
and Klass et al. (2006). Further examples and the discussion
of the OLS approach to the tail index estimation are provided
in Persky (1992), Gabaix et al. (2003, 2009), Eeckhout (2004),
Gabaix and Ioannides (2004), and Rossi-Hansberg and Wright
(2007).

Let b̂n denote the usual OLS estimator of the tail index ζ

using regression (1.3) with γ = 0 and let b̂γ
n denote the OLS

estimator of ζ in general regression (1.3).
It is known that the OLS estimator b̂n in the usual regres-

sion (1.3) with γ = 0 is consistent for ζ . However, the standard
OLS procedure has an important bias. This paper shows that the
bias is optimally reduced (up to leading order terms) by using
γ = 1/2. Therefore, we recommend that, when using a log-log
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regression, one should always use log(Rank − 1/2) rather than
log(Rank).

We further show that the standard error of the OLS estimator
b̂γ

n of the tail index ζ in general regression (1.3) is asymptoti-
cally (2/n)1/2ζ . The OLS standard errors in log-log rank-size
regressions (1.3) considerably underestimate the true standard
deviation of the OLS tail index estimator. Consequently, taking
the OLS estimates of the standard errors at the face value will
lead one to reject the true numerical value of the tail index too
often.

The 1/2 shift actually comes from more systematic results,
in Theorems 1 and 2, which show that it is optimal and further
demonstrate that the following asymptotic expansions hold for
the general OLS estimator b̂γ

n :

E(b̂γ
n /ζ − 1) = (2γ − 1) log2 n

4n
+ o

(
log2 n

n

)
,

b̂γ
n /ζ = 1 +

√
2

n
N (0,1) + OP

(
log2 n

n

)

[here and throughout the paper, for μ ∈ R and σ > 0, N (μ,σ 2)

stands for a normal random variable (r.v.) with mean μ and vari-
ance σ 2]. We conclude that, when estimating the tail index ζ

with an OLS regression, one should always use the regression
log(Rank − 1/2) = a − b log(Size), with the standard error of

the OLS estimator b̂n of the slope given by
√

2
n b̂n.

We further provide similar asymptotic expansions for the tail
index estimator d̂γ

n in the dual to (1.3) regression

log
(
Z(t)

) = c − d log(t − γ ) (1.4)

[i.e., log(Size) = c − d log(Rank − γ )], with logarithms of or-
dered sizes regressed on logarithms of shifted ranks. As fol-
lows from Theorems 1 and 2, the approaches to the tail in-
dex inference using regressions (1.3) and (1.4) are equivalent
in terms of the small sample biases and standard errors of the
estimators. The paper also discusses asymptotic expansions in
the analogues of regressions (1.3) and (1.4) with the logarithms
of shifted ranks log(t −γ ) replaced by harmonic numbers (Sec-
tion 3).

Numerical results indicate that the proposed tail index es-
timation procedures perform well for heavy-tailed dependent
processes exhibiting deviations from power law distributions
(1.1) (see Section 4). They further demonstrate the advantage
of the new approaches over the standard OLS log-log rank-size
regressions (1.3) and (1.4) with γ = 0.

The tail index estimation methods proposed in the paper are
illustrated using an empirical analysis of Zipf’s power law for
the United States city size distribution (Section 5).

In recent years, several studies have focused on the analy-
sis of asymptotic normality of the OLS tail index estimators in
regressions (1.4) with γ = 0 and logarithms of ordered obser-
vations log(Z(t)) regressed on logarithms of ranks (see, among
other works, the review in chapter 4 in Beirlant et al. 2004).
Such an approach to estimation of the tail shape parameters
was introduced by Kratz and Resnick (1996) who refer to it
as QQ-estimator. Nishiyama, Osada, and Sato (2008) discuss
asymptotic normality of the OLS tail index estimator in the re-
gression of log(Z(t)) on log t. Schultze and Steinebach (1999)

consider closely related problems of least-squares approaches
to estimation for data with exponential tails (see also Aban and
Meerschaert 2004, who discuss efficient OLS estimation of pa-
rameters in shifted and scaled exponential models). Kratz and
Resnick (1996) establish consistency and asymptotic normal-
ity of the QQ-estimator in the case of populations with regu-
larly varying tails. Their results demonstrate that in the case
of populations in the domain of attraction of power law (1.1),
the standard error of the QQ-estimator of the inverse 1/ζ of
the tail index based on n largest observations is asymptotically√

2/(ζ
√

n). Csörgő and Viharos (1997) prove asymptotic nor-
mality of the OLS estimators of the tail index in the case γ = 0
(see also Viharos 1999; Csörgő and Viharos 2006). Beirlant et
al. (1999) and Aban and Meerschaert (2004) indicate the possi-
bility of modification of the QQ-estimator in which logarithms
of ordered observations log(Z(t)) are regressed on log(t − 1/2).
Aban and Meerschaert (2004) mention in a remark without pro-
viding a proof that regressing logarithms of observations from a
heavy-tailed population on logarithms of their ranks shifted by
1/2 reduces the bias of the QQ-estimator. Their remark seems
to be motivated by simulations, not by the systematic under-
standing that Theorems 1 and 2 provide; in particular, they do
not indicate that a shift of 1/2 is the best shift.

To our knowledge, general regressions (1.3) and (1.4) with
γ 	= 0 and asymptotic expansions for them are considered, for
the first time, in the present work. The modifications of the OLS
log-log rank-size regressions with the optimal shift γ = 1/2
and the correct standard errors provided in this paper were sub-
sequently used in the works by Hinloopen and van Marrewijk
(2006), Bosker et al. (2007), and Gabaix and Landier (2008).

2. FORMAL STATEMENT OF THE RESULTS

Throughout the paper, for variables a1, . . . ,an, an stands for
the sample mean an = 1

n

∑n
t=1 at. As usual, for a sequence of

r.v.’s Xn and a sequence of positive constants an, we write Xn =
OP(an) [Xn = Oa.s.(an)] if the sequence Xn/an is bounded in
probability (resp., bounded a.s.) and write Xn = oP(an) [Xn =
oa.s.(an)] if Xn/an →P 0 (resp. Xn/an →a.s. 0).

Let Z(1) ≥ Z(2) ≥ · · · ≥ Z(n) be the order statistics for a sam-
ple from the population with the distribution satisfying the
power law

P(Z > s) = 1

sζ
, s ≥ 1, ζ > 0. (2.1)

Denote yt = log(t − γ ) and xt = log(Z(t)). Let us consider the
OLS estimator b̂γ

n of the slope parameter b in log-log rank-size
regression (1.3) with γ < 1 and logarithms of ordered observa-
tions regressed on logarithms of shifted ranks:

b̂γ
n = −

∑n
t=1(xt − xn)(yt − yn)∑n

t=1(xt − xn)2
= −Aγ

n

Bn
. (2.2)

We will also consider the OLS estimator d̂γ
n of slope in dual

to (1.3) regression (1.4) with logarithms of ordered sizes re-
gressed on logarithms of shifted ranks:

d̂γ
n = −

∑n
t=1(xt − xn)(yt − yn)∑n

t=1(yt − yn)
2

= −Aγ
n

Dn
. (2.3)

The following theorems provide the main results of the paper.
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Theorem 1. For any γ < 1, the following asymptotic expan-
sions hold for the bias of the estimators b̂γ

n and d̂γ
n :

E(b̂γ
n /ζ − 1) = (2γ − 1) log2 n

4n
+ o

(
log2 n

n

)
, (2.4)

E(ζ d̂γ
n − 1) = (1 − 2γ ) log2 n

4n
+ o

(
log2 n

n

)
. (2.5)

Theorem 2. For any γ < 1, the following asymptotic expan-
sions hold for the estimators b̂γ

n and d̂γ
n :

b̂γ
n /ζ = 1 +

√
2

n
N (0,1) + OP

(
log2 n

n

)
, (2.6)

ζ d̂γ
n = 1 +

√
2

n
N (0,1) + OP

(
log2 n

n

)
. (2.7)

The arguments for Theorems 1 and 2 are presented in the
Appendix.

Remark 1. As follows from asymptotic expansions (2.4) and
(2.5), the small sample biases of the OLS estimators b̂γ

n and d̂γ
n

in regressions (1.3) and (1.4) involving logarithms of shifted
ranks are both minimized under the choice of the shift γ = 1/2.

