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Abstract. The transitive closure of a reflexive, symmetric, Σ1
1 relation is a

Σ1
1 equivalence relation. Does some smaller class contain the transitive closure

of every reflexive, symmetric, closed relation? An essentially negative answer

is provided here. The Baire space, N , is homeomorphic to an open subset
of itself, X, that has an open complement. It is shown that, for any Σ1

1

equivalence relation E ⊆ N × N , its homeomorphic image in X × X is the

intersection with X × X of the transitive closure of a reflexive, symmetric,
closed relation R ⊆ X ×X. Specifically, R can be constructed as the union of

two closed equivalence relations.

1. Introduction

This note answers a question in descriptive set theory that arises in the context
of the Bayesian theory of decisions and games. It concerns the notion of common
knowledge, formalized by Robert Aumann [1976]. For an event A that is represented
as a subset of a measurable space Ω, Aumann defines the event that an agent knows
A to be the event A\ [Ω\A]Π, where Π is the agent’s information partition of Ω.1 If
Π is the meet of individual agents’ information partitions (in the lattice of partitions
where Π ≤ Π′ ⇐⇒ Π′ refines Π), then Aumann defines

(1.1) A \ [Ω \A]Π

to be the event that A is common knowledge among the agents.2

Aumann restricts attention to the case that Ω is countable (or that the Borel
σ-algebra on Ω is generated by the elements of a countable partition), so that
measurability issues do not arise. But, otherwise, the passage from information
partitions to a common-knowledge partition is very badly behaved, as is the passage
from an information partition Π and an event A to the related event that A is
known according to Π. For example, let X be an arbitrary subset of (0, 1), and let
Ω = [0, 2]. Consider two agents, whose information partitions are Π1 = {{ω, ω+1} |
ω ∈ X} ∪ {{ω} | ω /∈ X} and Π2 = {{ω} | ω < 1} ∪ {[1, 2]}. Then X ∪ [1, 2] is the
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1[A]Π denotes

⋃
{π | π ∈ Π and π ∩A 6= ∅}, the saturation of A with respect to Π. Aumann’s

definition corresponds to the truth condition for �A in Kripke [1959].
2Aumann sketches a proof—reminiscent of a general principle in proof theory (cf. Pohlers

[2009, Lemma 6.4.8, p. 89])—that this definition is equivalent to the intuitive, recursive definition

of common knowledge: that A has occurred and that, for all n ∈ N, both agents know. . . that
both agents know (n times) that A has occurred.
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block of the common-knowledge partition that includes the block [1, 2] in Π2. From
information partitions composed of the simplest events—singletons, pairs, and a
closed interval—we have passed to a common-knowledge partition with a block
that, depending on what is X, might even be outside the projective hierarchy.
Knowledge of an event by individual agent is likewise problematic. In the present
example, the event that agent 1 knows (0, 1) is (0, 1) \X.

These measurability problems dictate that information partitions should be rep-
resented as equivalence relations. If E1 and E2 are Σ1

1 (that is, analytic) equivalence
relations, then the meet of the partitions that they induce is induced by the tran-
sitive closure of their union, which is also a Σ1

1 equivalence relation.3 Moreover, if
an information partition is represented by a Σ1

1 relation and an event is Π1
1 (that

is, co-analytic), then knowledge of the event according to the information partition
is also a Π1

1 event.4 This observation implies that knowledge of a Borel event is a
universally measurable event.

In applications to Bayesian decision theory and game theory, it is reasonable to
specify each agent’s information as a ∆1

1 (that is, Borel) equivalence relation, or
even as a smooth or closed Borel relation.5 Thus it may be asked: if the graphs
of E1 and E2 are in ∆1

1 or in some smaller class, then how is the graph of the
transitive closure of E1 ∪ E2 restricted?

