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Abstract

We study monopolistic and competitive pricing in a two-sided market where agents have in-

complete information about the quality of the product provided by each platform. The analysis

is carried out within a global-game framework that offers the convenience of equilibrium unique-

ness while permitting the outcome of such equilibrium to depend on the pricing strategies of

the competing platforms. We first show how the dispersion of information interacts with the

network effects in determining the elasticity of demand on each side and thereby the equilibrium

prices. We then study "informative" advertising campaigns that increase the agents’ability to

estimate their own valuations and/or the distribution of valuations on the other side of the

market.
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1 Introduction

Many markets feature platforms mediating the interactions among the various sides of the market.

Examples include media outlets mediating the interactions between readers/viewers on one side and

content providers and advertisers on the other side, video-game consoles mediating the interactions

between gamers and video-game developers, operating systems mediating the interactions between

end-users and software developers, e-commerce website mediating the interactions between buyers

and sellers, employment agencies mediating the interactions between employers and job seekers,

and dating agencies mediating the search of partner-seekers.

Following the initial work of Caillaud and Jullien (2001,2003), Rochet and Tirole (2003), and

Armstrong (2006), the two-sided market literature has studied the role of prices in implementing

such mediated interactions (See Rysman (2009) and Weyl (2010) for excellent overviews and for

recent developments).

The assumption that is commonly made in this literature is that preferences on each side of the

market are common knowledge. This assumption implies that, given the prices set by the platforms,

each agent can perfectly predict the participation decisions of any other agent. In equilibrium, such

predictions are accurate and coincide with the platforms’predictions.

While a convenient modelling shortcut, the assumption that preferences are common knowledge

does not square well with most markets. Preferences over the products and services of different

platforms typically reflect personal traits, making it diffi cult for an agent to predict the behavior

of other agents. Due to network externalities, predicting how many agents from the opposite

side will choose a given platform is key to an agent’s own decision about which platform to join.

Furthermore, because preferences are typically positively correlated among agents from the same

side, agents may experience diffi culty in predicting not just individual actions but also the entire

distribution of actions in the cross-section of the population. In other words, agents from each side

face nontrivial uncertainty about how many agents from the opposite side will choose one platform

over the other.

Because such uncertainty impacts the elasticity of the demand that the platform faces on each

side, it is bound to impact the equilibrium prices and thereby the allocations they induce. In

addition, the platforms themselves may face uncertainty about the distribution of preferences in

the cross-section of the population and hence about the demand they face on each side, which also

impacts their pricing strategies.

In this paper, we develop a tractable, yet rich, model of platform competition under dispersed

information, where the distribution of preferences in the cross-section of the population is unknown

to both the platforms and to each individual agent, and where each agent has private information

both about his own preferences as well as about the distribution of preferences in the cross-section of

the population. Part of the contribution is in showing how such dispersion of information interacts

with the network effects that are typical of multi-sided markets in determining the elasticity of
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demand on each side. We then use such a characterization to examine the effects of the dispersion

of information on the equilibrium prices and on the allocations they induce. Finally, we examine

the platforms’incentives to change the information available to each side of the market through

informative advertising campaigns, as well as their incentive to innovate by changing the way their

product is likely to be perceived relative to those of the competitors.1

Model preview. Two platforms compete on two sides of a market populated by a continuum

of agents on each side. Agents chooses at most one platform2. Each agent derives a direct utility

from each platform’s product or services, hereafter referred to as the agent’s "stand-alone valua-

tion" (other terms favored in the literature include "intrinsic benefit" or "membership benefit"). In

addition, each agent derives an indirect utility from interacting with the other side that is propor-

tional to the number of agents from the other side who join the same platform; hereafter, we will

refer to this component of the agent’s payoff as "network effect" (other expressions favored in the

literature include "usage valuation", "cross-side externality" and "interaction benefit"). Each agent

is uncertain about the distribution of stand-alone valuations in the cross section of the population.

In addition, we allow for the possibility that each agent faces uncertainty about his own stand-alone

valuations for the two platforms, reflecting the idea that agents need not know which products and

services serve best their needs (think of an agent choosing over competing technologies).

For simplicity, we assume that all agents from the same side attach the same value to interacting

with the opposite side.3 However, because agents differ in their expectation about how many agents

from the opposite side will join, de facto, agents are heterogeneous not only in their true (and

estimated) stand-alone valuations, but also in their estimation of the network effects from joining

each of the two platforms.

We allow for the possibility that the network effects be negative on one side but assume that

there is always one side where they are positive (for example, in the case of a media outlet com-

peting for readers, or viewers, on one side and for advertisers on the other side, it is reasonable to

assume that network effects are negative on the readers’side– most readers dislike advertisement–

but positive on the advertisers’side). We also assume that stand-alone valuations are positively

correlated between any two agents from the same side but possibly negatively correlated between

two agents from opposite sides (think of the market for operating systems; a system that appeals

to software developers need not necessarily appeal to end-users, for the latter typically value the

various features of the operating system differently from the developers—e.g., they may value the

simplicity of the key tasks more than the flexibility and sophistication of the code).

1See Anderson and Renault (2006, 2009) for recent one-sided models of advertising along this line, as well a

Johnson and Myatt (2006) for an analysis of advertising and product design by a monopolist.
2 In the baseline version of the model we do not allow agents to multi-home (that is, to join both platforms). Later

in the paper, however, we relaxed this assumption and show that multihoming does not obtain under reasonable

parameter configurations if one assumes that platforms cannot set negative prices.
3Heterogeneity in the importance the agents assign to the network effects is considered by Weyl (2010), Veiga and

Weyl (2011) and White and Weyl (2012), but no correlation between sides.
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We build on the global-game literature (Carlsson and Van Damme (1993), Morris and Shin

(2003)) by assuming that the cross-sectional distribution of the stand-alone valuations can be

parametrized by a bivariate state-variable drawn from a known distribution which constitutes the

common prior. Each agent then receives a noisy signal of his own stand-alone valuations for the

products of the two platforms which he uses to decide which platform to join. Because of network

effects, agents use their signal not only to estimate their own stand-alone valuations, but also to

predict the distribution of stand-alone valuations on the other side of the market. In other words,

agents use their appreciation of each platform’s product and services to form an opinion about

participation decisions on the other side of the market. This inference problem creates new subtle

effects that are missing under complete information and that are reflected in the determination of

the equilibrium allocations (prices and participation decisions).

Implications for equilibrium prices. As in most of the literature, we abstract from price

discrimination and assume that platforms compete by setting access fees to each side of the market.

By paying the price, an agent is granted access to the platform’s product and thereby also obtains

access to the other side of the market. To isolate the effects mentioned above, we assume that

platforms do not possess any private information relative to the rest of the market. This permits us

to abstract from the signaling role of prices and instead focus on how prices respond to the agents’

extrapolation from their own preferences to the distribution of preferences in the cross-section of

the population.4

The advantage of casting the analysis within a global-game framework is twofold: (i) it permits

us to investigate the implications of the dispersion of information on equilibrium prices, and (ii)

it guarantees that the equilibrium demand functions are unique (thus avoiding the usual "chicken

and egg" problem of many models of competition in two-sided markets– e.g., Caillaud and Jullien

(2003)): For any given vector of prices there is a unique continuation equilibrium in the subgame

where agents choose which platform to join (note that this is true despite the fact that platforms

in our model compete in simple access fees– as they do in many markets– that do not condition

on participation rates from the opposite side5).

A key difference relative to the complete-information case is that the beliefs of the "marginal

agent" on each side about the participation decisions on the opposite side depend on the marginal

agent’s own estimated stand-alone valuation (the marginal agent is the one who is indifferent be-

tween joining one platform or the other). As the platform changes its price on one side, the marginal

agent’s beliefs about the participation rate on the opposite side also change. Thus dispersed infor-

mation induces a correlation between the stand-alone valuations for a platform’s product and the

4We also abstract from within-side externalities and heterogeneity in users’attractiveness. See Damiano and Li

(2007), Gomes and Pavan (2013), and Veiga and Weyl (2012) for models that accommodate a certain form of price

discrimination with heterogeneity in attractiveness.
5Weyl (2010) and White and Weyl (2012) study how multiplicity may be resolved with prices contingent on the

market allocation, referred to as insulating tariffs.
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network effects. Importantly, the endogeneity of such correlation has implications for equilibrium

prices that differ from those obtained by assuming an exogenous correlation structure within each

side (e.g., in Weyl (2010)).

Suppose, for example, that network effects are positive on each side (meaning that all agents

benefit from a higher participation rate on the opposite side) and that tastes are positively corre-

lated between the two sides (so that a high perceived stand-alone valuation is "good news" about

participation from the opposite side). Then suppose that a platform were to raise its price on, say,

side 1. Because the marginal agent who is excluded is the most "pessimistic" about side 2’s partic-

ipation, among those who are joining the platform, the drop in expected demand is smaller than

in a world where all agents share the same beliefs about the other side’s participation (as under

complete information). In other words, when preferences are positively correlated between the two

sides and network effects are positive on both sides, this new effect contributes to a reduction in the

own-price elasticity of the demand functions. As a result of this new effect, the equilibrium price on

each side increases with the intensity of that side’s network effects when preferences are positively

correlated, and decreases otherwise. This is in contrast to the complete-information case where the

equilibrium price on each side decreases with the intensity of the opposite side’s network effects, but

is independent of the intensity of that side’s own network effects (see, e.g., Armstrong, 2006, and

Rochet and Tirole, 2006).6 This traditional literature emphasizes that platforms’pricing decisions

should account for the opportunity cost of reducing participation on one side in terms of foregone

profit on the other side.7 Another consequence is that the extent to which cross-side network effects

are internalized into prices on side i increases when the other side marginal consumer’s expectation

about side-i’s participation becomes more reactive to prices than the platforms’expectation.

A second insight is that, holding fixed the ex-ante distribution of estimated stand-alone val-

uations (which amounts to fixing the ex-ante degree of horizontal differentiation between the two

platforms), the equilibrium duopoly prices depend on the distribution of information over the two

sides only through a coeffi cient of mutual forecastability, which is an increasing transformation of

the correlation coeffi cient between the signals of any two agents from opposite sides. Indeed what

matters for the impact of network effects on equilibrium prices is the ability of each side to predict

the change of demand on the other side triggered by a variation in prices. Suppose that the quality

of information is very high on one side but not on the other. Then, the less-informed side will not

respond much to variations in the distribution of stand-alone valuations, making the information

6Note that if agents differed in the importance they assign to network effects, then equilibrium prices would depend

on the intensity of own-side network effects also under complete information. The effect of own-side network effects

on equilibrium prices would then depend on the correlation between network effects and stand-alone valuations.
7The pricing formulae obtained in these papers can be understood as monopoly pricing adjusted for the fact that

a platform can leverage an increase of demand on one side by increasing the price it charges to the other side. This

means that the relevant opportunity cost for losing the marginal agent on one side must incorporate the revenue

loss stemming from the lower utility enjoyed by all agents who participate on the opposite side, thus explaining why

prices depend negatively on the intensity of the other-side network effects.
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of the other side of limited value. What matters for equilibrium prices is not so much the ability

of each side to forecast the distribution of true stand-alone valuations on the opposite side but its

ability to forecast how the participation rates on the opposite side respond to variations in prices.

As a result, equilibrium prices respond to variations in the information structure only through the

impact that these variations have on the two sides’mutual ability to forecast each other, as cap-

tured by the coeffi cient of mutual forecastability. In the special case of a market that is perfectly

symmetric under complete information (meaning that the intensity of the network effects is the

same on the two sides and so is the ex-ante distribution of stand-alone valuations), the fact that

prices depend on the information structure only through the coeffi cient of mutual forecastability

implies that the equilibrium prices remain perfectly symmetric under dispersed information, despite

possible asymmetries in the distribution of information over the two sides.

Implications for advertising campaigns and product selection. We show that cam-

paigns that increase the agents’ ability to estimate their own stand alone valuations always in-

crease profits by increasing the sensitivity of individual demands to information which amounts to

increasing the ex-ante degree of differentiation between the two platforms (equivalently, reducing

the elasticity of the residual demand functions), thus softening competition.8

On the other hand, campaigns that help the agents predict participation decisions on the

opposite side increase profits if and only if the correlation of tastes between the two sides is of the

same sign as the sum of the intensity of the network effects. In particular, such campaigns increase

profits when network effects are positive on both sides and tastes are positively correlated (as is

probably the case for most video-games consoles). On the contrary, they decrease profits when

either tastes are negatively correlated and network effects are positive (as is possibly the case for

some operating systems), or tastes are (weakly) positively correlated but one side suffers from the

presence of the other side more than the other side benefits from its presence.

