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Abstract. With many semi-anonymous players, the equilibria of simultaneous-
move games are extensively robust. This means that the equilibria survive even
if the simultaneous-play assumption is relaxed to allow for a large variety of ex-
tensive modifications. Such modification include sequential play with partial
and differential revelation of information, commitments and multiple revisions
of choices, cheap talk announcements and more.

1. INTRODUCTION AND EXAMPLES

1.1. INTRODUCTION. Games with many players is an old topic in economics
and in cooperative game theory. Prominent theorists, including Arrow, Aumann,
Debreu, Hildenbrand, Scarf, Shapley, and Shubik, have shown that in large cooper-
ative games major modeling difficulties disappear. For example, solution concepts
such as the core, competitive equilibrium, and the Shapley value, which in general
predict different outcomes for the same game, predict the same outcome when the
number of players is large. As a special case, this coincidence offers a cooperative-
coalitional foundation for competitive equilibria. For a general survey, see Aumann
and Shapley (1974).
Less is known about general non-cooperative strategic games with many players.

An early study of this subject was Schmeidler (1973), who shows the existence of
pure-strategy Nash equilibria in normal-form games with a continuum of anony-
mous players.
More recently there have been many studies of specific large economic games;

see, for example, Mailath and Postlewaite (1990) on bargaining, Rustichini, Sat-
terthwaite, and Williams (1994) and Pesendorfer and Swinkels (1997) on auctions,
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and Feddersen and Pesendorfer (1997) on voting. For the most part, these papers
concentrate on issues of economic efficiency.
Other aspects of large games are explored in the literature on repeated large

games; see, for example, Green (1980) and Sabourian (1990)1, where the focus is
on short-term behavior exhibited by patient players, and Fudenberg and Levine
(1988), who study the relationship between open-loop and closed-loop equilibria.
The objective of the current paper is to uncover properties of general strategic

games with many players, beyond the one identified by Schmeidler. The results
obtained parallel the ones obtained in cooperative game theory, in that they help
overcome modeling difficulties and offer foundations for other economic concepts.

A particular modeling difficulty of non-cooperative game theory is the sensitivity
of Nash equilibrium to the rules of the game, e.g., the order of players’ moves and
the information structure. Since such details are often not available to the modeler
or even to the players of the game, equilibrium prediction may be unreliable. This
paper demonstrates that this difficulty is less severe in general classes of games that
involve many semi-anonymous players. In normal-form games and in simultaneous
one-move Bayesian games with independent types and continuous and anonymous
payoff functions, all the equilibria become extensively robust as the number of play-
ers increases. This is a new notion of robustness, different from other robustness
notions used in economics and in game theory2.
For this purpose, we define an equilibrium of a game to be extensively robust

if it remains an equilibrium in all extensive versions of the simultaneous-move
game. Such versions allow for wide flexibility in the order of players’ moves, as
well as for information leakage, commitment and revision possibilities, cheap talk,
and more. The robustness property is obtained uniformly, at an exponential rate
(in the number of players), for all the equilibria in general classes of simultaneous
one-move games.
Extensive robustness means in particular that an equilibrium must be ex-post

Nash. Even with perfect hindsight knowledge of the types and selected actions of
all his opponents, no player regrets, or has an incentive to revise, his own selected
action. Similar notions have been extensively discussed in the implementation
literature; see for example Cremer and McLean (1985), Green and Laffont (1987),
and Wilson (1987).
The ex-post Nash and extensive robustness properties relate to some important

issues in economic applications. Among them are the facts that being ex-post Nash
offers a stronger (but asymptotic) version of the purification result of Schmeidler
mentioned above, and that the Nash equilibria of certain large market games have a
strong (extensive) rational-expectations property when the players’ types are drawn
independently. We delay discussion of these and other issues to later in the paper.
The proof of extensive robustness is in two steps. First we show that the

equilibria of the games under consideration become ex-post Nash at an exponential
rate, and then we show that this implies full extensive robustness. In order to
prove the ex-post Nash part, we first develop a notion of strategic interdependence
in a set of possible outcomes of the game. Strategic interdependence measures
how a player’s (ex-post) regret for choosing one action over another may vary as

1See Al-Najjar and Smorodinsky (2000) for more recent results and references.
2See for example Hansen and Sargent (2001), and Kovalenkov and Wooders (2001).
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a function of opponents’ choices. The continuity condition imposed on our games
guarantees that strategic interdependence is low in small sets of outcomes near the
expected play, where, by a law of large numbers, the outcomes must reside.

1.2. EXAMPLES. We illustrate some of the ideas of this paper with two exam-
ples. The first is a normal-form game where a mixed-strategy equilibrium becomes
extensively robust, but only as the number of players becomes large. (In normal-
form games, regardless of the number of players, all pure-strategy equilibria are
extensively robust.) The second example is a Bayesian game with a pure-strategy
(even strict) Nash equilibrium that becomes extensively robust, but only as the
number of players becomes large.

Example 1. Village Versus Beach (2n players match pennies):
Each of the 2n players, n females and n males, have to choose between going to

the beach (B) or staying in the village (V ). A female’s payoff is the proportion of
males her choice mismatches and a male’s payoff is the proportion of females his
choice matches. Full randomization, with everybody choosing B or V with equal
probabilities, is an equilibrium of the simultaneous-move game. For n = 1, the
match-pennies game, it is the only equilibrium.

For a small number of players, say, n = 1, the equilibrium is highly non-robust.
One illustration of this is the lack of the ex-post Nash property. There is a high
probability (certainty in this example) that after performing their randomizations
and seeing both realized choices, one of the players would want to revise his/her
choice. Similarly, sequential robustness fails, i.e., different orders of play will yield
different outcomes. Actually each player would wish to wait and see the choice of
the opponent before making his/her own choice. It is difficult to offer a reasonable
equilibrium prediction for this situation.
What about large values of n? Now, laws of large numbers imply that the

proportion of players of each gender at the beach will be close to a half. Thus,
ex-post, no player could significantly improve his/her payoff by revising his/her
realized pure choice. Moreover, as the results of this paper indicate, for every given
acceptable range near the .50-.50 distribution, say, .499 to .501, the probability of
either gender’s empirical distribution falling outside this range goes down to zero
at an exponential rate as the number of players increases.
Beyond ex-post stability, as we shall see, the randomizing equilibrium is fully

extensively robust. Making the choices sequentially, observing players in bathing
suits, counting busses on the way to the beach, controlling others’ ability to make
choices, etc., will give no player significant incentive to unilaterally deviate from
his/her randomizing strategy.

Example 2. Computer-Choice Game:
Simultaneously, each of n players has to choose computer I or computer M, and,

independently of the opponents, each is equally likely to be a type who likes I or
a type who likes M. Most of a player’s payoff comes from matching the choice of
the opponents but there is also a small payoff in choosing the computer she likes.
Specifically, each player’s payoff is 0.1 if she chooses her favorite computer, zero
otherwise, plus 0.9 times the proportion of opponents her choice matches. As-
suming that each player knows only her own realized type before making the choice,
the following three strategy profiles are Nash equilibria of the simultaneous-move
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game: the constant strategies, with all the players choosing I or with all the players
choosing M, and the one where every player chooses her favorite computer.

The constant strategies are robust, no matter what the size of the population
is. For example, if the choices are made sequentially in a known order, with
every player knowing the choices of her predecessors, then everybody choosing I
regardless of the observed history is a Nash (not subgame-perfect3) equilibrium of
the extensive game. And they are robust to other modifications. For example,
if a round of revision were allowed after the players observe the opponents’ first-
round choices, everybody choosing I with no revision remains an equilibrium of the
two-round game. In other words, they are ex-post robust.
This is not the case when the players use the choose-your-favorite-computer

strategies. For example, if the population consists of only two players and the
game is played sequentially, there are positive-probability histories after which the
follower is better off matching her predecessor than choosing her favorite computer.
And in the revision game with two rounds, there is a significant probability of
players revising in the second round.
As users of game theory know, this sensitivity to the order of moves creates

modeling difficulties, since we do not know in what order players think about,
rent, or buy computers. Also the real life situation may allow for other possibil-
ities. For example, the players may make announcements prior to making their
choices, repeatedly revise earlier choices after observing opponents’ choices, make
binding commitments, reveal or hide information, etc., and every such possibility
may destabilize the equilibria of the simultaneous-choice game.
But the modeling difficulties become less severe if the number of players is large.

In this case, even choosing-one’s-favorite-computer is a highly robust equilibrium,
i.e., it remains an approximate Nash equilibrium in the sequential and in all other
extensive versions of the game. Such versions accommodate all the variations
mentioned above.
Moreover, the above robustness property is not restricted to the equilibrium of

choosing-one’s-favorite-computer. Every Nash equilibrium of the one-shot game
is extensively robust, and this is true even if the original computer-choice game
with which we started is more complex and highly non-symmetric: There may
be any finite number of computer choices and player types. Different players may
have different (arbitrary) payoff functions and different (arbitrary) prior probability
distributions by which their types are drawn. Players’ payoff functions may take
into consideration not just opponents’ actions, but also opponents’ types (e.g., a
player may have a positive payoff when others envy his choice). Regardless of such
specifications, all the equilibria of the one-shot game are highly extensively-robust
when n is large.