It will be shown here that no significant restriction of the common-knowledge
partition is implied by such restriction of agents’ information partitions. For R ⊆
Ω2, let R(1) = R and R(n+1) = RR(n) ⊆ Ω2 (that is, the composition of relations R
and R(n)). Denote the transitive closure of R by R =

⋃
n∈NR

(n). If Ω is a Polish

space and E0 ⊂ Ω× Ω is a Σ1
1 equivalence relation, then there are ∆1

1 equivalence
relations E1 and E2 and a ∆1

1 subset Z of Ω, such that E1 ∪ E2 � (Z ×Z) is Borel
equivalent to E0. If Ω is the Baire space, then E1 and E2 can be taken to be
closed, Z can be taken to be open, and the Borel equivalence can be taken to be a
homeomorphic equivalence.

2. Statement of the theorem

As the Polish space Ω to be studied, take N = NN.6 Define subsets X and Y of
N by X = {α|α0 > 0} and Y = {α|α0 = 0}. X and Y are both homeomorphic
to N , and homeomorphisms f : X → Y and g : Y × Y × Y → Y are routine to
construct.7 Each of X and Y is both open and closed in N . It follows that, if Z is
either X or Y , then A ⊆ Z is open (resp. closed, Borel, Σ1

1) as a subset of A iff it
is open (resp. closed, Borel, Σ1

1) as a subset of Z. This invariance to the ambient
space extends to product spaces. (For example a subset of X×Y is closed in X×Y

3Composition is defined with a single existential quantifier, and thus takes a pair of Σ1
1 relations

to a Σ1
1 relation. The countable union of Σ1

1 relations is Σ1
1. Cf. Moschavakis [2009, Theorem

2B.2, p. 54].
4This is equivalent, by (1.1), to the fact that the saturation of a Σ1

1 set with respect to a Σ1
1

equivalence relation is Σ1
1. This latter fact is true because the saturation is defined with a single

extential quantifier.
5Smoothness (also called tameness) and closedness are co-extensive for equivalence relations

on standard Borel spaces. Cf. Harrington et al. [1990, proof of Theorem 1.1, p. 920].
6N = {0, 1, . . .}. N is topologized as the product of discrete spaces.
7Since Y is homeomorphic with N , g can be constructed from the function described by

Moschavakis [2009, p. 31].
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iff it is closed in N ×N .) In subsequent discussions, subsets of these subspaces will
be characterized (for example, as being closed) without mentioning the subspace.

Theorem 2.1. If E ⊆ X ×X is a Σ1
1 equivalence relation, then there are equiv-

alence relations I and J on N × N , each of which has a closed graph, such that
E = I ∪ J ∩ (X ×X).

Before proceeding to the proof of this theorem, note that I ∪ J is a closed,
reflexive, symmetric relation. Thus, theorem 2.1 implies the following proposition.

Corollary 2.2. If E ⊆ X ×X is a Σ1
1 equivalence relation, then there is a closed,

reflexive, symmetric relation R on N ×N , such that E = R ∩ (X ×X).

Theorem 2.1 and corollary 2.2 would be equivalent if every closed, reflexive,
symmetric relation were the union of two closed equivalence relations, but that is
not the case.

Example 2.3. Let α ∈ N . Define R = D ∪ ({α} × N ) ∪ (N × {α}), and define

E =
⋃
{(D ∪ {(α, β), (β, α)})|β ∈ N \ {α}} .

R =
⋃
E ; every E ∈ E is an equivalence relation; R is closed, reflexive, and symmet-

ric; and 2ℵ0 is the cardinality of E . There is no other set F of equivalence relations
such that R =

⋃
F . Thus, R is not a union of fewer that 2ℵ0 equivalence relations.

The assertions regarding E are obvious from its construction. To obtain a con-
tradiction from supposing that E were not unique, suppose that R were also the
union of a set F 6= E of equivalence relations. Not F ( E . So, there must be some
E ∈ F \ E . By symmetry, there must be three distinct points, α, β, γ such that
{(β, α), (α, γ)} ⊆ E. Since E is transitive, (β, γ) ∈ E \R, contrary to R =

⋃
F .