To understand this last result, assume that preferences are positively correlated between the

two sides and consider a campaign that increases the ability of, say, side-1’s agents to forecast

the preferences of side-2’s agents. An increase in such ability reduces the own-price elasticity of

demand on side 1 by making the marginal agent’s beliefs more sensitive to his private information

(As explained above, a higher sensitivity to private information implies a lower drop in demand in

response to an increase in price due to the fact that the marginal agent is less optimistic about

participation from the opposite side than any of the infra-marginal agents). Interestingly, when

preferences are positively correlated, an increase in the precision of side-1’s information about side-

2’s preferences also reduces the own-price elasticity of the side-2 demand by making the behavior

of side-1’s agents more predictable in the eyes of side-2’s agents. These effects unambiguously

contribute to a higher equilibrium price on each side. At the same time, more precise information

on side 1 also implies a higher sensitivity of both sides to variations in prices on the opposite side,

which contributes negatively to the equilibrium prices. While the net effect on the equilibrium

8A similar result appears in Anderson and Renault (2010) for an ex-ante symmetric one-sided market
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price on each side depends on the relative importance that the two sides attach to interacting

with one another, the net effect on total profits is always unambiguously positive when the sum of

the network effects is positive (more generally, of the same sign as the correlation of preferences

between the two sides). This is because, holding constant the ex-ante distributions of estimated

stand-alone valuations, the equilibrium price on each side depends on the dispersion of information

only through the index of mutual forecastability, which is increasing in the quality of information

on each of the two sides. When the sum of the network effects is positive, then any possible loss of

revenues on one side must necessarily be more than compensated by an increase in revenues on the

opposite side, making the equilibrium total profits unambiguously increase with each side’s ability

to forecast the distribution of preferences on the other side.

We conclude by investigating how equilibrium duopoly profits change with variations in the

prior distribution from which stand-alone valuations are drawn. These comparative statics, con-

trary to the ones pertaining the quality of information, are meant to shed light on a platform’s

incentives to differentiate its product and services from the competitor’s, without knowing the ex-

act distribution of preferences on either side of the market. For instance, we show that raising

the similarity with the opponent’s product always reduces the equilibrium profits by intensifying

competition. On the other hand, aligning the preferences of the two sides by favoring dimensions

that are appealing to both sides increases profits for positive network effects but reduces them when

the sum of the network effects is negative (that is, when one side suffers from the presence of the

other side more than the other side benefits from its presence).

Outline. The rest of the paper is organized as follows. Section 2 presents the model. Section 3

introduces some preliminary results concerning the ability of each side to forecast its own preferences

and the cross-sectional distribution of preferences on the other side of the market, and discusses

the case with no network effect. Section 4 then characterizes optimal prices for a monopolistic

platform. Section 5 contains the main results for the duopoly case. Section 6 contains implications

for product positioning and advertising campaigns. Section 7 offers a few concluding remarks. All

proofs are in the Appendix.

2 Model

Players. Two platforms, indexed by k = A,B, compete on two sides, i = 1, 2. Each side is

populated by a measure-one continuum of agents, indexed by l ∈ [0, 1].

Actions and payoffs. Each agent l ∈ [0, 1] from each side i = 1, 2 must choose which platform

to join, if any.9. The payoff Ukil that agent l from side i derives from joining platform k is given by

Ukil = ukil + γim
k
j − pki

9Below we will also discuss the possibility that the agents may choose to join both platforms (multihoming).
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where ukil is the idiosyncratic stand-alone valuation
10 of joining platform k, mk

j ∈ [0, 1] is the mass

of agents from side j 6= i that join platform k, γi ∈ R is a parameter that controls for the intensity
of the network effects11 on side i and pki is the price (the access fee) charged by platform k to side

i.

We assume that the network effects are positive on at least one of the two sides but allow them

to be negative on the opposite side; that is, we assume that γi > 0 for some i ∈ {1, 2}.
The payoff that each agent l ∈ [0, 1] from each side i = 1, 2 obtains from not joining any

platform is assumed to be equal to zero.

Each platform’s payoffΠk is the total revenue from collecting the prices from the two sides:12

Πk = pk1m
k
1 + pk2m

k
2.

All players are risk-neutral expected-utility maximizers.

Horizontal differentiation and information. We assume that the stand-alone valuations

are given by

uAil = si −
1

2
vil

uBil = si +
1

2
vil

i = 1, 2, k = A,B, l ∈ [0, 1], where si ∈ R is a known scalar whose role is to control for the agents’
payoff relative to their outside options and is interpreted as the mean quality of the products and

services offered by the two platforms. The above specification is chosen so that the difference in

stand-alone valuations is vil ≡ uBil − uAil .
The "aggregate state" of the economy corresponds to the distribution of stand-alone valuations

and of the agents’information across the two sides of the market. We parametrize this aggregate

state by a pair θ ≡ (θ1, θ2) and assume θ is drawn from a bivariate Normal distribution with zero

mean and variance-covariance matrix

Σθ =

[
(α1)

−1 ρθ√
α1α2

ρθ√
α1α2

(α2)
−1

]

with the parameter ρθ denoting the coeffi cient of linear correlation between θ̃1 and θ̃2.13

Neither the platforms nor the agents observe θ. Furthermore, each agent may have an imperfect

knowledge of his own valuations. We formalize all of this by assuming that each agent l from each

10Also referred to in the literature as "intrinsic benefit" – see, e.g., Armstrong and Wright (2007) – and "mem-

bership benefit" – see e.g., Weyl (2010).
11Also referred to in the literature as "usage value" (e.g., Rochet and Tirole (2006)), "cross-side externality" (e.g.,

Armstrong (2006)) and "interaction benefit" (e.g., Weyl, (2010)).
12All results extend to the case where the platforms incur costs to provide access to the users. Because these costs

do not play any role, we disregard them to facilitate the exposition.
13Throughout, we will use tildes "~" to denote random variables.
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side i = 1, 2 privately observes a signal xil that is imperfectly correlated with both θ and vil. More

precisely we assume that

vil = zi (θi + εil) and xil = θi + ηil

where zi is a non-negative scale factor and where the variables (εil, ηil) are idiosyncratic terms

drawn from a bivariate Normal distribution with zero mean and variance-covariance matrix

Σi =

 (βεi )
−1 ρi√

βεi ·β
η
i

ρi√
βεi ·β

η
i

(βηi )−1


with the parameter ρi ≥ 0 denoting the coeffi cient of linear correlation between ε̃i and η̃i. The pairs

(ε̃il, η̃il)l∈[0,1],i∈{0,1} are drawn independently across agents and independently from (θ̃1, θ̃2).

Timing.

• At stage 1, platforms simultaneously set prices on each side.

• At stage 2, after observing the prices (pki )
k=A,B
i=1,2 , and after receiving the information xil, each

agent l ∈ [0, 1] from each side i = 1, 2, simultaneously chooses which platform to join, if any.

• Finally, at stage 3, payoffs are realized.

Comment. The above specification has the advantage of being tractable, while at the same

time rich enough to capture a variety of situations. Thanks to Normality, the "aggregate state"

(i.e., the cross-sectional distribution of preferences and information) is uniquely pinned down by

the bivariate variable θ = (θ1, θ2). The information about θ is dispersed so that different agents

have different beliefs about θ. The pure common-value case where agents on side i have identical

preferences over the two platforms but different information about the quality differential θi is

captured as the limit in which βεi → ∞ in which case vil = ziθi all l ∈ [0, 1]. The parameter

αi is then a measure of uncertainty over the degree of horizontal differentiation between the two

platforms, as perceived by side i. Letting α1 = α2 and ρθ = 1 while allowing βη1 6= βη2 then permits

us to capture situations where the quality differential between the two platforms is the same on

each side but the two sides have different information. Letting zi = 0 on one of the two sides

then permits us to capture situations where agents on side i do not care about the intrinsic quality

differential between the two platforms but nonetheless have information about the distribution of

preferences on the opposite side (as in the case of advertisers who choose which media platform to

place ads on entirely on the basis of their expectation of the platform’s ability to attract readers

and viewers from the opposite side).

More generally, allowing the correlation coeffi cient ρθ to be different from one permits us to

capture situations where the quality differential between the two platforms differs across the two

sides (including situations where it is potentially negatively correlated), as well as situations where
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one side may be able to perfectly predict the behavior of each agent from that side but not the

behavior of agents from the opposite side (which corresponds to the limit where βηi =∞).
The model can also capture situations in which different users from the same side have different

preferences for the two platforms. This amounts to letting the variance of εil be strictly positive or,

equivalently, βεi <∞. Depending on the degree of correlation ρi between εil and ηil users may then
possess more or less accurate information about their own preferences. For example, the case where

each agent perfectly knows his own preferences but is imperfectly informed about the preferences

of other agents (from either side) is captured as the limit in which ρi → 1. Lastly, the case of

independent private values in which users’valuations are independent of one another is captured

as the limit in which αi →∞ and βεi <∞.
Finally, note that the scalars (z1, z2) only serve the purpose of parametrizing the quality of

the agents’ information about their own stand-alone valuations relative to the quality of their

information about the distribution of stand-alone valuations on the other side of the market. These

parameters are not crucial and could have been dispensed with by introducing two separate signals

for each agent, one for θ̃1, the other for θ̃2. This, however, would have made the subsequent analysis

significantly more complicated by essentially requiring that we describe the equilibrium strategies

in terms of semi-planes as opposed to simple cut-off rules. The remaining parameters (s1, s2) play

a role only for the agents’decision to opt out of the market by not joining any platform.

3 Preliminaries

Reduced form representation. The key determinant of the equilibrium will be the agents’

ability to forecast their own stand-alone valuations, as well as the distribution of such valuations

on the other side of the market. As described above, the information of each agent l from each side

i is encoded in a single signal xil. This signal is drawn for a Normal distribution with zero mean

and variance
1

βxi
≡ var (x̃il) =

αi + βηi
αiβ

η
i

. (1)

Notice that the agents’signals are correlated both within sides and across sides. The important

correlation is the one across sides. For any two agents l and l’from opposite sides, the coeffi cient

of linear correlation of their signals is

ρx ≡
cov (x̃1l, x̃2l′)√
var (x̃1l) var (x̃2l′)

= ρθ

√
βη1β

η
2

(α1 + βη1 ) (α2 + βη2 )
. (2)

Based on the signal xil, each agent i then believes that the differential ṽil in his stand-alone

valuations is Normally distributed with mean

Vil ≡ E [ṽil | xil] = κixil with κi ≡
cov[ṽil, x̃il]

var[x̃il]
= zi

βηi + ρiαi
√
βηi /β

ε
i

βηi + αi
. (3)
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Hereafter, we will refer to Vil ≡ E [ṽil | xil] as to the estimated stand-alone differential. Note that Vil
uniquely pins down not only the differential but also the agent’s estimated stand-alone valuations.

Next, consider the agents’ability to forecast the participation decisions on the other side of the

market. Because each agent observes only a noisy signal of his valuations, the best an agent can

do to predict participation decisions on the other side of the market is to use his own signal xil to

forecast the distribution of signals on the other side. Now observe that each agent l from each side

i, after observing a signal xil, believes that each agent l′ from the opposite side received a signal

x̃jl′ = θ̃j + η̃jl′ drawn from a Normal distribution with mean

E[x̃jl′ | xil] = ρx

√
βxi
βxj
xil (4)

and variance

var[x̃jl′ | xil] =
1− ρ2x
βxj

. (5)

It is then easy to see that, by varying the coeffi cient ρi of correlation between the two idio-

syncratic terms (εil, ηil) while keeping all other parameters fixed, one can capture variations in the

agents’ ability to estimate their own stand-alone valuations, holding fixed the agents’ ability to

estimate the participation decisions on the other side of the market. Likewise, by varying ρx (for

example by varying ρθ) holding fixed all other parameters, one can capture variations in the agents’

ability to estimate the participation decisions on the other side of the market, holding constant their

ability to estimate their own stand-alone valuations.

