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a b s t r a c t

Time invariance of factor loadings is a standard assumption in the analysis of large factor models. Yet,
this assumption may be restrictive unless parameter shifts are mild (i.e., local to zero). In this paper we
develop a new testing procedure to detect big breaks in these loadings at either known or unknown dates.
It relies upon testing for parameter breaks in a regression of one of the factors estimated by Principal
Components analysis on the remaining estimated factors,where the number of factors is chosen according
to Bai and Ng’s (2002) information criteria. The test fares well in terms of power relative to other recently
proposed tests on this issue, and can be easily implemented to avoid forecasting failures in standard
factor-augmented (FAR, FAVAR) models where the number of factors is a priori imposed on the basis
of theoretical considerations.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Despite being well acknowledged that some parameters in
economic relationships can be subject to important structural
breaks (e.g., those related to technological change, globalization
or strong policy reforms), a standard practice in the estimation
of large factor models (FM, hereafter) has been to assume time-
invariant factor loadings. Possibly, one of the main reasons for this
benignneglect of breaks stems from the important results obtained
by Stock and Watson (2002, 2009) regarding the consistency
of the estimated factors by principal components analysis (PCA
hereafter) when the loadings are subject to small (i.e., local-to-
zero) instabilities. These authors conclude that the failure of factor-
based forecasts is mainly due to the instability of the forecast
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function, rather than of the different components of the FM. As
a result, their advice is to use full-sample factor estimates and
subsample forecasting equations to improve forecasts.

However, the main emphasis placed on local-to-zero breaks
has been subsequently questioned. For example, by means of a
Monte Carlo study, Banerjee et al. (2008) conclude that, in con-
trast to Stock andWatson’s diagnosis, the instability of factor load-
ingswhen big (i.e., not local-to-zero) breaks occur is themost likely
reason behind theworsening factor-based forecasts, particularly in
small samples. Likewise, when discussing Stock and Watson’s re-
search on this topic, Giannone (2007) argues that ‘‘. . . to understand
structural changes we should devotemore effort inmodelling the vari-
ables characterized by more severe instabilities. . . ’’. In this paper, we
pursue this goal by providing a precise characterization of the dif-
ferent conditions under which big and small breaks in the factor
loadings may occur, as well as develop a simple test to distinguish
between them. We conclude that, in contrast to small breaks, big
breaks should not be ignored since they may lead to misleading
results in standard econometric practices using FM and in the po-
tential interpretation of the factors themselves.

A forerunner of our paper is Breitung and Eickmeier (2011,
BE henceforth) who were the first to propose a proper testing
procedure to detect big breaks in the factor loadings. Their test
relies on the idea that, under the null of no structural break (plus
some additional assumptions), the estimation error of the factors
can be ignored and thus the estimated factors can be treated as
the true ones. Consequently, a Chow-type test can be implemented
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by regressing each variable in the data set on both the estimated
factors using the whole sample and their truncated versions from
the date of the break onwards. Focusing on the joint statistical
significance of the estimated coefficients on the truncated factors,
their test compares the empirical rejection frequency among the
individual regressions to a nominal size of 5% under the null. In
our view, this approach suffers from two limitations: (i) the overall
limiting distribution of their test remains unknown when testing
for the equality of all the elements of the loading matrix in both
subsamples1; and (ii) it lacks non-trivial power when the number
of factors is chosen according to some consistent estimator of r .
This last problem can be serious. For example, as explained further
below, a FM with r original factors where the loadings of one
of them exhibit a big structural break at the same date admits a
standard factor representation with r + 1 factors without a break.
Hence, if the number of factorswere to be chosen as r+1, instead of
r , their testing approach would fail to detect any break at all when
in fact there is one.