3. Proof of the theorem

Denote the diagonal (that is, identity) relation in N×N by D = {(α, α)|α ∈ N}.
D is closed.

If 1 ≤ i < j ≤ k and ~α = (α1, α2, . . . , αk) ∈ N k, then a transposition mapping
is defined by tij(~α) = (α1, . . . , αi−1, αj , αi+1, . . . , αj−1, αi, αj+1, . . . , αk).8 The ab-

breviation Ã = t12(A) = {t12(α)|α ∈ A} will sometimes be used. Each tij is a
homeomorphism of N k with itself. Note that tij � Xk and tij � Y k map Xk and
Y k homeomorphically onto themselves.

Recall that a relation E ⊆ X ×X is Σ1
1 iff there is a set F such that

(3.1) F ⊆ X ×X ×N is closed, and (α, β) ∈ E ⇐⇒ ∃γ (α, β, γ) ∈ F.

Lemma 3.1. If E ⊆ X × X is symmetric, then E is Σ1
1 iff there is a closed,

t12-invariant set F ⊂ X ×X ×X that satisfies (3.1).

Proof. Let F0 satisfy (3.1). Let h be a homeomorphism from N to X, and define
F1 ⊆ X ×X ×X by (α, β, γ) ∈ F0 ⇐⇒ (α, β, h(γ)) ∈ F1. F1 also satisfies (3.1),

then, and it is closed. By symmetry of E, F̃1 is another closed set that satisfies

(3.1). Consequently, F = F1∪F̃1 is a t12-invariant closed set that satisfies (3.1). �

8A sub-sequence of subscripted alphas distinct from αi and αj having subscripts that are not

increasing, which occurs if i = 1 or j = i+ 1 or j = k, denotes the empty sequence.
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Let i denote the identity function on N . If K,L,M,N are any sets, and p : K →
L and q : M → N , then denote the product mapping by p× q : K ×M → L×N .

The two closed equivalence relations that theorem 2.1 asserts to exist are defined
from the homeomorphisms f and g introduced in section 2, and the closed, t12-
invariant set F guaranteed to exist by lemma 3.1, as follows.

j(α, β, γ) = g(f(α), f(β), f(γ)).

G = {(α, j(α, β, γ))|(α, β, γ) ∈ F} ⊆ X × Y ;

H = {(j(α, β, γ), j(β, α, γ))|(α, β, γ) ∈ X ×X ×X};

I = D ∪G ∪ G̃ ∪ G̃G;

J = D ∪H.

(3.2)

Lemma 3.2. D, G, G̃, H, and J are closed.

Proof. D is closed because N is a metric space.
The function i× j is a homeomorphism from X ×X ×X ×X to X × Y . Being

a homeomorphism, it is an open mapping (which takes closed sets to closed sets).
G = [i × j](((D � (X ×X) ×X ×X)) ∩ (X × F )). (D � (X ×X)) ×X ×X and

X × F are both closed subsets of X ×X ×X ×X, so G is closed. G̃ is closed, as
the image of G under t12, a self-homeomorphism of N ×N .
j × j is a homeomorphism from (X ×X ×X) × (X ×X ×X) to Y × Y . The

image under j × j of a closed subset of its domain is therefore closed in its range.
{((α, β, γ), (β, α, γ))|(α, β, γ) ∈ X × X × X} is t23 ◦ t25((D � (X × X)) × (D �
(X ×X))× (D � (X ×X)), which is closed. H, the image of this set under j × j,
is therefore closed.
J , the union of two closed sets, is closed. �

Lemma 3.3. GG̃ = D � (X × X). G̃G = {(j(α, β, γ), j(α, δ, ε))|(α, β, γ) ∈
F and (α, δ, ε) ∈ F}. H = H̃. H(2) = D � (Y×Y ). GH = {(α, j(β, α, γ)|(α, β, γ) ∈
F}. GHG̃ = E. G̃G and I are closed.