The proof of Theorems 1 and 2 is based on the following
results and methods. First, it exploits the Rényi representation
theorem to relate the order statistics for observations follow-
ing power law (1.1) to the partial sums of scaled iid exponential
r.v.’s (see the beginning of the proof of Lemma 6). Then, we use
martingale approximations to the bilinear forms that appear in
the numerators of the statistics b̂γ

n /ζ −1 = −(Aγ
n +ζBn)/(ζBn)

and ζ d̂γ
n −1 = −(ζAγ

n +Dn)/Dn [relation (A.38) in the proof of
Lemma 6 and relation (A.57) in the proof of Lemma 8]. Third,
the arguments use strong approximations to partial sums of in-
dependent r.v.’s provided by Lemma 1.

3. A RELATED APPROACH BASED ON
HARMONIC NUMBERS

For t ≥ 1, denote by H(t) the tth harmonic number: H(t) =∑t
i=1

1
i . Further, let H(0) = 0. Consider the analogues of re-

gressions (1.3) and (1.4) that involve logarithms of ordered
sizes yt = log(Z(t)) and the functions x̃t = H(t − 1) of ranks
of observations:

H(t − 1) = a′ − b′ log
(
Z(t)

)
, (3.1)

log
(
Z(t)

) = c′ − d′H(t − 1). (3.2)

Similar to the proof of Theorem 2, one can show that the fol-
lowing asymptotic expansions hold for the tail index estimators
b̂′

n and d̂′
n using regressions (3.1) and (3.2):

b̂′
n/ζ = 1 +

√
2

n
N (0,1) + OP

(
log n

n

)
, (3.3)

ζ d̂′
n = 1 +

√
2

n
N (0,1) + OP

(
log n

n

)
. (3.4)

Comparison of expansions (3.3) and (3.4) with (2.4)–(2.7)
shows that, ceteris paribus, tail index estimation using regres-
sions involving harmonic numbers is to be preferred, in terms
of the small sample bias, to that based on the logarithms of

shifted ranks log(t − γ ) for any γ . On the other hand, regres-
sions (1.3) and (1.4) are simpler to implement and more visual
than estimation procedures based on (3.3) and (3.4). In partic-
ular, we are not aware of works that employed estimation ap-
proaches based on harmonic numbers similar to (3.3) and (3.4),
while regressions (1.3) and (1.4) with γ = 0 are commonly
used, as discussed in the Introduction. Comparison of the as-
ymptotic expansions for the tail index estimators using regres-
sions (3.1) and (3.2) with the OLS tail parameter estimators in
log-log rank-size regressions (1.3) and (1.4) also sheds light on
the main driving force behind the small sample bias improve-
ments using logarithms of shifted ranks log(Rank − 1/2). This
driving force is, essentially, the fact that log(n − 1/2) provides
better approximation to the harmonic numbers H(n − 1) than
does log(n) and, more generally, than log(n−γ ), γ < 1. This is
because, as follows from the inequalities for H(n)− ln(n+1/2)

in Havil (2003, section 9.3, pp. 75–79), for all γ < 1,

H(n − 1) = C + ln(n − γ ) + (γ − 1/2)n−1 + O(n−2) (3.5)

as n → ∞, where C = limn→∞(H(n) − ln n) is Euler’s con-
stant, so the optimal choice of the shift γ in the sense of the best
asymptotical approximation is 1/2 [note that the last inequality
on p. 76 in Havil 2003, should read, in the notations of this sec-
tion, 1/(24(n + 1)2) < H(n) − ln(n + 1/2) − C < 1/(24n2)].

4. SIMULATION RESULTS

In this section, we present simulation results on the perfor-
mance of the traditional regression (1.3) with γ = 0 and the
modified regression (1.3) with the optimal shift γ = 1/2 and the
correct standard errors given by Theorem 2. We present the nu-
merical results for the OLS Pareto exponent estimation proce-
dures under dependence and under deviations from power laws
(1.1). The results are provided for dependent heavy-tailed data
that follow AR(1) processes Zt = ρZt−1 + ut, t ≥ 1,Z0 = 0, or
MA(1) processes Zt = ut + θut−1, t ≥ 1, with iid ut’s. The de-
partures from power laws are modeled using the innovations ut

that have Student t distributions with the number of degree of
freedom m = 2,3,4 (Tables 2 and 4) or distributions exhibit-
ing second-order deviations from Pareto tails in the Hall (1982)
form

P(u > s) = s−ζ (1 + c(s−αζ − 1)), c ∈ [0,1), α > 0, s ≥ 1,

(4.1)

(Tables 1 and 3). The choice of the number of degrees of free-
dom for Student t distributions is motivated by the recent em-
pirical works on heavy-tailedness that indicate that, for many
economic and financial time series, the tail index ζ lies in the
interval (2,4) (see Loretan and Phillips 1994; Gabaix et al.
2003, 2009). The benchmark case c = 0 in (4.1) corresponds
to the exact Pareto distributions (2.1), and the values ρ = 0
and θ = 0 model iid observations Zt. Similar to deviations of
γ from 1/2 in (2.4) and (2.5), the term c(s−αζ − 1) modeling
the departures from the power laws in (4.1) creates a bias in the
estimators b̂γ

n and d̂γ
n in regressions (1.3) and (1.4).

Tables 1 and 2 present the simulation results for the tradi-
tional OLS estimator b̂n of the tail index using regression (1.3)
with γ = 0. These tables also provide the comparisons of the
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Table 1. Behavior of the usual OLS estimator b̂n in the regression log(Rank) = a − b log(Size) for innovations deviating from power laws

Mean b̂n

AR(1) (OLS s.e.) (SD b̂n)

c ρ n 50 100 200 500

0 0 0.924* 0.944* 0.961* 0.978*
(0.024) (0.185) (0.014) (0.134) (0.008) (0.098) (0.004) (0.063)

0 0.5 1.082* 1.069* 1.073* 1.102*
(0.021) (0.296) (0.012) (0.244) (0.007) (0.195) (0.004) (0.145)

0 0.8 1.373* 1.271* 1.235* 1.235*
(0.034) (0.520) (0.019) (0.417) (0.011) (0.343) (0.006) (0.268)

0.5 0 0.925* 0.942* 0.960* 0.978*
(0.024) (0.181) (0.014) (0.132) (0.008) (0.098) (0.004) (0.063)

0.5 0.5 1.082* 1.067* 1.074* 1.104*
(0.020) (0.301) (0.012) (0.244) (0.007) (0.194) (0.004) (0.146)

0.5 0.8 1.379* 1.276* 1.226* 1.238*
(0.034) (0.512) (0.019) (0.412) (0.011) (0.343) (0.006) (0.266)

0.8 0 0.925* 0.945* 0.960* 0.978*
(0.024) (0.186) (0.014) (0.134) (0.008) (0.097) (0.004) (0.063)

0.8 0.5 1.084* 1.067* 1.069* 1.101*
(0.020) (0.297) (0.012) (0.239) (0.007) (0.195) (0.004) (0.145)

0.8 0.8 1.378* 1.270* 1.227* 1.238*
(0.034) (0.520) (0.019) (0.413) (0.011) (0.342) (0.006) (0.265)

MA(1)

c θ

0 0.5 0.988 0.993 1.003 1.032*
(0.024) (0.261) (0.014) (0.193) (0.009) (0.142) (0.004) (0.094)

0 0.8 0.989 0.994 1.011 1.034*
(0.030) (0.275) (0.017) (0.198) (0.010) (0.146) (0.005) (0.098)

0.5 0 0.926* 0.942* 0.961* 0.977*
(0.024) (0.182) (0.014) (0.133) (0.008) (0.099) (0.004) (0.063)

0.5 0.5 0.988 0.992 1.007 1.032*
(0.024) (0.259) (0.014) (0.193) (0.009) (0.142) (0.004) (0.095)

0.5 0.8 0.988 0.992 1.005 1.034*
(0.030) (0.274) (0.017) (0.196) (0.010) (0.145) (0.005) (0.098)

0.8 0 0.925* 0.944* 0.960* 0.978*
(0.024) (0.184) (0.014) (0.134) (0.008) (0.095) (0.004) (0.062)

0.8 0.5 0.991 0.993 1.005 1.030*
(0.024) (0.258) (0.014) (0.192) (0.009) (0.140) (0.004) (0.095)

0.8 0.8 0.990 0.991 1.006 1.033*
(0.030) (0.276) (0.017) (0.198) (0.010) (0.145) (0.005) (0.098)

NOTE: The entries are the estimates of the tail index and their standard errors using regression (1.3) with γ = 0 for the AR(1) and MA(1) processes Zt = ρZt−1 + ut, t ≥ 1,Z0 = 0,

and Zt = ut + θut−1, where iid ut follow the distribution P(u > s) = s−ζ (1 + c(s−αζ − 1)), s ≥ 1, with ζ = α = 1 and c ∈ [0,1). For a general case ζ > 0, one multiplies all the numbers

in the table by ζ . “Mean b̂n” is the sample mean of the estimates b̂n obtained in simulations, and “SD b̂n” is their sample standard deviation. “OLS s.e.” is the OLS standard error in
regression (1.3) with γ = 0. The asteric indicates rejection of the true null hypothesis H0 : ζ = 1 in favor of the alternative hypothesis Ha : ζ 	= 1 at the 5% significance level using the
reported OLS standard errors. The total number of observations N = 2000. Based on 10,000 replications.