For the first part of the paper, the key parameters of the model will be (βx1 , β
x
2 , ρx), which

parametrize the agents’information14, and the parameters (s1, s2, κ1, κ2) which define the individual

estimated stand-alone valuations for given information.

In the second part of the paper, we will discuss how more structural parameters such as ρi or

ρθ affect the equilibrium and how firms can modify them with advertising campaigns and product

design.

Benchmark: No network effects. As a warm-up (but also as a useful step to fix ideas and

introduce notation that will be used throughout the rest of the analysis), consider for a moment a

market without network effects. In our framework this corresponds to setting γ1 = γ2 = 0. In this

case the demand on each side is independent of the pricing and participation decisions on the other

side of the market.

Consider first the case where platform A is a monopoly. Given the price pAi on side i, each

agent l from side i buys only if his estimated stand-alone valuation for the platform’s product is

above the price; that is, only if E[ũAil | xil]−pAi ≥ 0. Using the fact that E[ũAil | xil] = si− 1
2κixil we

have that the agent buys only if his signal is low enough,

xil < x̂i ≡ 2(
si − pAi
κi

).

14Formally, one should consider also the correlation of signals within sides, but this will play no role in the analysis.
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Notice that, by choosing the price, the platform chooses the signal of the marginal consumer x̂i. The

total demand mA
i on side i then depends on the realization of θ̃i, which pins down the distribution

of stand-alone valuations, and which is unknown to the platform at the time the platform sets its

price. Letting Φ denote the c.d.f. of the standard Normal distribution and φ its density, we then

have that the demand the platform expects on side i when it sets a price pAi (equivalently, when it

chooses a marginal agent x̂i) is given by

QAi = E[m̃A
i ] = Pr (xil < x̂i) = Φ(

√
βxi x̂i). (6)

Now let

µi (x̂i) = − QAi
dQAi
dpAi

=
κi
2

QAi
dQAi
dx̂i

=
κi
2

Φ
(√

βxi x̂i
)√

βxi φ(
√
βxi x̂i)

(7)

denote the inverse semi-elasticity of the stand-alone demand evaluated at the price pi = si− 12κix̂i.
15

The monopoly price pAi is then given by the usual first-order condition

pAi = µi (x̂i)⇔ si −
1

2
κix̂i = µi (x̂i) .

Next, consider a duopoly where platforms A and B set prices simultaneously on each side.

Assuming full participation (that is, each agent who does not choose platform A chooses platform

B), we then have that each agent l from side i buys from A if E[ũBil − ũAil | xil] < pBi − pAi and from
B if the inequality is inverted.16 Using the fact that E[ũBil − ũAil | xil] = E[ṽil | xil] = κixil, we then

have that the demand platform A expects when the prices are pAi and p
B
i is given by

QAi = E[m̃A
i ] = Φ

(√
βxi x̂i

)
= 1−QBi where x̂i =

pBi − pAi
κi

where x̂i is the signal of the marginal agent (the agent who is indifferent between purchasing from

A and purchasing from B). Now let

µdi (x) = − QAi
dQAi
dpAi

∣∣∣
pBi =const

= κi
Φ
(√

βxi x
)√

βxi φ
(√

βxi x
) (8)

denote the inverse semi-elasticity of the residual demand curve of platform A, evaluated at the

price pAi = pBi − κix. It is then easy to see that in the unique symmetric duopoly equilibrium each

agent l from side i buys from platform A if xil < x̂di = 0 and from platform B if xil > x̂di = 0. In

equilibrium, each firm serves half of the market (i.e., QAi = QBi = 1/2) and the equilibrium prices

are given by

pAi = pBi = µdi (0) . (9)

15This semi-elasticity is referred to as the market power in Weyl (2010).
16When E[ũAj − ũBj | xil] = pAi − pBi , the consumer is indifferent. Because this event has zero probability, the way

such indifference is resolved is inconsequential for the choice of the optimal prices.
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Using (3), note that the equilibrium semi-elasticity of the residual stand-alone demands is given

by

µdi (0) =
κi√

βxi 2φ (0)
=

√
var[Vil]

2φ (0)
. (10)

where var[Vil] is the ex-ante dispersion of the estimated stand-alone differentials Vil = E[ṽil | xil].
Not surprisingly, a higher dispersion of estimated stand-alone differentials is isomorphic to a higher

degree of horizontal differentiation between the two platforms, which lessens competition and thus

results in higher equilibrium prices.

4 Monopoly

We now turn to the model with network effects. As a useful step towards the characterization

of the equilibrium in the game with competing platforms, we start by considering the case of a

monopolistic market, in which only platform A is active.

Given the prices (pA1 , p
A
2 ), each agent l from each side i finds it optimal to join the platform

only if

E[ũAil | xil] + γiE[m̃A
j | xil]− pAi ≥ 0. (11)

Now let γ−i ≡ min{γi; 0} and γ+i ≡ max{γi; 0}. It is immediate to see that any agent whose expected
stand-alone valuation E[ũAil | xil] is less than (pAi − γ+i ) finds it dominant not to join, whereas any

agent whose expected stand-alone valuation E[ũAil | xil] is greater than pAi − γ
−
i finds it dominant

to join. Using E[ũAil | xil] = si − κixil/2, we then have that iterated deletion of strictly dominated
strategies leads to a pair of thresholds xi = xi(p

A
1 , p

A
2 ) and x̄i = x̄i(p

A
1 , p

A
2 ) on each side i = 1, 2

such that it is iteratively dominant for each agent l from each side i to join for xil < xi and not

to join for xil > x̄i. These observations also suggest existence of a continuation equilibrium in

threshold strategies whereby each agent l from each side i joins if and only if xil ≤ x̂i. In any such
continuation equilibrium, the participation rate on side j (i.e., the measure of agents from side j

who join the platform) is given by

mA
j = Pr (x̃jl ≤ x̂j | θj) .

We refer to an allocation with this property as a threshold allocation (x̂1, x̂2). Notice that mA
j

decreases with θj , since a higher θj means fewer agents with a high stand-alone valuation for the

platform’s product. Using (4) and (5), we then have that, from the perspective of agent l from side

i, the expected participation rate on side j 6= i is given by

E[m̃A
j | xil] = Pr (x̃jl ≤ x̂j | xil) = Φ

√ βxj
1− ρ2x

(
x̂j − ρx

√
βxi
βxj
xil

)
12



Now, for any i, j ∈ {1, 2}, i 6= j, any (x̂1, x̂2), let MA
j (x̂1, x̂2) ≡ E[m̃A

j | xil = x̂i] denote the

expected participation rate on side j from the perspective of the marginal agent on side i (the one

with signal x̂i). Then

MA
j (x1, x2) ≡ Φ (Xji (x1, x2)) where Xji (x1, x2) =

√
βxj xj − ρx

√
βxi xi√

1− ρ2x
Letting

Ω ≡ ρx√
1− ρ2x

, (12)

we then have that the term Xji can be expressed as follows

Xji (x1, x2) =
√

1 + Ω2
√
βxj xj − Ω

√
βxi xi. (13)

Hereafter, we will refer to the term Ω as to the coeffi cient of mutual forecastability, for |Ω| is
increasing in each side’s ability to forecast the distribution of information on the opposite side. As

one can expect, this term will play an important role in determining the equilibrium prices.

Using (11), we then have that, in any threshold equilibrium, the thresholds (x̂1, x̂2) must jointly

solve the following system of conditions

Gi (x̂1, x̂2) = pAi i = 1, 2 (14)

where

Gi (x1, x2) = si − κixi/2 + γiM
A
j (x1, x2). (15)

Note that the function Gi (x1, x2) represents the payoff, gross of payments, of joining platform A

for an agent on side i whose signal is equal to the threshold signal xi when he expects all users

from side j 6= i to join if and only if their signal is smaller than xj . To ensure that, for any vector

of prices, a continuation equilibrium in threshold strategies exists, we assume that the function Gi
is decreasing in xi. This is the case, for all xi, if and only if the following condition holds, which

we assume throughout:

Condition (M): The parameters of the model are such that

2µi (0) + γiΩ > 0.

Note that the above condition imposes that, when side i values interacting with the other

side– namely, when γi > 0, the preferences between the two sides be not too negatively correlated.

Symmetrically, the condition requires the correlation between θ̃1 and θ̃2 to be suffi ciently small

when side i dislikes the presence of the other side, that is when γi < 0. This is intuitive. Consider

the case where γi > 0; if θ̃1 and θ̃2 were strongly negatively correlated, then an increase in the

appreciation of agent l from side i of platform A’s product could make the agent less willing to

join if he expects a significant drop in the participation by agents from side j due to the negative

correlation in the preferences of the two sides.

We then have the following preliminary result:
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Lemma 1 For any vector of prices p = (pA1 , p
A
2 ), there exists at least one solution to the system of

conditions given by (14), which implies that a threshold continuation equilibrium always exists.

Now, to guarantee that the continuation equilibrium is unique, for all possible prices, we assume

that the strength of the network effects is not too large, given the distribution of the stand-alone

valuations, in the sense of Condition (Q) below, which we assume throughout the rest of the

analysis.

Condition (Q). The parameters of the model are such that

γ1γ2 <
(2µ1 (0) + γ1Ω) (2µ2 (0) + γ2Ω)√

(1 + Ω2) + Ω2

We then have the following result:

Lemma 2 For any vector of prices (pA1 , p
A
2 ), the continuation equilibrium is unique.

The proof in the Appendix first shows that, when conditions M and Q hold, then, for any

vector of prices, there exists a unique pair of thresholds x̂i = x̂i(p
A
1 , p

A
2 ), i = 1, 2, that solve the

system of equations defined by the indifference conditions (14). Standard arguments from the

global-games literature based on iterated deletion of strictly dominated strategies then imply that

the unique monotone equilibrium defined by the thresholds x̂i, i = 1, 2, is the unique equilibrium

of the continuation game.

Notice that condition Q implies condition M if γ1 and γ2 have the same sign, while condition

M implies condition Q if network effects have opposite sign.

The above result implies that there exists a unique pair of demand functions. For any vector of

prices (pA1 , p
A
2 ), the demand on side i in state θ = (θ1, θ2) is given by mA

i = Φ(
√
βηi (x̂i − θi)), while

the unconditional expected demand is QAi = Φ
(√

βxi x̂i
)
, where the thresholds x̂i = x̂i(p

A
1 , p

A
2 ),

i = 1, 2, are the unique solution to the system of equations given by (14).

Now consider the choice of prices by the monopolist. For any pair of prices (pA1 , p
A
2 ), the

monopolist’s profits are equal to

ΠA(pA1 , p
A
2 ) =

∑
i=1,2

pAi Φ
(√

βxi x̂i(p
A
1 , p

A
2 )
)
.

Notice that the system of demand equations (14) defines a bijective relationship between
(
pA1 , p

A
2

)
and (x̂1, x̂2) . The monopolist’s problem can thus also be seen as choosing a pair of thresholds

(x̂1, x̂2) so as to maximize

Π̂A (x̂1, x̂2) ≡
∑
i=1,2

Gi (x̂1, x̂2) Φ
(√

βxi x̂i

)
(16)

where Gi (x̂1, x̂2) (defined in (15)) is the expected gross surplus of the marginal agent on side i,

whose signal is equal to the threshold x̂i.
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Next, for i = 1, 2, let

G−i (x) ≡
[
si −

κi
2
x+ γ−i

]
Φ
(√

βxi x
)

where recall that γ−i ≡ min{γi; 0}. Throughout, we will assume that the following condition also
holds, which guarantees that the optimal prices will be interior.

Condition (W). The parameters of the model are such that, for any i, j = 1, 2, j 6= i,17

max
x∈R

G−i (x) > |γj |.

