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Abstract

We develop a simple estimator for production functions in the presence of endogenous
productivity change that allows us to retrieve productivity and its relationship with
R&D at the firm level. Our dynamic investment model can be viewed as a generalization
of the knowledge capital model (Griliches 1979) that has remained a cornerstone of the
productivity literature for more than 25 years. We relax the assumptions on the R&D
process and examine the impact of the investment in knowledge on the productivity of
firms.

We illustrate our approach on an unbalanced panel of more than 1800 Spanish man-
ufacturing firms in nine industries during the 1990s. Our findings indicate that the link
between R&D and productivity is subject to a high degree of uncertainty, nonlinearity,
and heterogeneity across firms. Abstracting from uncertainty and nonlinearity, as is
done in the knowledge capital model, or assuming an exogenous process for productiv-
ity, as is done in the recent literature on structural estimation of production functions,
overlooks some of its most interesting features.

1 Introduction

Firms invest in R&D and related activities to develop and introduce process and product
innovations. By enhancing their productivity these investments in knowledge create long-
lived assets for firms, similar to their investments in physical capital. Our goal in this paper
is to assess the role of R&D in determining the differences in productivity across firms and
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the evolution of firm-level productivity over time. To achieve this goal, we have to estimate
the parameters of the production function and retrieve productivity at the level of the firm.

Perhaps the major obstacle in production function estimation is that the decisions that
a firm makes depend on its productivity. Because the productivity of the firm is un-
observed by the econometrician, this gives rise to an endogeneity problem (Marschak &
Andrews 1944). Intuitively, if a firm adjusts to a change in its productivity by expanding
or contracting its production depending on whether the change is favorable or not, then
unobserved productivity and input usage are correlated and biased estimates result.

Recent advances in the structural estimation of production functions, starting with
the dynamic investment model of Olley & Pakes (1996) (hereafter OP), tackle this issue.
The insight of OP is that if (observed) investment is a monotone function of (unobserved)
productivity, then this function can be inverted to back out productivity. Controlling for
productivity resolves the endogeneity problem as well as, eventually, the selection problem
that may arise if a firm’s decision to exit the industry depends on its productivity.1 In
addition to OP, this line of research includes contributions by Levinsohn & Petrin (2003)
(hereafter LP) and Ackerberg, Caves & Frazer (2005) (hereafter ACF) as well as a long list
of applications.

Common to the extant literature is the assumption that any changes in its productivity
are exogenous to the firm. But if productivity is assumed to evolve independently of R&D,
then this rules out that a firm invests in R&D in the first place. This makes the available
estimators ill-suited to study the link between R&D and productivity. Indeed, their foremost
application has been the analysis of changes in productivity in response to exogenous shocks
such as deregulation (e.g., OP) or trade liberalization (e.g., Pavcnik 2002, Topalova 2004).

In this paper, we develop a dynamic model that accounts for investment in knowledge,
thereby endogenizing productivity change, and derive a simple estimator for production
functions in this setting. We use our approach to study the relationship between R&D
and productivity in Spanish manufacturing firms during the 1990s. We particularly pay
attention to the uncertainties and nonlinearities in the R&D process and their implications
for heterogeneity across firms.

We start by modeling a firm that can invest in R&D in order to improve its productivity
over time in addition to carrying out a series of investments in physical capital. Both
investment decisions depend on the current productivity and capital stock of the firm. The
evolution of productivity is subject to random shocks. We interpret these innovations to
productivity as representing the resolution over time of all uncertainties. They capture the
factors that have a persistent influence on productivity such as absorption of techniques,
modification of processes, and gains and losses due to changes in labor composition and
management abilities. R&D governs the evolution of productivity up to an unpredictable

1See Griliches & Mairesse (1998) and Ackerberg, Benkard, Berry & Pakes (2005) for reviews of the
problems involved in the estimation of production functions.
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component. Hence, for firms that engage in R&D, the productivity innovations additionally
capture the uncertainties inherent in the R&D process such as chance in discovery and
success in implementation. Productivity thus follows a first-order Markov process that can
be shifted by R&D expenditures. Subsequently decisions on variable (or “static”) inputs
such as labor and materials are taken according to the current productivity and capital
stock of the firm.

Next we develop a simple estimator for production functions that can accommodate
the controlled Markov process that results from the impact of R&D on the evolution of
productivity. Endogenizing the productivity process by incorporating R&D expenditures
into the dynamic investment model of OP is difficult as Buettner (2005) has shown (see
Section 3 for details). We use the fact that decisions on variable inputs are based on current
productivity, similar to LP and ACF. These inputs are chosen with current productivity
known and therefore contain information about it. The resulting input demands are invert-
ible functions of unobserved productivity (as first shown by LP). This enables us to control
for productivity and obtain consistent estimates of the parameters of the production func-
tion. We differ from the previous literature in that we recognize that, given a parametric
specification of the production function, the functional form of these inverse input demand
functions is known. Because we make full use of the structural assumptions, we do not have
to rely on nonparametric methods to estimate the inverse input demand function. This
renders identification and estimation more tractable. It also yields efficiency gains.

Of course, it has long been recognized that the productivity process is endogenous.
Griliches (1979), in particular, proposed to augment the production function with the stock
of knowledge as proxied for by a firm’s past R&D expenditures. This knowledge capital
model has remained a cornerstone of the productivity literature for more than 25 years
and has been applied in hundreds of empirical studies on firm-level productivity and also
extended to macroeconomic growth models (see Griliches (1995) for a comprehensive sur-
vey).2 While useful as a practical tool, the knowledge capital model has a long list of
known drawbacks as explained, for example, in Griliches (2000). The critical (but implicit)
assumptions of the basic model include the linear and certain accumulation of knowledge
from period to period in proportion to R&D expenditures as well as the linear and certain
depreciation.

The link between R&D and productivity, however, is much more complex. The outcome
of the R&D process is likely to be subject to a high degree of uncertainty. Discovery is, by
its very nature, uncertain. Once discovered an idea has to be developed and applied, and
there are the technical and commercial uncertainties linked to its practical implementation.

2See Hall & Mairesse (1995) for a classic application. The knowledge capital model has evolved in many
directions. Pakes & Schankerman (1984a) modeled the creation of knowledge by specifying a production
function in terms of R&D capital and R&D labor. Jaffe (1986) initiated ways of accounting for the ap-
propriability of the external flows of knowledge or spillovers. For recent examples see Griffith, Redding &
Van Reenen (2004) or Griffith, Harrison & Van Reenen (2006).
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In addition, current and past investments in knowledge are likely to interact with each other
in many ways. For example, there is evidence of complementarities in the accumulation of
knowledge (Klette 1996). In general, there is little reason to believe that this and other
features such as economies of scale can be adequately captured by simple functional forms.

Our dynamic investment model can be viewed as a generalization of the knowledge cap-
ital model. In particular, we recognize the uncertainties in the R&D process in the form of
shocks to productivity. We model the interactions between current and past investments
in knowledge in a flexible fashion. Furthermore, we relax the assumption that the obsoles-
cence of previously acquired knowledge can be described by a constant rate of depreciation.
This allows us to more closely assess the impact of the investment in knowledge on the
productivity of firms.

We apply our estimator to an unbalanced panel of more than 1800 Spanish manufac-
turing firms in nine industries during the 1990s. The data refute the assumptions at the
heart of the knowledge capital model. To begin with, the R&D process must be treated
as inherently uncertain. We estimate that, depending on the industry, between 20% and
50% of the variance in actual productivity is explained by productivity innovations that
cannot be predicted when decisions on R&D expenditures are made. Our estimates further
imply that the return to R&D is often twice that of the return to investment in physical
capital. This suggests that the uncertainties inherent in the R&D process are economically
significant and matter for firms’ investment decisions.

While the relationship between current productivity, R&D expenditures, and future
productivity takes a simple separable form in some cases, in most cases the impact of
current R&D on future productivity depends crucially on current productivity. There is
evidence of complementarities as well as increasing returns to R&D. Moreover, the data
very clearly reject the functional form restrictions implied by the knowledge capital model,
thus casting doubt on the linearity assumption in the accumulation and depreciation of
knowledge.

Capturing the uncertainties in the R&D process also paves the way for heterogeneity
across firms. Whereas firms with the same time path of R&D expenditures have necessarily
the same productivity in the knowledge capital model, in our setting this is no longer the
case because we allow the shocks to productivity to accumulate over time. This gives us
the ability to assess the role of R&D in determining the differences in productivity across
firms and the evolution of firm-level productivity over time.

Despite the uncertainties in the R&D process, the expected productivity of firms that
perform R&D is systematically more favorable in the sense that their distribution of ex-
pected productivity tends to stochastically dominate the distribution of firms that do not
perform R&D. Assuming that the productivity process is exogenous takes a sort of average
over firms with distinct innovative activities and hence blurs remarkable differences in the
impact of the investment in knowledge on the productivity of firms. In addition, we esti-
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mate that the contribution of firms that perform R&D explains between 45% and 85% of
productivity growth in the industries with intermediate or high innovative activity. R&D
expenditures are thus a primary source of productivity growth.

Our analysis further implies that productivity is considerably more fluid than what
the knowledge capital literature suggests. Our model allows us to recover the entire dis-
tribution of the elasticity of output with respect to R&D expenditures—a measure of the
return to R&D—as well as that of the elasticity of output with respect to already attained
productivity—a measure of the degree of persistence in the productivity process. On aver-
age we obtain higher elasticities with respect to R&D expenditures than in the knowledge
capital model and lower elasticities with respect to already attained productivity. Hidden
behind these averages, however, is a substantial amount of heterogeneity across firms.

Our findings not only shed light on the link between R&D and productivity, but po-
tentially also have implications for the design of R&D policy. While a fuller exploration is
left to future research, we note here that in the knowledge capital model an extra dollar of
R&D yields an extra unit of knowledge. Because this is no longer the case in the presence
of a nonlinearity, the allocation of subsidies suddenly becomes important. Next, if uncer-
tainty inhibits firms’ investments in R&D, then a case can be made for R&D policy to be
directed towards providing insurance against particularly unfavorable outcomes. Finally,
R&D policy has distributional consequences in the presence of heterogeneity as some firms
gain while others lose.

Overall, the link between R&D and productivity is subject to a high degree of un-
certainty, nonlinearity, and heterogeneity across firms. Abstracting from uncertainty and
nonlinearity, as is done in the knowledge capital model, or assuming an exogenous process
for productivity, as is done in the literature following OP, overlooks some of its most inter-
esting features.