OLS standard errors of the estimator with its true standard de-
viation. Tables 3 and 4 present the numerical results on the
performance of the OLS estimator b̂γ

n using modified regres-
sion (1.3) with γ = 1/2. In Tables 3 and 4, we also present
the standard errors of b̂γ

n with γ = 1/2 provided by expan-
sion (2.6) and compare them to the true standard deviation of
the estimator. The asterics in Tables 1–4 indicate rejection of
the true null hypothesis on the tail index H0 : ζ = ζ0 in favor
of the alternative hypothesis Ha : ζ 	= ζ0 at the 5% significance
level using the reported standard errors [ζ0 = 1 for innovations
that follow distributions (4.1) with ζ = α = 1 considered in
Tables 1 and 3 and ζ = m for innovations that have Student t

distributions with m = 2,3,4 degrees of freedom in Tables 2
and 4].

For instance, consider the class of exact Pareto iid observa-
tions, which is the first row in Tables 1 and 3, with n = 50
extreme observations included in estimation. Table 1 (column
n = 50, the first row) shows that the traditional OLS estimator
using regression (1.3) with γ = 0 yields an average of 0.924
(whereas the true tail index is 1), and the OLS standard error is
0.024, very far from the true standard deviation, 0.185. By con-
trast, the OLS estimator using regression (1.3) with γ = 1/2
proposed in this paper (Table 3, column n = 50, the first row)
and expansion (2.6) yield an average estimate of 1.011, and the
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Table 2. Behavior of the usual OLS estimator b̂n in the regression log(Rank) = a − b log(Size) for Student t innovations

Mean b̂n

AR(1) (OLS s.e.) (SD b̂n)

m ρ n 50 100 200 500

2 0 1.810* 1.809* 1.768* 1.524*
(0.045) (0.349) (0.026) (0.245) (0.014) (0.160) (0.010) (0.073)

2 0.5 1.993 1.986 1.932* 1.647*
(0.042) (0.454) (0.024) (0.351) (0.014) (0.247) (0.011) (0.115)

2 0.8 2.433* 2.334* 2.199* 1.796*
(0.053) (0.787) (0.031) (0.608) (0.019) (0.429) (0.015) (0.197)

3 0 2.560* 2.503* 2.342* 1.838*
(0.063) (0.473) (0.036) (0.312) (0.021) (0.192) (0.016) (0.079)

3 0.5 2.852* 2.777* 2.597* 1.992*
(0.065) (0.589) (0.037) (0.414) (0.022) (0.262) (0.019) (0.107)

3 0.8 3.632* 3.400* 3.044 2.179*
(0.084) (1.021) (0.049) (0.722) (0.032) (0.448) (0.024) (0.186)

4 0 3.151* 3.002* 2.729* 2.017*
(0.078) (0.546) (0.043) (0.350) (0.027) (0.205) (0.021) (0.083)

4 0.5 3.523* 3.358* 3.024* 2.162*
(0.083) (0.661) (0.047) (0.443) (0.030) (0.259) (0.024) (0.110)

4 0.8 4.546* 4.096 3.516* 2.334*
(0.112) (1.101) (0.065) (0.700) (0.043) (0.417) (0.030) (0.185)

MA(1)

m θ

2 0.5 1.927 1.927* 1.869* 1.602*
(0.044) (0.446) (0.025) (0.325) (0.015) (0.220) (0.011) (0.097)

2 0.8 1.978 1.951 1.894* 1.617*
(0.054) (0.524) (0.031) (0.368) (0.018) (0.242) (0.012) (0.104)

3 0.5 2.774* 2.697* 2.519* 1.944*
(0.064) (0.569) (0.036) (0.400) (0.022) (0.245) (0.018) (0.099)

3 0.8 2.916 2.792* 2.587* 1.974*
(0.075) (0.707) (0.042) (0.464) (0.025) (0.283) (0.019) (0.106)

4 0.5 3.430* 3.253* 2.944* 2.122*
(0.082) (0.649) (0.045) (0.428) (0.029) (0.244) (0.023) (0.099)

4 0.8 3.649* 3.419* 3.035* 2.159*
(0.092) (0.790) (0.052) (0.510) (0.033) (0.287) (0.025) (0.106)

NOTE: The entries are estimates of the tail index and their standard errors using regression (1.3) with γ = 0 for the AR(1) and MA(1) processes Zt = ρZt−1 + ut, t ≥ 1,Z0 = 0,

and Zt = ut + θut−1, where iid ut have the Student t distribution with m degrees of freedom. “Mean b̂n” is the sample mean of the estimates b̂n obtained in simulations, and “SD b̂n”
is their sample standard deviation. “OLS s.e.” is the OLS standard error in regression (1.3) with γ = 0. The asteric indicates rejection of the true null hypothesis on the tail index ζ of
Zt H0 : ζ = m in favor of the alternative hypothesis Ha : ζ 	= m at the 5% significance level using the reported OLS standard errors. The total number of observations N = 2000. Based on
10,000 replications.

standard error of 0.202, very close to the true standard devia-
tion, 0.199.

More generally, the OLS estimates b̂n of Pareto exponents
ζ using traditional regression (1.3) with γ = 0 reported in Ta-
bles 1 and 2 are significantly different from the true tail indices,
which means that b̂n is biased in small samples. According to
the same tables, the OLS standard errors in regression (1.3) with
γ = 0 are consistently smaller than the true standard deviations.
In most of the numerical results presented in Tables 1 and 2, the
true null hypothesis on the tail index H0 : ζ = ζ0 is rejected in
favor of the alternative hypothesis Ha : ζ 	= ζ0 at the 5% signifi-
cance level using the OLS standard errors.

In most of the entries in Tables 3 and 4, including depen-
dence and deviations from power tail distributions, the standard
errors in the regression with shifts γ = 1/2 are much closer to
the true standard deviations than in the case of the OLS stan-
dard errors reported in Tables 1 and 2. Comparing to the tradi-

tional regression in Tables 1 and 2, the approach illustrated by
Tables 3 and 4 rejects the true null hypothesis on the tail index
H0 : ζ = ζ0 significantly less often.

Additional simulation results show that regression (1.3) with
γ = 1/2 also performs well and dominates the choice γ = 0 for
GARCH processes. At the same time, it performs very similar
to (3.1) and thus may be preferable due to simplicity.

5. AN EMPIRICAL APPLICATION:
ZIPF’S LAW FOR CITIES

As an example, we study the distribution of city populations
(see also Gabaix and Landier 2008, where the estimation proce-
dures proposed in this paper are used to to confirm a Zipf’s law
for market capitalization of large firms). This example is, his-
torically, the first economic example of Zipf’s law (Zipf 1949),
which is the name of power law (1.1) with the tail exponent ζ

equal to 1. Zipf’s law is a regularity that has been exerting an
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Table 3. Behavior of the OLS estimator b̂γ
n with γ = 1/2 in the regression log(Rank − 1/2) = a − b log(Size)

for innovations deviating from power laws

Mean b̂γ=1/2
n

AR(1) (
√

2/n × Mean b̂γ=1/2
n ) (SD b̂γ=1/2

n )

c ρ n 50 100 200 500

0 0 1.011 1.001 0.998 0.998
(0.202) (0.199) (0.142) (0.139) (0.100) (0.100) (0.063) (0.063)

0 0.5 1.179 1.131 1.112 1.124
(0.236) (0.320) (0.160) (0.257) (0.111) (0.201) (0.071) (0.147)

0 0.8 1.487 1.340 1.277* 1.258*
(0.297) (0.564) (0.189) (0.439) (0.128) (0.354) (0.080) (0.272)

0.5 0 1.013 0.999 0.997 0.998
(0.203) (0.194) (0.141) (0.137) (0.100) (0.101) (0.063) (0.064)

0.5 0.5 1.179 1.129 1.113 1.127
(0.236) (0.326) (0.160) (0.257) (0.111) (0.200) (0.071) (0.147)

0.5 0.8 1.494 1.344 1.268* 1.262*
(0.299) (0.555) (0.190) (0.434) (0.127) (0.354) (0.080) (0.270)

0.8 0 1.013 1.003 0.997 0.998
(0.203) (0.200) (0.142) (0.139) (0.100) (0.099) (0.063) (0.063)