2. THE MODEL

2.1. THEMODEL ANDGENERAL DEFINITIONS. Two finite non-empty
abstract universal sets, T and A, respectively describe all possible player types and
all possible player actions, that may be involved in the games considered in this

3We elaborate on the issue of subgame perfection in the concluding section of the paper.



LARGE ROBUST GAMES 5

paper. For notational efficiency, a universal set K ≡ T × A denotes all possible
type-action characters of players.4

Throughout the rest of the paper we consider a general family Γ = Γ(T ,A) that
consists of Bayesian games, each described by a five-tuple G = (N,T, τ , A, u) as
follows.
N = {1, 2, ..., n}, the set of players, is defined for some positive integer n.
T = ×iTi is the set of type profiles (or vectors), with each set Ti ⊆ T describing

the feasible types of player i in the game G.
τ = (τ1, τ2, ..., τn) is the vector of prior probability distributions, with τ i(ti)

denoting the probability of player i being of type ti (τ i(ti) ≥ 0 and
P
ti
τ i(ti) = 1).

A = ×iAi is the set of action profiles, with each set Ai ⊆ A describing the
feasible actions of player i in the game G.
Let Ci ≡ Ti × Ai denote the resulting set of feasible type-action characters of

player i in the game G, and let C = ×iCi denote the set of feasible profiles of
type-action characters in G. Then, the players’ utility functions described by
the vector u = (u1, u2, ..., un), assuming a suitable normalization, are of the form
ui : C → [0, 1].
In addition to the above, standard game-theoretic conventions are used through-

out the paper. For example, for a vector x = (x1, x2, ..., xn) and an element
x0i, x−i = (x1, ..., xi−1, xi+1, ..., xn) and (xi−1 : x

0
i) = (x1, ..., xi−1, x

0
i, xi+1, ..., xn).

Also, while a profile of type-action characters c = ((t1, a1), ..., (tn, an)), we some-
times describe it as a pair of profiles c = (t, a) in the obvious way.
A Bayesian game G is played as follows. In an initial stage, independently

of one another, every player is selected to be of a certain type according to his
prior probability distribution. After being privately informed of his own type,
every player proceeds to select an action (with the possible aid of a randomization
device), thus defining his type-action character. Following this, the players are
paid (according to their individual utility functions) the payoffs computed at the
realized profile of type-action characters.
Accordingly, a strategy of player i is defined by a vector σi with σi(ai | ti)

describing the probability of player i choosing the action ai when he is of type
ti. Together with the prior distribution over his types, a strategy of player i
determines an individual distribution over player i’s feasible type-action charac-
ters, γi(ci) = τ i(ti) × σi(ai | ti). Under the independence assumption, the pro-
file of these distributions, γ = (γ1, γ2, ..., γn), determines the overall probability
distribution over outcomes of the game (i.e., type-action character profiles), by
Pr(c) =

Q
i γi(ci).

Through the use of mathematical expectation (and with abuse of notations),
the utility functions of the players are extended to vectors of strategies by defining
ui(σ) = E(ui(c)). As usual, a vector of strategies σ is a (Bayesian) Nash equilibrium
if for every player i and every one of his strategies σ0i, ui(σ) ≥ ui(σ−i : σ0i).

The above definitions are standard, and, except for the assumption that players’
types are independent, a game is general in that a player’s payoff may depend on
other players’ actions and types. To accommodate this generality it is useful to

4For example, famous characters in game theory are weak types who eat quiche, weak types
who drink beer, etc. In this paper we have characters who like I and choose I, characters who
like I and choose M, characters who are informed about I and choose M, etc.
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introduce the notion of player’s type-action character, as defined above, so that
payoff functions and probability distributions are defined on a notationally simple
space.
The family of games described above may be quite large. First, it may contain

games with varying number of players n = 1, 2, ... . But, in addition, for any
fixed number of players n, it may contain infinitely many different n-player games.
There are no restrictions (other than normalization) on the payoff functions and
the prior probability distributions.
The restrictions that the Ti’s of the various games must all be subsets of the

same finite set T and that the Ai’s of the various games must all be subsets of the
same finite set A are substantial, and are needed for the method of proof we use.
Thus, one may think of the current results as being relevant to games in which the
number of players is large relative to the number of types and actions.
We also need to restrict ourselves to families of games that satisfy semi-anonymity

and continuity conditions defined as follows.

Definition 1. Empirical distribution: For every vector of type-action charac-
ters c, define the empirical distribution induced by c on the universal set of type-
action characters K by empc(κ) =

(the number of coordinates i with ci = κ) /(the number of coordinates of c).

Definition 2. Semi-anonymity: The games of Γ are semi-anonymous if for
every game G, for every player i in G, and for any two profiles of type-action
characters c and c, ui(c) = ui(c) whenever ci = ci and empc−i = empc−i .
When this is the case, we may abuse notations and write ui(ci, empc−i) instead

of ui(c1, c2, ..., cn).

Definition 3. Continuity: The payoff functions in the family of games Γ are uni-
formly equicontinuous if for every positive ε, there is a positive δ with the following
property: For every game in the family, for every player i in the game, and for any
two profiles of type-action characters c and c, | ui(c)− ui(c) |< ε whenever ci = ci
and maxk∈K | empc−i(κ)− empc−i(κ) |< δ.

Note that, technically, the continuity condition, as just stated, already implies
that all the games in Γ are semi-anonymous.

2.2. CLARIFYING REMARKS ON THEMODEL5. The condition of semi-
anonymity is less restrictive than may appear, since it imposes anonymity only on
the payoff functions but with no further restrictions of symmetry or anonymity on
the players. This means that information about named players can be incorporated
into their types.

Example 3. Sellers and Buyers:6

There are n sellers, labeled as players 1, 2, ..., n, and n buyers, labeled as play-
ers n + 1, n + 2, ..., 2n. The payoff function of a seller depends entirely on his
own strategy and on the empirical distribution of the strategies of the buyers, while
the payoff function of a buyer depends on his own strategy and on the empirical
distribution of the strategies of the n sellers. In violation of the assumption of
our model, the payoff functions are not anonymous. For example, a seller’s payoff

5A reader eager to get to the main results may choose to skip this section at first reading.
6For recent results and additional references on large market games, see Ellison and Fudenberg

(2002).
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function treats players n+1,...,2n (the buyers) differently than the players labeled
1,2,...,n (the sellers). But if within each group the players are symmetric, we can
describe the situation by a new Bayesian game in which the payoff functions are
anonymous, as follows:
Allow each player to be of two possible types, a seller or a buyer. Assign

probability one of being a seller type to players 1,...,n, and probability one of being
a buyer type to players n+1,...,2n. Now we can write the payoff function of a
seller, in the obvious, way to depend on the empirical distribution of types (i.e., to
depend only on the players that are of the buyer type) and actions, without having
to specify player labels. Since the same can be done to the payoff functions of the
buyers, the game is semi-anonymous. Clearly, this description is possible because
the model imposes no symmetry or anonymity on the prior distributions by which
types are drawn.

As in the example above, the model can accommodate many non-symmetric
games. Players may play a variety of other roles, in addition to sellers and buyers
as above. Also, they may be identified as belonging to different genders (as in
our Village versus Beach example), geographical locations, or social or professional
groups. The ”Match The Expert” example below illustrates how even named
individuals can be incorporated into a semi-anonymous model. However, the as-
sumption of finitely many types does restrict the generality of such descriptions.
Without it, semi-anonymity would represent no restriction at all.

Example 4. Random Number of Players:
In the Sellers and Buyers game above, extend the set of possible types to include

a non-participating type. Assign each player 1,...,n positive probabilities of being a
seller or a non-participating type, and assign each player n+1,...,2n positive proba-
bilities of being a buyer or a non-participating type. Moreover, restrict the payoffs
of seller types to depend only on their own strategy and the strategies of the buyer
types (leaving out the non-participating types), and make the symmetric restriction
on the buyer types. The result is a semi-anonymous Bayesian game with a random
number of sellers and buyers.

The above modeling method may be applied to a large variety of games with
random number of players and with differential information about the composition
of players in the game.
The next example shows how the uniform equicontinuity condition may fail.