2 A model for investment in knowledge

A firm carries out two types of investments, one in physical capital and another in knowledge
through R&D expenditures. The investment decisions are made in a discrete time setting
with the goal of maximizing the expected net present value of future cash flows. The firm
has the Cobb-Douglas production function

yjt = β0 + βlljt + βkkjt + ωjt + ejt,

where yjt is the log of output of firm j in period t, ljt the log of labor, and kjt the log
of capital. We follow the convention that lower case letters denote logs and upper case
letters levels and focus on a value-added specification to simplify the exposition. Capital
is the only fixed (or “dynamic”) input among the conventional factors of production, and
accumulates according to Kjt = (1 − δ)Kjt−1 + Ijt−1. This law of motion implies that
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investment Ijt−1 chosen in period t−1 becomes productive in period t. The productivity of
firm j in period t is ωjt. We follow OP and often refer to ωjt as “unobserved productivity”
since it is unobserved from the point of view of the econometrician (but known to the firm).
Productivity is presumably highly correlated over time and perhaps also across firms. In
contrast, ejt is a mean zero random shock that is uncorrelated over time and across firms.
The firm does not know the value of ejt at the time it makes its decisions for period t.

The assumption usually made about productivity (see OP, LP, and the subsequent liter-
ature) is that it follows an exogenous first-order Markov process with transition probabilities
P (ωjt|ωjt−1). This rules out that the firm spends on R&D and related activities. However,
investment in knowledge has always been thought of as aimed at modifying productivity for
given conventional factors of production (see, e.g., the tradition started by Griliches (1979)).
Our goal is thus to assess the role of R&D in determining the differences in productivity
across firms and the evolution of firm-level productivity over time.

We therefore consider productivity to be governed by a controlled first-order Markov
process with transition probabilities P (ωjt|ωjt−1, rjt−1), where rjt−1 is the log of R&D
expenditures. The Bellman equation for the firm’s dynamic programming problem is

V (kjt, ωjt) = max
ijt,rjt

π(kjt, ωjt)− ci(ijt)− cr(rjt) +
1

1 + ρ
E [V (kjt+1, ωjt+1)|kjt, ωjt, ijt, rjt] ,

where π(·) denotes per-period profits and ρ is the discount rate. In the simplest case the cost
functions ci(·) and cr(·) just transform logs into levels, but their exact forms are irrelevant
for our purposes.

The dynamic problem gives rise to two policy functions, i(kjt, ωjt) and r(kjt, ωjt) for the
investments in physical capital and knowledge, respectively. The main difference between
the two types of investments is that they affect the evolution of different state variables,
i.e., either the capital stock kjt or the productivity ωjt of the firm.

When the decision about investment in knowledge is made in period t − 1, the firm
is only able to anticipate the expected effect of R&D on productivity in period t. The
Markovian assumption implies

ωjt = E [ωjt|ωjt−1, rjt−1] + ξjt = g(ωjt−1, rjt−1) + ξjt.

That is, actual productivity ωjt in period t can be decomposed into expected productivity
g(ωjt−1, rjt−1) and a random shock ξjt. Our key assumption is that the impact of R&D
on productivity can be expressed through the dependence of the conditional expectation
function g(·) on R&D expenditures. In contrast, ξjt does not depend on R&D expenditures.
This productivity innovation may be thought of as the realization of the uncertainties that
are naturally linked to productivity plus the uncertainties inherent in the R&D process (e.g.,
chance in discovery, degree of applicability, success in implementation). It is important
to stress the timing of decisions in this context: When the decision about investment in
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knowledge is made in period t − 1, the firm is only able to anticipate the expected effect
of R&D on productivity in period t as given by g(ωjt−1, rjt−1) while its actual effect also
depends on the realization of the productivity innovation ξjt that occurs after the investment
has been completely carried out. Of course, the conditional expectation function g(·) is
unobserved from the point of view of the econometrician (but known to the firm) and must
be estimated nonparametrically.

If we consider a ceteris paribus increase in R&D expenditures that changes ωjt to ω̃jt,
then ω̃jt−ωjt approximates the effect of this change in productivity on output in percentage
terms, i.e., (Ỹjt−Yjt)/Yjt = exp(ω̃jt−ωjt)− 1 ' ω̃jt−ωjt. That is, the change in ωjt shifts
the production function and hence measures the change in total factor productivity. Also
g(·) and ξjt can be interpreted in percentage terms and decompose the change in total factor
productivity. Finally, ∂ωjt

∂rjt−1
= ∂g(ωjt−1,rjt−1)

∂rjt−1
is the elasticity of output with respect to R&D

expenditures.
Our setting encompasses as a particular case the knowledge capital model (see Griliches

(1979, 2000)). In this model, a conventional Cobb-Douglas production function is aug-
mented by including the log of knowledge capital cjt as an extra input yielding

yjt = β0 + βlljt + βkkjt + εcjt + ejt, (1)

where ε is the elasticity of output with respect to knowledge capital. Knowledge capital is
assumed to accumulate with R&D expenditures and to depreciate from period to period at
a rate δ. Hence, its law of motion can be written as

Cjt = (1− δ)Cjt−1 + Rjt−1 = Cjt−1

(
1− δ +

Rjt−1

Cjt−1

)
.

Taking logs we have

cjt ' cjt−1 +
(

Rjt−1

Cjt−1
− δ

)
,

where Rjt−1

Cjt−1
is the rate of investment in knowledge. Letting ωjt = εcjt it is easy to see that

ωjt ' ωjt−1 + ε

(
exp(rjt−1)

exp(ωjt−1/ε)
− δ

)
(2)

and hence ωjt = g(ωjt−1, rjt−1). That is, the “classical” accumulation of knowledge capital
induces a particular expression for the conditional expectation function g(·) that depends
on both productivity and R&D expenditures in the previous period.

The knowledge capital model ignores that the accumulation of improvements to produc-
tivity is likely to be subjected to shocks. To capture this assume that the effect of the rate of
investment in knowledge has an unpredictable component ξjt. The law of motion becomes
Cjt = Cjt−1

(
1− δ + Rjt−1

Cjt−1
+ 1

εξjt

)
. This simple extension causes the law of motion of pro-
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ductivity to be ωjt = g(ωjt−1, rjt−1) + ξjt, which turns out to be our controlled first-order
Markov process. Therefore, a useful way to think of our setting is as a generalization of the
knowledge capital model to the more realistic situation of uncertainty in the R&D process.3

In addition, our setting overcomes other problems of the knowledge capital model, in
particular the linear accumulation of knowledge from period to period in proportion to
R&D expenditures and the linear depreciation. The absence of functional form restrictions
on the combined impact of R&D and already attained productivity on future productivity
is an important step in the direction of relaxing all these assumptions. Of course, there is a
basic difference between the two models. In the case of the knowledge capital model, given
data on R&D and a guess for the initial condition, one must be able to construct the stock
of knowledge capital at all times and with it control for the impact of R&D on productivity.
In our setting, in contrast, the random nature of accumulation and the unspecified form of
the law of motion prevents the construction of the “stock of productivity,” which remains
unobserved. Consequently, no guess for the initial condition is required. Moreover, our
empirical strategy takes into account that the endogeneity problem in production function
estimation may not be completely resolved by adding the stock of knowledge capital to the
conventional factors of production.

3 Empirical strategy

Our model relaxes the assumption of an exogenous Markov process for productivity. As
emphasized in Ackerberg, Benkard, Berry & Pakes (2005), making this process endogenous
is problematic for the standard estimation procedures. First, it tends to invalidate the usual
instrumental variables approaches. Given an exogenous Markov process, input prices are
natural instruments for input quantities. Since all quantities depend on all prices, this is,
however, no longer the case if the transitions from current to future productivity are affected
by the choice of an additional unobserved “input” such as R&D. Second, the absence of
data on R&D implies that a critical determinant of the probability distribution of ωjt given
ωjt−1 is missing. Recovering ωjt from kjt, ijt, and their lags, the key step in OP, may thus
be difficult.

Buettner (2005) extends the OP approach by studying a model similar to ours while
assuming transition probabilities for unobserved productivity of the form P (ωjt|ψt), where

3We note that there are ways of introducing uncertainty into the knowledge capital model, although there
are few such attempts in the literature. Borrowing from the dynamic investment model of Hall & Hayashi
(1989), let the law of motion for the log of knowledge capital be cjt = (1 − δ)cjt−1 + Rjt−1 + ξjt. Then
cjt = (1−δ)tc0+

Pt
τ=1(1−δ)t−τRjτ−1+

Pt
τ=1(1−δ)t−τξjτ can be split into a deterministic and a stochastic

part that is incorporated into the error term of the estimation equation. In this case, however, using R&D
expenditures as a proxy for the stock of knowledge gives rise to an endogeneity problem that invalidates the
traditional estimation strategies such as running OLS on first-differences of logs. A further problem is that
the ability to split the log of knowledge capital into a deterministic and a stochastic part relies heavily on
functional form. In particular, it is no longer possible if, as is customary in the literature, the law of motion
for the level of knowledge capital is assumed to be linear.
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ψt = ψ(ωjt−1, rjt−1) is an index that orders the probability distributions for ωjt. The restric-
tion to an index excludes the possibility that current productivity and R&D expenditures
affect future productivity in qualitatively different ways. Under certain assumptions it en-
sures that the policy function for investment in physical capital is still invertible and that
unobserved productivity can hence still be written as an unknown function of the capital
stock and the investment as ωjt = h(kjt, ijt). Buettner (2005) further notes, however, that
there are problems with identification even when data on R&D is available.

Our estimation procedure solves entirely the identification problem when there is data on
R&D by using a known function h(·) that is derived from the demand for variable inputs such
as labor and materials in order to recover unobserved productivity. These variable inputs
are chosen with current productivity known, and therefore contain information about it.
This allows us to back out productivity without making assumptions on the firm’s dynamic
investment problem. In particular, our approach does not rely on an index and frees up
the relationship between current productivity, R&D expenditures, and future productivity.
It can also solve potentially the identification problem when there is no data on R&D but
this point needs further research.4

While our approach pertains to production functions that are written in terms of either
gross output or value added, in what follows we focus on the value added case for the sake
of simplicity. The extension to the gross output case is straightforward.

Given the Cobb-Douglas production function yjt = β0 + βlljt + βkkjt + ωjt + ejt, the
assumption that the firm chooses labor based on the expectation E(ejt) = 0 gives the
demand for labor as

ljt =
1

1− βl
(β0 + lnβl + βkkjt + ωjt − (wjt − pjt)) . (3)

Solving for ωjt we obtain the inverse labor demand function

h(ljt,kjt,wjt − pjt) = λ0 + (1− βl)ljt − βkkjt + (wjt − pjt),

where λ0 combines the constant terms −β0 and − lnβl and (wjt − pjt) is the relative wage
(homogeneity of degree zero in prices). From hereon we call h(·) the inverse labor demand
function and use hjt as shorthand for its value h(ljt,kjt,wjt − pjt).