0.8 0.5 1.181 1.129 1.109 1.123
(0.236) (0.322) (0.160) (0.251) (0.111) (0.201) (0.071) (0.147)

0.8 0.8 1.493 1.338 1.269* 1.262*
(0.299) (0.565) (0.189) (0.435) (0.127) (0.353) (0.080) (0.269)

MA(1)

c θ

0 0.5 1.078 1.052 1.041 1.053
(0.216) (0.281) (0.149) (0.202) (0.104) (0.146) (0.067) (0.095)

0 0.8 1.078 1.052 1.049 1.054
(0.216) (0.296) (0.149) (0.207) (0.105) (0.149) (0.067) (0.099)

0.5 0 1.014 1.000 0.999 0.998
(0.203) (0.195) (0.141) (0.138) (0.100) (0.101) (0.063) (0.064)

0.5 0.5 1.078 1.051 1.046 1.053
(0.216) (0.279) (0.149) (0.202) (0.105) (0.146) (0.067) (0.096)

0.5 0.8 1.076 1.050 1.043 1.055
(0.215) (0.295) (0.148) (0.205) (0.104) (0.149) (0.067) (0.099)

0.8 0 1.013 1.002 0.998 0.998
(0.203) (0.198) (0.142) (0.140) (0.100) (0.098) (0.063) (0.063)

0.8 0.5 1.081 1.052 1.043 1.051
(0.216) (0.277) (0.149) (0.201) (0.104) (0.144) (0.066) (0.096)

0.8 0.8 1.079 1.049 1.044 1.054
(0.216) (0.297) (0.148) (0.207) (0.104) (0.149) (0.067) (0.099)

NOTE: The entries are estimates of the tail index and their standard errors using regression (1.3) with γ = 1/2 for the AR(1) and MA(1) processes Zt = ρZt−1 + ut, t ≥ 1,Z0 = 0,

and Zt = ut + θut−1, where iid ut follow the distribution P(Z > s) = s−ζ (1 + c(s−αζ − 1)), s ≥ 1, with ζ = α = 1 and c ∈ [0,1). For a general case ζ > 0, one multiplies all the

numbers in the table by ζ . “Mean b̂γ=1/2
n ” is the sample mean of the estimates b̂γ

n with γ = 1/2 obtained in simulations, and “SD b̂γ=1/2
n ” is their sample standard deviation. The values√

2/n × Mean b̂γ=1/2
n are the standard errors of b̂γ

n with γ = 1/2 provided by Theorem 2. The asteric indicates rejection of the true null hypothesis H0 : ζ = 1 in favor of the alternative
hypothesis Ha : ζ 	= 1 at the 5% significance level using the reported standard errors. The total number of observations N = 2000. Based on 10,000 replications.

enduring interest, because it appears to describe such diverse
phenomena as the frequency of words, the popularity of Inter-
net sites, the magnitude of earthquakes (see Li 2003), and the
size of firms (see Axtell 2001; Gabaix and Landier 2008).

As a U.S. example of a study of Zipf’s law for the cities
(in the upper tail at least, see Eeckhout 2004), we take, fol-
lowing Krugman (1996) and Gabaix (1999), all 135 Ameri-
can metropolitan areas listed in the Statistical Abstract of the
United States in the year 1991, which includes all agglomera-
tions with size above 250,000 inhabitants. The advantage is that
“metropolitan area” represents the agglomeration of the cities
(e.g., the metropolitan area of Boston includes Cambridge),

which is commonly viewed as the correct economic definition.
We rank cities from largest (rank 1) to smallest (rank n = 135),
and denote their sizes S(1) ≥ · · · ≥ S(n).

Regression (1.3) with γ = 1/2 estimated for the data is

log(t − 0.5) = 10.846 − 1.050 log S(t).

(0.128)

The number in the bracket is the standard error for the tail in-
dex (the slope coefficient b̂γ

n ) given by
√

2
n b̂n by Theorem 2.

Figure 1 shows the corresponding plot. To plot the correspond-
ing log-log graph of the counter-cumulative distribution func-
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Table 4. Behavior of the OLS estimator b̂γ
n with γ = 1/2 in the regression log(Rank − 1/2) = a − b log(Size) for Student t innovations

Mean b̂γ=1/2
n

AR(1) (
√

2/n × Mean b̂γ=1/2
n ) (True s.e.)

m ρ n 50 100 200 500

2 0 1.981 1.918 1.834 1.552*
(0.396) (0.374) (0.271) (0.255) (0.183) (0.164) (0.098) (0.074)

2 0.5 2.178 2.104 2.004 1.678*
(0.436) (0.489) (0.297) (0.367) (0.200) (0.253) (0.106) (0.116)

2 0.8 2.647 2.465 2.277 1.827
(0.529) (0.854) (0.349) (0.639) (0.228) (0.442) (0.116) (0.200)

3 0 2.798 2.651 2.427* 1.870*
(0.560) (0.507) (0.375) (0.325) (0.243) (0.196) (0.118) (0.080)

3 0.5 3.118 2.941 2.691 2.026*
(0.624) (0.633) (0.416) (0.431) (0.269) (0.268) (0.128) (0.108)

3 0.8 3.956 3.592 3.149 2.215*
(0.791) (1.104) (0.508) (0.756) (0.315) (0.459) (0.140) (0.189)

4 0 3.442 3.177 2.825* 2.051*
(0.688) (0.585) (0.449) (0.364) (0.282) (0.210) (0.130) (0.084)

4 0.5 3.848 3.553 3.130* 2.198*
(0.770) (0.710) (0.502) (0.461) (0.313) (0.265) (0.139) (0.112)

4 0.8 4.950 4.323 3.634 2.370*
(0.990) (1.188) (0.611) (0.732) (0.363) (0.427) (0.150) (0.188)

MA(1)

m θ

2 0.5 2.106 2.042 1.939 1.632*
(0.421) (0.480) (0.289) (0.339) (0.194) (0.225) (0.103) (0.098)

2 0.8 2.157 2.065 1.963 1.647*
(0.431) (0.564) (0.292) (0.384) (0.196) (0.248) (0.104) (0.105)

3 0.5 3.032 2.856 2.610 1.978*
(0.606) (0.612) (0.404) (0.417) (0.261) (0.251) (0.125) (0.100)

3 0.8 3.180 2.953 2.679 2.008*
(0.636) (0.761) (0.418) (0.483) (0.268) (0.289) (0.127) (0.107)

4 0.5 3.747 3.441 3.048* 2.157*
(0.749) (0.697) (0.487) (0.446) (0.305) (0.249) (0.136) (0.100)

4 0.8 3.977 3.613 3.140* 2.194*
(0.795) (0.849) (0.511) (0.531) (0.314) (0.293) (0.139) (0.108)

NOTE: The entries are estimates of the tail index and their standard errors using regression (1.3) with γ = 1/2 for the AR(1) and MA(1) processes Zt = ρZt−1 + ut, t ≥ 1,Z0 = 0,

and Zt = ut + θut−1, where iid ut have the Student t distribution with m degrees of freedom. For a general case ζ > 0, one multiplies all the numbers in the table by ζ . “Mean b̂γ=1/2
n ”

is the sample mean of the estimates b̂γ
n with γ = 1/2 obtained in simulations, and “SD b̂γ=1/2

n ” is their sample standard deviation. The values
√

2/n × Mean b̂γ=1/2
n are the standard

errors of b̂γ
n with γ = 1/2 provided by Theorem 2. The asteric indicates rejection of the true null hypothesis on the tail index ζ of Zt H0 : ζ = m in favor of the alternative hypothesis

Ha : ζ 	= m at the 5% significance level using the reported standard errors. The total number of observations N = 2000. Based on 10,000 replications.

tion log P(Size > x) vs log x we recommend to plot log(Size)
on the x axis, and log((Rank − 1/2)/(n − 1/2)) on the y axis,
rather than the more usual log(Rank/n).

Regression (1.4) with γ = 1/2 estimated for the data is

log S(t) = 10.244 − 0.930 log(t − 0.5),

producing the estimate of the tail index equal to 1/d̂γ
n ≈ 1.075

with the standard error given by
√

2
n

1
d̂n

≈ 0.131 by Theorem 2.

The estimates of the tail index are not statistically different from
1 at the 10% significance level, so that Zipf’s law for cities is
confirmed in this dataset.