Example 5. Match the Expert:
The game has n players, each having to choose action A or B, and there are

two equally likely states of nature, a and b. The payoff of every player is one if he
chooses the appropriate action - A in a and B in b - but zero otherwise. Player 1,
who is the only informed player, is told what the realized state of nature is. Thus,
we may think of her as having two types: a type who is told a and a type who is
told b. All the other players are of one type that knows nothing.
Consider the equilibrium where Player 1 chooses the action corresponding to

her type and everybody else chooses the two actions with probabilities .50 − .50.
Obviously this equilibrium is not ex-post Nash, and hence, not extensively robust.
Actually, it becomes less ex-post stable as the number of players n increases; with
probability close to 1, approximately 1/2 of the players would want to revise their
choice after observing the choice of Player 1.
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Even though the ex-post Nash condition fails, we can formulate the above as a
semi-anonymous game by identifying three possible types: an expert informed of
state a, an expert informed of state b, and a non-expert. Assign Player 1 equal
probability of being one of the first two types and every other player probability 1 of
being of the third type. The payoff of every player may then be defined anonymously
as follows. Player 1’s payoff is one if she chooses according to her type and zero
otherwise; every other player’s payoff is one if his choice matches the information
given to a strictly positive fraction of the realized expert types,7 zero otherwise.
The failing of the ex-post Nash condition is due to the failing of uniform equicon-

tinuity. To see this, consider two sequences of type-action character profiles cn and
cn defined as follows. In both profiles all players choose the action a. However,
in cn Player 1 is given the information a and in cn she is given the information b.
Consider, for example, the sequence of payoff functions of players 2, un2 , in the n
person games as n→∞. For all n, un2 (c

n) = 1 and un2 (c
n) = 0, despite the facts

that cn2 = c
n
2 and that the empirical distributions of player 2’s opponents in the two

type-action character profiles become arbitrarily close as n→∞.
The uniform equicontinuity is the important condition that ties together the

different games in the family. We do not restrict ourselves to replicating games, so
that for each number of players n, the family Γ may contain many different types of
games (e.g., a market game with 100 players, a political game with 100 players, an
auction with 101 players, etc.). Yet uniform equicontinuity is sufficiently strong to
guarantee the asymptotic result as we increase the number of players in the variety
of games under consideration.
The next example shows that without statistical independence of types, the ex-

post Nash property may fail.

Example 6. Two States of the World with Dependent Types:
Consider, as above, a simultaneous-move n-player game where each player has

to choose one of two actions, A or B, and there are two possible states of the
world, a and b. Also as before, assume that every player’s payoff is one if he
chooses the action that corresponds to the (unknown) realized state of the world,
zero otherwise. But assume now that every player is given a less than perfect
signal about the realized state as follows. For every realized state, independently
of one another, every player is told the correct (realized) state with probability .90
and the incorrect state with probability .10.
It is easy to see that every player choosing the action that corresponds to the

state he was told is an equilibrium (even in dominant strategies). It is also clear
that ex-post stability fails. When n is large, approximately 10% of the players will
observe ex-post that theirs is the minority choice, and would want to revise.
Here, ex-post stability fails because of the dependency in the prior type probabil-

ities (before conditioning on the state).

3. EX-POST STABILITY AND PURIFICATION8

3.1. EX-POST NASH. A profile of type-action characters is ex-post Nash if,
with full knowledge of the profile (i.e., types and selected actions of all players), no

7This is an indirect way of saying that the player’s selected action matches the information of
player 1, without having to mention player 1 by name so as to keep the payoff function anonymous.

8A reader eager to get to the extensive-robustness result may skip this section at first reading.
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player has the incentive to unilaterally change his selected action. Alternatively,
the vector of actions described by the profile is a Nash equilibrium of the complete
information game determined by the corresponding profile of types. A strategy is
ex-post Nash if it leads, with probability one, to profiles of type-action characters
that have the above ex-post Nash property. This is a strong notion of the ex-
post Nash property, since it requires that the realized pure actions, not the mixed
strategies, constitute a Nash equilibrium of the complete information game with all
the realized types being known.
To gain some understanding, we first consider a two-person normal-form game

(only one type for each player) and a mixed-strategy equilibrium, as illustrated in
the following payoff table:

.30 .70 0 0
.20 6,7 5,7 5,4 1, 2
.30 6,5 5,5 8,1 9, 2
.50 6,8 5,8 9,7 5, 4
0 2, 2 1, 4 0, 1 9, 8

This is an ex-post Nash equilibrium, since with probability one it leads to one of
the six bold-faced entries, and each one of these is a pure-strategy Nash equilibrium
of the game. Note that this implies that the pure-strategy profiles, in the support
of the mixed strategies profile, must have a very special structure. For example,
Player 1 must have identical payoffs in his first three rows, when the opponent is
restricted to her first two columns. This implies that each pair of pure strategies in
the support of the mixed strategies is interchangeable in the sense of Nash (see Luce
and Raiffa [1957]). Alternatively, when Player 1 best responds to either column
1 or column 2, he automatically best responds to the other. Also, rows 1,2, and
3 of Player 1 constitute dominant strategies for Player 1, provided that Player 2
is restricted to one of her first two columns. Naturally, the symmetric properties
hold for Player 2.
It follows that at an ex-post Nash equilibrium, the use of private information is

somewhat decentralized and highly simplified. A player can simply compute his
optimal action with respect to any of the positive-probability type-action character
profiles of his opponents, and this action is guaranteed to be optimal with respect
to any other positive-probability type-action character profile of his opponents. In
other words, in deciding on one’s own optimal action, the importance of information
about opponents’ realized types and selected actions is highly reduced. Additional
discussion of the above properties and their generalizations to Bayesian games is
postponed to later sections of the paper.
Since we prove the ex-post Nash property asymptotically as the number of players

increases, we need to define a notion of approximately ex-post Nash.

Definition 4. Approximately ex-post Nash: Let ε and ρ be positive numbers.
A profile of type-action characters c = (c1, ..., cn) = ((t1, a1), ..., (tn, an)) is ε

best-response for player i if for every action a0i, ui(c−i : (ti, a
0
i)) ≤ ui(c) + ε.

A profile of type-action characters is ε Nash if it is ε best-response for every
player.
A strategy profile σ is (ε, ρ) ex-post Nash if the probability that it yields an ε

Nash profile of type-action characters is at least 1− ρ .
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Stated differently, ”σ is (ε, ρ) ex-post Nash” means that with probability 1− ρ
it must produce a profile of actions that are ε Nash equilibrium of the normal-form
game determined by the realized profile of types.

Theorem 1. Ex-post Nash: Consider a family of Bayesian games Γ(T ,A) with
continuous and anonymous payoff functions as above and a positive number ε, there
are positive constants α (= α(Γ, ε)) and β (= β(Γ, ε)), β < 1, such that, for every
m, all the equilibria of games in Γ with m or more players are (ε,αβm) ex-post
Nash.

Remark 1. An equilibrium may be (ε, ρ) ex-post Nash in the ”strong” sense dis-
cussed above, yet fail to be so in a ”weaker” sense. It may be that if only partial
ex-post information about the opponents’ actions and types is revealed, then revision
possibilities may become more attractive with higher probability. The full extensive
robustness result discussed later assures us that the ex-post stability theorem above
continues to holds in all such partial senses as well.

3.2. PURIFICATION. An immediate consequence of the ex-post Nash property
obtained above is a purification property in large games. First, for normal-form
games the ex-post Nash property provides stronger conclusions than Schmeidler’s
(1973) on the role of pure-strategy equilibria in large anonymous games.
Working in the limit with a continuum of players, Schmeidler shows that every

”mixed-strategy”9 equilibrium may be ”purified.” This means that for any mixed-
strategy equilibrium one can construct a pure-strategy equilibrium with the same
individual payoffs. A large follow-up literature on Schmeidler’s result is surveyed
in Ali Khan and Sun (2002); more recent results and references may be found in
Cartwright and Wooders (2003).
The ex-post Nash theorem stated above shows (asymptotically) that in large

semi-anonymous games there is no need to purify, since it is done for us auto-
matically by the laws of large numbers. In the limit, as the number of players
increases, any mixed-strategy equilibrium must yield, with probability one, pure-
strategy profiles that are Nash equilibria of the game.10 So every mixed strategy
may be thought of as a ”self-purifying device.”
Going beyond Schmeidler’s model, and with the stronger property of self-purification,

the theorem above shows that the phenomenon holds not just for normal-form
games, but also for Bayesian games. In such games, asymptotically, every (pure
or) mixed-strategy equilibrium produces, with probability one, pure-action profiles
that are Nash equilibria of the complete-information game determined by the profile
of realized types. In other words, the equilibrium self-purifies to equilibria of the
randomly produced games. Further elaboration on this phenomenon is postponed
to future papers.

9As Schmeidler points out in his paper, it is difficult to define a ”real mixed strategy” equilib-
rium due to failings of laws of large numbers in the case of continuously many random variables.

10More precisely, for arbitrarily small ε > 0 there is a critical number of players n, such that
for every mixed-strategy equilibrium of a game with n or more players, there is probability of at
least 1− ε that the realized vector of pure strategies is an ε Nash equilibrium of the normal form
game.
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4. EXTENSIVE ROBUSTNESS

4.1. EXAMPLES AND MOTIVATION11. In the sections that follow, we de-
fine an equilibrium of a Bayesian game G to be robust if it remains an equilibrium in
every extensive version of the simultaneous-move game. As explained below, this
means that playing constant-play versions of the (simultaneous-move) equilibrium
strategies is an equilibrium in every extensive version of the game. A simple and
important special type of an extensive version of a game G is the following:

Definition 5. The game with one round of revisions: In the first round
of this two-round game, the original game G is played. In a second round, the
information about the realized types and selected pure actions of all the players
becomes common knowledge; then, simultaneously, every player has the one-time
opportunity to revise his first-round choice to any of his feasible G actions. The
players’ payoffs are determined by the profile of final choices according to the payoff
functions of G.