Note that Condition W is trivially satisfied when si are large enough. The condition simply

guarantees that it is always optimal to induce a strictly positive participation rate on both sides,

despite the possibility that one side may suffer from the presence of the other side. We then have

the following result:

Lemma 3 A vector of prices
(
pA1 , p

A
2

)
that maximizes firm A’s profits always exists. Furthermore

any such vector must satisfy pAi = Gi (x̂1, x̂2) , i = 1, 2, with (x̂1, x̂2) solving the system of conditions

given by18

Gi (x̂1, x̂2)
√
βxi φ

(√
βxi x̂i

)
+
∂Gi (x̂1, x̂2)

∂xi
Φ
(√

βxi x̂i

)
+
∂Gj (x̂1, x̂2)

∂xi
Φ
(√

βxj x̂j

)
= 0. (17)

To shed light on what lies underneath the first-order conditions for the monopolist’s profit-

maximizing prices, note that the latter are equivalent to

pAi +
dpAi
dQAi

∣∣∣∣
QAj =const

QAi +
dpAj

dQAi

∣∣∣∣∣
QAj =const

QAj = 0 (18)

where QAi = E[m̃A
i ] is the demand on side i, as expected by the platform. These first-order

conditions are the incomplete-information analogs of the familiar complete-information optimality

conditions according to which, at the optimum, profits must not vary when the monopolist changes

the price on side i and, at the same time, adjusts the price on side j so as to maintain the expected

demand on side j constant.

Notice that, under complete information about (θ1, θ2) , M
A
i = QAi for i = 1, 2, leading to the

two-sided market formula (where µi (x) is defined in (7)),

pAi = µi (x̂i)− γjQAj ,

17That the function G−i has a maximum follows from the fact that it is continuous, positive for x̂i < 2(si +γ−i )/κi,

negative for x̂i > 2(si + γ−i )/κi and such that limx̂i→−∞ gi(x̂i) = 0.
18While we did not prove that a solution (x̂1, x̂2) to the system of equations given below is unique, we conjecture

that this is the case. Importantly, our results are independent of whether or not such a solution is unique. What

is important is that, for any vector of prices, the continuation equilibrium is unique. This is what permits us to

establish the properties of the equilibrium prices described below.
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according to which the monopolist’s price is equal to the usual one-sided-market inverse semi-

elasticity adjusted by the effect of a variation in the side-i’s participation on side-j’s revenues (the

second term)– see, for example, Weyl (2010).

What is interesting here is how incomplete information affects the slope of the demand functions

on the two sides and thereby the prices. While, with complete information, these slopes are the

same irrespective of whether they are computed by the platform or by any other agent, this is not

the case with dispersed information. In particular, even if the platform adjusts the price on side

j so as to maintain the threshold x̂j fixed (which amounts to maintaining the side-j’s demand QAj
constant, as perceived by the platform), from the perspective of the new marginal agent on side i,

the expected side-j’s demand changes in response to variations in the side-i’s price. Formally,

∂MA
j (x̂1, x̂2)

∂x̂i
= −Ω

√
βxi φ (Xji (x̂1, x̂2)) 6= 0 if Ω 6= 0. (19)

This in turn affects the slope of the side-i’s (inverse) demand function. Indeed asQAi =
√
βxi φ

(√
βxi x̂i

)
changes, the side-j’s participation expected by the side-i’s marginal consumer changes according

to the relationship:

dMA
j

dQAi

∣∣∣∣∣
QAj =const

=

∂MA
j (x̂1,x̂2)

∂x̂i
dQAi
dx̂i

= −Ω
φ (Xji (x̂1, x̂2))

φ
(√

βxi x̂i
) , (20)

where we use
dQAi
dx̂i

=
√
βxi φ

(√
βxi x̂i

)
. (21)

The conditions above highlight a key difference with respect to complete information. Even

if the platform adjusts the price on side j in response to a variation in the price on side i so

as to maintain the expected demand QAj from side j constant, the slope of the side-i’s demand

curve naturally depends on the intensity of the side-i’s network effects γi. The reason is that,

when changing pAi , the platform changes the value of the marginal agent x̂i. Because of dispersed

information, the marginal agent’s expectation of the participation rate on side j then also changes,

despite the fact that, from the platform’s perspective, participation on side j has not changed. As

a result of this novel effect, the slope of the (inverse) demand curve on side i is given by

dpAi
dQAi

∣∣∣∣
QAj =const

=
µi (x̂i)

QAi
− γiΩ

φ (Xji (x̂1, x̂2))

φ
(√

βxi x̂i
) .

This effect, of course, will play an important role for the equilibrium prices.

There is a second difference with respect to complete information. The variation in the side-i’s

d that the platform expects to trigger by changing the price pAi and then adjusting the price p
A
j

to keep the expected side-j demand QAj constant need not coincide with the variation expected by

the marginal agent on side j, which is given by

∂MA
i (x̂1, x̂2)

∂x̂i
=
√

1 + Ω2
√
βxi φ (Xij (x̂1, x̂2)) , (22)
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Comparing (21) with (22), one can then see that the variation of the side-i’s demand perceived

by the marginal agent on side j differs from the variation expected by the platform as long as

Ω 6= 0. This effect in turn impacts the adjustment in the side-j’s price that the platform must

undertake to maintain the side-j’s expected demand constant, as it can be observed from the

following decomposition:

dMA
i

dQAi

∣∣∣∣
QAj =const

=

∂MA
i (x̂1,x̂2)
∂x̂i
dQAi
dx̂i

=
√

1 + Ω2
φ (Xji (x̂1, x̂2))

φ
(√

βxi x̂i
) 6= 1 if Ω 6= 0. (23)

The above two effects, combined, lead to the following first-order condition

pAi +

µi (x̂i)

QAi
− γi

dMA
j

dQAi

∣∣∣∣∣
QAj =const

QAi +

γj dMA
i

dQAi

∣∣∣∣
QAj =const

QAj = 0 (24)

where the first bracket term is the change in pAi for one unit of extra sale on side i, while the second

bracket term is the change in pAj required to maintain the expected side-j’s demand unchanged.

The following proposition combines the above observations into a formula for the monopolist’s

equilibrium prices that will turn useful when considering competition between the two platforms

(the proof follows from the arguments above):

Proposition 1 The monopolist’s profit-maximizing prices, expressed as a function of the demand

thresholds they induce, satisfy the following conditions:

pAi = µi (x̂i)− γi

[
Ω
φ (Xji (x̂1, x̂2))

φ
(√

βxi x̂i
) ]

QAi − γj

[√
1 + Ω2

φ (Xij (x̂1, x̂2))

φ
(√

βxi x̂i
) ]

QAj i = 1, 2 (25)

with x̂1 and x̂2 implicitly defined by the system of equations given by (14) and with µi (x̂i) denoting

the inverse-semi-elasticity of the stand-alone demand curves, as defined in (7).

The first term in the price equation (25), which corresponds to the inverse semi-elasticity of

demand curves in the absence of network effects, expressed in terms of thresholds as opposed to

prices, is completely standard and entirely driven by the distribution of the estimated stand-alone

valuations. In our model it depends on the information structure only because the latter also affects

the distribution of the estimated stand-alone valuations.

The third-term in (25) captures the familiar extra cost of raising prices in a two-sided market

due to a reduction of demand (or equivalently of price) on the other side. When side j benefits from

the presence of side i, that is, when γj > 0, this term is known to contribute negatively to the price

charged by the monopolist (see e.g., Armstrong, 2006). As discussed above, the novelty relative to

complete information comes from the fact that the variation in the side-i demand that the platform

expects to trigger by raising pAi now differs from the variation expected by the marginal agent on
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side j. This novel effect is captured in the bracket in the third term, which measures the sensitivity

of the beliefs of the marginal agent on side j to changes in the mean demand on side i.

The second term in (25) is absent under complete information. As explained above, this term

originates in the fact that a variation in the side-i’s demand now implies a variation in the side-i’s

expectation about side-j’s participation (this despite the fact that, from the platform’s perspective,

the side-j’s expected demand does not change, given the adjustment in the side-j’s price). Whether

this new term contributes positively or negatively to the side-i’s own price elasticity (and thus

ultimately to the monopolist’s profit-maximizing price) depends on the interaction between (a) the

sign of the side-i’s network effects, γi, and (b) the sign of the correlation between the two sides’

preferences (Formally, the sign of this new term is the sign of γiρθ.). For a given increase in expected

demand QAi , the extra adjustment in the side-i’s price that the platform must undertake due to this

novel effect is given by γi dM
A
j /dQ

A
i

∣∣∣
x̂j=const

, which corresponds to the change in the evaluation

of the network effects by the marginal consumer. To understand this, recall that, by lowering the

price pAi , the monopolist raises the threshold x̂i. Equivalently, it lowers the estimated stand-alone

valuation of the marginal agent who is just indifferent between joining and staying home. When

valuations are positively correlated between the two sides, this means that the new marginal agent

will also expects that fewer agents from the opposite side will like the platform’s product and thus

join. When side i values positively the participation of the side-j’s agents, this new effect thus

reduces the elasticity of the demand on side i and thus contributes to a higher optimal price.

It is interesting to contrast our results with the analysis in Weyl (2010). In that paper, in-

formation is complete but consumers are heterogenous in the importance they assign to network

effects. This possibility can be captured in our model by letting α1 and α2 go to infinity, with

ρx = 0, but then allowing the coeffi cient γil to vary across agents. To preserve the property that

the heterogeneity among the agents is parametrized by xil, then let γi (xil) = E[γ̃il | xil] and assume
that κix− 2γi (x) is increasing in x, so as to preserve the threshold property of the demand curves.

Then, both in Weyl (2010) and in our model, the intensity of the network effects is correlated with

the perceived stand-alone valuations:

E[ũAi + γ̃ilm̃
A
j | xil] = si −

κi
2
xil + γi (xil)Q

A
j with heterogenous network effects,

E[ũAi + γ̃ilm̃
A
j | xil] = si −

κi
2
xil + γiM

A
j (xil, x̂j) with dispersed information.

The equilibrium prices with heterogenous network effects are then given by

pAi = µi (x̂i)−
[
γ′i (x̂i)

dx̂i

dQAi

]
QAj Q

A
i︸ ︷︷ ︸

µI

− γ̂jQAj where γ̂j = γj (x̂j)

where the term µI corresponds to what in Weyl is called classical market power. Notice that the

market power µI differs from the usual stand-alone market power due to the correlation between the

stand-alone valuations and the importance of the network effects. In our model, a similar formula
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obtains under dispersed information, but with different interpretations of µI and γ̂j . First, in our

model,

µI = µi (x̂i)−

γi dMA
j

dQAi

∣∣∣∣∣
QAj =const

QAi
differs from the usual stand-alone market power index µi (x̂i) due to the variations in expectations

as opposed to an exogenous correlation between stand-alone valuations and the importance assigned

to network effects. One interesting feature of our model is that the sign of µI − µi (x̂i) depends on

two observable variables, namely the sign of the network effects γi and the sign of the correlation

of preferences between the two sides, ρθ.

Next, consider the term γ̂j . As pointed out in Weyl (2010), this term reflects the fact that the

monopoly internalizes the effects of variations in participation decisions on side i on the util-

ity of the marginal consumer on the opposite side. Because γ̂j differs from the average value

E {γj (x̂j) | xjl < x̂j} among the agents who participate on side j, the monopolist’s optimal price
exhibits a distortion along the lines of Spence. In our model,

γ̂j = γj
dMA

i

dQAi

∣∣∣∣
QAj =const

,

which also differs from the mean value of the network effect among the side-j’s participants, which

is constant at γj . However, in our model, the reason for the distortion is very different from the

one in Spence; it originates in the fact that the monopolist accounts for the discrepancy between

his own beliefs and the beliefs of the marginal consumer about the participation of the other side.

5 Competition

We now reintroduce platform B and examine the outcome of the duopoly game where platforms

simultaneously compete in prices on each side, assuming full participation19.

Consider the continuation game starting in stage 2 given the prices (pA1 , p
A
2 , p

B
1 , p

B
2 ). Each agent

l from each side i = 1, 2 chooses platform A when

E[ũAj − ũBj | xil] + γiE[m̃A
j − m̃B

j | xil] > pAi − pBi (26)

and platform B when the inequality is reversed. Using mA
i +mB

i = 1, i = 1, 2, and (3), Condition

(26) can be rewritten as

−κixil + 2γiE[m̃A
j | xil]− γi > pAi − pBi .

Now suppose that each agent l from side j 6= i follows a threshold strategy according to which

he chooses platform A if xjl < x̂j and B if xjl > x̂j . When this is the case, the measure of agents

19As it will become clear below, full participation can be justified by assuming that the stand-alone valuations are

suffi ciently high– see Proposition 3.
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from side j on platform A is a decreasing function of θj and is given by mA
j = Pr (x̃jl ≤ x̂j | θj) .