6. CONCLUSION AND SUGGESTIONS
FOR FUTURE RESEARCH

The OLS log-log rank-size regression log(Rank) = a −
b log(Size) and related procedures are some of the most popu-

lar approaches to Pareto exponent estimation, with b taken as an
estimate of the tail index. Unfortunately, these procedures are
strongly biased in small samples. We provide a simple approach
to bias reduction based on the modified log-log rank-size re-
gression log(Rank − 1/2) = a − b log(Size). The shift of 1/2 is
optimal and reduces the bias to a leading order. We further show
that the standard error on the Pareto exponent ζ in this regres-
sion is asymptotically (2/n)1/2ζ, and obtain similar results for
the regression log(Size) = c−d log(Rank−1/2). The proposed
estimation procedures are illustrated using an empirical analy-
sis of the U.S. city size distribution. Simulation results indicate
that the proposed tail index estimation procedures perform well
under dependence and deviations from power law distributions.
They further demonstrate the advantage of the new methods
over the standard OLS log-log rank-size regressions.

An important open problem concerns asymptotic expansions
for the OLS tail index estimators and their biases for depen-
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Figure 1. Log(Population) vs. Log(Rank − 1/2) for the 135
metropolitan areas in the Statistical Abstract in the U.S., 1991. The
slope of the graph corresponds to the estimate of the slope in regres-
sion (1.3) with the optimal shift γ = 1/2, and is 1.050 (s.e. 0.128). It
is consistent with a Zipf’s law, that is, a power law distribution with
the tail index equal to 1. The online version of this figure is in color.

dent processes, including the autocorrelated time series consid-
ered in simulations. Combining the modified OLS estimation
approach with block-bootstrap and GARCH filters may be use-
ful in developing tail index estimation procedures under depen-
dence. In addition, unreported preliminary results suggest that
the OLS approaches to tail index estimation are more robust
than Hill’s estimator of a tail index under deviations from power
laws. Other important problems include the analysis of the op-
timal choice of the number n of extreme observations used in
estimation and the study of the asymptotic bias of the OLS es-
timators when n is determined by minimizing the asymptotic
mean square error. Analysis of these issues and comparisons of
the OLS tail index estimators with other procedures are left for
further research.

APPENDIX: PROOF OF THEOREMS 1 AND 2

Let Zt follow distribution (2.1), and let Z′
t = Zζ

t . As in (1.2),
denote by Z′

(1) ≥ · · · ≥ Z′
(n) decreasingly ordered variables Z′

t .

We have P(Z′
t > s) = P(Zt > s1/ζ ) = 1/s, s ≥ 1. Consequently,

Z′
t follow distribution (2.1) with ζ = 1. Evidently, for the loga-

rithms of ordered observations xt = log(Z(t)) and x′
t = log(Z′

(t))

one has xt = x′
t/ζ . Therefore, we get that the OLS estimators

b̂γ
n and d̂γ

n in (2.2) and (2.3) satisfy

b̂γ
n /ζ = −

∑n
t=1(x

′
t − x′

n)(yt − yn)∑n
t=1(x

′
t − x′

n)
2

,

ζ d̂γ
n = −

∑n
t=1(x

′
t − x′

n)(yt − yn)∑n
t=1(yt − yn)

2
.

This implies that it suffices to prove Theorems 1 and 2 for the
case ζ = 1. This will be assumed throughout the rest of the
appendix.

For the proof, we will need the following well-known results
provided by Lemmas 1–4. Lemma 1 gives the strong approxi-
mation to partial sums of independent r.v.’s that holds under the

assumption of the existence of a moment generating function in
a neighborhood of zero. It is provided by, for example, the re-
sults in Komlós, Major, and Tusnády (1975) (see also Komlós,
Major, and Tusnády 1976) and by theorem 2.6.1 on p. 107 in
Csörgő and Révész (1981).

In Lemma 1, the notation {S̃n;n = 1,2, . . .} =d {Sn;n =
1,2, . . .} means that {Sn} and {S̃n} are distributionally equiva-
lent in the sense that all finite-dimensional distributions of {Sn}
and {S̃n} are the same, that is, the distribution of the random
vector (St1 , . . . ,Stk) is the same as that of (S̃t1 , . . . , S̃tk) for all
1 ≤ t1 < t2 < · · · < tk, k ≥ 1.

Lemma 1. Let Xt, t ≥ 1, be a sequence of iid r.v.’s with
EXt = 0,EX2

t = 1 such that R(z) = E exp(zXt) exists in a neigh-
borhood of z = 0. Further, let Sn = ∑n

t=1 Xt,S0 = 0, stand for
the partial sums of Xt’s. A probability space (�,�,P) with a se-
quence {S̃n} and a standard Brownian motion W = (W(s), s ≥
0) on it can be so constructed that {S̃n;n = 1,2, . . .} =d {Sn;n =
1,2, . . .} and |S̃n − W(n)| = Oa.s.(log n).

Similar to Lemma 1, throughout the rest of the appen-
dix, W = (W(s), s ≥ 0) denotes a standard Brownian motion.
Lemma 2 concerns the modulus of continuity for Brownian
sample paths due to P. Lévy. The asymptotic relation in the
lemma is provided, for instance, by theorem 9.25 on p. 114 in
Karatzas and Shreve (1991), and by the results in Borodin and
Salminen (2002, p. 53).

Lemma 2. The following relation holds:

lim sup
δ→+0

1√
2δ log(1/δ)

sup
0≤t1,t2≤1

0<|t2−t1|<δ

|W(t2) − W(t1)| = 1 (a.s.).

(A.1)

Lemma 3 provides an estimate of the rate of growth of sums
of independent r.v.’s in terms of their variances. The lemma is
a consequence of theorem 6.17 and the discussion following it
on p. 222 in Petrov (1995).

In what follows, for a r.v. X with EX2 < ∞,Var(X) denotes
its variance.

Lemma 3. If ut, t ≥ 1, are independent r.v.’s such that Eu2
t <

∞, t ≥ 1, and Vn = Var(
∑n

t=1 ut) = ∑n
t=1 Var(ut) → ∞ as

n → ∞, then
∑n

t=1(ut − Eut) = oa.s.(V
1/2
n log Vn).

Lemma 4 below is provided by theorem 6.7 in Petrov (1995).

Lemma 4. Let at, t ≥ 1, be positive numbers such that a1 ≤
a2 ≤ a3 ≤ · · · and at → ∞ as t → ∞. If ut, t ≥ 1, are inde-
pendent r.v.’s such that

∑∞
t=1 Var(ut)/a2

t < ∞, then
∑n

t=1(ut −
Eut)/an → 0 a.s. as n → ∞.

The arguments for the following Lemmas 5–9 are provided
at the end of this appendix. We first formulate, in Lemma 5,
several asymptotic relations involving sums of logarithms. De-
note

Mn =
n−1∑
t=1

[
1

t

t∑
i=1

log(i − γ ) − 1

n

n∑
i=1

log(i − γ )

− log(t − γ ) + log(n − γ )

]2

, (A.2)
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Gn = 1√
n

[
n +

n∑
t=1

1

t

(
t∑

i=1

log(i − γ )

)

−
(

n∑
t=1

log(t − γ )

)]
, (A.3)

Hn = 1√
n

[
n∑

t=1

log2(t − γ ) − 1

n

(
n∑

t=1

log(t − γ )

)2

+
n∑

t=1

1

t

t∑
i=1

log(i − γ ) −
n∑

t=1

log(t − γ )

]
.

Lemma 5. For all γ < 1, the following relations hold:

n∑
t=1

log(t − γ ) = n log(n − γ ) − n

+
(

1

2
− γ

)
log(n − γ ) + O(1), (A.4)

n∑
t=1

log2(t − γ ) = (n − γ ) log2(n − γ )

− 2(n − γ ) log(n − γ ) + 2n

+ log2(n − γ )

2
+ O(1). (A.5)

n∑
t=1

log(t − γ )

t
= log2 n

2
+ o(log2 n), (A.6)

Mn = O(1), (A.7)

Gn = (1 − 2γ ) log2 n

4
√

n
+ o

(
log2 n√

n

)
, (A.8)

Hn = (2γ − 1) log2 n

4
√

n
+ o

(
log2 n√

n

)
. (A.9)

Relations (2.4) and (2.6) for ζ = 1 are consequences of (2.2)
and the asymptotic expansions for the statistics Aγ

n and Bn under
ζ = 1 provided by Lemmas 6 and 7.

Lemma 6. The following asymptotic expansions hold for
ζ = 1:

E(Aγ
n + Bn) = (1 − 2γ ) log2 n

4
+ o(log2 n), (A.10)

1√
n
(Aγ

n + Bn) = N (0,2) + OP

(
log2 n√

n

)
. (A.11)

Lemma 7. The following asymptotic relation holds for
ζ = 1:

Bn

n
= 1 + Oa.s.