In the above game, playing the constant-play versions of the equilibrium strate-
gies means that in the first round the players choose their actions with the same
probabilities as they do in the equilibrium of G. In the second round, every player
chooses his action to be the same (hence, constant play) as the realized action of
his first round, i.e., no revisions. Clearly, any strategy of the simultaneous-move
game has a constant-play version in the game with revisions.
Notice that an equilibrium is ex-post Nash as discussed in the previous section,

if and only if its constant-play version is an equilibrium in the game with the one
round of revisions. This means that being ex-post Nash is a weaker condition than
extensive robustness.
In various applications that use ex-post Nash conditions (for example, Green

and Laffont [1987]), the information revealed between rounds may be only partial;
for example, the players may learn their opponents’ choices but not the opponents’
types.
A second example of an extensive version is when the game is played sequentially,

rather than simultaneously, with later movers receiving full or partial information
about the history of the game. The order may depend on the history of the game.
Here again, every player in his turn can play just as he would in the simultaneous-
move game. Constant play is meaningless here, since every player moves only
once.
Combining changes in the order of play and multiple rounds of revisions al-

ready permits the construction of many interesting extensive versions of a game.
But many more modifications are possible. For example, players may determine
whether their choices become known and to which other players, various commit-
ment possibilities may be available, cheap talk announcements may be made, and
players may have control over the continuation game.
Basically, an extensive version of a simultaneous-move game G is any exten-

sive game in which (1) every complete play path generates a type-action character
profile of the simultaneous-move game, and (2) all constant-play versions of the
simultaneous-move strategies are possible.

11Again, the reader interested in the formal presentation alone, may proceed to the next section
after reading the following definition of a game with one round of revisions.
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Below are some simple examples of extensive versions of a game with two players
who have to choose one of two computers. In all three extensive versions of Figure
1, nature moves first, choosing the (only) central arc with probability one, resulting
in Player 1 being a type who likes I (i) and Player 2 being a type who likes M (m).
Extensive version 1 is simply the simultaneous-move game, while Extensive Version
2 describes the sequential game where Player 2 makes her choice after being fully
informed of the choice of Player 1.
In the third extensive version, as in the second, Player 2 follows with full knowl-

edge of Player 1’s choice. She can choose the same computer as Player 1, or she can
choose the other computer. But when she chooses the other computer, she can do
so in two ways: (1) she can do so and end the game, or (2) she can choose the cen-
tral arc, in which case Player 1 will be informed of her contradictory choice and be
offered the opportunity to revise. Notice that in the circumstances where Player
1 plays twice, the final outcome is determined by his last choice, since repeated
choices represent revisions.

N a tu re

P l.1

P l.2

C , ( i,m )
w ith  p ro b . 1

C , ( i,m )
w ith  p ro b . 1

C , ( i,m )
w ith  p ro b . 1

L ,I              R ,M L ,I               R ,M L ,I                       R ,M

L ,I      R ,ML ,I      R ,ML ,I      R ,M L ,I      R ,M L ,I            R ,M

C ,I

L ,I            R ,M

C ,M

I,I          I,M      M ,I        M ,M I,I           I,M      M ,I        M ,M I,I                      I,M      M ,I                    M ,M

L ,I      R ,M L ,I      R ,M
P l.1

I,M        M ,M                    I,I          M ,I

E xte n s ive
V e rs io n  1

E xte n s ive
V e rs io n  2

E x te n s ive
V e rs io n  3

N a tu re N a tu re

P l.1P l.1

P l.2 P l.2

Figure 1

Suppose, for example, that in the one simultaneous-move game each player
chooses one of the two computers with equal probabilities; then Extensive Ver-
sion 3 permits a multiplicity of constant-play versions. Such versions require that
at his first information set Player 1 choose L,I and R,M with equal probabilities.
Player 2 must assign probability of .5 to L,I at her left information set and .5 to
R,M at her right information set, with the remaining two arcs in each information
set being assigned any probabilities sum to .5. Finally, Player 1 should not revise
his computer choice in his two second information sets, i.e., he should choose L,I in
the left one, and R,M in the right one.
Extensive versions of a game allow for incomplete information, beyond the types

allowed for in the simultaneous-move Bayesian game. For example, in Figure 2,
when Player 1 makes his initial selection, he does not know which of the three
games in Figure 1 he is playing, but Player 2 does.
Possibilities of commitment are illustrated in Figure 3. By going right, Player

1 commits to choosing M; by going left, he reserves the right to revise his choice
after observing Player 2’s choice; and by playing center, he commits to matching
the choice made by Player 2.
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P l.1

P l.2
L ,I              R ,M L ,I                R ,M L ,I                        R ,M

L ,I       R ,ML ,I       R ,ML ,I       R ,M L ,I       R ,M L ,I             R ,M

C ,I

L ,I             R ,M

C ,M

I,I           I ,M       M ,I       M ,M I,I            I ,M     M ,I         M ,M I,I                       I ,M     M ,I                     M ,M

L ,I       R ,M L ,I       R ,M
P l.1

I ,M        M ,M                    I , I           M ,I

P l.2 P l.2

N a tu re

L ,( i,m )
w ith  p ro b

.8 0

C ,( i,m )
w ith  p ro b

.1 0

R ,( i,m )
w ith  p ro b

.1 0

Figure 2

L , I            R , M L , I            R , ML , I               R , M

L , I            R , ML , I            R , M C , I         C , M

L , I                    C , I                    R , M

P l . 1

P l . 2

P l . 1 M , I                 M , M

I , I                  M , MI , I            M , M      I , M             M , M

Figure 3

However, the game of Figure 3 will be ruled out in our model, since the middle
part, where Player 1 commits to matching the opponent’s choice, may force Player
1 to revise his earlier choice, interfering with his ability to perform constant play.
A reader familiar with the rich modeling possibilities of extensive games should

be able to imagine the vast number of possible extensive versions that one can
describe for any given simultaneous-move game.

Remark 2. On the complexity of extensive versions.
Real-life interaction that involves any reasonable level of uncertainty is most often

too complex to describe by an extensive game, even when the number of players is
moderate. Consider, for example, the game of choosing computers. For any other
pair of players, a player must know who among them moves first. If he does not, he
must have two trees, allowing for both possibilities, with information sets that link
the two games to indicate his ignorance on this question. Since most players will
have no such information about other pairs, we already have a very large number
of trees linked by complex information sets.
But the situation is even worse since the extensive game is supposed to answer all

informational questions. For example, Player A most likely does not know whether
Player B knows some things (e.g., what computer Player C chose, or who plays first,
D or E). Player A must then have different trees that describe every such possibility
regarding the information of B, and again must link these trees with his information
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sets. This is already bad enough, but it goes on to information about information
about information, etc., and the product of possibilities is enormous. The only way
to stop this exponentially growing complexity is to make the answers to almost all
questions common knowledge at a low level in the hierarchy of knowledge, which is
not likely in real-life situations that involve even a moderate number of players.
Because of this modeling difficulty, it is essential to have strategies and equilibria

that are highly not sensitive to the details of the tree, as is done in the sequel.

4.2. EXTENSIVE VERSIONS OF A GAME AND STRATEGIES. The
following abstract definition of an extensive version accommodates the modifi-
cations discussed earlier and more. Starting with the given simultaneous-move
Bayesian game G = (N,T, τ , A, u), define an extensive version of G to be any finite
perfect-recall Kuhn-type extensive-form game G constructed and defined as follows.
First, augment G with any finite non-empty set of abstract moves,M . M may

include words such as L, C, and R, as in Figures 1-3 above, and various (cheap)
announcements, signals, etc.
The initial node in the game tree belongs to nature, with the outgoing arcs

being labeled by the elements of M × T . Thus, at the initial stage (as in the
original game), nature chooses a profile of types. But in addition, it chooses an
abstract move that may lead to different continuation games. Any probabilities
may be assigned to these arcs as long as the marginal distribution over the set of
type profiles T coincides with the prior probability distribution τ of the underlying
game G.
Every other node in the game tree belongs to one of the players i, with the

outgoing arcs labeled by elements of M ×Ai.
At every information set the active player i has, at a minimum, complete

knowledge of his own type ti (i.e., all the paths that visit this information set start
with nature selecting t’s with the same type ti).
Every play path in the tree visits one of the information sets of every player

at least once. This guarantees that a player in the game chooses an action ai ∈ Ai
at least once.
The resulting type-action character profile associated with a complete

path in the game tree is c = (t, a), with t being the profile of types selected by
nature at the initial arc of the path, and with each ai being the last action taken by
player i in the play path. The last action is the one that counts because multiple
choices by the same player represent revisions of earlier choices.
The players’ payoffs at a complete play path are defined to be their payoffs

from the underlying gameG, computed at the resulting type-action character profile
of the path.

In addition to the above, in this paper we restrict ourselves to extensive versions
that satisfy the following condition:
All constant-play versions of strategies of G can be played. For every

player i:
1. All his G actions are feasible at any one of his initial information sets. More

precisely, for any initial information set of Player i and every action ai ∈ Ai, at
least one of the arcs leading out of the initial information set is labeled by ai.
2. It is possible not to revise. More precisely, if at an information set X Player

i selects an outgoing arc labeled with an action ai ∈ Ai, then at any of his next
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information sets (that follow that arc), Y , it is possible for him to select ai again,
i.e., one of the outgoing arcs at Y is labeled with the action ai (unlike in Figure 3).