Given the expectation that each agent from side j 6= i follows such a strategy, each agent l from

side i then finds it optimal to choose platform A if

−κixil + 2γi Pr (x̃jl ≤ x̂j | xil)− γi > pAi − pBi . (27)

Under Condition (M), the left hand side in (27) is decreasing in xil. Applying the same logic

to each side, we then conclude that a monotone continuation equilibrium is characterized by a pair

of thresholds (x̂1, x̂2) that jointly solve

−κix̂i + 2γiM
A
j (x̂1, x̂2)− γi = pAi − pBi i, j = 1, 2, j 6= i. (28)

Note that the left-hand side of (28) is the gross payoff differential of joining platform A relative to

platform B for the marginal agent x̂i on side i when users on both sides follow threshold strategies

with respective cutoffs x̂1 and x̂2.

Recognizing that

−κix̂i + 2γiM
A
j (x̂1, x̂2)− γi = 2Gi (x̂1, x̂2)− 2si − γi

where Gi are the functions defined above for the monopolist case, we then have that many of the

properties identified above for the monopolist case carry over to the duopoly case. In particular, for

any vector of prices p = (pA1 , p
A
2 , p

B
1 , p

B
2 ), there always exists a solution to the system of conditions

given by (28), which implies that a threshold continuation equilibrium always exists. Furthermore,

under Condition (Q), this continuation equilibrium is the unique continuation equilibrium, which

implies that we can associate to any vector of prices a unique system of demands given, in each

state θ = (θ1, θ2) by

mA
i = Φ(

√
βηi (x̂i − θi)) = 1−mB

i i = 1, 2.

Thus consider the choice of prices by the two platforms. For any p = (pA1 , p
A
2 , p

B
1 , p

B
2 ), we have

QAi = E[m̃A
i ] = Φ

(√
βxi x̂i

)
and the two platforms’profits are equal to

ΠA(pA1 , p
A
2 , p

B
1 , p

B
2 ) =

∑
i=1,2

pAi Φ
(√

βxi x̂i

)
and

ΠB(pA1 , p
A
2 , p

B
1 , p

B
2 ) =

∑
i=1,2

pBi

(
1− Φ

(√
βxi x̂i

))
with the thresholds (x̂1, x̂2) uniquely defined by the system (28).

Now fix
(
pB1 , p

B
2

)
and consider the choice of prices by platform A. Given the bijective relation-

ship between
(
pA1 , p

A
2

)
and (x̂1, x̂2) given by

pAi = pBi + 2Gi (x̂1, x̂2)− 2si − γi
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we have that the prices
(
pA1 , p

A
2

)
constitute a best-response for platform A if and only if the corre-

sponding thresholds (x̂1, x̂2) solve the following problem:

max
(x̂1,x̂2)

Π̂A (x̂1, x̂2) ≡
∑
i=1,2

[
pBi + 2Gi (x̂1, x̂2)− 2si − γi

]
Φ
(√

βxi x̂i

)
(29)

Arguments similar to those for the monopolist case then easily permit us to verify that, under

Condition (Q), for any vector of prices
(
pB1 , p

B
2

)
the prices

(
pA1 , p

A
2

)
that maximize platform A’s

profits must be a solution to the system of first-order conditions given by

[
pBi + 2Gi (x̂1, x̂2)− 2si − γi

]√
βxi φ

(√
βxi x̂i

)
+ 2

∂Gi (x̂1, x̂2)

∂xi
Φ
(√

βxi x̂i

)
(30)

+2
∂Gj (x̂1, x̂2)

∂xi
Φ
(√

βxj x̂j

)
= 0.

The above conditions are the duopoly analogs of the optimality conditions (18) for the monopoly

case; they describe the relation between the profit-maximizing thresholds and the corresponding

prices. Following steps similar to those in the previous section, we can then show that the com-

bination of optimal prices and corresponding thresholds for platform A must satisfy the following

conditions

pAi = κi
QAi
dQAi
dx̂i

− 2γi

 ∂MA
j (x̂1,x̂2)

∂x̂i
dQAi
dx̂i

QAi + 2γj

 ∂MA
i (x̂1,x̂2)
∂x̂i
dQAi
dx̂i

QAj (31)

along with pAi = pBi + 2Gi (x̂1, x̂2)− 2si− γi, i = 1, 2. The advantage of the above representation is

that it highlights the analogy with the monopolist’s case (the only difference is that the optimality

conditions now apply to the residual demands). It also permits us to identify the unique equilibrium

prices that are sustained in a symmetric equilibrium.

Proposition 2 In the unique symmetric equilibrium, the prices that both platforms charge on each

side are given by

p∗i = µdi (0) + γiΩ− γj
√

1 + Ω2 (32)

where µdi (0) is the inverse semi-elasticity of the stand-alone residual demand and where Ω is the

coeffi cient of mutual forecastability between the two sides.

As in the monopolist’s case, the first term in (32) is the inverse semi-elasticity of the component

of the demand on side i that comes from the stand-alone valuations, accounting for the relation

between information and estimated valuations. Notice that it coincides with the equilibrium price

in the absence of network effects (see (9)).

The last two terms in (32) capture the interaction between the network effects and the dispersion

of information. In particular, the term γiΩ, which is absent under complete information, captures

the effects of dispersed information on side-i own-price elasticity. As in the monopolist’s case,

whether this term contributes positively or negatively to the equilibrium prices depends on the sign
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of the network effects γi on side i and on the correlation ρθ between the preferences on the two sides

(recall that sign(Ω) = sign(ρθ)). Finally, the third term in (32) captures the cost of increasing

the price on side i due to the effect that this has on the platform’s profits on the other side of

the market. As in the case of complete-information, this effect contributes to a lower equilibrium

price when side j benefits from the presence of side i, i.e., when γj > 0, and to a higher price when

γj < 0.

We summarize the above findings in the following corollary.

Corollary 1 As in the complete-information case, equilibrium prices under platform competition

(i) increase with the inverse-semi-elasticity of the component of the demand that comes from the

estimated stand-alone valuations and (ii) decrease with the intensity of the network effect from the

opposite side. However, contrary to the complete-information case, equilibrium prices under dis-

persed information (a) increase with the intensity of the own-side network effects when preferences

between the two sides are positively correlated, and (b) decrease when they are negatively correlated.

A second important observation is that, holding constant the ex-ante distribution of the esti-

mated stand-alone valuations (the first term in the price equation (32)), the equilibrium price on

each side depends on the properties of the information structure only through the coeffi cient of

mutual forecastability Ω. Recall that

Ω =
ρx√

1− ρ2x
.

As discussed above, the sign of Ω is what determines whether an agent becomes more or less

optimistic about the other side’s participation as his appreciation for the platform’s product in-

creases. As a result, the sign of Ω is what determines whether the equilibrium price pi on each

side increases or decreases with the intensity γi of that side’s network effects. In contrast, when

it comes to the impact on equilibrium prices of the intensity of the network effects γj on the

opposite side, what matters is only the square of Ω. To interpret this result, use the variance

decomposition var(x̃i)− var[x̃i − ρx
√

βxj
βxi
x̃jl] = ρ2xvar(x̃i) to see that

Ω2 =
var(x̃i)

var[x̃i − E[x̃i|x̃jl]]
− 1.

Hence Ω2 measures the ability of side j to forecast variations in participation decisions on side i

triggered by variations in prices.20 It is then natural that the sensitivity of the equilibrium price

on side i to the intensity γj of the network effects on the opposite side depends on Ω only through

Ω2.

The above properties also suggest that equilibrium prices need not be too sensitive to the specific

way the information is distributed across the two sides. Fixing again the ex-ante distribution of the

20Note that Ω2 is reminiscent of the "coeffi cient of fit" R2 for the regression of x̃i on x̃j . The difference is in the

denominator, which here is the variance of the residual, while it is the total variance in R2.
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estimated stand-alone valuations (equivalently, the inverse semi-elasticity of the component of the

demands that comes from the stand-alone valuations), we have that any two information structures

that result in the same coeffi cient of mutual forecastability yield the same equilibrium prices.

This observation is particularly sharp in the case of a market whose primitives are perfectly

symmetric under complete information. That is, consider a market where both the intensity of the

network effects and the inverse semi-elasticity of the stand-alone demand is the same across the

two sides, i.e., γ1 = γ2 = γ and µdi = µd, i = 1, 2. The complete-information equilibrium prices are

then given by21

pci = µd (0)− γ, i = 1, 2.

Not surprising, these prices are the same across the two sides. Perhaps more surprising, the

equilibrium prices continue to be the same across the two sides, even when the distribution of

information is not symmetric. This is because, holding constant the distribution of the estimated

stand-alone valuations, and assuming that the intensity of the network effect is the same across the

two sides, a variation in the quality of information on side i has an identical effect on the elasticity

of demand on each of the two sides. To gauge some intuition, consider the case where preferences

are perfectly correlated between the two sides so that θ̃1 = θ̃2 almost surely (in which case α1 = α2

and ρθ = 1). Now suppose that information is very precise on side 1, while very imprecise on side

2, so that βη1 →∞ while βη2 → 0. Because participation decisions on side 2 do not vary much with

the state θ2, the value of the information held by the side-1 agents is pretty much the same as if

side-1 was itself uninformed about the distribution of the side-2’s valuations.

More generally, the result in Proposition 2 implies that shocks that affect the agents’s ability

to forecast the cross-sectional distribution of valuations in an asymmetric way across the two sides

have nonetheless a symmetric effect on the equilibrium prices, as long as the intensity of the network

effect is the same across the two sides. This is because, holding fixed the ex-ante distribution of

estimated stand-alone valuations, the value that each side assigns to being able to predict the

distribution of preferences (and information) on the opposite side comes entirely from its ability

to coordinate its participation decisions with those on the opposite side. When the importance of

the network effects is the same across the two sides (that is, when γ1 = γ2), the two platforms

then equalize the prices over the two sides, despite possibly asymmetries in the distribution of

information.

We conclude this section with two results that show that, under plausible additional assump-

tions, the equilibrium prices characterized above (along with the participation decisions they induce)

continue to remain equilibrium outcomes when agents can choose to "opt out" of the market, or

to multihome by joining multiple platforms. These results should be interpreted as (minimal) ro-

bustness checks aimed at showing that the above results are not unduly driven by the choice of

21The formula can be obtained from (32) by taking the limit where α1, α2 → ∞. From (2), we then have that, in

the limit Ω converges to 0 which yields the result.
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simplifying the analysis by abstracting from these possibilities. In future work, it would be inter-

esting to extend the analysis to markets where multihoming and partial market-coverage occur in

equilibrium.

We start with the following result that pertains our assumption of full market-coverage:

Proposition 3 There exist finite (si)i=1,2 such that, for any (si)i=1,2 with si > si, i = 1, 2, the

equilibrium in the game where agents must join one of the two platforms is also an equilibrium in

the game where agents can "opt out" of the market by choosing not to join any platform.

The reason why the equilibrium prices in the game with compulsory participation need not

remain equilibrium prices in the game where agents can opt out of the market is the following.

First, when platforms set the prices at the level of Proposition 2, some agents may experience

a negative equilibrium payoff and hence prefer to opt out. Because the equilibrium prices p∗i in

Proposition 2 are independent of the levels of the stand-alone valuations (formally, of s1 and s2) this

possibility can be ruled out by assuming that the marginal agents’equilibrium payoffs are positive,

which amounts to assuming that si + γi/2 ≥ p∗i , i = 1, 2. Under these conditions, no agent finds

it optimal to opt out, given that any agent’s equilibrium payoff is at least as high as that of the

marginal agents. This condition, however, does not suffi ce. In fact, platforms may have an incentive

to raise one of their prices above the equilibrium levels of Proposition 2 if they expect that, by

inducing some agents to opt out, their demand will fall less than that of the other platform, relative

to the case where participation is compulsory. Consider, for example, a deviation by platform A to

a vector of prices (pA1 , p
A
2 ) with pA1 > p∗1. Now suppose that, in the unique continuation equilibrium

of the game where participation is compulsory, the payoff of the marginal agent x̂1(pA1 , p
A
2 , p

∗
1, p
∗
2)

on side 1 is negative (that is, below his outside option). This means that, in the game where

participation is voluntarily, some agents in a neighborhood of x̂1(pA1 , p
A
2 , p

∗
1, p
∗
2) may now decide to

opt out. Note that some of these agents were joining platform B in the game with compulsory

participation. When network effects are positive, this in turn implies that such a deviation may now

be profitable for firm A if the measure of agents on side 1 who would have join platform B in the

game with compulsory participation and now decide to opt out is larger than the measure of agents

who would have joined platform A and now opt out. That is, when the platform expects a larger

drop in the rival’s demand than in its own (relative to the case where participation is compulsory),

then a deviation that was not profitable in the game where participation is compulsory may now

become profitable. For this to be the case, however, it must be that the intensity of the network

effects is suffi ciently strong to prevail on the direct effect coming from the stand-alone valuations.