(
log n√

n

)
. (A.12)

Similar to (2.4) and (2.6), asymptotic expansions (2.5) and
(2.7) for ζ = 1 follow from (2.3) and the asymptotic expansions
for the statistics Aγ

n and Dn under ζ = 1 provided by Lemmas 8
and 9.

Lemma 8. The following asymptotic expansions hold for
ζ = 1:

E(Aγ
n + Dn) = (2γ − 1) log2 n

4
+ o(log2 n), (A.13)

1√
n
(Aγ

n + Dn) = N (0,2) + OP

(
log2 n√

n

)
. (A.14)

Lemma 9. The following asymptotic relation holds for
ζ = 1:

Dn

n
= 1 + O

(
log2 n

n

)
. (A.15)

Proof of Lemma 5. Relations (A.4) and (A.5) follow from
Euler–Maclaurin summation formula with the remainder terms
that are O(1) for the sums in them (see, e.g., Havil 2003, p. 86).
Using again Euler–Maclaurin summation formula in a similar
way (or first-order integral approximations to partial sums), we
obtain (A.6). Denote Lt = 1

t

∑t
i=1 log(i−γ )− log(t −γ )+1−

( 1
2 − γ )

log(t−γ )
t . From (A.4) it follows that

Mn =
n−1∑
t=1

[
Lt − Ln +

(
1

2
− γ

)
log(t − γ )

t

−
(

1

2
− γ

)
log(n − γ )

n

]2

≤ C
n−1∑
t=1

L2
t + CnL2

n + C
n−1∑
t=1

[
log(t − γ )

t

]2

+ C

[
log2(n − γ )

n

]

≤ C
n−1∑
t=1

1

t2
+ C

n
+ C

n−1∑
t=1

[
log(t − γ )

t

]2

+ C

[
log2(n − γ )

n

]

≤ C.

Thus, (A.7) indeed holds. From (A.4) we further get

Gn = 1√
n

[
n +

n∑
t=1

log(t − γ ) − n +
(

1

2
− γ

) n∑
t=1

log(t − γ )

t

− n log(n − γ ) + n −
(

1

2
− γ

)
log(n − γ ) + O(log n)

]

= 1√
n

[
n log(n − γ ) − n +

(
1

2
− γ

)
log(n − γ )

+
(

1

2
− γ

) n∑
t=1

log(t − γ )

t
− n log(n − γ ) + n

−
(

1

2
− γ

)
log(n − γ ) + O(log n)

]

= 1√
n

(
1

2
− γ

) n∑
t=1

log(t − γ )

t
+ O

(
log n√

n

)
.

This, together with (A.6), implies (A.8). In a similar way, rela-
tion (A.9) follows from (A.4), (A.5), and (A.6).

D
ow

nl
oa

de
d 

by
 [

18
8.

30
.2

55
.1

46
] 

at
 0

3:
21

 2
7 

D
ec

em
be

r 
20

12
 



Gabaix and Ibragimov: Simple Way to Improve the OLS Estimation of Tail Exponents 33

Proof of Lemma 6. By the Rényi representation theorem [see
Beirlant et al. 2004, sections 4.2.1(iii) and 4.4], one has that,
for the logarithms xt = log Z(t) of ordered observations from a
population with the distribution satisfying power law (2.1), the
transformations

τt = t(xt − xt+1), t = 1, . . . ,n − 1,

are iid exponential r.v.’s with parameter 1: P(τt > s) = exp(−s),
s ≥ 0. That is, one can represent the regressors in (1.3) as
weighted sums of exponential r.v.’s in the following way:

xt = xn + zt, t = 1, . . . ,n,

where zn = 0 and zt = ∑n−1
i=t

τi
i , t = 1, . . . ,n−1. We, therefore,

get

Bn =
n∑

t=1

(xt − xn)
2 =

n∑
t=1

(xn + zt − xn − zn)
2

=
n∑

t=1

(zt − zn)
2 =

n−1∑
t=1

z2
t − nz2

n, (A.16)

and, similarly,

Aγ
n =

n∑
t=1

(xt − xn)(yt − yn)

=
n∑

t=1

(zt − zn)(yt − yn)

=
n−1∑
t=1

ztyt − nznyn. (A.17)

We further have

n−1∑
t=1

z2
t =

n−1∑
t=1

(
n−1∑
i=t

τi

i

)2

=
n−1∑
t=1

n−1∑
i=t

τ 2
i

i2
+ 2

n−1∑
t=1

n−2∑
i=t

τi

i

n−1∑
j=i+1

τj

j
.

(A.18)

Using a change of summation indices, we get

n−1∑
t=1

n−1∑
i=t

τ 2
i

i2
=

n−1∑
i=1

τ 2
i

i2

i∑
t=1

1

=
n−1∑
i=1

iτ 2
i

i2
=

n−1∑
i=1

τ 2
i

i
, (A.19)

n−1∑
t=1

n−2∑
i=t

τi

i

n−1∑
j=i+1

τj

j
=

n−1∑
j=2

τj

j

j−1∑
i=1

τi

i

i∑
t=1

1

=
n−1∑
j=2

τj

j

j−1∑
i=1

iτi

i
=

n−1∑
j=2

τj

j

j−1∑
i=1

τi. (A.20)

Relations (A.19) and (A.20), together with (A.18), imply

n−1∑
t=1

z2
t =

n−1∑
i=1

τ 2
i

i
+ 2

n−1∑
j=2

τj

j

j−1∑
i=1

τi. (A.21)

In addition,

nz2
n = 1

n

(
n−1∑
t=1

n−1∑
i=t

τi

i

)2

= 1

n

(
n−1∑
i=1

τi

)2

= 1

n

n−1∑
i=1

τ 2
i + 2

n

n−1∑
i=2

τi

i−1∑
j=1

τj, (A.22)

with the second equality obtained by a change of summation
indices similar to (A.19). Using (A.16), (A.21), and (A.22), we
get

Bn =
n−1∑
i=1

τ 2
i

i
+ 2

n−1∑
j=2

τj

j

j−1∑
i=1

τi − 1

n

n−1∑
i=1

τ 2
i − 2

n

n−1∑
i=2

τi

i−1∑
j=1

τj.

(A.23)

Similar to the above derivations, we have, using a change of
summation indices,

n−1∑
t=1

ztyt =
n−1∑
t=1

log(t − γ )

(
n−1∑
i=t

τi

i

)

=
n−1∑
t=1

τt

t

(
t∑

i=1

log(i − γ )

)
, (A.24)

nznyn =
(

n−1∑
t=1

n−1∑
i=t

τi

i

)(
1

n

n∑
t=1

log(t − γ )

)

=
(

n−1∑
t=1

τt

)(
1

n

n∑
t=1

log(t − γ )

)
. (A.25)

Relations (A.17), (A.24), and (A.25) imply

Aγ
n =

n−1∑
t=1

τt

t

(
t∑

i=1

log(i − γ )

)
−

(
n−1∑
t=1

τt

)(
1

n

n∑
t=1

log(t − γ )

)
.

(A.26)

From (A.23) and (A.26) we get

1√
n
(Aγ

n + Bn) = 1√
n

[
n−1∑
t=1

τt

t

(
t∑

i=1

log(i − γ )

)

−
(

n−1∑
t=1

τt

)(
1

n

n∑
t=1

log(t − γ )

)

+
n−1∑
i=1

τ 2
i

i
+ 2

n−1∑
j=2

τj

j

j−1∑
i=1

τi − 1

n

n−1∑
i=1

τ 2
i

− 2

n

n−1∑
i=2

τi

i−1∑
j=1

τj

]
. (A.27)
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Since τt, t ≥ 1, are iid r.v.’s with Eτt = 1, t ≥ 1, we obtain

E

(
2

n−1∑
j=2

τj

j

j−1∑
i=1

τi − 2

n

n−1∑
i=2

τi

i−1∑
j=1

τj

)
= n + O(log n), (A.28)

E

[
n−1∑
i=1

τ 2
i

i

]
= O(log n), (A.29)

E

[
1

n

n−1∑
i=1

τ 2
i

]
= O(1). (A.30)

Since, by (A.4),

1

n

n∑
t=1

log(t − γ ) = O(log n), (A.31)

from (A.27)–(A.30), it follows that

E(Aγ
n + Bn) =

n−1∑
t=1

1

t

(
t∑

i=1

log(i − γ )

)

− (n − 1)

(
1

n

n∑
t=1

log(t − γ )

)
+ n + O(log n)

= √
nGn + o(log2 n),

where Gn is defined in (A.3). This, together with (A.8), implies
(A.10).