Substituting the inverse labor demand function h(·) for ωjt in the production function
cancels out parameters of interest and leaves us with the marginal productivity condition
for profit maximization, i.e., lnβl + (yjt − ljt) = wjt − pjt + ejt. Using its value in period

4Muendler (2005) suggests to use investment in physical capital interacted with industry-specific com-
petition variables to proxy for endogenously evolving productivity. His rationale is that firms make R&D
decisions in light of their expectations about future market prospects. Hence, in the absence of data on
R&D, these competition variables should to some extent capture the drivers of R&D decisions.
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t− 1 in the controlled Markov process, however, we have

yjt = β0 + βlljt + βkkjt + g(h(ljt−1, kjt−1, wjt−1 − pjt−1), rjt−1) + ξjt + ejt. (4)

Both kjt, whose value is determined in period t− 1 by it−1, and rjt−1 are uncorrelated with
ξjt by virtue of our timing assumptions. Only ljt is correlated with ξjt (since ξjt is part
of ωjt and ljt is a function of ωjt). Nonlinear functions of the other variables can be used
as instruments for ljt, as can be lagged values of ljt and the other variables. If firms can
be assumed to be perfectly competitive, then current wages and prices are exogenous and
constitute the most adequate instruments (since demand for labor is directly a function of
current wages and prices).

As noted by LP and ACF, backing out unobserved productivity from the demand for
either labor or materials is a convenient alternative to backing out unobserved productivity
from investment as in OP. In the tradition of OP, however, LP and ACF use nonparametric
methods to estimate the inverse input demand function. This forces them either to rely on a
two-stage procedure or to jointly estimate a system of equations as suggested by Wooldridge
(2004). The drawback of the two-stage approach is a loss of efficiency whereas the joint
estimation of a system of equations is numerically more demanding (see Ackerberg, Benkard,
Berry & Pakes (2005) for a discussion of the relative merits of the two approaches).

We differ from the previous literature in that we recognize that the parametric specifica-
tion of the production function implies a known form for the inverse labor demand function
h(·) that can be used to control for unobserved productivity. As a consequence, only the
conditional expectation function g(·) is unknown and must be estimated nonparametrically.
This yields efficiency gains. In addition, because we make full use of the structural assump-
tions, we have but a single equation to estimate, thus easing the computational burden. A
drawback of our approach is that, in principle, it requires firm-level wage and price data to
estimate the model, although the model remains identified, however, if the log of relative
wage is replaced by a set of dummies.5

Apart from the presence of R&D expenditures, our estimation equation (4) is simi-
lar in structure to the second equation of OP and LP when viewed through the lens of
Wooldridge’s (2004) GMM framework. In our setting the first equation of OP and LP is
the marginal productivity condition for profit maximization. We note that combining it
with our estimating equation (4) may help to estimate the labor coefficient, but this point
needs further research.

Our model nests, as a particular case, the dynamic panel model proposed by Blundell
& Bond (2000). Suppose the Markov process is simply an autoregressive process that does
not depend on R&D expenditures so that we have g(ωjt−1) = ρωjt−1. Using the marginal
productivity condition for profit maximization to substitute ρyjt−1 for ρ(− ln βl + (wjt−1 −

5This may be an appropriate solution in the absence of wage and price data if the industry can be
considered perfectly competitive.
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pjt−1) + ljt−1), we are in the Blundell & Bond (2000) specification. Hence, the differences
between their and our approach lie in the generality of the assumption on the Markov
process and the strategy of estimation. In the tradition of OP and LP our method basically
proposes the replacement of unobservable autocorrelated productivity by an expression in
terms of observed variables and an unpredictable component, whereas their method models
the same term through the use of lags of the dependent variable (see ACF for a detailed
description of these two literatures).

Below we discuss how imperfect competition can be taken into account and the likelihood
of sample selection. Then we turn to identification, estimation, and testing.

Imperfect competition. Until now we have assumed a perfectly competitive environ-
ment. But when firms have some market power, say because products are differentiated,
then output demand enters the specification of the inverse input demand functions (see, e.g.,
Jaumandreu & Mairesse 2005). Consider firms facing a downward sloping demand function
that depends on the price of the output Pjt and the demand shifters Zjt. Profit maxi-
mization requires that firms set the price that equates marginal cost to marginal revenue
Pjt

(
1− 1

η(pjt,zjt)

)
, where η(·) is the absolute value of the elasticity of demand evaluated at

the equilibrium price and the particular value of the demand shifter and, for convenience, is
written as a function of pjt = ln Pjt and zjt = ln Zjt. With firms minimizing costs, marginal
cost and conditional labor demand can be determined from the cost function and combined
with marginal revenue to give the inverse labor demand function

hIC(ljt, kjt, wjt − pjt, pjt, zjt) = λ0 + (1− βl)ljt − βkkjt + (wjt − pjt)− ln
(

1− 1
η(pjt, zjt)

)
.

Thus, the estimation equation is

yjt = β0 + βlljt + βkkjt + g

(
hjt−1 − ln

(
1− 1

η(pjt−1, zjt−1)

)
, rjt−1

)
+ ξjt + ejt. (5)

As both pjt and zjt enter the equations lagged they are expected to be uncorrelated with
the productivity innovation ξjt.6

Sample selection. A potential problem in the estimation of production functions is sam-
ple selection. If a firm’s dynamic programming problem generates an optimal exit decision,
based on the comparison between the sell-off value of the firm and its expected profitability
in the future, then this decision is a function of current productivity. The simplest model,
based on an exogenous Markov process, predicts that if an adversely enough shock to pro-
ductivity is followed immediately by exit, then there will be a negative correlation between

6Note that this setting yields an estimate of the average elasticity of demand. The reason by which this is
possible is the same by which correcting the Solow residual for imperfect competition allows for estimating
margins and elasticities (see, e.g., Hall 1990).
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the shocks and the capital stocks of the firms that remain in the industry. Hence, sample
selection will lead to biased estimates.

Accounting for R&D expenditures in the Markov process complicates matters. On the
one hand, a firm now has an instrument to try to rectify an adverse shock and the optimal
exit decision is likely to become more complicated. To begin with, there are many more
relevant decisions such as beginning, continuing, or stopping innovative activities whilst
remaining in the industry, and exiting in any of the different positions. On the other hand,
a firm now is more likely to remain in the industry despite an adverse shock. Innovative
activities often imply large sunk cost which will make the firm more reluctant to exit the
industry or at least to exit it immediately. This will tend to alleviate the selection problem.
At this stage we do not model any of these decisions. Instead, we simply explore whether
there is a link between exit decisions and estimated productivity.

3.1 Identification

Our estimation equation (4) is a semiparametric, so-called partially-linear, model with the
additional restriction that the inverse labor demand function h(·) is of known form. To see
how this restriction aids identification, suppose to the contrary that h(·) were of unknown
form. In this case, the composition of h(·) and g(·) is another function of unknown form.
The fundamental condition for identification is that the variables in the parametric part
of the model are not perfectly predictable (in the least squares sense) by the variables in
the nonparametric part (Robinson 1988). In other words, there cannot be a functional
relationship between the variables in the parametric and nonparametric parts (see Newey,
Powell & Vella (1999) and also ACF for an application to the OP/LP framework). To see
that this condition is violated, recall that Kjt = (1− δ)Kjt−1 + exp(i(kjt−1, ωjt−1)) by the
law of motion and the policy function for investment in physical capital. But kjt−1 is one
of the arguments of h(·) and ωjt−1 is by construction a function of all arguments of h(·),
thereby making kjt perfectly predictable from the variables in the nonparametric part.

Of course, in our setting the inverse labor demand function h(·) is of known form. The
central question thus becomes whether kjt is perfectly predictable from the value of h(·)
(as opposed to its arguments) and rjt−1. Since hjt−1 is identical to ωjt−1, we have to ask
if kjt−1 and hence kjt (via i(kjt−1, ωjt−1)) can be inferred from rjt−1. This may indeed
be possible. Recall that rjt−1 = r(kjt−1, ωjt−1) by the policy function for investment in
knowledge. Hence, if its R&D expenditures happen to be increasing in the capital stock of
the firm, then r(·) can be inverted to back out kjt−1.

Fortunately, there is little reason to believe that this is the case. In fact, even under
the fairly stringent assumptions in Buettner (2005), it is not clear that r(·) is invertible.
Moreover, there is empirical evidence that invertibility may fail even for investment in
physical capital (Greenstreet 2005) and it seems clear that R&D expenditures are even
more fickle.
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Even if r(·) happens to be an invertible function of kjt−1, anything that shifts the costs of
the investments in physical capital and knowledge over time guarantees identification. The
price of equipment goods is likely to vary, for example, and the marginal cost of investment
in knowledge depends greatly on the nature of the undertaken project. Using xjt to denote
these shifters, the policy functions become i(kjt, ωjt, xjt) and r(kjt, ωjt, xjt). Obviously, xjt

cannot be perfectly predicted from hjt−1 and rjt−1. This breaks the functional relationship
between Kjt = (1− δ)Kjt−1 + exp(i(kjt−1, ωjt−1, xjt)) and hjt−1 and rjt−1.7

3.2 Estimation

The problem can be cast in the nonlinear GMM framework

E
[
z′jt(ξjt + ejt)

]
= E

[
z′jtvjt(θ)

]
= 0,

where zjt is a vector of instruments and we write the error term vjt(·) as a function of the
parameters θ to be estimated. The objective function is

min
θ


 1

N

∑

j

z′jvj(θ)



′

AN


 1

N

∑

j

z′jvj(θ)


 ,

where z′j and vj(·) are L × Tj and Tj × 1 vectors, respectively, with L being the num-
ber of instruments, Tj being the number of observations of firm j, and N the number

of firms. We first use the weighting matrix AN =
(

1
N

∑
j z′jzj

)−1
to obtain a consistent

estimator of θ and then we compute the optimal estimator which uses weighting matrix

AN =
(

1
N

∑
j z′jvj(θ̂)vj(θ̂)

′
zj

)−1
.

Production function. Our preliminary estimates indicate that in some industries it
is useful to add a time trend to the production function. One can say that there is an
“observable” trend in the evolution of productivity that is treated separately from ωjt but
of course taken into account when substituting hjt for ωjt. Our goal is thus to estimate the
gross-output production function

yjt = β0 + βtt + βlljt + βkkjt + βmmjt + g(hjt−1, rjt−1) + ξjt + ejt.

where

hjt = λ0 − βtt + (1− βl − βm)ljt − βkkjt + (1− βm)(wjt − pjt) + βm(pMjt − pjt)

7Depending on the construction of the capital stock in the data, we may also be able to account for
uncertainty in the impact of investment in physical capital. But once an error term is added to the law of
motion for physical capital, kjt can no longer be written as a function of hjt−1 and rjt−1, and identification
is restored.

13



and (pMjt − pjt) is the relative price of materials.

Series estimator. As suggested by Wooldridge (2004) when modeling an unknown func-
tion q(v, u) of two variables v and u we use a series estimator made of a “complete set” of
polynomials of degree Q (see Judd 1998), i.e., all polynomials of the form vjuk, where j and
k are nonnegative integers such that j+k ≤ Q. When the unknown function q(·) has a single
argument, we use a polynomial of degree Q to model it, i.e., q(v) = ρ0 + ρ1v + . . . + ρQvQ.