The proof in the Appendix shows that this is never the case when s1 and s2 are suffi ciently large.

Next, consider the possibility that agents multihome by choosing to join both platforms. We

assume that, by doing so, each agent l from each side i obtains a gross payoff equal to (2− κ)si +

γi(m
A
j + µBj ), where µBj is the measure of agents from side j who join platform B without joining
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platform A (to avoid double counting), and where κ ∈ [0, 1] denotes the loss of utility coming from

combining the two products.22

We then have the following result:

Proposition 4 Consider the variant of the game where agents from each side of the market can

multihome, as described above. For any vector of prices (pA1 , p
A
2 , p

B
1 , p

B
2 ) such that pAi + pBi ≥

γi + 2(1 − κi)si, i = 1, 2, there exists a continuation equilibrium where each agent from each side

singlehomes. Conversely, such a continuation equilibrium fails to exist for any vector of prices for

which pAi + pBi < γi + 2(1− κi)si, for some i ∈ {1, 2}.

Note that the condition in the Proposition simply says that an agent who expects all other

agents to singlehome and who decides to multihome experiences a network effect lower than the

sum of the prices he pays. The proof in the Appendix then shows that, when this is the case, then

no agent from either side finds multihoming optimal. The following corollary is then an immediate

implication of the above result:

Corollary 2 Let (p∗1, p
∗
2) be the equilibrium prices in the game where multihoming is not possible,

as defined in (32), and assume that p∗i ≥ γi + 2(1−κi)si, i = 1, 2. Assuming that platforms cannot

set negative prices, we then have that the equilibrium in the game where agents are not allowed to

multihome continues to be an equilibrium in the game where multihoming is possible.

Because equilibrium prices are increasing in the ex-ante dispersion of the estimated stand-alone

valuations and because such dispersion measures the degree of horizontal differentiation between

the two platforms, the result in Corollary 2 is consistent with the finding in Armstrong and Wright

(2007) that strong product differentiation on both sides of the market implies that agents have no

incentive to multihome when prices are restricted to be non-negative (As argued in that paper, and

in other contexts as well, the assumption that prices must be non-negative can be justified by the

fact that negative prices can create moral hazard and adverse selection problems).

Together, the results in Proposition 3 and Corollary 2 imply that, when the stand-alone valu-

ations of the marginal agents are neither too high nor too low (intermediate si) and when the two

platforms are seen as suffi ciently differentiated on both sides of the market (the ex-ante distribution

of estimated stand-alone valuations is suffi ciently diffuse), then the unique symmetric equilibrium

of the baseline game is also an equilibrium in the more general game where agents can multihome

and opt out of the market.

6 Implications for advertising and product selection

We now turn to the effects on equilibrium prices of variations in (i) the quality of the agents’

information and (ii) the prior distribution from which stand-alone valuations are drawn. These

22Note that (2− κi)si + γi(m
A
j + µBj ) = uAi + uBi − κisi + γi(m

A
j + µBj ).
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comparative statics results have implications for advertising campaigns, as well as for the platforms’

incentives to differentiate their products from those of the competitors.

We start by showing how the equilibrium prices depend on the various structural parameters

of the model. We then turn to the implications for advertising and product selection.

From Proposition 2, the relevant terms for the equilibrium prices are (a) the inverse semi-

elasticities µdi of the stand-alone demands and (b) the coeffi cient Ω of mutual forecastability. The

inverse semi-elasticities of the stand-alone demands (evaluated at the equilibrium prices) are in

turn proportional to the dispersion of the estimated stand-alone differentials (see (10)):

var[Ṽil] = z2i

(
βηi + ρiαi

√
βηi /β

ε
i

)2
(αi + βηi )αiβ

η
i

. (33)

As one can see from (33), var[Ṽil] increases with the correlation ρi between the noise ηil in the

agents’ information and the idiosyncratic taste shock εil in the stand-alone differentials. It also

increases with zi, which parametrizes the overall sensitivity of the agents’stand-alone differentials

to common and idiosyncratic shocks (θi and εil, respectively). Finally, it decreases with βεi , for a

higher βεi implies a lower dispersion of idiosyncratic taste shocks.

On the other hand, var[Ṽil] is typically non-monotone in αi and in β
η
i . The non-monotonicity

with respect to αi (which parametrizes the precision of the prior about θi) reflects the fact that a

higher αi implies a lower dispersion of stand-alone differentials but also a higher precision of the

agents’information. Because the latter effect makes the agents respond more to their information,

it contributes to a higher dispersion of estimated differentials. The non-monotonicity with respect

to the precision βηi of the agents’information in turn reflects the fact that, holding constant the

correlation coeffi cient ρi, a higher β
η
i implies a lower covariance between the noise in the signals and

the idiosyncratic taste shocks in the differentials. Because a lower covariance between the noise in

the signals and the taste shock in turn contributes to a lower sensitivity of estimated differentials

to the agents’signals, the net effect of a higher βηi on var[Ṽil] is typically non-monotone.

Next, consider the coeffi cient Ω of mutual forecastability. As illustrated above, Ω is an increas-

ing transformation of the coeffi cient ρx of correlation between signals from the two sides, which in

turn determines the two sides’ability to forecast each other. To be precise, we measure the ability

of side i to forecast the information on side j by the variance of the forecast errors x̃j − E[x̃j |x̃il],
which can be decomposed as follows

var[x̃j − E[x̃j |x̃il]] = var[θ̃j − E[θ̃j |x̃il]] +
1

βηj
.

Clearly, the ability of side i to forecast the information (and hence the valuations) on side j increases

as the noise in the side-j’s signals decreases (that is, as βηj increases). It also increases with its

ability to forecast the correlated taste shock θ̃j in the side-j’s signals, which is inversely proportional

to

var[θ̃j − E[θ̃j |x̃il]] =

(
1− ρ2θ

βηi
αi + βηi

)
1

αj
(34)
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Not surprisingly, the ability of side i to forecast θ̃j increases with |ρθ| and βηi , and decreases with
αi.

Building on these observations, we now investigate the firms’incentives to take actions that

affect either (i) the consumers’ ability to estimate their own preferences as well as those of the

agents from the opposite side (e.g., through informative advertising campaigns and/or personalized

disclosures), or (ii) the distributions from which the agents’true preferences are drawn (e.g., by

differentiating their products from the competitors’or by aligning the preferences across the two

sides). We examine each of the two channels separately.

6.1 Advertising campaigns

Think of a software firm entering the market with a new operating system. The firm must decide

how much information to disclose to the public about the various features of its operating system.

We think of these disclosures as affecting both the developers’and the end-users’ability to estimate

their own stand-alone valuations (both in absolute value and relative to the operating system pro-

duced by the rival incumbent firm), as well as their ability to forecast the distribution of valuations

on the other side of the market.

Formally, we think of these disclosure and advertising campaigns as affecting the information

available to the two sides of the market, for fixed distribution of true stand-alone valuations. That

is, fix the parameters (α1, α2, ρθ, β
ε
1, β

ε
2, z1, z2) defining the prior distribution from which individual

stand-alone valuations are drawn and consider the effects on profits of variations in (i) the agents’

ability to estimate their own stand-alone valuations (as measured by the volatility of the forecast

error var[ṽil−Ṽil]), and (ii) their ability to forecast the distribution of stand-alone valuations on the
other side of the market (as measured by (34))23. Hereafter, we isolate the effects of the variations

in (i) by looking at changes in the coeffi cient ρi of correlation between the noise ηil in the signals

and the idiosyncratic taste shock εil. We then isolate the effects of the variations in (ii) by looking

at joint changes in (βηi , ρi)i=1,2 that leave var[ṽil − Ṽil] constant.
We then have the following result:

Proposition 5 Informative advertising campaigns that increase the agents’ability to estimate their

own stand-alone valuations without affecting their ability to forecast the distribution of such valua-

tions on the other side of the market always increase profits.

Conversely, campaigns that increase the agents’ability to forecast the distribution of (true or

estimated) stand-alone valuations on the other side of the market without affecting their ability to

estimate their own valuations increase profits if ρθ(γ1 + γ2) > 0 and reduce profits otherwise.

The result is quite intuitive. Consider first campaigns that increase the agents’ ability to

understand their own needs and preferences, without affecting their ability to forecast other agents’
23Because (α1, α2, ρθ, β

ε
1 , β

ε
2 , z1, z2) are held fixed, the entire distribution of stand-alone valuations on each side j

is uniquely pinned down by θj .
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preferences. By making agents more responsive to their own idiosyncrasies, such campaigns increase

the ex-ante dispersion of estimated stand-alone valuations, thus reducing the semi-price elasticity of

the part of the demand on each side that comes from the stand-alone valuations. These campaigns

are thus similar to those that increase the degree of horizontal differentiation between the two

platforms under complete information. By reducing the intensity of the competition between the

two platforms, such campaigns unambiguously contribute to higher prices and hence to higher

profits.

Next, consider campaigns whose primary effect is to make agents more informed about what

is likely to be "hip" on the side of the market (formally, that help agents predict the other side’s

cross-sectional distribution of preferences). As we show in the Appendix, these campaigns impact

the coeffi cient of mutual forecastability Ω, without affecting the ex-ante distribution of estimated

stand-alone valuations var[Ṽi]. From the equilibrium price equation (32), one can then see that,

depending on the intensity of the network effects, such campaigns may either increase or decrease

the equilibrium prices. Their total effect on equilibrium profits, which in a symmetric equilibrium

are given by

Π∗ =
1

2
(p∗1 + p∗2) =

1

2

{
µd1 (0) + µd2 (0) + (γ1 + γ2)

(
Ω−

√
1 + Ω2

)}
, (35)

is then determined by (i) the sign of the total network effects γ1 + γ2 and (ii) whether increasing

the agents’ ability to forecast the distribution of preferences on the other side (which, by (34),

corresponds to an increase in the precision βηi of the agents’information) increases or decreases the

coeffi cient of mutual forecastability Ω. Because the latter is increasing in the quality of the agents’

information βη1 and β
η
2 if and only if preferences are positively correlated between the two sides

(that is, if and only if ρθ > 0), we then have that the effect of such campaigns on profits is positive

if and only if the correlation of tastes between the two sides is of the same sign as the sum of the

intensity of the network effects (that is if and only if ρθ(γ1 + γ2) > 0).

To better understand this result, recall that the term γiΩ in the price equation captures the

effect of the dispersion of information on side-i’s own-price elasticity. From the discussion in the

previous section, when network effects are positive and preferences are positively correlated between

the two sides, then γiΩ increases in either of the two sides’quality of information (that is in either

βη1 and β
η
2 ). This effect comes from the fact that more precise information on side i makes the

marginal agent on both sides more responsive to his private information. When preferences are

positively correlated and network effects are positive, this effect in turn contributes to a higher

equilibrium price on each side by making each side’s demand less elastic.

At the same time, more precise information also implies a higher sensitivity of both demands to

variations in prices on the opposite side. These effects, which are captured by the terms γj
√

1 + Ω2

in the price equations, contribute negatively to the equilibrium prices. While the net effect on the

equilibrium prices on each side then depends on the relative strengths of the network effects γ1 and

γ2, the net effect on total profits is unambiguously positive when the sum of the network effects is

28



positive (more generally, when it is of the same sign as the correlation of preferences between the

two sides). This is because any loss of profits on one side is more than compensated by an increase

in profits on the opposite side, as one can see from (35).

What is interesting about the results in the proposition is that they identify two fairly general

channels through which information affects profits, without specifying the particular mechanics by

which the campaigns operate. In reality, most campaigns operate through both channels. That

is, they impact both the agents’ability to understand their own preferences and their ability to

understand what other agents are likely to find attractive. The results in the proposition then

indicate that such campaigns unambiguously increase profits in markets where (i) preferences are

positively correlated between the two sides and (ii) the sum of the network effects is positive

(which is always the case when each side benefits from the presence of the other side). In contrast,

in markets where the sum of the network effects is positive but where preferences are negatively

correlated between the two sides (or, vice versa), profits may decrease with the agents’ ability

to forecast other agents’ preferences and platforms may find it optimal to conceal part of the

information they have.