Remark 3. The inclusion of abstract moves by nature at the beginning of the tree
significantly extends the set of possible versions. For one thing, it means that
excluding nature from having additional nodes later in the tree involves no loss of
generality.12 But it also means that the version that is being played may be random,
reflecting possible uncertainties about the real-life version in the mind of either the
modeler or the players, as in Figure 2.
Similarly, a greater generality is obtained by including abstract moves, in ad-

dition to selected actions, at the nodes of the players. For example, using such
moves, we can model a player’s choice to reveal information, to seek information,
to make cheap talk announcements, and to affect the continuation game in other
ways. Figure 4 illustrates an extensive version where Player 1 can make cheap talk
announcements that do not correspond to his real choices.

L , I        R ,M L , I        R ,M

S a y s  I ,  I

S a y s  I  ,M

L , I        R ,M L , I        R ,M

S a y s  M ,  I

S a y s  M ,  M

P l .  1

P l .  2

I ,  I            I ,  M                  M , I          M ,M              I ,  I           I ,  M                 M ,  I       M ,  M

Figure 4

Definition 6. Constant-play strategies: Given an individual strategy σi in a
Bayesian game G and an extensive version G, a constant-play version of σi is any
strategy σi in G that initially chooses actions with the same probabilities as σi and
does not modify earlier choices in all subsequent information sets. Formally, at
any initial information set of player i, the marginal probability that σi selects the
action ai is σi(ai | ti),13 where ti is the type of player i at the information set. In
every non-initial information set of player i, σi selects, with certainty, the same
action that was selected by him in his previous information set. (This is well defined
under the perfect-recall assumption.)

σ = (σ1, ...,σn) is a profile of constant-play strategies if each of its individual
strategies σi is constant-play, as described above.

Remark 4. On the simplicity of constant-play strategies.
Constant-play strategies are attractive from perspectives of bounded-rationality.

Notice that even if the extensive version of the game is highly complex, playing a
constant-play strategy is relatively simple. For example, communicating the in-
structions for playing such a strategy is as simple as the definition above. In

12Recall, as argued by Kreps and Wilson (1982), that one can move all the random choices in
a game tree to an initial nature node; the relevant parts of the outcomes realized at this initial
node will only be partially and differentially revealed at their corresponding place in the tree.

13The sum of the probabilities of all the out-going arcs labeled with the action ai equals
σi(ai | ti).
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playing it, only minimal knowledge of the extensive version being played is needed.
A player only needs to keep track of whether it is his initial move or not, and when
it is not, he must only remember what his previous choice was.

4.3. EXTENSIVELY ROBUST EQUILIBRIA. A Nash equilibrium σ in a
Bayesian game G is extensively robust if in every extensive version of G, every
profile of its constant-play versions σ = (σ1, ...,σn) is a Nash equilibrium. In other
words, at such an equilibrium, when player i plays a constant-play version of σi,
he is assured to be best-responding to his opponents without even having to know
what extensive version is being played. This greatly simplifies the computation he
needs to perform.
But we need to define a notion of being approximately robust, so that in every

G, every σ is required to be only an approximate Nash equilibrium and only with
high probability. This notion assures that the incentives of any player to deviate
unilaterally at any positive-probability information set are insignificant.
For a given extensive versionG and a vector of behavioral strategies η = (η1, ..., ηn),

we use the natural probability distribution induced by η over the outcomes of the
game: the complete play paths. The payoff of player i is defined to be the usual
expected value, Eη(ui).
Given an information set A of player i, a modification of player i’s strategy at A

is any strategy η0i with the following property: at every information set B of player
i which is not a follower of the information set A,14 η0i coincides with ηi. Player
i can unilaterally improve his payoff by more than ε at the information set A if
Eη0(ui|A) − Eη(ui|A) > ε, where η0 = (η1, η2, ..., η

0
i, ..., ηn) for some η

0
i that is a

modification of ηi at A.
Note that such ε unilateral improvements are only defined at positive-probability

information sets, and that the event player i has a better than ε improvement at
some information set is well defined, by simply considering the play paths that
visit such information sets. Similarly, the event some player has a better than ε
improvement at some information set is well defined, since it is the union of all
such individual events.

Note also that not having an ε improvement, as defined above, is restrictive in
two important ways. First, it rules out significant improvements, even if attained
through coordinated changes in the player’s later information sets. Moreover,
the improvements must be small, even when viewed conditionally on being at the
information set (not just from the ex-ante perspective).

Definition 7. Approximate Nash equilibrium: A strategy profile η of G is
an (ε, ρ) Nash equilibrium, if the probability that some player has a better than ε
improvement at some information set is not greater than ρ.

Definition 8. Approximate robustness: An equilibrium of G, σ, is (ε, ρ) exten-
sively robust, if in every extensive version G every profile of constant-play versions
of σ, σ, is an (ε, ρ) Nash equilibrium.
An equilibrium σ is (ε, ρ) ex-post Nash if its constant-play version is an (ε, ρ)

Nash equilibrium in the extensive version with one round of revisions (defined ear-
lier).

14Recall that by Kuhn’s perfect-recall condition, either every node in B follows some node in
A or no node in B follows some node in A.
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Clearly, being (ε, ρ) ex-post Nash is a consequence of being (ε, ρ) extensively
robust. The converse is not true, as can be seen by the following example.

Example 7. Buying Insurance:
This two-person game is between Fate and a risk-taker, who has to choose between

buying or not buying insurance for his car. Fate has flat preferences of zero, while
the payoffs of the risk-taker are given by the following table:

Fate
Risk Taker accident no accident
insurance 0.99 0.99

no insurance 0 1.00
Consider an equilibrium with Fate choosing an accident with probability .001, no

accident with probability .999, and with the risk-taker buying no insurance. This
equilibrium is (0, .001) ex-post Nash, since the probability of the risk-taker being able
to gain any positive amount by revising, after seeing Fate’s choice, is not greater
than .001.
To check the level of extensive robustness, consider the extensive version in Fig-

ure 5, which may be described verbally as follows. In addition to the accident/no-
accident choice, Fate also decides on an intermediary event, the driver and the car
are late. The decision maker observes the late/ no-late choice, before he decides
whether or not to buy insurance. Assume that Fate chooses Pr(late|accident) = 1
and Pr(late| no accident) = 0.05. (Notice that the Pr(late and no acc.)+Pr(not
late and no acc.)= .04995 + .94905 = .95, as required by the definition of an exten-
sive version).

l, 
ins.

r, no
ins.

l, 
ins.

r, no
ins.

l, 
ins.

r, no
ins.

late
not
late

late,
acc.

late,
no acc.

not la te,
no acc.

.001

.04995

.94905

Fate

R isk Taker:

Figure 5

Doing the Baysian computations reveals that Pr(late) = .051, E(payoff | insur-
ance and late) = .99 and E(payoff | no insurance and late) = .98. So at the
information set late the risk taker can gain at least .01 by switching from no insur-
ance to insurance, and the probability of visiting this information set is .051. In
other words, the equilibrium, which is (0, .001) ex-post Nash, can be no better than
(.01, .05) extensively robust.

Remark 5. One can check that in a complete-information normal-form game,
every pure-strategy Nash equilibrium is ex-post Nash and even extensively robust,
regardless of the number of players. This is no longer the case for incomplete-
information games, as was illustrated by the example in the introduction. In the



18 EHUD KALAI

two-player game of choosing computers, the pure strategy of choosing-one’s-favorite-
computer is clearly not robust. And this is so despite the fact that it is even a strict
Nash equilibrium.

Theorem 2. Extensive robustness: Consider a family of games Γ(T ,A) with
continuous and anonymous payoff functions as above, and a positive number ε.
There are positive constants α = α(Γ, ε) and β = β(Γ, ε), β < 1, such that all the
equilibria of games in Γ with m or more players are (ε,αβm) extensively robust.

Remark 6. Failure of converse and focul point of simplicity. As illustrated
at the concluding section of the paper, a converse theorem fails: there are extensive
versions of large games with equilibria that are not constant-play versions of the
simultaneous-move equilibria. Still, the constant-play versions of the simultaneous-
move equilibria stand out in a couple of ways.
First, as already noted, they consist of simple strategies and thus may have a

strong focul-point effect on a group of players having to choose an equilibrium.
Players may be drawn to reason ”lets not bother with the complex rules of the
extensive version (play the game as if it was one simultaneous move),” in light of
the fact that it is a best response to do so. Second, the fact that the simultaneous
move game is an extensive versions of itself implies that the constant-play versions
of the simultaneous-move equilibria are the only elements in the intersection of the
equilibria of all the extensive versions.

5. PROOFS AND FURTHER RESULTS

While one may view the ex-post Nash theorem as an immediate corollary of
extensive robustness, the method of proof we use first establishes the ex-post Nash
property. The fact that the ex-post Nash property is obtained at an exponential
rate is then shown to imply the full extensive robustness property.
We also show that a weaker property than continuity, namely, low local strate-

gic interdependence, is the essence behind ex-post Nash. We first introduce this
concept and use it to develop bounds on the level of the ex-post Nash property
obtained at an arbitrary given equilibrium. These bounds are then used to prove
the asymptotic ex-post Nash result.

5.1. LOWSTRATEGIC INTERDEPENDENCE IMPLIES EX-POST NASH.
Every equilibrium is (ε, ρ) ex-post Nash for sufficiently large ε or ρ. This section
concentrates on a fixed Nash equilibrium of a fixed Bayesian game and develops
bounds on the levels of the ex-post Nash property it must have. These bounds
are used later to prove the main result. As it turns out, for an equilibrium to
be highly ex-post Nash, we do not need uniform continuity of the players’ payoff
functions; rather, continuity in a region near the expected play of the equilibrium
is sufficient. And in fact, the only property that is really needed is low strategic
interdependence in such a restricted region.