Taking into account that there are firms that do not perform R&D, the most general
formulation is

yjt = β0 + βtt + βlljt + βkkjt + βmmjt

+1(Rjt−1 = 0)g0(hjt−1) + 1(Rjt−1 > 0)g1(hjt−1, rjt−1) + ξjt + ejt. (6)

This allows for a different unknown function when the firm adopts the corner solution of
zero R&D expenditures and when it chooses positive R&D expenditures.

It is important to note that any constant that its arguments may have will be subsumed
in the constant of the unknown function. Our specification is therefore

g0(hjt−1) = g00 + g01(hjt−1 − λ0),

g1(hjt−1, rjt−1) = g10 + g11(hjt−1 − λ0, rjt−1),

where in g00 and g10 we collapse the constants of the unknown functions g0(·) and g1(·)
and the constant of hjt−1. The constants g00, g10, and β0 cannot be estimated separately.
We thus estimate the constant for nonperformers g00 together with the constant of the
production function β0 and include a dummy for performers to measure the difference
between constants β0 + g10 − (β0 + g00) = g10 − g00.

In the case of imperfect competition, where we have to nonparametrically estimate the
absolute value of the elasticity of demand, we impose the theoretical restriction that η(·) > 1
by using the specification η(pjt−1, zjt−1) = 1 + exp(q(pjt−1, zjt−1)), where q(·) is modeled
as described above.

Instrumental variables. As discussed before, kjt is always a valid instrument because it
is not correlated with ξjt because the latter is unpredictable when it−1 is chosen. Labor and
materials, however, are contemporaneously correlated with the innovation to productivity.
The lags of these variables are valid instruments but when the demand for one of these
inputs is being used to substitute for ωjt it appears itself in hjt−1. We can use the lag of the
other input. Constant and trend are valid instruments. Therefore, we have four instruments
to estimate the constant and the coefficients for the trend, capital, labor, and materials.
This leaves us with the need for at least one more instrument. We use as instruments
for the whole equation the complete set of polynomials of degree Q in the variables which
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enter hjt−1, the powers up to degree Q of rjt−1, and the interactions up to degree Q of the
variables which enter hjt−1 and rjt−1. The nonlinear functions of all exogenous variables
included in these polynomials provide enough instruments.

We set Q = 3 and use polynomials of order three. Hence, when there are four variables
in the inverse input demand function h(·), say ljt−1, kjt−1, wjt−1−pjt−1, and pMjt−1−pjt−1,
we use as instruments the polynomials which result from the complete set of polynomials
of degree 3 corresponding to the third power of hjt−1 (34 instruments), plus 3 terms which
correspond to the powers of rjt−1 (3 instruments) and 12 interactions formed from the
products hjt−1rjt−1, h2

jt−1rjt−1, and hjt−1r
2
jt−1 (12 instruments). In fact when we enter

pjt−1 linearly we use it detached from the other prices and we also need a dummy for
the firms that perform R&D (2 more instruments). In addition, when there are enough
degrees of freedom we instrument separately hjt−1 for nonperformers and hjt−1 and rjt−1

for performers by interacting the instruments with the dummy for performers. In addition,
we have the exogenous variables included in the equation: constant, trend, current capital
and lagged materials (4 instruments). This gives a total of 34+34+3+12+1+2+4 = 90
instruments. When we combine the demands for labor and materials, both equations have
the same number of instruments (recall that not all are equal) and hence we have a total
of 190 instruments. *** UPDATE/DELETE LAST SENTENCE. ***

Given these instruments, our estimator has exactly the form of the GMM version of Ai &
Chen’s (2003) sieve minimum distance estimator, a nonparametric least squares technique
(see Newey & Powell 2003). This means that, if the conditional expectation function g(·)
is specified in terms of variables which are correlated with the error term of the estimation
equation, we still obtain a consistent and asymptotically normal estimator of the parameters
by specifying the instrumenting polynomials in terms of exogenous conditioning variables.

3.3 Testing

The value of the GMM objective function for the optimal estimator, multiplied by N , has a
limiting χ2 distribution with L−P degrees of freedom, where L is the number of instruments
and P the number of parameters to be estimated.8 We use it as a test for overidentifying
restrictions or validity of the moment conditions based on the instruments.

We test whether the model satisfies certain restrictions by computing the restricted esti-
mator using the weighting matrix for the optimal estimator and then comparing the values
of the properly scaled objective functions. The difference has a limiting χ2 distribution with
degrees of freedom equal to the number of restrictions.

We also test whether the conditional expectation function is consistent with the knowl-
edge capital model. Recall from Section 2 that the knowledge capital model implies that

8Our baseline specification has 18 parameters: constant, trend, three production function coefficients,
and thirteen coefficients in the series approximations.
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g1(hjt−1, rjt−1) = g10 + g11(hjt−1 − λ0, rjt−1) has a particular functional form:

ωjt = ωjt−1 + ε

(
exp(rjt−1)

exp(ωjt−1/ε)
− δ

)
= hjt−1 + ε

(
exp(rjt−1)

exp(hjt−1/ε)
− δ

)

= λ0 + (hjt−1 − λ0) + ε exp(−λ0/ε)
exp(rjt−1)

exp((hjt−1 − λ0)/ε)
− εδ

= (λ0 − εδ) + (hjt−1 − λ0) + γ
exp(rjt−1)

exp((hjt−1 − λ0)/ε)
= g10 + g11(hjt−1 − λ0, rjt−1),

where γ is a parameter to be estimated. We apply the Rivers & Vuong (2002) test for
model selection among nonnested models. After multiplying the difference between the
GMM objective functions by

√
N , the test statistic has an asymptotic normal distribution

with variance

σ2 = 4
[
(
∑

j

z′jvj(θ̂))′AN (
∑

j

z′jvj(θ̂)vj(θ̂)′zj)AN (
∑

j

z′jvj(θ̂))

+(
∑

j

z
′
jvj(θ̂KCM ))′AN (

∑

j

z′jvj(θ̂KCM )vj(θ̂KCM )′zj)AN (
∑

j

z′jvj(θ̂KCM ))

−2(
∑

j

z′jvj(θ̂))′AN (
∑

j

z′jvj(θ̂)vj(θ̂KCM )′zj)AN (
∑

j

z′jvj(θ̂KCM ))
]
,

where θ̂ and θ̂KCM are the unrestricted and restricted parameter estimates, respectively,
the instruments in zj are kept the same, and AN is a common first-step weighting matrix.

4 Data

We use an unbalanced panel of Spanish manufacturing firms in nine industries during the
1990s. This broad coverage of industries is unusual, and it allows us to examine the link be-
tween R&D and productivity in a variety of settings that potentially differ in the importance
of R&D.

Our data come from the ESEE (Encuesta Sobre Estrategias Empresariales) survey, a
firm-level survey of Spanish manufacturing sponsored by the Ministry of Industry.9 The
unit surveyed is the firm, not the plant or the establishment. At the beginning of this
survey in 1990, 5% of firms with up to 200 workers were sampled randomly by industry
and size strata. All firms with more than 200 workers were asked to participate, and 70%
of all firms of this size chose to respond. Some firms vanish from the sample, due to both
exit and attrition. The two reasons can be distinguished, and attrition remained within
acceptable limits. In what follows we reserve the word exit to characterize shutdown by

9This data has been used elsewhere, e.g., in Gonzalez, Jaumandreu & Pazo (2005) to study the effect of
subsidies to R&D and in Delgado, Farinas & Ruano (2002) to study the productivity of exporting firms.
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death or abandonment of activity. To preserve representativeness, samples of newly created
firms were added to the initial sample every year.

We account for the survey design as follows. First, to compare the productivities of
firms that perform R&D to those of firms that do not perform R&D we conduct separate
tests on the subsamples of small and large firms. Second, to be able to interpret some of our
descriptive statistics as aggregates that are representative for an industry as a whole, we
replicate the subsample of small firms 70

5 = 14 times before merging it with the subsample
of large firms. Details on industry and variable definitions can be found in Appendix A.

Given that our estimation procedure requires a lag of one year, we restrict the sample
to firms with at least two years of data. The resulting sample covers a total of 1879 firms
(before replication). Table 1 shows the number of observations and firms by industry. The
samples are of moderate size. Firms tend to remain in the sample for short periods, ranging
from a minimum of two years to a maximum of 10 years between 1990 and 1999. The
descriptive statistics in Table 1 are computed for the period from 1991 to 1999 and exclude
the first observation for each firm.10 The small size of the samples is compensated for by the
quality of the data, which seems to keep noise coming from errors in variables at relatively
low levels.

Entry and exit reported in Table 1 refer to the incorporation of newly created firms
and to exit. Newly created firms are a large share of the total number of firms, ranging
from 15% to one third in the different industries. In each industry there is a significant
proportion of exiting firms (from 5% to above 10% in a few cases).

Table 1 shows that the 1990s were a period of rapid output growth, coupled with stag-
nant or at best slightly increasing employment and intense investment in physical capital.
The growth of prices, averaged from the growth of prices as reported individually by each
firm, is moderate.

The R&D intensity of Spanish manufacturing firms is low by European standards, but
R&D became increasingly important during the 1990s (see, e.g., European Commission
2001).11 The manufacturing sector consists partly of transnational companies with produc-
tion facilities in Spain and huge R&D expenditures and partly of small and medium-sized
companies that invested heavily in R&D in a struggle to increase their competitiveness in
a growing and already very open economy.

Government funded R&D in the form of subsidies and other forms of support amounts
to 7.7% of firms’ total R&D expenditures in the EU-15, 9.3% in the US, and 0.9% in Japan
(European Commission 2004a). In Spain at most a small fraction of the firms that engaged
in R&D received subsidies. The typical subsidy covers between 20% and 50% of R&D
expenditures and its magnitude is inversely related to the size of the firm. Subsidies are

10Since R&D expenditures appear lagged in our estimation equation (4), we report them for the period
1990 to 1998.

11R&D intensities for manufacturing firms are 2.1% in France, 2.6% in Germany, and 2.2% in the UK as
compared to 0.6% in Spain (European Commission 2004b).
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used efficiently without crowding out private funds and even stimulate some projects. Their
effect is mostly limited to the amount that they add to the project (see Gonzalez et al. 2005).
This suggests that R&D expenditures irrespective of their origin are the relevant variable
for explaining productivity.12

Table 1 reveals that the nine industries are rather different when it comes to innovative
activities of firms. This can be seen along three dimensions: the share of firms that perform
R&D, the degree of persistence in performing R&D over time, and R&D intensity among
performers defined as the ratio of R&D expenditures to output.