Note that the above results refer to informative campaigns. They do not apply to campaigns

that distorts the average perception the agents have about the quality differential between the plat-

forms’products. These campaigns could be modelled in our framework by allowing the platforms

to manipulate the mean of the distributions from which the signals are drawn. However, because in

our environment platforms do not possess any private information and the agents are fully rational,

the effect of such campaigns on profits is unambiguously negative. This is because each agent can

always “undo”the manipulation by adjusting the interpretation of the information he receives. As

discussed in the "signal-jamming" literature (e.g., Fudenberg and Tirole (1986)), platforms may

then be trapped into a situation where they have to invest resources in such campaigns, despite

the fact that, in equilibrium, such campaigns have no effect on the agents’decisions.

6.2 Product selection

We conclude by considering campaigns that impact the distribution from which the true stand-alone

valuations are drawn. As anticipated in the Introduction, such campaigns– formally captured by

a change in the parameters (α1, α2, ρθ, β
ε
1, β

ε
2, z1, z2)– should be interpreted as the choice of how to

position a product relative to the one offered by the competitors. For example, an increase in α1
and α2 should be interpreted as the choice to enter the market with a product that is more similar

to the one provided by the incumbent firm. We then have the following result:

Proposition 6 Fix the quality of the information on each side of the market (that is, fix (βηi , ρi),

i = 1, 2). An increase in the similarity between the two products (as captured by an increase in

(α1, α2)) always reduces the equilibrium profits. The same is true for a reduction in the cross-

sectional heterogeneity of individual preferences (as captured by an increase in (βε1, β
ε
2)).
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Conversely, an increase in the alignment of preferences between the two sides (as captured by

an increase in ρθ) increases profits if γ1 + γ2 > 0 and reduces them if γ1 + γ2 < 0.

That both a higher similarity in the products and a smaller relevance of dimensions that are

responsible for idiosyncratic appreciations contribute negatively to profits is immediate, for they

both contribute to fiercer competition on prices.

The result about the effect of aligning the preferences of the two sides is less obvious. Observe

from the price equation (32) that an increase in the alignment of preferences (which amounts to

an increase in the coeffi cient Ω of mutual forecastability) may increase prices on one side while

decreasing prices on the other side. This is true even if each side benefits from the participation of

the other side. The net effect of profits is however always positive if the sum of the network effects is

positive, while it is negative otherwise. For example, in a market for media outlets, more alignment

in the preferences of viewers and advertisers over the features of competing outlets can be profit-

enhancing if the viewers’ tolerance towards advertising is high, while it may be profit-reducing

otherwise.

7 Conclusions

We examined the effects of dispersed information on prices and equilibrium profits in a simple,

yet flexible, model of platform competition with horizontally differentiated products. The analysis

identified a novel channel through which the dispersion of information interacts with the network

effects in determining the elasticity of the demand functions. We then showed how equilibrium

profits are affected by variations in (i) the prior distribution from which valuations are drawn and

(ii) the quality of information available to the two sides. We used these results to shed light on

the platforms’ incentives to align the preferences of the two sides and to engage in advertising

campaigns that affect the agents’ability to predict their own preferences and/or the distribution

of preferences on the other side of the market.

In future work, it would be interesting to extend the analysis to accommodate the possibility

of price discrimination, whereby each platform grants differential access to the participating pop-

ulation from the opposite side. It would also be interesting to extend the analysis to a dynamic

setting with switching costs and investigate the platforms’incentives to price aggressively at the

early stages so as to build a user base as a barrier to entry and to future competition. The analysis

could also shed light on how the platforms’pricing strategies affect the dynamics of learning and

the speed of technology adoption. Lastly, it would be interesting to introduce within-side network

effects, thus accommodating for the possibility that agents benefit (or suffer) from variations in

participation rates on both sides of the market.
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8 Appendix

Proof of Lemma 1. Fix (pA1 , p
A
2 ). Under Assumption M, Gi (x1, x2) is a continuous decreas-

ing24 function onto R of x̂i. Thus for any x2 there exists a unique value x1 = ξ1 (x2) that solves

G1 (ξ1 (x2) , x2) = pA1 . Thus consider the function

F (x2) ≡ G2 (ξ1 (x2) , x2)− pA2 .

This is a continuous function, positive for x2 small enough and negative for x2 large enough. Thus

a solution to F (x2) = 0 always exists, which establishes the result.

Proof of Lemma 2. To fix ideas, we assume here that γ1 ≥ 0. The proof for the case where

γ1 < 0 ≤ γ2 is symmetric to the one for the case where γ2 < 0 ≤ γ1 which is covered below.

Consider again the function F (x2) ≡ G2 (ξ1 (x2) , x2) introduced in the proof of Lemma 1, where

ξ1 (x2) is the unique solution to G1 (ξ1 (x2) , x2) = pA1 . From the implicit function theorem, and

given that ∂Gi (x1, x2) /∂xi < 0, we have that

sign

(
dF (x2)

dx2

)
= sign

(
∂G2 (ξ1 (x2) , x2)

∂x1

∂G1 (ξ1 (x2) , x2)

∂x2
− ∂G2 (ξ1 (x2) , x2)

∂x2

∂G1 (ξ1 (x2) , x2)

∂x1

)
.

Using

∂Gi (x1, x2)

∂xi
= −κi/2− γiΩ

√
βxi φ (Xji(x1, x2))

∂Gi (x1, x2)

∂xj
= γi

√
1 + Ω2

√
βxj φ (Xji(x1, x2))

after some algebra, we obtain that

∂G2 (x1, x2)

∂x1

∂G1 (x1, x2)

∂x2
− ∂G2 (x1, x2)

∂x2

∂G1 (x1, x2)

∂x1
(36)

=
(
γ1γ2

√
1 + Ω2

√
βx1β

x
2φ (X12(x1, x2))−

κ2
2
γ1Ω

√
βx1

)
φ (X21(x1, x2))

− κ1
2
γ2Ω

√
βx2φ (X12(x1, x2))−

κ1κ2
4

.

Now we claim that, under Condition Q, the expression in (36) is strictly negative for any

(x1, x2). To see this, suppose, on the contrary, that there exists (x1, x2) for which the sign of

24To see this note that
∂Gi (x1, x2)

∂xi
= −κi/2− γiΩ

√
αiβxi
αi + βxi

φ (Xji(x1, x2)) .

Hence, when γiΩ ≥ 0, ∂Gi(x1,x2)
∂xi

< 0 while for γiΩ < 0,

∂Gi (x1, x2)

∂xi
≤ −κi/2− γiΩ

√
αiβxi
αi + βxi

φ (0)

which is again negative by Assumption M.
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the expression in (36) is nonnegative. Consider first the case where γ1, γ2,Ω ≥ 0. Then for the

expression in (36) to be nonnegative, it must be that

γ1γ2
Ω2
√
βx1β

x
2

ρ2x
φ (X12(x1, x2))−

κ2
2
γ1Ω

√
βx1 > 0

which in turn implies that

∂G2 (x1, x2)

∂x1

∂G1 (x1, x2)

∂x2
− ∂G2 (x1, x2)

∂x2

∂G1 (x1, x2)

∂x1
(37)

≤
(
γ1γ2

√
1 + Ω2

√
βx1β

x
2φ (X12(x1, x2))−

κ2
2
γ1Ω

√
βx1

)
φ (0)

− κ1
2
γ2Ω

√
βx2φ (X12(x1, x2))−

κ1κ2
4

.

Because the right-hand side of (37) can also be rewritten as(
γ1γ2

√
1 + Ω2

√
βx1β

x
2φ (0)− κ1

2
γ2Ω

√
βx2

)
φ (X12(x1, x2)) (38)

− κ2
2
γ1Ω

√
βx1φ (0)− κ1κ2

4

for the sign of the expression in (38) to be nonnegative, by the same reasoning as above, it must

be that the sign of the first term in (38) is also strictly positive. It must then be that(
γ1γ2

√
1 + Ω2

√
βx1β

x
2φ (0)− κ1

2
γ2Ω

√
βx2

)
φ (0)− κ2

2
γ1Ω

√
βx1φ (0)− κ1κ2

4
≥ 0 (39)

which is impossible when Condition Q holds.

Next assume that γ1, γ2 ≥ 0 > Ω. Then, by the same arguments as above, the existence of a

pair (x̂1, x̂2) for which the sign of the expression in (36) is nonnegative contradicts the assumption

that Condition Q holds.

Next, assume that γ1,Ω ≥ 0 > γ2. It follows that

∂G2 (x1, x2)

∂x1

∂G1 (x1, x2)

∂x2
− ∂G2 (x1, x2)

∂x2

∂G1 (x1, x2)

∂x1
≤ (40)

− κ1
2
γ2Ω

√
βx2φ (X12(x1, x2))−

κ1κ2
4

For the expression in the right-hand-side of (40) to be nonnegative, it must then be that

−γ2Ω
√
βx2φ (0)− κ2

2
≥ 0

which is impossible under condition (M).

Next consider the case where γ1 ≥ 0 > Ω, γ2. We then have that

∂G2 (x1, x2)

∂x1

∂G1 (x1, x2)

∂x2
− ∂G2 (x1, x2)

∂x2

∂G1 (x1, x2)

∂x1
(41)

≤ −κ2
2
γ1Ω

√
βx1φ (0)− κ1κ2

4
< 0

where the last inequality is again by Condition (M).
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We conclude that the function F (·) is strictly decreasing which implies that the threshold
continuation equilibrium of Lemma 1 is unique. Standard global-game arguments then imply that

there do not exist continuation equilibria other than the threshold one, which establishes the result.

Proof of Lemma 3. Existence of a maximizer. Because of the bijective relation be-

tween
(
pA1 , p

A
2

)
and (x̂1, x̂2) it suffi ces to show that there exists a vector of thresholds (x̂1, x̂2) that

maximize (16). To see this, note that, for any pair (x̂1, x̂2) ,

Π̂A (x̂1, x̂2) ≡
∑
i=1,2

[
si −

κi
2
x̂i + γiM

A
i (x̂1, x̂2)

]
Φ
(√

βxi x̂i

)
which means that∑

i=1,2

[
si −

κi
2
x̂i + γ−i

]
Φ
(√

βxi x̂i

)
≤ Π̂A (x̂1, x̂2) ≤

∑
i=1,2

[
si −

κi
2
x̂i + γ+i

]
Φ
(√

βxi x̂i

)
(42)

Next, consider the function

G+1 (xi) ≡
[
si −

κi
2
xi + γ+i

]
Φ
(√

βxi xi

)
and note that this function is bounded from above but not from below.25 By looking at the right-

hand side of (42), it is then immediate that, for any i = 1, 2, there exists a finite x̄i such that

Π̂A (x̂1, x̂2) < 0 for any (x̂1, x̂2) such that x̂i ≥ x̄i. Because the platform can always guarantee itself
zero profits by setting prices equal to zero, this means that, to find a maximizer of Π̂A (x̂1, x̂2), one

can restrict attention to pairs (x̂1, x̂2) such that x̂i ≤ x̄i, i = 1, 2.

Next, note that limxi→−∞G
+
1 (xi) = 0. This means that for any i = 1, 2, j 6= i and ε > 0

arbitrarily small, there exists a finite xi such that, for any (x̂1, x̂2) with x̂i ≤ xi,

Π̂A (x̂1, x̂2) ≤ ε+
[
sj −

κj
2
x̂j + γ+j

]
Φ
(√

βxj x̂j

)
(43)

Now take any x̂#i ∈ arg maxxG
−
i (x) and note that any such x̂#i is such that x̂

#
i > xi. This means,

for any (x̂1, x̂2) with x̂i ≤ xi, the inequality in (43) holds whereas the following inequality

Π̂A (x̂1, x̂2) > G−i (x̂#i ) +
[
sj −

κj
2
x̂j + γ−j

]
Φ
(√

βxj x̂j

)
(44)

holds for (x̂#i , x̂j). By Condition (W), we then have that, for any i = 1, 2, any pair (x̂1, x̂2) with

x̂i ≤ xi, there exists a pair (x̂′1, x̂
′
2) with x̂

′
i = x̂#i and x̂

′
j = x̂j such that

Π̂A
(
x̂′1, x̂

′
2

)
> Π̂A (x̂1, x̂2) .