Our contribution here is to propose a simple testing procedure
to detect big breaks in FMs stemming from a single source which
does not suffer from the previous shortcomings. We focus on
breaks in the loadings thoughwealso provide a procedure to detect
whether the breaks originate from the loadings or from factors
themselves. In particular, we first derive some asymptotic results
finding that, in contrast to small breaks, the number of factors is
overestimated under big breaks, a result which was also used by
BE (2011). We argue that neglecting these breaks can have serious
consequences on the forecasting performance of some popular
regression-based models using factors, where their number is a
priori imposed. Likewise, under big breaks, it may be difficult
to provide a structural interpretation of the estimated factors
when they are chosen according to some consistent information
criteria (see Bai and Ng, 2006b; Chen, 2012). Our proposal
relies upon a very simple regression-based testing procedure. As
sketched earlier, the insight is that a FM with big breaks in the
loadings can be re-parameterized as another FM with constant
loadings but a larger set of factors, where the number and the space
spanned by the latter can be consistently estimated by PCA under
fairly standard assumptions. Hence, rather than directly testing
for whether all the elements of the loadings matrix are stable,
which will suffer from an infinite-dimensionality problem as the
number of variables in the panel data set grows, one can test if the
relationships among the larger finite-dimensional set of estimated
factors are stable.

Specifically, our procedure consists of two steps. First, the
number of factors for the whole sample period is chosen as
r̄ according to Bai and Ng’s (2002, BN henceforth) information
criteria, and then r̄ factors are estimated by PCA. Next, one of the
estimated factors (e.g., the first one) is regressed on the remaining
r̄ −1 factors, to next apply the standard Chow Test or the Sup-type
Test of Andrews (1993) to this regression, depending on whether
the date of the break is treated as known or unknown. If the null
of no breaks is rejected in the second-step regression, we conclude
that there are big breaks and, otherwise, that either no breaks exist
at all or that only small breaks occur. Further, on the basis of the
rank properties of the covariance matrix of the estimated factors
in different subsamples, we also provide some guidance on how
to distinguish between breaks stemming either from the loadings
or from the data generating process (DGP hereafter) of the factors.
This difference is important since the latter may lead to reject the

1 With the notation used below in (1)–(2), the limiting distribution of the
rejection frequencies for the joint hypothesis A = B is not known, although the
individual tests for the hypothesis αi = βi have known limiting distributions.
null of constant loadings when it is true, implying a misleading
interpretation of the source of the break.

After completing the first draft of this paper, we became aware
of a closely related paper by Han and Inoue (2012, HI hereafter)
who, in an independent research, adopt a similar approach to ours
in testing for big breaks in FM. The two approaches, however, differ
in some relevant respects. In effect, rather than using a simple
regression-based approach to avoid the infinite-dimensionality
problemaswedohere, HI (2012) test directly for differences before
and after the break in all the elements of the covariance matrix
of the estimated factors. We will argue below that, despite the
fact that the HI tests use more information than ours, both tests
generally exhibit similar power. Indeed, our regression-based test
based on theWald principle,which behavesmuch better in general
than the Lagrange multiplier (LM hereafter) tests for detecting
structural breaks, is even more powerful than the corresponding
HI’s test for small sample sizes, such asN = T = 50. One additional
advantage of our simple linear-regression setup is that it amenable
to use many other existing methods for testing breaks, including
multiple ones (see, e.g. Perron, 2006, for an extensive review of
these tests).

The rest of the paper is organized as follows. In Section 2, we
present the basic notation, assumptions and the definitions of small
and big breaks. In Section 3, we analyze the consequences of big
breaks on the choice of the number of factors and their estimation,
as well as their effects on standard econometric practices with
factor-augmented regressions. In Section 4, we first derive the
asymptotic distributions of our tests and next discuss, when a
big break is detected, how to identify its sources. Section 5 deals
with the finite sample performance of our test relative to the
competing tests usingMonte-Carlo simulations. Section 6 provides
an empirical application. Finally, Section 7 concludes. An appendix
contains detailed proofs of the main results.