Three industries are highly active: Chemical products (3), agricultural and industrial
machinery (4), and transport equipment (6). The share of firms that perform R&D during
at least one year in the sample period is two thirds, with slightly more than 40% of stable
performers that engage in R&D in all years and slightly more than 20% of occasional
performers that engage in R&D in some (but not all) years. Dividing the share of stable
performers by the combined share of stable and occasional performers yields the conditional
share of stable performers and gives an indication of the persistence in performing R&D
over time. With about 65% the degree of persistence is is very high. Finally, the average
R&D intensity among performers ranges from 2.2% to 2.7%.

Four industries are in an intermediate position: Metals and metal products (1), non-
metallic minerals (2), food, drink and tobacco (7), and textile, leather and shoes (8). The
share of performers is lower than one half, but it is near one half in the first two industries.
With a conditional share of stable performers of about 40% the degree of persistence tends
to be lower. The average R&D intensity among performers is between 1.1% and 1.5% with
a much lower value of 0.7% in industry 7.

Two industries, timber and furniture (9) and paper and printing products (10), exhibit
low innovative activity. The first industry is weak in the share of performers (below 20%)
and degree of persistence. In the second industry the degree of persistence is somewhat
higher with a conditional share of stable performers of 46% but the share of performers
remains below 30%. The average R&D intensity is 1.4% in both industries.

This heterogeneity in the three dimensions of innovative activities makes it difficult to
fit a single model to explain the impact of R&D on productivity. In addition, the standard
deviation of R&D intensity is of substantial magnitude in the nine industries. This suggests
that that heterogeneity across firms within industries is important, partly because firms
engage in R&D to various degrees and partly because the level of aggregation used in
defining these industries encompasses many different specific innovative activities.

12While some R&D expenditures were tax deductible during the 1990s, the schedule was not overly
generous and most firms simply ignored it. A big reform that introduced some real stimulus took place
towards the end of our sample period in 1999.
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5 Estimation results

We first present our estimates of the production function and the Markov process that
governs the evolution of productivity and test the linearity and certainty assumptions of
the knowledge capital model. Next we turn to the link between R&D and productivity. In
order to assess the role of R&D in determining the differences in productivity across firms
and the evolution of firm-level productivity over time, we examine four aspects of this link
in more detail: productivity levels and growth, the return to R&D, and the persistence in
productivity.

5.1 Production function and Markov process

Table 2 summarizes different production function estimates. The first three columns report
the coefficients estimated from OLS regressions of the log of output on the logs of inputs.
The coefficients are reasonable as usual when running OLS on logs (but not when running
OLS on first-differences of logs), and returns to scale are remarkably close to constancy.
The share of capital in value added, as given by the capital coefficient scaled by the sum of
the labor and capital coefficients, is between 0.15 and 0.35 as expected.

The next six columns of Table 2 report the coefficients estimated when we use the
demand for labor to back out unobserved productivity. Specifying the law of motion of
productivity to be an exogenous Markov process that does not depend on R&D expenditures
yields the coefficients reported in columns four to six. Compared to the OLS regressions,
the changes go in the direction that is expected from theory. The labor coefficients decrease
considerably in all industries while the capital coefficients increase somewhat in 7 industries.
The materials coefficients show no particular pattern. Changes are as expected not huge
because we are comparing estimates in logs (as opposed to first-differences of logs). All this
matches the results in OP and LP.

Columns seven to nine show the coefficients obtained when specifying a controlled
Markov process. Again, compared to the OLS regressions, the changes go in the expected
direction. The labor coefficients decrease in 8 cases, the capital coefficients increase in 5
cases and are virtually the same in 2 more cases. In fact, changes from the exogenous
to the controlled Markov process do not exhibit a distinct pattern. This leaves open the
question whether it is possible to obtain consistent estimates of the parameters of the pro-
duction function in the absence of data on R&D, although it is clear that omitting R&D
expenditures from the Markov process substantially distorts the retrieved productivities
(see Section 5.2 for details).

To check the validity of our estimates we have conducted a series of tests as reported in
Table 3. We first test for overidentifying restrictions or validity of the moment conditions
based on the instruments as described in Section 3.3. The test statistic is too high for the
usual significance levels in only the case of industry 1. The other values indicate the validity
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of the moment conditions by a wide margin.
Since the orthogonality of lagged labor and lagged materials plays a key role in the

estimation, it is important to verify this assumption particularly carefully. Olley & Pakes
(1996) and Levinsohn & Petrin (2003) do so by testing the absence of correlation between
the lagged inputs and the productivity innovation. In our case, the above test for overiden-
tifying restrictions is already informing us of the closeness to zero of the set of all moment
conditions. To more explicitly assess the validity of lagged labor and lagged materials as
instruments, we compute the difference in the value of the objective function when all mo-
ments are included to its value when the moments involving either lagged labor or lagged
materials are excluded. As columns three to six of Table 3 show, the validity of lagged
labor and lagged materials as instruments cannot be rejected with the possible exception
of lagged labor in industry 6 and lagged materials in industry 4.

We also test the subset of moments involving capital and lagged capital. As columns
seven and eight of Table 3 show, the exogeneity assumption on capital and lagged capital is
only rejected at the usual significance levels for industry 1. Taken together, our overidenti-
fying tests also support our choice of the functional form for the production function: Had
the assumed linearity in the log of inputs been violated, then at least part of the nonlin-
earity would have been pushed into the productivity innovation, thereby resulting in high
values of the overidentifying test statistics.

The next column of Table 3 gives the correlation between expected productivity g(·)
and the innovation to productivity ξjt (see below for details). The correlation tends to be
weak, thus further validating the model. It is a bit stronger in industries 1 and 8, as could
have already been guessed from the overall test for overidentifying restrictions. At the same
time, our detailed tests for overidentifying restrictions imply that the correlation between
g(·) and ξjt is not statistically significant.

Our final specification test validates more directly the structure of the model. Recall
that the production function parameters appear both in the production function and in
the inverse labor demand function. If the inverse labor demand function is misspecified
(e.g., because labor is not a variable input), then this causes βl and βk in the inverse labor
demand function to diverge from their counterparts in the production function. By testing
the null hypothesis that the structural parameters in the two parts of the model are equal,
we may thus rule out that our model is misspecified. Fortunately, as the tenth and eleventh
columns of Table 3 show, while we must reject the null hypothesis of equality in industries
1, 7, and 10, in the remaining industries the test suggests by a wide margin that we may
rule out that our model is misspecified.

Imperfect competition. We test for imperfect competition by adding an unknown func-
tion in the equilibrium price pjt−1 and the demand shifter zjt−1 to hjt−1 inside the con-
ditional expectation function g(·) in equation (5). Under the null hypothesis of perfect
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competition pjt−1 and zjt−1 play no role.
The data very clearly reject the assumption of a perfectly competitive environment.

Our estimates of the average elasticity of demand are around 2. *** ALL THE ESTI-
MATES REPORTED IN THIS DRAFT OF THE PAPER ARE DONE ASSUMING PER-
FECT COMPETITION. PRELIMINARY ESTIMATES SHOW THAT BASIC RESULTS
DO NOT CHANGE WITH IMPERFECT COMPETITION. ***

Sample selection. *** SHOW THAT THE SELECTION PROBLEM IS NOT OVERLY
SEVERE ON OUR SAMPLE BY COMPARING THE PRODUCTIVITY OF EXITORS
(AND ENTRANTS) TO THAT OF CONTINUING FIRMS. ***

Alternative estimators. *** ADD COMPARISON TO

• ALTERNATIVE SPECIFICATIONS USING THE DEMAND FOR MATERIALS
OR THE DEMANDS FOR BOTH LABOR AND MATERIALS TO BACK OUT
UNOBSERVED PRODUCTIVITY.

• NONPARAMETRIC METHODS.

• ADD COMPARISON TO OP METHOD

PUT TABLES IN APPENDIX. ***

Nonlinearity. We next turn to the conditional expectation function g(·) that describes
the Markov process of unobserved productivity. We assess the role of R&D by comparing
the controlled with the exogenous Markov process. To this end, we test whether all terms
in rjt−1 can be excluded from the conditional expectation function g11(hjt−1−λ0, rjt−1) for
performers plus the equality of the common part of the conditional expectation functions
for performers and nonperformers, i.e., g11(hjt−1−λ0, rjt−1) = g01(hjt−1−λ0) for all rjt−1.
As the first column of Table 4 shows, the result is overwhelming: In all cases the constraints
imposed by the model with the exogenous Markov process are clearly rejected.

We use a standard growth decomposition to get a sense of the importance of R&D.
Roughly two thirds of the growth in output is explained by the growth in inputs, with
the glaring exception of industry 8 where output is growing while inputs are shrinking.
While there are considerable differences across industries, about one half of the year-to-year
variation in expected productivity is due the variation in R&D expenditures. While these
numbers already hint at the major role played by R&D, they have to be interpreted as lower
bounds because a part of the impact of current R&D expenditures persists and is carried
forward into future productivity. We will come back to the persistence in productivity in
Section 5.4.
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Next we test whether the conditional expectation function g(·) is separable in current
productivity and R&D expenditures, i.e., whether g11(hjt−1 − λ0, rjt−1) for firms that per-
form R&D can be broken up into two additively separable functions g11(hjt−1 − λ0) and
g12(rjt−1). The test statistics indicate that this is only the case in industries 1, 4, and
perhaps 9 (columns three and four of Table 4). From hereon we impose separability on in-
dustry 4, where it slightly improves the estimates, but we keep nonseparability in industry
1, where separability does not seem to change anything. Given the limited number of firms
that perform R&D in industries 9 and 10, we also impose separability in the interest of
parsimony. The main result, however, is that the R&D process can hardly be considered
separable. From the economic point of view this stresses that the impact of current R&D
on future productivity depends crucially on current productivity, and that current and past
investments in knowledge interact in a complex fashion.

We further illustrate the economic significance of these interactions in columns five to
eight of Table 4. We list the percentage of observations where ∂2g(ωjt−1,rjt−1)

∂ωjt−1∂Rjt−1
= 1

Rjt−1

∂2g(ωjt−1,rjt−1)
∂ωjt−1∂rjt−1

is significantly positive (negative) so that current productivity and (the level of) R&D expen-
ditures are, at least locally, complements (substitutes) in the accumulation of productivity.
There is evidence of complementarities in industries 2, 3, and 6 whereas in industry 7 cur-
rent productivity and R&D expenditures appear to be largely substitutes. We also list the

percentage of observations where ∂2g(ωjt−1,rjt−1)

∂R2
jt−1

= 1
R2

jt−1

(
∂2g(ωjt−1,rjt−1)

∂r2
jt−1

− ∂g(ωjt−1,rjt−1)
∂rjt−1

)

is significantly positive (negative) so that there are locally increasing (decreasing) returns
to R&D. There is evidence of increasing returns to R&D in industries 1, 2, 6, 7, 8, and 9.