Consider
2√
n

∑
1≤i<j≤n−1

τiτj

j
− 2

n3/2

∑
1≤i<j≤n−1

τiτj

= 2√
n

∑
1≤i<j≤n−1

τi(τj − 1)

j
+ 2√

n

∑
1≤i<j≤n−1

τi

j

− 2

n3/2

∑
1≤i<j≤n−1

τi(τj − 1) − 2

n3/2

∑
1≤i<j≤n−1

τi

= 2√
n

∑
1≤i<j≤n−1

(τi − 1)(τj − 1)

j

+ 2√
n

∑
1≤i<j≤n−1

τj − 1

j

+ 2√
n

∑
1≤i<j≤n−1

τi − 1

j
+ 2√

n

∑
1≤i<j≤n−1

1

j

− 2

n3/2

∑
1≤i<j≤n−1

(τi − 1)(τj − 1)

− 2

n3/2

∑
1≤i<j≤n−1

(τj − 1)

− 2

n3/2

∑
1≤i<j≤n−1

(τi − 1) − (n − 1)(n − 2)

n3/2
. (A.32)

Using a change of summation indices, we have that

2√
n

∑
1≤i<j≤n−1

1

j
− (n − 1)(n − 2)

n3/2
= √

n + O

(
log n√

n

)

and

2√
n

∑
1≤i<j≤n−1

τj − 1

j
− 2

n3/2

∑
1≤i<j≤n−1

(τi − 1)

− 2

n3/2

∑
1≤i<j≤n−1

(τj − 1)

= 2√
n

n−1∑
j=1

(τj − 1) − 2

n3/2

n−1∑
j=1

(τj − 1)(n − j)

− 2

n3/2

n−1∑
j=1

(τj − 1)j + OP

(
1√
n

)

= 2√
n

n−1∑
j=1

(τj − 1) − 2√
n

n−1∑
j=1

(τj − 1)

+ 2

n3/2

n−1∑
j=1

(τj − 1)j − 2

n3/2

n−1∑
j=1

(τj − 1)j + OP

(
1√
n

)

= OP

(
1√
n

)
.

From (A.32) it thus follows that

2√
n

∑
1≤i<j≤n−1

τiτj

j
− 2

n3/2

∑
1≤i<j≤n−1

τiτj

= 2√
n

∑
1≤i<j≤n−1

(τi − 1)(τj − 1)

j

− 2

n3/2

∑
1≤i<j≤n−1

(τi − 1)(τj − 1)

+ 2√
n

∑
1≤i<j≤n−1

τi − 1

j
+ √

n + OP

(
log n√

n

)
.

Using this relation, from (A.27) we now obtain

1√
n
(Aγ

n + Bn)

= 1√
n

n−1∑
t=1

(τt − 1)

[
1

t

(
t∑

i=1

log(i − γ )

)

−
(

1

n

n∑
i=1

log(i − γ )

)
+ 2

1

t

t−1∑
i=1

(τi − 1)

− 2

n

t−1∑
i=1

(τi − 1) + 2
n−1∑

j=t+1

1

j

]

+ Gn +
[

1√
n

n−1∑
i=1

τ 2
i

i
− 1

n3/2

n−1∑
i=1

τ 2
i

]

+ OP

(
log n√

n

)
, (A.33)
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where Gn is defined in (A.3). Relations (A.29), (A.30), and
Chebyshev’s inequality imply

1√
n

n−1∑
i=1

τ 2
i

i
= OP

(
log n√

n

)
, (A.34)

1

n3/2

n−1∑
i=1

τ 2
i = OP

(
1√
n

)
. (A.35)

In addition, it is not difficult to see that Var[∑n−1
t=1

τt−1
t ×∑t−1

i=1(τi − 1)] = O(
∑n

t=1
1
t ) = O(log n). This implies that

1√
n

n−1∑
t=1

τt − 1

t

t−1∑
i=1

(τi − 1) = OP

(√
log n

n

)
. (A.36)

Similarly, since Var[∑n−1
t=1 (τt − 1)

∑t−1
i=1(τi − 1)] = O(n2), we

get

1

n3/2

n−1∑
t=1

(τt − 1)

t−1∑
i=1

(τi − 1) = OP

(
1√
n

)
. (A.37)

Using relations (A.8) and (A.33)–(A.37), we obtain

1√
n
(Aγ

n + Bn)

= 1√
n

n−1∑
t=1

(τt − 1)

[
1

t

(
t∑

i=1

log(i − γ )

)

−
(

1

n

n∑
i=1

log(i − γ )

)
+ 2

n−1∑
j=t+1

1

j

]

+ 2√
n

n−1∑
t=1

τt − 1

t

t−1∑
i=1

(τi − 1)

− 2

n3/2

n−1∑
t=1

(τt − 1)

t−1∑
i=1

(τi − 1)

+ Gn + OP

(
log n√

n

)

= 1√
n

n−1∑
t=1

(τt − 1)

[
1

t

(
t∑

i=1

log(i − γ )

)

−
(

1

n

n∑
i=1

log(i − γ )

)
+ 2

n−1∑
j=t+1

1

j

]

+ Gn + OP

(
log n√

n

)

= 1√
n

n−1∑
t=1

(τt − 1)

[
1

t

(
t∑

i=1

log(i − γ )

)

−
(

1

n

n∑
i=1

log(i − γ )

)
+ 2

n−1∑
j=t+1

1

j

]

+ (1 − 2γ ) log2 n

4
√

n
+ oP

(
log2 n√

n

)

= − 1√
n

n−1∑
t=1

(τt − 1) log(t/n)

+ 1√
n

n−1∑
t=1

(τt − 1)

[
1

t

(
t∑

i=1

log(i − γ )

)

−
(

1

n

n∑
i=1

log(i − γ )

)
+ 2

n−1∑
j=t+1

1

j
+ log(t/n)

]

+ (1 − 2γ ) log2 n

4
√

n
+ oP

(
log2 n√

n

)
. (A.38)

Let us show that

Un = 1√
n

n−1∑
t=1

(τt − 1)

[
1

t

(
t∑

i=1

log(i − γ )

)

−
(

1

n

n∑
i=1

log(i − γ )

)
+ 2

n−1∑
j=t+1

1

j
+ log(t/n)

]

= OP

(
1√
n

)
.

We have

Var(
√

nUn)

=
n−1∑
t=1

[
1

t

(
t∑

i=1

log(i − γ )

)
−

(
1

n

n∑
i=1

log(i − γ )

)

− log(t − γ ) + log(n − γ ) + 2
n−1∑

j=t+1

1

j

+ 2 log(t/n) + log(1 − γ /t) − log(1 − γ /n)

]2

≤ C

(
Mn +

n−1∑
t=1

[log(1 − γ /t) − log(1 − γ /n)]2

+
n−1∑
t=1

[
n−1∑

j=t+1

1

j
+ log(t/n)

]2)

= C(Mn + Qn + Rn), (A.39)

where Mn is defined in (A.2), Rn = ∑n−1
t=1 [∑n−1

j=t+1
1
j + log(t/

n)]2, and

Qn =
n−1∑
t=1

[log(1 − γ /t) − log(1 − γ /n)]2. (A.40)

Using the inequality | log(1 − x)| ≤ 2|x|,−1/2 < x < 1/2,

one easily obtains that

Qn = O(1). (A.41)

Since, by integral approximations to partial sums [or by (3.5)],
|∑n−1

j=t+1
1
j + log(t/n)| ≤ C

t for all t and n, we also get that
Rn = O(1). Using (A.7) and the above relations, we conclude
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that Var(
√

nUn) = O(1). Thus, (A.39) indeed holds. We now
provide the argument for the relation

− 1√
n

n−1∑
t=1

(τt − 1) log(t/n) = √
2N (0,1) + OP

(
log2 n√

n

)

(A.42)

using strong approximations to partial sums of independent
r.v.’s by Brownian motion.

Using partial summation similar to the proof of lemma 2.3 in
Phillips (2007), we get (below, St = ∑t

i=1 ui and ui = τi − 1)

− 1√
n

n∑
t=1

ut log(t/n)

= − 1√
n

n∑
t=1

ut log t + log n
1√
n

n∑
t=1

ut

=
[
− log n

Sn√
n

+
n∑

t=2

(log t − log(t − 1))
St−1√

n

]

+ log n
Sn√

n

=
n∑

t=2

(log t − log(t − 1))
St−1√

n
. (A.43)

By Lemma 1, one can expand the probability space as nec-
essary to set up a partial sum process that is distributionally
equivalent to St and the standard Brownian motion W(·) on the
same space such that

sup
1≤t≤n

∣∣∣∣St−1√
n

− W

(
t − 1

n

)∣∣∣∣ = Oa.s.