2. Notation and preliminaries

We consider FM that can be rewritten in the static canonical
form:

Xt = AFt + et

where Xt is the N × 1 vector of observed variables, A =

(α1, . . . , αN)′ is theN×r matrix of factor loadings, r is the number
of common factors which is finite, Ft = (F1t , . . . , Frt)′ is the r × 1
vector of common factors, and et is theN×1 vector of idiosyncratic
errors. In the case of dynamic FMs, all the common factors ft and
their lags are stacked into Ft . Thus, a dynamic FM with r dynamic
factors and p lags of these factors can bewritten as a static FMwith
r × (p+ 1) static factors. Further, given the assumptions we make
about et , the case analyzed by BE (2011) where the eit disturbances
are generated by individual specific autoregressive (AR hereafter)
processes is also considered.2

We assume that there is a single structural break in the factor
loadings of all factors at the same date τ :

Xt = AFt + et t = 1, 2, . . . , τ , (1)
Xt = BFt + et t = τ + 1, . . . , T (2)

where B = (β1, . . . , βN)′ is the new factor loadings after the break.
By defining the matrix C = B − A, which captures the size of the

2 Notice, however, that our setup excludes the generalized dynamic FM
considered by Forni and Lippi (2001), where the polynomial distributed lag possibly
tends to infinity.



32 L. Chen et al. / Journal of Econometrics 180 (2014) 30–48
breaks, the FM in (1) and (2) can be rewritten as:

Xt = AFt + CGt + et (3)

where Gt = 0 for t = 1, . . . , τ , and Gt = Ft for t = τ + 1, . . . , T .
As argued by Stock andWatson (2002, 2009), the effects of some

mild (local to zero) instability in the factor loadings canbe averaged
out, so that estimation and inference based on PCA remain valid.
We generalize their analysis by allowing for two types of break
sizes: small and big. In contrast to the former, we will show that
the latter cannot be neglected. To distinguish between them, it is
convenient to partition the C matrix as follows:

C = [Λ H]

where Λ and H are N × k1 and N × k2 matrices that correspond to
the big and the small breaks, and k1 + k2 = r . Accordingly, we can
also partition the Gt matrix into G1

t and G2
t , such that (3) becomes:

Xt = AFt + ΛG1
t + HG2

t + et (4)

where Λ = (λ1, . . . , λN)′ and H = (η1, . . . , ηN)′.
Throughout the paper, tr(Σ) and ∥Σ∥ =

√
tr(Σ ′Σ) will de-

note the trace and the norm of a matrix Σ , respectively. For a fi-
nite dimensional vector v, we write v = Op(1) (v = op(1)) when
∥v∥ = Op(1) (∥v∥ = op(1)). [Tπ ] denotes the integer part of T ×π
for π ∈ [0, 1]. Once the basic notation has been established, we
next provide precise definitions of the two types of breaks.

Assumption 1. Breaks: (a) ∥λi∥ ≤ λ̄ < ∞ for all i. N−1Λ′Λ →

ΣΛ as N → ∞ for some positive definite matrix ΣΛ. (b) ηi =

(NT )−1/2κi and ∥κi∥ ≤ κ̄ < ∞ for all i.

The matrices Λ and H are assumed to contain non-random
elements. Assumption 1(a) yields the definition of a big break.
It also includes the case where λi = 0 (no break) for a fixed
proportion of variables as N → ∞. As will be shown, this type
of breaks will lead to inconsistency of the estimated factors and
the overestimation of r . Assumption 1(b), in turn, provides the
definition of small breakswhich are characterized as being of order
1/

√
NT , so the true factor space and r can be both consistently

estimated under such breaks. If we only focus on the consistency of
the estimated factors, the definition of small breaks can be relaxed
to ∥ηi∥ = O(Nδ1T δ2) with δ1, δ2 ≤ 0 and δ1 + δ2 ≠ 0. As shown
by Theorem 1 of Bates et al. (2013), the estimated factors using
PCA are still consistent for breaks with such sizes, although at a
slower convergence rate than min(

√
N,

√
T ). However, as argued

in the Introduction, we are concerned with the number of factors
as well, and such breaks will possibly lead to an overestimated
number of factors. Therefore, our assumption for small breaks is
more stringent.