We finally test whether the conditional expectation function is consistent with the knowl-
edge capital model. Our estimates of the elasticity of output with respect to knowledge
capital are between 0.32 and 0.67 for the different industries. Nevertheless, the data very
clearly reject the functional form restrictions implied by the knowledge capital model.13

This suggests that the linearity assumption in the accumulation and depreciation of knowl-
edge that underlies the knowledge capital model may have to be relaxed in order to fully
assess the impact of the investment in knowledge on the productivity of firms.

Uncertainty. Once the model is estimated we can compute ωjt, hjt, and g(·) up to a
constant. We can also obtain an estimate of ξjt up to a constant as the difference between
the estimates of ωjt and g(·). Recall that the productivity of firm j in period t is given by
βtt + ωjt = βtt + g(ωjt−1, rjt−1) + ξjt with ωjt = hjt. Using the notational convention that
ω̂jt, ĥjt, and ĝ(·) represent the estimates up to a constant, we have

ω̂jt = ĥjt = −β̂tt + (1− β̂l − β̂m)ljt − β̂kkjt + (1− β̂m)(wjt − pjt) + β̂m(pMjt − pjt)

13We continue to reject when we base the test on the exact form for the law of motion implied by the
knowledge capital model rather than the approximate form in equation (2).
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and

ĝ(ĥjt−1, rjt−1) = 1(Rjt−1 = 0)ĝ01(ĥjt−1)

+1(Rjt−1 > 0)[( ̂g10 − g00) + ĝ11(ĥjt−1, rt−1)].

This implies that we can estimate V ar(ωjt), V ar(g(·)) and V ar(ξjt) as well as Cov(g(·), ξjt)
and the correlation coefficient Corr(g(·), ξjt) = Cov(g(·), ξjt)/

√
V ar(g(·))V ar(ξjt). We

can also estimate the random shocks ejt and their variance V ar(ejt). When we combine
multiple input demands, we compute the variances and covariances of ωjt, g(·), and ξjt from
an average of the input-specific estimates. *** UPDATE/DELETE LAST SENTENCE. ***

The second-to-last column of Table 4 tells us the ratio of the variance of the random
shock ejt to the variance of unobserved productivity ωjt. Despite differences among indus-
tries, the variances are quite similar in magnitude. This suggests that unobserved produc-
tivity is at least as important in explaining the data as the host of other factors that are
embedded in the random shock.

The last column gives the ratio of the variance of the productivity innovation ξjt to
the variance of actual productivity ωjt. The ratio shows that the unpredictable component
accounts for a large part of attained productivity, between 20% and 50%, thereby casting
doubt on the certainty assumption of the knowledge capital model.14 Interestingly enough,
a high degree of uncertainty in the R&D process seems to be characteristic for both some
of the most and some of the least R&D intensive industries. We will come back to the
economic significance of the uncertainties inherent in the R&D process in Section 5.4.

5.2 Productivity levels

To describe differences in expected productivity between firms that perform R&D and firms
that do not perform R&D, we employ kernels to estimate the density and the distribution
functions associated with the subsamples of observations with R&D and without R&D. To
be able to interpret these descriptive measures as representative aggregates, we proceed as
described in Section 4. Figure 1 shows the density and distribution functions for performers
(solid line) and nonperformers (dashed line) for each industry. In all industries but 4, 9, and
10, the distribution for performers is to the right of the distribution for nonperformers. This
strongly suggests stochastic dominance. In contrast, in industries 4 and 10 the distribution
functions openly cross: Attaining the highest levels seems more likely for the nonperformers

14Further scrutiny shows as expected that the degree of uncertainty as measured by the ratio of the variance
of ξjt to the variance of ωjt is at least as large for observations with positive R&D expenditures than for those
without (with the exception of industry 8), although this is sometimes due to a smaller denominator rather
than a larger numerator. Note that, to the extent that uncertainty inhibits firms’ investments in R&D,
we underestimate the degree of uncertainty for observations with positive R&D expenditures, and that this
may also explain why the variance of ωjt is smaller for observations with positive R&D expenditures in
some industries. The degree of uncertainty tends to be smaller for observations with positive investment in
physical capital than for those without (with the exceptions of industries 4 and 10). There does not seem
to be a relationship with firm size.
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than for the performers. In industry 9 the distribution for nonperformers dominates the
one for performers.

Before formally comparing the means and variances of the distributions and the distrib-
utions themselves, we illustrate the impact of omitting R&D expenditures from the Markov
process of unobserved productivity. We have added the so-obtained density and distribu-
tion functions to Figure 1 (dotted line). Comparing them to the density and distribution
functions for a controlled Markov process reveals that the exogenous process takes a sort of
average over firms with distinct innovative activities and hence blurs remarkable differences
in the impact of the investment in knowledge on the productivity of firms.

*** WHEN USING ALTERNATIVE ESTIMATORS SHOW THAT THE PRODUC-
TIVITY OF PERFORMERS AND NONPERFORMERS IS NOT SYSTEMATICALLY
DIFFERENT, JUST LIKE WHEN WE ASSUME THAT PRODUCTIVITY IS EXOGE-
NOUS (PUT TABLES/GRAPHS IN APPENDIX). ***

Mean and variance. Turning to the moments of the distributions, the difference in
means is computed as

ĝ0 − ĝ1 =
1

NT0

∑
j

∑
t
1(rjt−1 = 0)ĝ01(ĥjt−1)

− 1
NT1

∑
j

∑
t
1(rjt−1 > 0)[( ̂g10 − g00) + ĝ11(ĥjt−1, rt−1)],

where NT0 and NT1 are the size of the subsamples of observations without and with R&D,
respectively. We compare the means using the test statistic

t =
ĝ0 − ĝ1√

V ar(g01)/(NT0 − 1) + V ar(g11)/(NT1 − 1)

which follows a t distribution with min(NT0, NT1)−1 degrees of freedom and the variances
using

F =
V ar(g01)
V ar(g11)

which follows an F distribution with NT0 − 1 and NT1 − 1 degrees of freedom.
Column four of Table 5 reports the difference in means ĝ1 − ĝ0 (with the opposite

sign of the test statistic for the sake of intuition) and the next four columns report the
standard deviations and the test statistics along with their probability values separately for
the subsamples of small and large firms. The difference in means is positive for firms of
all sizes in all industries that exhibit medium or high innovative activity, with the striking
exception of industry 4. The differences are sizable, with many values between 4% and
5% and up to 9%. They are often larger for the smaller firms. In the two industries that
exhibit low innovative activity, however, one size group shows a lower mean of expected
productivity than the other: The small firms in industry 9 and the large firms in industry
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10. The formal statistical test duly rejects, at the usual significance levels, the hypothesis
of a higher mean of expected productivity among performers than among nonperformers in
these two cases and in both size groups in industry 4.

The hypothesis of greater variability for performers than for nonperformers is rejected
in many cases, although there does not seem to be a recognizable pattern. As can be seen
in columns 9 and 10 of Table 5, it is rejected for both size groups in industries 4, 6, 7, and
10, for small firms in industries 2, 3 and 9, and for large firms in industries 1 and 8.

Distribution. The above results suggest to compare the distributions themselves. We
use a Kolmogorov-Smirnov test to compare the empirical distributions of two independent
samples (see Barret & Donald (2003) and Delgado et al. (2002) for similar applications).
Since this test requires that the observations in each sample are independent, we consider
as the variable of interest the average of expected productivity for each firm, where for
occasional performers we average only over the years with R&D (and discard the years
without R&D). This avoids dependent observations and sets the sample sizes equal to the
number of nonperformers and performers, N0 and N1, respectively.

Let FN0(·) and GN1(·) be the empirical cumulative distribution functions of nonperform-
ers and performers, respectively. We apply the two-sided test of the hypothesis FN0(g) −
GN1(g) = 0 for all g, i.e., the distributions of expected productivity are equal, and the
one-sided test of the hypothesis FN0(g)−GN1(g) ≤ 0 for all g, i.e., the distribution GN1(·)
of expected productivity of performers stochastically dominates the distribution FN0(·) of
expected productivity of nonperformers. The test statistics are

S1 =
√

N0N1

N0 + N1
max

g
{|FN0(g)−GN1(g)|} , S2 =

√
N0N1

N0 + N1
max

g
{FN0(g)−GN1(g)} ,

respectively, and the probability values can be computed using the limiting distributions
P (S1 > c) = −2

∑∞
k=1(−1)k exp(−2k2c2) and P (S2 > c) = exp(−2c2).

Because the test tends to be inconclusive when the number of firms is small, we limit it
to cases in which we have at least 20 performers and 20 nonperformers. This allows us to
carry out the tests for the small firms in 8 industries and for the large firms in industries 7
and 8. The results are reported in the last four columns of Table 5. Equality of distributions
is rejected in six out of ten cases. Stochastic dominance can hardly be rejected anywhere
with the exception of industry 4.

To further illustrate the consequences of omitting R&D expenditures from the Markov
process of unobserved productivity, we have redone the above tests for the case of an
exogenous Markov process. The results are striking: We can no longer reject the equality
of the productivity distributions of performers and nonperformers in eight out of ten cases.
This once more makes apparent that omitting R&D expenditures substantially distorts the
retrieved productivities.
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In sum, comparing expected productivity across firms that perform R&D and firms that
do not perform R&D we find strong evidence of stochastic dominance in most industries.
It remains to be explained why expected productivity for performers appears eventually
lower than for nonperformers in some industries. One possible explanation is heterogeneity
across firms within industries, i.e., stochastic dominance may hold if we were able to split
these industries into more homogeneous innovative activities.

5.3 Productivity growth

We explore productivity growth from the point of view of what a firm expects when it makes
its decisions in period t − 1. Because ωjt−1 is known to the firm at the time it decides on
rjt−1, we compute the expectation of productivity growth as

βt + E(ωjt − ωjt−1|ωjt−1, rjt−1,) = βt + g(ωjt−1, rjt−1)− ωjt−1. (7)

Using the fact that the innovation to productivity has mean zero, i.e., E(ξjt−1|ωjt−2, rjt−2) =
0, we estimate the average of the expectation of productivity growth as βt+ 1

N

∑
j

∑
t

1
Tj

[ĝ(ĥjt−1, rjt−1)−
ĝ(ĥjt−2, rjt−2)]. The first three columns of Table 6 report the results for the entire sample
and for the subsamples of observations with and without R&D. In what follows we drop
2.5% of observations at each tail of the distribution to guard against outliers. We also com-
pute a weighted version to be able to interpret the expectation of productivity growth as
representative for an industry as a whole. The weights µjt = Yjt−2/

∑
j Yjt−2 are given by

the share of output of a firm two periods ago. Assuming that E(µjtξjt−1|ωjt−2, rjt−2) = 0,
we estimate the average as βt + 1

T

∑
t

∑
j µjt[ĝ(ĥjt−1, rjt−1)− ĝ(ĥjt−2, rjt−2)]. Columns four

to six of Table 6 report the results along with a decomposition into the contributions of
observations with and without R&D.