(
log n√

n

)
. (A.44)

As conventional, throughout the rest of the proof we suppose
that that the probability space on which the random sequences
considered are defined has been appropriately enlarged so that
relation (A.44) holds. From (A.44) we get

n∑
t=2

(log t − log(t − 1))
St−1√

n

=
n∑

t=2

(log t − log(t − 1))W

(
t − 1

n

)

+ Oa.s.

(
log n√

n

) n∑
t=2

(log t − log(t − 1))

=
n∑

t=2

(log t − log(t − 1))W

(
t − 1

n

)

+ Oa.s.

(
log2 n√

n

)
. (A.45)

Let us consider the difference between
n∑

t=2

(log t − log(t − 1))W

(
t − 1

n

)

=
n∑

t=2

[
log

(
n

t

n

)
− log

(
n

t − 1

n

)]
W

(
t − 1

n

)

and
∫ 1

0 W(r)d log(nr). We have

∣∣∣∣∣
n∑

t=2

(log t − log(t − 1))W

(
t − 1

n

)

−
∫ 1

1/n
W(r)d log(nr)

∣∣∣∣∣
=

∣∣∣∣∣
n∑

t=2

[
(log t − log(t − 1))W

(
t − 1

n

)

−
∫ t/n

(t−1)/n
W(r)d log(nr)

]∣∣∣∣∣
≤

n∑
t=2

∫ t/n

(t−1)/n

∣∣∣∣W(r) − W

(
t − 1

n

)∣∣∣∣d log(nr)

≤ sup
0≤t1,t2≤1

0<|t2−t1|≤1/n

|W(t2) − W(t1)|
n∑

t=2

∫ t/n

(t−1)/n
d log(nr)

= sup
0≤t1,t2≤1

0<|t2−t1|≤1/n

|W(t2) − W(t1)|
n∑

t=2

(log t − log(t − 1))

= log n sup
0≤t1,t2≤1

0<|t2−t1|≤1/n

|W(t2) − W(t1)|. (A.46)

From Lemma 2 it follows that

sup
0≤t1,t2≤1

0<|t2−t1|≤1/n

|W(t2) − W(t1)| = Oa.s.

(√
log n√

n

)
. (A.47)

In addition, using integration by parts, it is not difficult to see
that

∫ 1/n

0
W(r)d log(nr) = OP

(
log n√

n

)
. (A.48)

From (A.45)–(A.48) and integration by parts it follows that

− 1√
n

n∑
t=1

log(t/n)ut

=
∫ 1

0
W(r)d log(nr) + OP

(
log2 n√

n

)

= −
∫ 1

0
log s dW(s) + OP

(
log2 n√

n

)
.

Since
∫ 1

0 log s dW(s) =d W(
∫ 1

0 log2 s ds) = W(2), we get that
(A.42) indeed holds [this relation also follows from (A.45),

Lemma 2, the relation 1
n

∑n
t=1 log2(t/n) = 2 + O(

log2 n
n ) im-

plied by (A.4) and (A.5), and the property that, similar to
(A.43),

∑n
t=2(log t − log(t − 1))W( t−1

n ) = −∑n
t=1(W( t

n ) −
W( t−1

n )) log(t/n)]. Relations (A.38), (A.39), and (A.42) imply
(A.11).
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Proof of Lemma 7. By (A.16), (A.21), and (A.22),

Bn

n
= 1

n

n−1∑
t=1

z2
t − z2

n

= 1

n

n−1∑
t=1

τ 2
t

t
+ 2

n

n−1∑
t=2

τt

t

t−1∑
i=1

τi − 1

n2

(
n−1∑
t=1

τt

)2

. (A.49)

Using Lemma 3 for iid exponential r.v.’s τt, t ≥ 1, with Vn =∑n
t=1 Var(τt) = n, we conclude that

1

n

n−1∑
i=1

τi = 1 + oa.s.

(
log n√

n

)
, (A.50)

and, consequently,

1

n2

(
n−1∑
t=1

τt

)2

= 1 + oa.s

(
log n√

n

)
. (A.51)

Using (A.50), we also obtain

2

n

n−1∑
t=2

τt

t

t−1∑
i=1

τi = 2

n

n−1∑
t=2

τt

(
1 + Oa.s.

(
log t√

t

))
. (A.52)

As is easy to see, 1
n

∑n−1
t=2

log t√
t

= O(
log n√

n
). Using Lem-

ma 3 for independent r.v.’s ut = τt
log t√

t
, t ≥ 1, with Vn =∑n

t=1 Var(ut) = ∑n
t=1

log2 t
t = O(log3 n), we also have 1

n ×∑n−1
t=2 (τt − 1)

log t√
t

= oa.s.(
log2 n

n ). Thus, 1
n

∑n−1
t=2 τt

log t√
t

=
Oa.s.(

log n√
n

). This, together with (A.50) and (A.52), implies that

2

n

n−1∑
t=2

τt

t

t−1∑
i=1

τi = 2 + Oa.s.

(
log n√

n

)
. (A.53)

We further have

1

n

n−1∑
t=1

τ 2
t

t
= 1

n

n−1∑
t=1

Eτ 2
t

t
+ 1

n

n−1∑
t=1

τ 2
t − Eτ 2

t

t

= 1

n

n−1∑
t=1

τ 2
t − Eτ 2

t

t
+ Oa.s.

(
log n

n

)
. (A.54)

Taking at = log t and ut = τ 2
t −Eτ2

t
t , t ≥ 1, we have∑∞

t=1 Var(ut)/a2
t = ∑∞

t=1
Var(τ 2

1 )

t2 log2 t
< ∞. Therefore, by Lemma 4,∑n−1

t=1 ut/an = ∑n−1
t=1

τ 2
t −Eτ2

t
t log n → 0 a.s. as n → ∞ and, con-

sequently, 1
n

∑n−1
t=1

τ 2
t −Eτ2

t
t = oa.s.(

log n
n ). This, together with

(A.54), implies that

1

n

n−1∑
t=1

τ 2
t

t
= Oa.s.

(
log n

n

)
. (A.55)

From (A.49), (A.51), (A.53), and (A.55) it follows that (A.12)
indeed holds.

Proof of Lemma 8. We have

Dn =
n∑

t=1

y2
t − ny2

n

=
n∑

t=1

log2(t − γ ) − 1

n

(
n∑

t=1

log(t − γ )

)2

. (A.56)

Using (A.26) and (A.56) we get, as in (A.38),

1√
n
(Aγ

n + Dn)

= 1√
n

[
n−1∑
t=1

τt

t

(
t∑

i=1

log(i − γ )

)

−
(

n−1∑
t=1

τt

)(
1

n

n∑
t=1

log(t − γ )

)

+
n∑

t=1

log2(t − γ ) − 1

n

(
n∑

t=1

log(t − γ )

)2]

= 1√
n

n−1∑
t=1

(τt − 1) log(t/n)

+ 1√
n

n−1∑
t=1

(τt − 1)

[
1

t

(
t∑

i=1

log(i − γ )

)

−
(

1

n

n∑
t=1

log(t − γ )

)
− log(t/n)

]

+ 1√
n

[
n∑

t=1

log2(t − γ ) − 1

n

(
n∑

t=1

log(t − γ )

)2

+
n∑

t=1

1

t

t∑
i=1

log(i − γ ) − n − 1

n

n∑
t=1

log(t − γ )

]
. (A.57)

This implies

E(Aγ
n + Dn) =

n∑
t=1

log2(t − γ ) − 1

n

(
n∑

t=1

log(t − γ )

)2

+
n∑

t=1

1

t

t∑
i=1

log(i − γ ) − n − 1

n

n∑
t=1

log(t − γ ).

From (A.9) and (A.31) it follows that (A.13) indeed holds. Let
us show that

Vn = 1√
n

n−1∑
t=1

(τt − 1)

[
1

t

(
t∑

i=1

log(i − γ )

)

−
(

1

n

n∑
t=1

log(t − γ )

)
− log(t/n)

]

= OP

(
1√
n

)
. (A.58)
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Similar to the arguments for (A.39), we get that the variance of
Vn satisfies

Var(
√

nVn) =
n−1∑
t=1

[
1

t

(
t∑

i=1

log(i − γ )

)

−
(

1

n

n∑
i=1

log(i − γ )

)
− log(t/n)

]2

≤ C(Mn + Qn),

where Mn is defined in (A.2) and Qn is defined in (A.40). Using
(A.7) and (A.41), we thus get that Var(

√
nVn) = O(1). Conse-

quently, (A.58) indeed holds. Relations (A.9), (A.42), (A.57),
and (A.58) imply (A.14).

Proof of Lemma 9. Relation (A.15) follows from (A.4),
(A.5), and representation (A.56).
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