Together with the result above, this means that, when looking for maximizers of Π̂A(x̂1, x̂2) one

can restrict attention to pairs (x̂1, x̂2) such that xi ≤ x̂i ≤ x̄i, i = 1, 2. Because the above is a

25This follows from the fact that the standard Normal distribution satisfies the property that limx→−∞ xΦ(x) = 0.
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compact set, and because the function Π̂A(x̂1, x̂2) is continuous and differentiable, this proves that

a maximizer to Π̂A(x̂1, x̂2) always exists.

Necessity of the first order conditions. By construction of the intervals [xi, x̄i], any

maximizer of Π̂A(x̂1, x̂2) is necessarily interior to the rectangular [x1, x̄1] × [x2, x̄2] and thus must

satisfy the first-order conditions (17).

Proof of Proposition (1). Instead of proving equivalence with (17), we rewrite condition 18

as ,

pAi ·
dQAi
dx̂i

dx̂i

dpAi

∣∣∣∣
x̂j=const

+QAi + γj
∂MA

i (x̂1, x̂2)

∂x̂i

dx̂i

dpAi

∣∣∣∣
x̂j=const

QAj = 0

which yields

pAi ·+
QAi

dx̂i
dpAi

∣∣∣
x̂j=const

dQAi
dx̂i

+ γj

∂MA
i (x̂1,x̂2)
∂x̂i
dQAi
dx̂i

QAj = 0

Then using dx̂i
dpAi

∣∣∣
x̂j=const

= 1

−κi/2+γi
∂MA

j
(x̂1,x̂2)

∂x̂i

pAi =
κi
2

QAi
dQAi
dx̂i

− γi
∂MA

j (x̂1, x̂2)

∂x̂i

QAi
dQAi
dx̂i

− γj
∂MA

i (x̂1,x̂2)
∂x̂i
dQAi
dx̂i

QAj = 0

gives the result.

Proof of Proposition 2. By definition, in a symmetric equilibrium, pAi = pBi , i = 1, 2. Under

Conditions (M), (Q) and (W), the unique continuation equilibrium is then a threshold equilibrium

with thresholds x̂1 = x̂2 = 0 and expected demands QAi = E[m̃A
i ] = 1/2, i = 1, 2. Substituting

x̂i = 0 and QAi = 1/2, i = 1, 2, into the the formulas for dQAi /dx̂i, dM
A
j /dx̂i, and dM

A
i /dx̂i (as given

by (21), (19) and (22), respectively) and replacing these formulas into the optimality conditions

(31), we then have that the equilibrium prices are given by

p∗i =
κi

2
√
βxi φ (0)

+ γiΩ− γj
√

1 + Ω2

Noticing that
κi

2
√
βxi φ (0)

= µdi (0)

then gives the result.

Proof of Proposition 3. First note that, when si > p∗i − γ−i , in the proposed equilibrium
where participation to one of the two platforms is compulsory, each agent obtains more than his

outside option (normalized to zero). Now suppose that platform B offers the equilibrium prices

and consider the problem faced by platform A (the problem faced by platform B is symmetric).

Clearly, for any deviation entailing a reduction in the price offered to each side, one can construct
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a continuation equilibrium where each agent behaves exactly as in the game where participation is

compulsory, in which case the deviation is unprofitable. Next, for any i = 1, 2, let x#i be implicitly

defined by

si +
1

2
κix

#
i + γ−i = p∗i

and observe that, no agent from side i receiving a signal xi > x#i will ever opt out, irrespective of

the prices charged by platform A, for, irrespective of the other agents’decisions, he can obtain a

positive surplus by joining platform B.

Now observe that the equilibrium prices p∗i , i = 1, 2, are independent of si and that x
#
i is

strictly decreasing in si, going to −∞ as si goes to +∞. Suppose now that there exists a vector of
prices (pA1 , p

A
2 ) such that, in any of the continuation equilibria that follow the selection of the prices

(pA1 , p
A
2 , p

∗
1, p
∗
2), platform A is strictly better off than under the monotone equilibrium that follows

the selection of the equilibrium prices (p∗1, p
∗
2, p
∗
1, p
∗
2). Clearly, for this to be possible, there must

exist i ∈ {1, 2} such that x̂i(pA1 , pA2 , p∗1, p∗2) ≤ x#i , where x̂i(p
A
1 , p

A
2 , p

∗
1, p
∗
2)i=1,2 are the thresholds

defined by (28) in the game where participation is compulsory. Finally, let x+i (pA1 , p
A
2 , p

∗
1, p
∗
2) be

implicitly defined by

si −
1

2
κix

+
i + γ+i = pAi

and observe that no agent from side i with signal xi > x+i (pA1 , p
A
2 , p

∗
1, p
∗
2) will ever join platform A,

irrespective of his beliefs about the other agents’participation decisions. Now, letting side i be the

one for which x̂i(pA1 , p
A
2 , p

∗
1, p
∗
2) ≤ x

#
i , observe that, necessarily,

x+i (pA1 , p
A
2 , p

∗
1, p
∗
2) < x̂i(p

A
1 , p

A
2 , p

∗
1, p
∗
2) + 2|γi|/κi. (45)

To see this, let q(·) and r(·) be the function defined by

q(xi) ≡ si −
1

2
κixi + γ+i − p

A
i and

r(xi) ≡ si −
1

2
κixi + γiΦ

√ βxj
1− ρ2x

(
x̂j − ρx

√
βxi
βxj
xil

)− pAi
where, again, x̂i(pA1 , p

A
2 , p

∗
1, p
∗
2)i=1,2 are the thresholds defined by (28) in the game where participa-

tion is compulsory. Note that, for any xi,

0 ≤ q(xi)− r(xi) ≤ |γi|.

Because r(x̂i) < 0, it follows that q(xi) ≤ |γi|. Given the linearity of q(·) in xi, we then have that
the unique solution x+i to q(x

+
i ) = 0 must necessarily satisfy (45).

Having established that x#i , x
+
i , x̂i all converge (uniformly) to −∞ as si → +∞, we then

have that, in the limit as si → +∞, mA
i (pA1 , p

A
2 , p

∗
1, p
∗
2) → 0 and mB

i (pA1 , p
A
2 , p

∗
1, p
∗
2) → 1, exactly

as in the game where participation is compulsory. This means that, when si goes to infinity,

i = 1, 2, platform A’s payoff given the prices (pA1 , p
A
2 , p

∗
1, p
∗
2) under any continuation equilibrium in
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the game where participation is voluntarily must converge to its’payoff in the unique continuation

equilibrium of the game where participation is compulsory. Because the latter is necessarily less

then the platform’s payoff under the equilibrium prices, and because, by quasi-concavity of payoffs,

there exists K,M > 0 such that, in the game where participation is compulsory

ΠA(p∗1, p
∗
2, p
∗
1, p
∗
2)−ΠA(pA1 , p

A
2 , p

∗
1, p
∗
2) > K

for any (pA1 , p
A
2 , p

∗
1, p
∗
2) for which there exists i ∈ {1, 2} such that pAi > M , we conclude that, no

matter the selected continuation equilibrium, any deviation resulting in partial participation is

necessarily unprofitable. This completes the proof.

Proof of Proposition 4. Recall that each agent l from each side i prefers joining platform A

to joining platform B if and only if

E
[
zi(θ̃i + ε̃il) | xil

]
+ γiE

[
m̃B
j − m̃A

j | xil
]
≤ pBi − pAi . (46)

The same agent then prefers joining platform A to multihoming if and only if

(1− κi)si +
1

2
E
[
zi(θ̃i + ε̃il) | xil

]
+ γiE

[
µ̃Bj | xil

]
− pBi ≤ 0. (47)

Note that Condition (47) is implied by Condition (46) if and only if

2(1− κi)si + 2γiE
[
µ̃Bj | xil

]
− γiE

[
m̃B
j − m̃A

j | xil
]
≤ pAi + pBi (48)

In any continuation equilibrium where all agents singlehome mB
j = µBj = 1 −mA

j , in which case

the inequality in (48) becomes equivalent to γi + 2(1 − κi)si ≤ pAi + pBi . The same conclusion

applies to those agents that prefer platform B to platform A. From the results above, we know

that the game where multihoming is not possible always admits a continuation equilibrium. We

then conclude that, when pAi + pBi ≥ γi + 2(1 − κi)si such a continuation equilibrium is also a

continuation equilibrium in the game where agents can multihome.

Conversely, when pAi + pBi < γi + 2(1 − κi)si, there exists no continuation equilibrium where

all agents singlehome, for, if such equilibrium existed, then it would satisfy mB
j = µBj = 1 −mA

j .

Inverting the inequalities above, we would then have that some agent from side i would necessarily

prefer to multihome.

Proof of Proposition 5. Recall that the agents’ability to forecast their own stand-alone

valuations is measured by the variance of the forecast errors of ṽil, which is given by

var[ṽil − Ṽil] = z2i
αi + βεi
αiβεi

− z2i

(
βηi + ρiαi

√
βηi /β

ε
i

)2
(αi + βηi )αiβ

η
i

(49)

whereas their ability to forecast the distribution of true (as well as estimated) stand-alone valuations

on the other side of the market is measured by the variance of the agents’ forecast errors of θ̃j ,

which is given by

var[θ̃j − E[θ̃j |x̃il]] =

(
1− ρ2θ

βηi
αi + βηi

)
1

αj
.
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Finally, recall that the ex-ante distribution of estimated stand-alone valuations on each side of the

market is Normal with zero mean and variance

var[Ṽi] = z2i
(βηi + ρiαi

√
βηi /β

ε
i )
2

(αi + βηi )αiβ
η
i

(50)

Now observe that the equilibrium profits are given by

ΠA = ΠB = Π∗ ≡ 1

2
(p∗1 + p∗2)

with

p∗i =

√
var[Ṽi]

2φ(0)
+ γiΩ− γj

√
1 + Ω2

where

Ω ≡ ρθ

√
βη1β

η
2

α1α2 + βη1α2 + βη2α1 + (1− ρ2θ)β
η
1β

η
2

is the coeffi cient of mutual forecastability. Because the prior distribution is fixed, so are the parame-

ters (α1, α2, ρθ, β
ε
1, β

ε
2, z1, z2). It is then immediate from (49) and (50) that campaigns that increase

the agents’ability to forecast their own stand-alone valuations increase the ex-ante dispersion of

estimated stand-alone valuations. From the formula for the equilibrium prices, it is then easy to

see that, when such campaigns do not affect the agents’ability to forecast the distribution of true

(and estimated) stand-alone valuations on the other side of the market (that is, when they leave

βη1 and β
η
2 unchanged), they necessarily increase equilibrium prices and hence equilibrium profits.

Next consider campaigns that leave unchanged the agents’ability to forecast their own stand-

alone valuations (and hence the ex-ante dispersion of estimated stand-alone valuations). Then such

campaigns increase profits if and only if they increase

(γ1 + γ2)
(

Ω−
√

1 + Ω2
)

which is the case if and only if
∂Ω

∂βηi
(γ1 + γ2) ≥ 0.

Using the fact that Ω is increasing in βη1 and β
η
2 if and only if ρθ ≥ 0, we then have that such

campaigns increase profits if and only if ρθ(γ1 + γ2) ≥ 0, thus establishing the result.

Proof of Proposition 6. The results concerning the comparative statics with respect to

(α1, α2, β
ε
1, β

ε
2) follow directly from inspecting the formula for the equilibrium prices and observing

that the ex-ante dispersion of estimated stand alone-valuations var[Ṽil] on each ⊂= 1, 2 decreases

with (αi, β
ε
i ) and is independent of (αj , β

ε
j ), whereas the coeffi cient of mutual forecastability Ω is

independent of (α1, α2, β
ε
1, β

ε
2).

Next, consider the comparative statics with respect to the coeffi cient of correlation ρθ. The

result then follows from observing that

∂Π∗

∂ρθ
=

1

2
(γ1 + γ2)

∂Ω

∂ρθ

{
1− Ω√

1 + Ω2

}
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which is positive if and only if γ1 + γ2 ≥ 0.
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