Productivity growth is higher for performers than for nonperformers in 5 industries,
sometimes considerably so. Taken together these industries account for two thirds of man-
ufacturing output. The industries in which the relationship is reversed coincide again with
industries 4, 9, and 10 to which we must now add industry 8. The standard deviations
indicate that there are considerable differences in productivity growth within firms that
engage in R&D as well as within those that do not. Productivity growth is more variable
for performers than for nonperformers in six out of nine industries, including industries 4,
9, and 10. This indicates that the productivity of at least some performers tends to grow
much faster than the productivity of nonperformers, even though on average performers
exhibits slower productivity growth than nonperformers in these industries.

A comparison of unweighted and weighted productivity growth shows that there is no
definite pattern in productivity growth by size group: The productivity of small firms
grows more rapidly in some industries and less in others. What is clear, however, is that
productivity growth is highest in some of the industries with high innovative activity (above
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2% in industries 3 and 6) followed by some of the industries with intermediate innovative
activity (above 1.5% in industries 1 and 2).

The last two columns are particularly important. The contribution to productivity
growth of firms that perform R&D is estimated to explain between 70% and 85% of pro-
ductivity growth in the industries with high innovative activity and between 45% and 65%
in the industries with intermediate innovative activity (with the exception of industry 8).
This is all the more remarkable since in these industries between 35% and 45% and between
10% and 20% of firms engage in R&D. While these firms manufacture between 70% and
75% of output in the industries with high innovative activity and between 45% and 55%
in the industries with intermediate innovative activity, their contribution to productivity
growth exceeds their share of output by between 5% and 15%. That is, firms that engage
in R&D tend not only to be larger than those that do not but also to grow even larger over
time. R&D expenditures are thus indeed a primary source of productivity growth.

Decomposition. The growth in expected productivity in equation (7) can be decomposed
(excluding the trend) as

g(ωjt−1, rjt−1)− ωjt−1 = [g(ωjt−1, rjt−1)− g(ωjt−1, r)] + [g(ωjt−1, r)− ωjt−1] , (8)

where r denotes a negligible amount of R&D expenditures.15 The first term in brackets
reflects the change in expected productivity that is attributable to R&D expenditures rjt−1,
the second the change that takes place in the absence of investment in knowledge. That is,
the second term in brackets is attributable to depreciation of already attained productivity
and, consequently, is expected to be negative. The net effect of R&D is thus the sum of its
gross effect (first term) and the impact of depreciation (second term).

The last three columns of Table 6 report unweighted averages. The results are striking
given the scarce structure that our model imposes on the data. The impact of depreciation
is, in fact, negative with the exception of industry 7. Its magnitude is substantial, ranging
from 50% to 85% of the gross effect of R&D. As a consequence, the gross effect of R&D
considerably exceeds its net effect. In sum, a large part of firms’ R&D expenditures is
devoted to maintaining already attained productivity rather than to advancing it.

5.4 Return to R&D and persistence in productivity

To more closely assess how hard a firm must work to maintain and advance its productivity,
recall that a change in the conditional expectation function g(·) can be interpreted as the
expected percentage change in total factor productivity. Hence, ∂ωjt

∂rjt−1
= ∂g(ωjt−1,rjt−1)

∂rjt−1
is the

15Recall that we allow the conditional expectation function g(·) to be different when the firm adopts
the corner solution of zero R&D expenditures and when it chooses positive R&D expenditures. We take
g(ωjt−1, r) to be either g0(ωjt−1) or g1(ωjt−1, r), where r is the fifth percentile of R&D expenditures, to
avoid the discontinuity. Both approaches failed to produce sensible results in case of industry 9.
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elasticity of output with respect to R&D expenditures or a measure of the return to R&D.
Similarly, ∂ωjt

∂ωjt−1
= ∂g(ωjt−1,rjt−1)

∂ωjt−1
is the elasticity of output with respect to already attained

productivity. ∂g(ωjt−1,rjt−1)
∂ωjt−1

is the degree of persistence in the productivity process or a
measure of inertia. It tells us the fraction of past productivity that is carried forward into
current productivity. Note that the elasticities of output with respect to R&D expenditures
and already attained productivity vary from firm to firm with already attained productivity
and R&D expenditures. Our model thus allows us to recover the distribution of these
elasticities and to describe the heterogeneity across firms.

The first four columns of Table 7 present the quartiles of the distribution of the elas-
ticity with respect to R&D expenditures along with a weighted average computed as
1
T

∑
t

∑
j µjt

∂g(ωjt−1,rjt−1)
∂rjt−1

, where the weights µjt = Yjt/
∑

j Yjt are given by the share of
output of a firm. There is a considerable amount of variation across industries and the
firms within an industry. The returns to R&D at the first, second, and third quartile range
between −0.032 and 0.009, −0.010 and 0.015, and 0.007 and 0.029, respectively. Their
average is close to 0.015, varying from 0.002 to 0.028 across industries.

Note that negative returns to R&D are legitimate and meaningful in our setting, al-
though some of them may be an artifact of the nonparametric estimation of g(·) at the
boundaries of the support. A negative return at the margin is consistent with an over-
all positive impact of R&D expenditures on output. A firm may invest in R&D to the
point of driving returns below zero for a number of reasons including indivisibilities and
strategic considerations such as a loss of an early-mover advantage. This type of effect is
excluded by the functional form restrictions of the knowledge capital model, in particular
the assumption that the stock of knowledge capital depreciates at a constant rate. More
generally, it is plausible that investments in knowledge take place in response to existing
knowledge becoming obsolete or vice versa that investments render existing knowledge ob-
solete. Our model captures this interplay between adding “new” knowledge and keeping
“old” knowledge.

The degree of persistence can be computed separately for performers using the condi-
tional expectation function g1(·) that depends both on already attained productivity and
R&D expenditures and for nonperformers using g0(·) that depends solely on already attained
productivity. Columns five to ten of Table 7 summarize the distributions for performers
and nonperformers.

Again there is a considerable amount of variation across industries and the firms within
an industry. Nevertheless, nonperformers systematically demonstrate a higher degree of
persistence than performers (with the exception of industry 8). An intuitive explanation for
this finding is that nonperformers learn from performers, but by the time this happens the
transferred knowledge is already entrenched in the industry and therefore more persistent.
Put differently, common practice may be “stickier” than best practice.

The degree of persistence for performers is negatively related to the degree of uncertainty
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in the productivity process as measured by the ratio of the variance of the productivity inno-
vation ξjt to the variance of actual productivity ωjt. That is, productivity is less persistent
in an industry where a large part of its variance is due to random shocks that represent
the uncertainties inherent in the R&D process. The top panel of Figure 2 illustrates this
relationship between persistence and uncertainty at the level of the industry.

To facilitate the comparison with the existing literature, we have estimated the knowl-
edge capital model as given in equation (1). Proceeding along the lines of Hall & Mairesse
(1995), we construct Cjt, the stock of knowledge capital of firm j in period t, from R&D
expenditures using the perpetual inventory method. We assume that the rate of deprecia-
tion is 0.15 per period and estimate the initial capital from the date of birth of the firm by
extrapolating its average R&D expenditures during the time that it is observed.16

Column eleven of Table 7 presents the estimate of the elasticity of output with respect
to the stock of knowledge capital from the knowledge capital model. In addition to the
gross-output version in equation (1) we have also estimated a value-added version of the
knowledge capital model (column thirteen). In contrast to our model, the knowledge capital
model yields one number—an average elasticity—per industry. The elasticity of output with
respect to the stock of knowledge capital tends to be small and rarely significant in the gross-
output version but becomes larger in the value-added version. The estimates turn out to be
on the low side for this type of exercise. One possible reason may be the non self-selected
character of the sample, but perhaps this is the magnitude of estimates that one should
expect given the low R&D intensity of Spanish manufacturing firms. Beneito (2001) and
Ornaghi (2006), for example, estimate aggregate elasticities ranging from 0.04 to 0.10.

To convert the elasticity with respect to the stock of knowledge capital into an elasticity
with respect to R&D expenditures that is comparable to our model, we multiply the former
by Rjt−1/Cjt. Columns twelve and fourteen of Table 7 show a weighted average of the
so-obtained elasticities. The elasticities with respect to R&D expenditures from our model
are higher than the highest elasticities from the knowledge capital model in five industries
and lower but very close in three more industries. In addition, the elasticities obtained with
our model have a non-normal, fairly spread out distribution. This sharply contrasts with
the fact that the dispersion of elasticities in the knowledge capital model is purely driven
by the distribution of the ratio Rjt−1/Cjt (since, recall, the knowledge capital model yields
just an average of the elasticity with respect to the stock of knowledge capital).

Turning to persistence in productivity, note that the degree of persistence is 1− 0.15 =
0.85 by assumption in the knowledge capital model. In contrast, the degree of persistence
in our model is much lower (see also Pakes & Schankerman 1984b). Moreover, we find that
there are substantial differences between firms in the degree of persistence.

The degree of persistence is expected to be lower when process innovations are rapidly
16We drop the term εcjt from equation (1) for nonperformers and specify a different constant and time

trend for performers and nonperformers. To facilitate estimation we impose the widely accepted constraint
of constant returns to scale in the conventional inputs.

29



spread or when product innovations are quickly imitated or superseded. (Since output is
measured in dollars, we are unable to distinguish between product and process innovations,
similar to the knowledge capital literature.) On other other hand, the demand advantage
of a product innovation may be offset by a productivity disadvantage if newer products are
costlier to produce, thereby lessening the impact of product innovations on persistence.17

The heterogeneity across firms and industries in the degree of persistence points to an inter-
esting avenue for future research that explores the link between the dynamics of productivity
and the nature of product market competition.

One could also argue that the lower degree of persistence is a result of the substantial
variability in the R&D expenditures that drive the evolution of productivity. The knowledge
capital model constructs the stock of knowledge capital that is much smoother and less
variable than R&D expenditures. Our view is that the variability in R&D expenditures
across firms and periods is likely to contain useful information on the impact of R&D on
productivity, but we acknowledge that some of the variability in the R&D expenditures is
an artifact of accounting conventions.

In sum, it appears that old knowledge is hard to keep but new knowledge is easy to add.
Productivity is therefore considerably more fluid than what the knowledge capital literature
suggests.

Rate of return. We finally compute an alternative—and perhaps more intuitive—measure
of the return to R&D. Recall from the decomposition of the growth in expected productivity
in equation (8) that g(ωjt−1, rjt−1)− g(ωjt−1, r) is the change in expected productivity that
is attributable to R&D expenditures. Multiplying it by a measure of expected value added,
say Vjt, gives the rent that the firm can expect from this investment at the time it makes its
decisions. Dividing it further by R&D expenditures Rjt−1 gives an estimate of the gross rate
of return, or dollars obtained by spending one dollar on R&D.18 Note that we compute the
gross rate of return on R&D using value added instead of gross output both to make it com-
parable to the existing literature (e.g., Nadiri 1993, Griliches & Regev 1995, Griliches 2000)
and because value added is closer to profits than gross output.