Definition 9. Strategic interdependence: The strategic dependence of player i
in a set of type-action character profiles M , sdi(M), is defined to be

max |[ui(c1−i : (ti, a0i))− ui(c1−i : (ti, a00i ))]− [ui(c2−i : (ti, a0i))− ui(c2−i : (ti, a00i ))]|
with the maximum taken over all actions a0i and a

00
i , all types ti, and all type-action

character profiles c1, c2²M with t1i = t
2
i = ti.

The strategic interdependence in M is defined by si(M) = maxi sdi(M).



LARGE ROBUST GAMES 19

This means that if sdi(M) is small and the type-action character profiles are
likely to be in M, then the gain to player i in a switch from action a0i to a

00
i is almost

independent of his type and of the type-action characters of the opponents. If this
is the case, any uncertainty about opponents’ types and opponents’ selected actions
may make only a minor difference in his decision about what action to choose.

Lemma 1. A Bayesian equilibrium is (ε, ρ) ex-post Nash if for some set of type-
action character profiles M,

ρ ≥ Pr(Mc) and ε ≥ si(M) + maxPr(Mc | ci)/Pr(M | ci)

where the maximum is taken over all players i and all ci’s that are part of a type-
action character profile c²M .

Proof. It suffices to show that at any c²M , no player can improve his payoff by
more than ε by switching from his ai to another action. From the definition of
strategic interdependence, if switching from ai to a

0
i at c improves player i’s payoff

by r, then the same switch must improve his payoff by at least r − si(M) at any
other c²M with ti = ti. (The improvement referred to is the following: fix the
opponents’ type-action characters and i’s type to be as in c, and consider the gain
to his payoff as he switches from ai to a

0
i.) Thus, given his type ti and his selected

action ai, relying on the 0-1 normalization of his utility function we see that player
i can improve his expected payoff by at least [r − si(M)] Pr(M | ci)− Pr(Mc | ci).
But since ai was selected by i to be an optimal response, the last expression must
be non-positive, which yields the desired bound. ¤

The above lemma illustrates that if σ generates a low strategic-interdependence
set M , which has high-probability in the conditional sense just described, then
σ is highly ex-post Nash. The following discussion illustrates that under natural
restrictions on the game, and assuming a large number of players, such sets M are
natural.
Recall first that for every vector of type-action characters c, as a function of

all possible individual type-action characters κ in the universal set of type-action
characters K, the empirical distribution was defined to be empc(κ) =

(the number of coordinates i with ci = κ) /(the number of coordinates of c).

Since the profile of type-action characters is randomly generated at an equilib-
rium, the empirical distribution is a |K|-dimensional random variable. We next
identify a |K|-dimensional vector of numbers, called the expected distribution, that
constitute, coordinate by coordinate, the expected values of the empirical distribu-
tion.
Starting with a strategy profile σ, the induced vector of measures γ = (γ1, γ2, ..., γn)

may be viewed as a vector of extended distributions, each being defined over the
universal set of all possible type-action characters K (as opposed to each γi being
defined on Ci ⊂ K). Specifically, for any possible type-action character κ ∈ K,
γi(κ) = γi(ci) if κ equals some ci ∈ Ci, and γi(κ) = 0 otherwise.

Definition 10. Expected distribution: For a strategy profile σ and the induced
distribution γ = (γ1, γ2, ..., γn), define the expected distribution on the universal
set of type-action characters K by expσ(κ) =

P
i γi(κ) / n.
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We now proceed to argue that when n is large (relative to |K|), for any profile of
strategies σ there is a high probability of realizing a profile of type-action characters
c with empc(κ) being close to expσ(κ) for every κ ∈ K.
Lemma 2. Chernoff-Hoeffding additive bounds: Let X1,X2, ...,Xn be a
sequence of independent 0-1 random variables with Pr(Xi = 1) = µi. Let X =P
Xi/n and µ =

P
µi/n. Then for every δ > 0,

Pr(
¯̄
X − µ

¯̄
> δ) ≤ 2e−2δ2n.

Proof. See Theorem A.4 in Alon, Spencer, and Erdos (1992), page 235. Apply it
once to the variables Xi − µi and once to their negatives. ¤

Lemma 3. Let X1,X2, ...,Xn be a sequence of independent 0-1 random variables
with Pr(Xi = 1) = µi. Let X =

P
Xi/n and µ =

P
µi/n. Then for every δ > 0

and every i,

Pr(
¯̄
X − µ

¯̄
> δ | Xi) ≤ 2e−2[(nδ−1)/(n−1)]

2(n−1).

Proof. Let X−i =
P
j 6=iXj/(n− 1) and µ−i =

P
j 6=i µj/(n− 1).¯̄

X − µ
¯̄
> δ implies that

¯̄
X−i − µ−i

¯̄
> δn/(n−1)−1/(n−1) = (nδ−1)/(n−1).

The conclusion of the lemma follows by applying the previous lemma to X−i. ¤

Define the δ neighborhood of expσ by

nbd(expσ, δ) = {c ∈ C : max
κ
|empc(κ)− expσ(κ)| ≤ δ}.

Lemma 4. For any δ > 0, Pr[c /∈ nbd(expσ, δ)] ≤ 2 |K| e−2δ
2n.

So for any given small δ and the fixed cardinality |K| of the universal set of
type-action characters, if the number of players is large, there is a high probability
of the empirical distribution of type-action characters being uniformly close to the
expected distribution of type-action characters. Moreover, the same holds true for
the conditional probabilities.

Lemma 5. For any δ > 0, Pr[c /∈ nbd(expσ, δ)|ci] ≤ 2 |K| e−2[(nδ−1)/(n−1)]
2(n−1).

By applying the previous general bounds on the level of ex-post Nash to M =
nbd(expσ, δ), one obtains the bounds in the following theorem.

Theorem 3. Bounds on the level of ex-post Nash: For any δ > 0, a Bayesian
equilibrium σ is (ε, ρ) ex-post Nash if

ε > si[nbd(expσ, δ)]

+2 |K| e−2[(nδ−1)/(n−1)]2(n−1)/[1− 2 |K| e−2[(nδ−1)/(n−1)]2(n−1)], and
ρ > 2 |K| e−2δ2n.

5.2. PROOF OF THE EX-POST NASH PROPERTY. We fix the family
of semi-anonymous games Γ, with the collection of uniformly equicontinuous payoff
functions as in the statement of the Ex-Post Nash Theorem. It is sufficient to
prove the theorem only for values of n from some m and above. That is, given the
family of games and a positive ε, there is an m and constants α and β, β < 1, such
that for all n ≥ m, all the equilibria of n-player games in the family are (ε,αβn)
ex-post Nash. (Once one proves it for such an m, one can simply increase α to
an α0, so that the conclusion, with α0 and β, is trivially satisfied for all values of
n < m.)
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Lemma 6. Uniform equicontinuity implies low local strategic interdepen-
dence: For any positive ε, there is a positive δ with the following property: For
every game in the family and for every strategy profile σ, ε > si[nbd(expσ, δ)].

Proof. Recall that si[nbd(expσ, δ)] is defined to be the maximum of the expression
below, when one considers all players i, all pairs of actions a0i and a

00
i , all types ti, and

all pairs of type-action character profiles c1, c2 ∈ nbd(expσ, δ) having t1 = t2 = ti:

|[ui(c1−i : (ti, a0i))− ui(c1−i : (ti, a00i ))]− [ui(c2−i : (ti, a0i))− ui(c2−i : (ti, a00i ))]|.
But by rearranging terms, this expression becomes:

|[ui(c1−i : (ti, a0i))− ui(c2−i : (ti, a0i))]− [ui(c1−i : (ti, a00i ))− ui(c2−i : (ti, a00i ))]|.
This last expression can be made arbitrarily small by making each of its two brack-
eted terms arbitrarily small. So it suffices to show that expressions of the form
ui(c

1
−i : (ti, a

0
i)) − ui(c2−i : (ti, a0i)) can be made arbitrarily small by restricting

attention to c’s in nbd(expσ, δ). However, the equicontinuity assures us that by
making δ sufficiently small, we can simultaneously make these expressions small,
for all the strategy profiles of all the games in Γ. ¤
To return to the proof of the theorem, recall from the previous section that an

equilibrium σ is (ε, ρ) ex-post Nash if for some δ > 0, the following two inequalities
are satisfied:

ε > si[nbd(expσ, δ)] + 2 |K| e−2[(nδ−1)/(n−1)]
2(n−1)/[1− 2 |K| e−2[(nδ−1)/(n−1)]2(n−1)]

and

ρ > 2 |K| e−2δ2n.
Using the lemma above, we can choose a positive δ and an m sufficiently large so
that the first inequality above holds simultaneously for all strategy profiles σ of all
the games with m or more players. Simply choose δ to make the first expression on
the right-hand side smaller than ε/2, and then choose m sufficiently large to make
the second expression smaller than ε/2.

The proof is now completed by setting α = 2 |K| and β = e−2δ
2

.