Proof. All assertions except the one regarding closedness of G̃G and I are verified
by straightforward calculations. That F is invariant under t12 is used to show That

H = H̃ and that E ⊆ GHG̃.
The proof that G̃G is closed is parallel to the proof that H is closed. According

to the first part of this lemma, G̃G = [j × j](t24((D � (X ×X)) ×X ×X ×X ×
X) ∩ (F × F )).
I, the union of four closed sets, is closed. �

Lemma 3.4. I and J are equivalence relations.

Proof. These relations are reflexive and symmetric, so their transitive closures are
equivalence relations. Thus, the lemma is equivalent to the assertion that I = I
and J = J . For any relation K, K(2) = K is sufficient for K = K. In the
following calculations of I(2) and J (2), composition of relations is distributed over
unions. Terms that evaluate by identities that were calculated in lemma 3.3 to a
previous term or its sub-relation, are omitted from the expansion by terms in the
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pentultimate step of each calculation.

I(2) = (D ∪G ∪ G̃ ∪ G̃G)(D ∪G ∪ G̃ ∪ G̃G)

= (D ∪G ∪ G̃ ∪ G̃G) ∪ (G ∪GG̃ ∪GG̃G) ∪ (G̃ ∪ G̃G ∪ G̃G̃ ∪ ∪G̃G̃G)

∪ (G̃G ∪ G̃GG ∪ G̃GG̃ ∪ G̃GG̃G)

= D ∪G ∪ G̃ ∪ G̃G
= I.

J (2) = (D ∪H)(D ∪H)

= (D ∪H) ∪ (H ∪H(2))

= D ∪H
= J.

(3.3)

�

Proof of theorem 2.1. Lemmas 3.2–3.4 show that the each of the relations I and J
on N×N , is an equivalence relation that has a closed graph. It remains to be shown
that that E = I ∪ J ∩ (X ×X). Note that, since D ⊆ I ∪ J , I ∪ J ⊆ (I ∪ J)(2) ⊆
(I ∪ J)(3) ⊆ . . . Hence, if (I ∪ J)(n) = (I ∪ J)(n+1), then (I ∪ J)(n) = I ∪ J .

The following calculation shows that (I ∪ J)(5) = (I ∪ J)(6). The calculation is
done recursively, according to the following recipe at each stage n > 1:

(1) Begin with the equation (I ∪ J)(n+1) = (I ∪ J)(I ∪ J)(n).

(2) Rewrite (I ∪J) as D∪G∪ G̃∪ G̃G∪H according to (3.2), rewrite (I ∪J)(n)

according to the result of the previous step, and then distribute composition
of relations over union in the resulting equation.

(3) For each identity stated in lemma 3.3, and for each identity that, for some

K ∈ {G, G̃,H}, equates a composition KD or DK of K and D (or a
restriction of D to a product set of which K is a subset) to K, do as
follows: Going from left to right, apply the identity wherever possible.9

Repeat this entire step (consisting of one pass per identity) until no further
simplifications are possible.

(4) Delete compositions of relations that include terms KL such that the range
of K and the domain of L (viewed as correspondences) are disjoint, in which
case the term denotes the empty relation. Delete D � (X ×X) (occurring
as a term by itself), of which D is a superset.

(5) Delete each term of form [K]G̃[L] (resp. [K]G[L]) from a union in which

the corresponding term for its superset, [K]G̃E[L] (resp. [K]EG[L]) also
appears. (One or both of the bracketed sub-terms may be absent from both
terms in the pair.) Delete D (occurring as a term by itself) from every union
that contains both D � (Y × Y ) and E, since D ⊆ D � (Y × Y ) ∪ E.