We further decompose the gross rate of return to R&D into a net rate of return and
a compensation for depreciation. To do so, we rearrange the growth decomposition in

17The ESEE survey asks firms whether they have introduced a new product or process over the course of
the survey year. This data suggests that, at the level of the industry, the degree of persistence is negatively
related to the prevalence of both product and process innovations.

18The average rate that we compute is close to the marginal rate of return to R&D. To see this, lin-

early approximate g(ωjt−1, ln R) ' g(ωjt−1, ln Rjt−1) +
∂g(ωjt−1,ln Rjt−1)

∂rjt−1

1
Rjt−1

(R − Rjt−1). If R → 0, then

g(ωjt−1, rjt−1)− g(ωjt−1, r) ≡ g(ωjt−1, ln Rjt−1)− g(ωjt−1, ln R) ' ∂g(ωjt−1,rjt−1)

∂rjt−1
.
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equation (8) to yield

g(ωjt−1, rjt−1)− g(ωjt−1, r)

= [g(ωjt−1, rjt−1)− g(ωjt−2,rjt−2)] + [g(ωjt−2,rjt−2)− g(ωjt−1, r)], (9)

where we also have replaced ωjt−1 by g(ωjt−2,rjt−2) + ξjt−1 and canceled ξjt−1 from the
equation to reduce the impact of uncertainty. Multiplying and dividing through by Vjt and
Rjt−1, respectively, we obtain the net rate of return to R&D as the first term in brackets
and the compensation for depreciation as the second term.

The three first columns of Table 8 summarize the gross rate of return to R&D and
its decomposition into the net rate and the compensation for depreciation. We report
weighted averages where the weights µjt = Rjt−2/

∑
j Rjt−2 are given by the share of R&D

expenditures of a firm two periods ago.19 The gross rate of return to R&D exceeds the
net rate in line with our previous finding that a large part of firms’ R&D expenditures is
devoted to maintaining already attained productivity rather than to advancing it. The net
rates of return to R&D differ across industries, ranging from very modest values near zero
to 35%. Interestingly enough, the net rate of return to R&D is higher in an industry where
a large part of the variance in productivity is due to random shocks, as can be seen in the
bottom panel of Figure 2. This suggests that the net rate of return to R&D includes a
compensation for the uncertainties inherent in the R&D process.

The fourth column of Table 8 reports the gross rate of return on investment in physical
capital as a point of comparison and the fifth column the ratio of the gross rates of return to
R&D and investment in physical capital. Returns to R&D are clearly higher than returns
to investment in physical capital. The gross rate of return to R&D is often twice that of
the gross rate of return to investment in physical capital, with the ratio of the gross rates
being as large as 3.5 and 3.9 in industries 6 and 3, respectively. This reflects the fact that
knowledge depreciates faster than physical capital,20 but also that investment in knowledge
is systematically more uncertain than investment in physical capital. In fact, the large ratios
suggest that the uncertainties inherent in the R&D process are economically significant and
matter for firms’ investment decisions.

To facilitate the comparison with the existing literature, we have used the value-added
version of the knowledge capital model to estimate the gross rate of return to R&D by
regressing the first-difference of the log of value added on the first-differences of the logs of
conventional inputs and the ratio Rjt−1/Vjt−1 of R&D expenditures to value added. The

19As before we take g(ωjt−1, r) to be either g0(ωjt−1) or g1(ωjt−1, r), where r is the fifth percentile of
R&D expenditures. We calculate the first two terms of the decomposition in equation (9) and infer the
third term. We either trim 2.5% of observations at each tail of both of these distributions and 3.5% at both
distributions of rates (obtained by multiplying the differences in the conditional expectation functions by
Vjt/Rjt−1) or 5% at both distributions of rates. As a result we always employ around of 80% of the data.

20The rate of depreciation that is assumed in computing the stock of physical capital is around 0.1 but
differs across industries and groups of firms within industries.
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estimated coefficient of this ratio can be interpreted as the rate of return to R&D.21 As can
be seen from the last column of Table 8, while the gross rates are imprecisely estimated in
the knowledge capital model, they tend to be higher than the gross rates in our model. The
question is then whether and why our rates of return to R&D should be considered more
reliable and whether this justifies the extra effort of pursuing the more structural approach.

Our rates are computed from more reliable coefficient estimates than what the knowl-
edge capital model provides because our estimator takes into account the possibility of
endogeneity bias in assessing the role of R&D. Because our model is structural we are more
confident in the causality of the estimated relationship between expected productivity, cur-
rent productivity, and R&D expenditures. The drawback of our approach is that it depends
on the informational and timing assumptions that we make. These assumptions, however,
appear to be broadly accepted in the literature following OP.

More generally, the knowledge capital literature has had limited success in estimating
the rate of return to R&D. Griliches (2000) contends that “[e]arly studies of this topic were
happy to get the sign of the R&D variable ‘right’ and to show that it matters, that it is a
‘significant’ variable, contributing to productivity growth” (p. 51). Estimates of the rate
of return to R&D tended to be high, often implausibly high: “our current quantitative
understanding of this whole process remains seriously flawed ... [T]he size of the effects we
have estimated may be seriously off, perhaps by an order of magnitude” (Griliches 1995, p.
83). Our estimates, by contrast, are more modest.

6 Concluding remarks

In this paper we develop a simple estimator for production functions. The basic idea
is to exploit the fact that decisions on variable inputs such as labor and materials are
based on current productivity. This results in input demands that are invertible functions
and thus can be used to control for unobserved productivity in the estimation. Moreover,
the parametric specification of the production function implies a known form for these
functions. This renders identification and estimation more tractable. As a result, we are
able to accommodate a controlled Markov process, thereby capturing the impact of R&D
on the evolution of productivity.

We illustrate our approach to production function estimation on an unbalanced panel
of more than 1800 Spanish manufacturing firms in nine industries during the 1990s. We
obtain sensible parameters estimates. Our estimator thus appears to work well.

Overall, we show that the link between R&D and productivity is subject to a high
degree of uncertainty, nonlinearity, and heterogeneity. By accounting for uncertainty and

21Recall that ε is the elasticity of value added with respect to knowledge capital. Since ε∆cjt =
∂V
∂C

Cjt−1
Vjt−1

∆cjt ' ∂V
∂C

∆Cjt

Vjt−1
and Rjt−1 approximates ∆Cjt (by the law of motion for knowledge capital),

the estimated coefficient is ∂V
∂C

. Since spending one dollar on R&D adds one unit of knowledge capital ∂V
∂C

is, in turn, equal to ∂V
∂R

or the rate of return to R&D.
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nonlinearity, our approach extends the knowledge capital model. In fact, the knowledge
capital model is a special case of our model, albeit one that is rejected by the data. Our
model is richer, in particular with regard to the treatment of heterogeneity, thereby allowing
us to show that R&D is a major determinant of the differences in productivity across
firms and the evolution of firm-level productivity over time. Productivity appears to be
considerably more fluid than what the knowledge capital literature suggests. Our approach
also appears to provide us with more plausible answers to questions regarding the rate of
return to R&D. The rate of return includes a compensation for the uncertainties inherent
in the R&D process. Moreover, the large gap between the rates of return to R&D and
investment in physical capital suggests that these uncertainties are economically significant
and matter for firms’ investment decisions.

Our method can be applied to other contexts, for example, to model and test for two
types of technological progress in production functions: Hicks-neutral technological progress
that shifts the production function in its entirety and labor-saving technological progress
that shifts the ratio of labor to capital. Economists have been for a long time interested
in disentangling these effects. In ongoing work we have begun to explore how this can be
done by further exploiting the known form of the inverse input demand functions for labor
and materials to recover two unobservables, one for Hicks-neutral and one for labor-saving
technological progress.

Appendix A

Table 9 gives the equivalence between our grouping of industries and the manufacturing
breakdown of ESEE. We exclude industry 5 because of data problems.

In what follows we define the variables.

• Capital. Capital at current replacement values is computed recursively from an initial
estimate and the data on current investments in equipment goods (but not buildings
or financial assets), updating the value of past stocks by means of a price index of
investment in equipment goods, and using industry-specific estimates of the rates of
depreciation. That is, Kjt = (1− δ) pIt

pIt−1
Kjt−1 + Ijt−1, where capital and investment

are in current values and pIt is the price index of investment. Real capital is obtained
by deflating capital at current replacement values by the price index of investment.

• Investment. Value of current investments in equipment goods deflated by the price
index of investment as needed.

• Labor. Number of workers multiplied by hours per worker (normal hours of work plus
overtime minus lost hours per worker).

• Materials. Value of intermediate consumption deflated by the firm’s price index of
materials.

• Output. Value of produced goods and services computed as sales plus the variation of
inventories deflated by the firm’s price index of output.
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• Price of investment. Equipment goods component of the index of industry prices
computed and published by the Ministry of Industry.

• Wage. Hourly wage rate (total labor cost divided by effective total hours of work).

• Price of materials. Paasche-type price index computed starting from the percentage
variations in the prices of purchased materials, energy, and services as reported by
the firm.

• Price of output. Paasche-type price index computed starting from the percentage
price changes that the firm reports to have made in the markets in which it operates.

• R&D expenditures. Total R&D expenditures including the cost of intramural R&D
activities, payments for outside R&D contracts, and expenditures on imported tech-
nology (patent licenses and technical assistance).

• Market dynamism. Weighted index of the dynamism of the markets (slump, stability,
and expansion) as reported by the firm for the markets in which it operates.
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Table 9: Industry definitions and equivalences.

Industry breakdown ESEE classification

1 Ferrous and non-ferrous 1+4 Ferrous and non-ferrous metals +
metals and metal products Metal products

2 Non-metallic minerals 2 Non-metallic minerals

3 Chemical products 3+17 Chemical products +
Rubber and plastic products

4 Agricultural and ind. machinery 5 Agricultural and ind. machinery

5 Office and data-processing 6+7 Office and data processing machines +
machines and electrical goods Electrical goods

6 Transport equipment 8+9 Motor vehicles +
Other transport equipment

7 Food, drink and tobacco 10+11+12 Meats, meat preparation +
Food products and tobacco + Beverages

8 Textile, leather and shoes 13+14 Textiles and clothing +
Leather, leather and skin goods

9 Timber and furniture 15 Timber, wooden products

10 Paper and printing products 16 Paper and printing products



Figure 1: Expected productivities. Density (left panels) and distribution (right panels).



Figure 1: (cont’d) Expected productivities. Density (left panels) and distribution (right
panels).



Figure 1: (cont’d) Expected productivities. Density (left panels) and distribution (right
panels).



Figure 2: Persistence and uncertainty (top panel) and return to R&D and uncertainty
(bottom panel).