5.3. PROOF OF EXTENSIVE ROBUSTNESS. The proof of extensive ro-
bustness follows two steps: (1) to show that all the equilibria in the family become
ex-post Nash at an exponential rate as the number of players increases, and then
(2) to show that this implies that they become extensively robust at an exponential
rate.
The first step is the Ex-Post Nash theorem just proven, which we restate in a

slightly more convenient version as the following lemma.

Lemma 7. For every positive ε there are positive constants α and β, β < 1, such
that all the equilibria of games in Γ(T ,A) withm or more players are (ε, ρm) ex-post
Nash with ρm ≤ αβm.

The above, together with the next proposition, directly yields the proof of the
theorem but with ρm ≤ mαβm. This, however, is sufficient for completing the
proof, since we can replace α and β by bigger positive α0 and β0,β0 < 1, for which
mαβm < α0β0m for m = 1, 2, ... .

Proposition 1. If σ is an (ε, ρ) ex-post Nash equilibrium of an n-player game G,
then for any ζ > 0, σ is (ε+ ζ, nρ/ζ) extensively robust.
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Proof. It suffices to show that for any versions G and σ and for any player i,
Pr(V ) ≤ ρ/ζ, where V is the ”violation” event: player i has a better than ε + ζ
improvement at some information set visited by a play path in V . LetW be the set
of type-action character profiles c with the property that player i has a better than
ε improvement at c, i.e., by a unilateral change of his action at c, he can improve
his payoff by more than ε.

ρ ≥ Pr(W ) by assumption and the probability-coincidence lemma below,
Pr(W ) ≥

P
A⊂V Pr(W |A) Pr(A) by the decomposition lemma below, andP

A⊂V Pr(W |A) Pr(A) ≥ ζ Pr(V ) by the bounds lemma below. The weak in-
equality is needed to accommodate the case in which Pr(V ) and ρ are both zero.
Combining the above inequalities completes the proof of the proposition. ¤

Lemma 8. Probability coincidence: The probabilities of any type-action char-
acter profile c computed either (1) directly from a strategy profile σ in G, or (2) by
any constant-play profile of strategies σ in G, are the same.

Proof. Notice that we can simplify G by removing every non-initial information set
of every player from the tree, without affecting the distribution over the resulting
type-action character profiles. This is due to the constant-play (no revision) prop-
erty of σ. So we assume without loss of generality that G has every player moving
only once, and that he randomizes with the same probabilities as in σ when it is
his turn to play.
Conditional on every realized profile of types and order of players’ moves, the

probability of c computed from the tree coincides with the probability computed
directly from G. ¤

Lemma 9. Decomposition: V can be represented as a disjoint union of infor-
mation sets A, when we view each information set A as the event containing the
play paths that visit the information set A.

Proof. From the definition of V , every information set of player i must be either
fully included in V or fully included in the complement of V . Moreover, due to
the perfect recall assumption, the information sets are well ordered in the tree, as a
partial order in the timing of play of the tree. This means that they are well ordered
by containment as events, with the events corresponding to later information sets
being subsets of the events corresponding to earlier ones. Thus, if for every play
path we take the first information set that exhibits the violation of V, we have a
collection of disjoint events whose union equals V . ¤

Lemma 10. Bounds: For any positive-probability information set A of player i,
if player i has better than ε+ ζ improvement at A, then Pr(W |A) > ζ.

Proof. We first assert that at any positive-probability information set A, any mod-
ification of player i’s strategy at A does not affect the probability distribution over
the profile of opponents’ type-action characters. This assertion can be checked
node by node. At every node, the opponents who played earlier in the game tree
will not revise (by the definition of σ) and thus, their type-action characters stay
fixed regardless of the modification. The opponents who did not play prior to
reaching the node will randomize according to σ when their turn to play comes,
disregarding what other players, including player i, did before them.
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The assertion just stated implies that, without loss of generality, we can check
the validity of the claim at information sets A where player i can improve by more
than ε+ ζ through the use of a modification of σi that uses a pure strategy b at A
(that he never revises later on).
Now we can put a bound on the possible levels of such improvement as follows.

For type-action character profiles in W , the largest possible improvement by player
i using a different pure action is 1 (due to the normalization of the utility functions),
and for type-action character profiles in W c, the largest possible improvement is
ε. This means that the highest possible improvement in the information set A
is 1Pr(W |A) + εPr(W c|A). So if the possible improvement at A is greater than

ε + ζ, we have Pr(W |A) + ε ≥ 1Pr(W |A) + εPr(W c|A)̇ > ε + ζ, which validates
the claim made above. ¤

6. ADDITIONAL COMMENTS

6.1. IMPLICATIONS FOR MECHANISM DESIGN. The ex-post Nash
property overcomes certain modeling difficulties in the implementation literature;
see, for example, Cremer and McLean (1985), Green and Laffont (1987), and a
significant follow-up literature.15 Also, as argued by Milgrom and Wilson,16 in
real-life design of auction and resale markets, one is concerned that the process
stops. Otherwise ex-post interaction may upset the equilibrium computed by the
designer for the one-shot game.
A mechanism designer who succeeds in implementing a socially efficient outcome

through a Nash equilibrium of a one-shot simultaneous-move game does not have
to be as concerned that the players play an extensive version of his game. Even
if the players can engage in cheap talk, act sequentially, share information, revise
choices after the implementation game is complete, and more, the equilibrium con-
structed for the one-shot simultaneous-move game remains viable.17 In various
social aggregation methods, extensive robustness means that the outcome of a vote
is immune to institutional changes, and public polls should not alter the outcome
of the equilibrium.

6.2. EXTENSIVE RATIONAL EXPECTATIONS UNDER INFORMA-
TION INDEPENDENCE. At a rational-expectations equilibrium, agents base
their trade choices on their own preferences and information, and on the observed
market prices. The system is at equilibrium because no inference from the prices
gives any agent an incentive to alter his trade choices.
From a game-theoretic perspective, such equilibrium seems to ”mix together”

ex-ante information with ex-post results. For example, in a well-defined Bayesian
version of a market game of the Shapley and Shubik (1977) variety,18 agents’ en-
dowments, information, and preferences are ex-ante input, and prices are resulting
ex-post output that is determined by the trade choices of the agents.

15See Chung and Ely (2000) for additional discussion and more recent references.
16Private communication, May 2003.
17In social choice terminology, the implementation in an extensive version is not ”exact,”

since there may be other equilibria of the extensive version that do not meet the goals of the
implementor. But as discussed earlier, the constant-play equilibria do have a focal point of
simplicity.

18For an example of such a model and additional references, see Peck (2003).
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One can see modeling advantages to these two contradictory approaches. A
game theorist might argue that in a well-defined game you cannot have it both
ways; if prices are consequences of trading decisions, you cannot have prices as
input at the time players contemplate their trade choices. An economist, on the
other hand, might argue that players do know the prices when they make trade
choices, so not including prices in the domain of the decision rules is improper.
To model this, economic theorists view rational-expectations equilibrium as a fixed
point of a bigger system, one that deals simultaneously with the ex-ante and ex-
post information (see for example Jordan and Radner [1982]). This, however, often
leads to nonexistence (see Grossman and Stiglitz [1980]).
As it turns out, extensive robust equilibria largely resolve the above contra-

dictions. Moreover, they offer a stronger version, actually an extensive one, of
rational-expectations equilibrium19.
To illustrate this, consider an equilibrium of a Bayesian Shapley-Shubik game of

trading computers and related products, with continuous payoff functions and many
players with independent types. Assume, for simplicity of our discussion here, that
the real process of trade being modeled, which may not be played simultaneously,
takes place in a relatively short period of time, so that no time discounting of future
expenses and payoffs is necessary.

The extensive robustness property implies that partial ex-post information,
including prices, gives no player an incentive to change his trade choices. Thus, the
equilibrium possesses the rational-expectations property. But this is even true for
partial intermediary information, such as partially formed prices, revealed at any
stage of the game (if not played simultaneously), and partially observed choices
and behavior of opponents. For example, some players may observe current prices
of related software, before deciding on what computers to buy; others may have
statistics on what was bought before them; and some may buy with no information,
or just information on what some of their neighbors buy. Still, the equilibria of the
simultaneous-move game is sustained, and all such price and behavior information
will not affect their stability. Thus, such an equilibrium is not just a fixed point of
private information and prices, but remains a fixed point of much richer extensive
systems.
The above properties may be viewed as a non-cooperative strategic/informational

foundation for extensive rational-expectations equilibria, in a way that is parallel
to cooperative equivalence theorems, where the core and Shapley value are used as
cooperative game-theoretic foundations for competitive equilibrium.20 The limita-
tion to independent types, a severe restriction in the case of rational expectations
equilibrium, offers a strong motivation to study extensive robustness with correlated
types.