9Let P = D � (X ×X) and Q = D � (Y × Y ). Identities are applied in the following order at

each stage of the recursion: DD = D, DE = E, DG = G, DG̃ = G̃, DH = H, DP = P , DQ = Q,

ED = E, EE = E, EP = E, GD = G, GG̃ = P , GHG̃ = E, GQ = G, G̃D = G̃, G̃P = G̃,

HD = H, HH = Q, HQ = H, PD = P , PE = E, PG = G, PP = P , QD = Q, QG̃ = G̃,
QH = H, QQ = Q.
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(6) Reorder terms lexigraphically, in the order D < D � (Y × Y ) < E < G <

G̃ < H. Delete repeated terms.

(I ∪ J) = D ∪G ∪ G̃ ∪ G̃G ∪H

(I ∪ J)(2) = D ∪D � (Y × Y ) ∪G ∪GH ∪ G̃ ∪ G̃G ∪ G̃GH

∪H ∪HG̃ ∪HG̃G

(I ∪ J)(3) = D � (Y × Y ) ∪ E ∪ EG ∪GH ∪ G̃E ∪ G̃EG ∪ G̃GH

∪H ∪HG̃ ∪HG̃G ∪HG̃GH

(I ∪ J)(4) = D � (Y × Y ) ∪ E ∪ EG ∪ EGH ∪ G̃E ∪ G̃EG ∪ G̃EGH

∪H ∪HG̃E ∪HG̃EG ∪HG̃GH

(I ∪ J)(5) = D � (Y × Y ) ∪ E ∪ EG ∪ EGH ∪ G̃E ∪ G̃EG ∪ G̃EGH

∪H ∪HG̃E ∪HG̃EG ∪HG̃EGH

(I ∪ J)(6) = D � (Y × Y ) ∪ E ∪ EG ∪ EGH ∪ G̃E ∪ G̃EG ∪ G̃EGH

∪H ∪HG̃E ∪HG̃EG ∪HG̃EGH

= (I ∪ J)(5)

(3.4)

Thus I ∪ J = (I ∪ J)(5). Note that D � (Y × Y ), G, G̃, H and all relations of

form or G̃Q or HQ or QG or QH (where variable Q ranges over compositions of G,

G̃, H, and E), are disjoint from X ×X. Therefore, from the calculation in (3.4) of
(I∪J)(5) as a union of E with such relations, it follows that I ∪ J∩(X×X) = E. �

4. The general case of an uncountable Polish space

Corollary 4.1. Let Ω be an uncountable Polish space, and let E0 ⊆ Ω×Ω be a Σ1
1

equivalence relation. There are ∆1
1 equivalence relations E1 and E2, a ∆1

1 subset
Z of Ω, and a Borel isomorphism e : Ω → Z such that E0 is Borel equivalent to
(E1 ∪ E2) � (Z × Z) by (ω, ω′) ∈ E0 ⇐⇒ (e(ω), e(ω′)) ∈ (E1 ∪ E2).

Proof. There is a Borel isomorphism k : Ω → N .10 Setting x(α0, α1, . . .) = (α0 +
1, α1, . . .) specifies a homeomorphism from N to the open set X of theorem 2.1.
Define e = k−1 ◦ x ◦ k and Z ⊆ Ω by Z = e(Ω). If E ⊂ X × X is defined by
(ω, ω′) ∈ E0 ⇐⇒ (x ◦ k(ω), x ◦ k(ω′)) ∈ E, then E is a Σ1

1 equivalence relation.11

Let I and J be the closed equivalence relations defined in (3.2), and define (ω, ω′) ∈
E1 ⇐⇒ (k(ω), k(ω′)) ∈ I and (ω, ω′) ∈ E2 ⇐⇒ (k(ω), k(ω′)) ∈ J . Now the
corollary follows immediately from theorem 2.1. �

10Moschavakis [2009, Theorem 1G.4, p. 41; note 4, p. 46].
11Moschavakis [2009, Theorem 2B.2, p. 54].
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