6.3. LEARNING. There is an interesting connection between the ex-post Nash
property and learnability in repeated games in the sense of Kalai and Lehrer (1993).
Learning within an equilibrium of a Bayesian repeated game, in the Kalai-Lehrer
sense, means that from some time on, the strategies used by the players are a Nash

19Existence is not an issue for us, since we deal with large but finite games.
20The author thanks Avinash Dixit for making this observation. For earlier studies of game

theory and rational expectations, see Forges and Manelli (1997, 1998). Additional references and
newer results (obtained after publication of the first draft of the current paper) may be found in
Perry and Reny (2003).
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equilibrium of the repeated game with the realized types being commonly known.
In other words, even if the players initially play the repeated game without knowing
the realized types of their opponents, with time they converge to play as if they do.
The ex-post Nash property discussed in this paper may be thought of as the

players learning to play, in the Kalai-Lehrer sense above, already at time zero.
Even in the first, and the only, period of play, the players play strategies that are
optimal, as if they knew the realized types of their opponents. So in a large semi-
anonymous game, learning, or more precisely playing as-if-you-know, is immediate.
The above observation suggests a promising line of investigation: trying to con-

nect the speed of learning to the number of players in Bayesian repeated games with
semi-anonymous players. It seems reasonable that if we require fast learning rather
than immediate knowledge, as discussed above, we may be able to obtain results
about convergence to extensive robustness, and to rational expectations equilibria
in the case of market games.

6.4. OPEN-LOOP VERSUS CLOSED-LOOP EQUILIBRIA. Consider a
normal-form game repeated twice, with the following two possible information
structures: (1) no information (the second round is played with no information
about opponents’ first round choices), and (2) perfect monitoring (the second
round is played with perfect information about opponents’ first round choices).
Referring to an equilibrium of the no-information game as open-loop and to an
equilibrium of the perfect-monitoring game as closed-loop, Fudenberg and Levine
(1988) study the relationships between the two types of equilibria. A main conclu-
sion is that if the number of players is large, so that the influence of each player on
his opponents is negligible, then every open-loop equilibrium is also closed-loop.
In the terminology of the current paper, the twice-repeated game above may be

viewed as a game with one round of revisions.21 Constant-play strategies in this
game can be used in both the no-information version and the perfect-monitoring
version. An equilibrium being ex-post Nash (in the current terminology) implies
that it is a closed-loop equilibrium (in Fudenberg-Levine terminology). Thus, our
results, and in particular the finding that every equilibrium is ex-post Nash, are
consistent with the Fudenberg-Levine finding that open-loop equilibria must be
closed-loop in games with many players.
However, since the full extensive robustness applies to all extensive versions and

information structures, not just to two rounds of repetitions, it should be clear
to the reader that extensive robustness is substantially stronger than ”open-loop
implies closed-loop.”
Also, unlike the Fudenberg-Levine paper, the current paper deals with Bayesian

and not just normal-form games. Indeed, as Fudenberg and Levine argue, their
result may serve as a foundation to competitive equilibria, while what we have in
this paper may serve as a foundation to rational-expectations equilibria.
Two additional issues, raised below, are related to issues discussed in Fudenberg

and Levine (1998). One is the converse to our result, which mirrors the question
of when a closed-loop equilibrium is open-loop. The other is the issue of subgame-
perfection.

21One difference is that in the Fudenberg-Leving paper the players are paid twice, once in each
round, while in the game with one round of revisions of the current paper, there is only one-time
payoff at the end of the second round. But this difference does not affect any of the points we
make below.
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6.5. SUBGAME PERFECTIONWITHMANY PLAYERS. As mentioned
in the introduction, an extensively robust equilibrium is required to remain a Nash
equilibrium, without being subgame-perfect, in every extensive version of the game.
It turns out to be impossible to have extensive robustness together with subgame
perfection.
However, it seems that when the number of players is large, a lack of subgame

perfection may become a less severe deficiency. The following example illustrates
these points.

Example 8. Big Battle of the Sexes:
Simultaneously, each of n male players and n female players choose computer

I or computer M. A male’s payoff equals the proportion of the total population
that he matches if he chooses I, but only 0.9 times the proportion he matches if he
chooses M. For a female the opposite is true: she is paid the full proportion that
she matches when she chooses M and only 0.9 of the proportion she matches when
she chooses I.

Consider the above game played sequentially in a predetermined commonly-
known order in which the females choose first and the males follow, with every
player being informed of the choices made by all earlier players. The reader may
verify that the only subgame-perfect equilibrium has all players choose M.
Since the symmetrically opposite result must hold for the case of all males moving

first, i.e., the only outcome is everybody choosing I, it is clear that we cannot have a
subgame-perfect equilibrium that is immune to varying the order of play. In other
words, we cannot have extensive robustness together with subgame perfection.
It is also clear that the extensively robust equilibrium all-choose-I is not subgame-

perfect in the case in which the females move first. How severe is this lack of
subgame perfection?
When we have a small number of players - for example two - all-choose-I is highly

incredible due to the following standard argument: If the female, who moves first,
deviates to M, the male must choose between obeying the equilibrium strategy and
being paid .5 for sure, or deviating himself to M and being paid .9 for sure. Being
rational, the male would have to choose M. Knowing this, the female deduces that
if she sticks to the equilibrium strategy, she will be paid .9, and if she defects to M,
she will be paid 1. Thus her conclusion is clear and the all-I equilibrium fails.
Now, let us imagine the same scenario of an equilibrium with all players choosing

I, but with one million females moving first and one million males following, and
let us view the situation once again from the point of view of the first female.
In order to make her deviation from the all-I equilibrium worthwhile, she must

believe that substantially more than one million followers will deviate too. Other-
wise, deviating on her part may be quite costly. Moreover, her immediate follower
has similar concerns that may prevent her from deviating to M. Players can no
longer rely on direct incentives of their immediate followers; instead, they must rely
on a long chain of followers who rely on the rationality of their followers, which is
also based on such long chains of cumulative reasoning. So, unlike the case of the
two-player game above, where a deviation by the first deviator induces direct im-
mediate incentives to deviate in her follower, the incentives here are much weaker.
The idea of deviating itself is almost a move to another equilibrium that has to be
taken on with simultaneous conviction by more than a million players.
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We refer the reader to Kalai and Neme (1992) for a general measure of subgame-
perfection that formalizes this idea. The constant I- equilibrium, while not fully (or
infinitely, in the Kalai and Neme measure) subgame perfect, is one million-subgame
perfect. In the example with two million players, at least one million deviations
from the equilibrium path are required before we reach a node where a player’s
choice is clearly not optimal.

6.6. A CONVERSE THEOREM FAILS. Consider again the Village versus
Beach example discussed earlier, but now with 1001 females and 1001 males. The
payoff of a female equals the proportion of males she mismatches and the payoff
of a male equals the proportion of females he matches. At an equilibrium of the
simultaneous-move game, the (expected) payoff of every player, male or female,
must be .5.
But consider the extensive version, with the game being played sequentially in a

known order, with perfect monitoring, and all the females moving first. Consider
an equilibrium with 500 females choosing the village, 500 choosing the beach, and
the last one randomizing with equal probabilities. The males all choose the location
realized by the randomizing female. While the payoffs of the males are .501 each,
501 females receive payoff 0, and 500 females receive payoff 1.

6.7. NASH INTERCHANGEABILITY. As already stated, in normal-form
games every pure-strategy equilibrium is ex-post Nash. The payoff table below
offers a typical example of ex-post Nash equilibrium in mixed strategies. Since
every one of the nine bold-faced entries is a pure-strategy Nash equilibrium, and
since these are the support of the indicated mixed-strategy profile, it is clear that
the mixed-strategy equilibrium is ex-post Nash.

.40 .60 0 0
.20 6,7 5,7 1, 2 7, 3
.30 6,5 5,5 9, 2 5, 1
.50 6,8 5,8 5, 4 4, 3
0 2, 2 3, 4 9, 8 7, 7

Recall that two pure-strategy equilibria a = (a1, ..., an) and b = (b1, ..., bn) are
Nash interchangeable (see Luce and Raiffa [1957]), if every pure-strategy profile
m = (m1, ...,mn) which is a coordinatewise selection from a and b (i.e., every
mi = ai or bi), is also a Nash equilibrium. This property guarantees that for the
sake of choosing his own best reply, a player is not concerned whether equilibrium
a or b is the one being played. A best reply to one is automatically a best reply
to the other as well as to any coordinatewise selection from the two. Since the
support of a mixed-strategy equilibrium has a product structure, it must be that a
profile of strategies is an ex-post Nash equilibrium if and only if its support consists
of interchangeable Nash equilibria.
This observation generalizes to Bayesian equilibria with independent types. Con-

sider a set of Nash type-action character profiles S, and recall that every one of
its elements c = (c1, ..., cn) can be viewed as a pair of ordered profiles (t, a) of the
types and actions of the n players. Define the elements of S to be interchange-
able if every profile of type-action characters created by coordinatewise selections
from S (i.e., m with every mi = ci for some c ∈ S) is Nash. (Recall this means
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that m = (t, a) with a being a Nash equilibrium of the complete information game
induced by t.) Similar to the case of normal-form games, interchangeability in a
Bayesian game means that a player is not concerned with which outcome prevails in
the set S. If the player is of type ti and chooses ai as a best response to some oppo-
nents’ type-action character profile in an interchangeable set S, then this choice is
automatically a best response to any other opponents’ type-action character profile
from S. It is easy to see that the following proposition holds.

Proposition 2. Nash Interchangeability of Outcomes. A strategy profile of
a Bayesian game with independent types is ex-post Nash if and only if its support
consists of Nash type-action character profiles that are interchangeable.

The reader can construct the direct couterparts to the above statements for the
case of approximate ex-post Nash equilibria.
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