Remark 1. Bates et al. (2013) considers instabilities in the factor
loadings such that: At = A + hNT ∗ ut , where hNT is a scalar
which depends on N and T , and ut is a vector of possibly random
disturbances. They propose conditions about hNT and ut under
which the PCA estimator of the factors are still consistent. In the
case of structural breaks, they assume hNT = 1 whereas ut is
vector of O(1) elements (say ut = ∆1 (t > τ) where ∆ =

(∆1, . . . , ∆N)′) that do not depend on N or T after the break date
τ . Unlike our definitions, they characterize the size of breaks as the
number of nonzero elements in ∆, i.e., the number of variables
having breaks in their factor loadings. For the consistency of the
estimated factors, their conditions allow at most Nδ (δ < 1)
variables to have breaks (

N
i=1 ∥∆i∥ = O(Nδ)). By contrast, for the

consistency of the estimated number of factors using BN’s (2002)
method, only a fixed number of variables are allowed to have
breaks (

N
i=1 ∥∆i∥ = O(1)), whenN/T converges to somenonzero

constant.
To compare these conditions with our definitions, notice that
when Nδ variables are allowed to have breaks, we have that
∥N−1N

i=1 ∆i∆
′

i∥ ≤ N−1N
i=1 ∥∆i∥

2
= O(Nδ−1) = o(1) when

δ < 1. On the other hand, our Assumption 1(a) for big breaks
implies that ∥

1
N

N
i=1 λiλ

′

i∥ converges to a positive constant. In
this sense, the big breaks defined in our paper have larger sizes
than those considered in Bates et al. (2013), under which the esti-
mated factors are proved to be consistent. As for the small breaks,
our Assumption 1(b) implies that

N
i=1 ∥ηi∥ = O(1) when N and

T have the same order, similar to the conditions of Bates et al.
(2013) which also allows the number of factors to be consistently
estimated. �

To investigate the influence of breaks on the number and esti-
mation of factors, some further assumptions need to be imposed.
To achieve consistent notation with the previous literature in the
discussion of these assumptions, we follow the presentation of BN
(2002) and Bai (2003) with a few slight modifications.

Assumption 2. Factors: E(Ft) = 0, E∥Ft∥4 < ∞, (NT )−4E∥Ft∥8 <

∞, T−1T
t=1 FtF

′
t

p
→ ΣF and T−1τ

t=1 FtF
′
t

p
→ π∗ΣF as T → ∞

for some positive definite matrix ΣF where π∗
= limT→∞

τ
T .

Assumption 3. Factor Loadings: ∥αi∥ ≤ ᾱ < ∞, and N−1A′A →

ΣA, N−1Γ ′Γ → ΣΓ as N → ∞ for some positive definite matrix
ΣA and ΣΓ , where Γ = [A Λ].

Assumption 4. Idiosyncratic Errors: The error terms et , the factors
Ft and the loadings A satisfy the Assumptions A, B, C, D, E, F1, F2
of Bai (2003).

Assumption 5. Independence of Factors and Idiosyncratic Errors:
[Ft ]Tt=1 and [et ]Tt=1 are two mutually independent groups, and
1/

√
T
T

t=1 Fteit = Op(1) for each i = 1, . . . ,N .

Assumptions 3 and 4 are standard in the literature on FM
allowing for weak cross-sectional and temporal correlations
between the errors. In our specific setup, Assumption 3 excludes
the case where a new (old) factor appears (disappears) after the
break since this event would imply that ΣΓ becomes singular.
However, this is not restrictive sincewe could always envisage any
potential factor as having non-zero, albeit small, loadings in either
of the relevant subsamples. Assumption 2, in turn, is a new one.
Since factors and factor loadings cannot be separately identified,
we have to assume that DGPs with breaks in the loadings, which
can be reabsorbed by transformations of the factors, should not
be included in the alternative. In Section 4.4, we will discuss how
to differentiate between breaks in the factor loadings and breaks
in the dynamics of the factors. Different factors are allowed to be
correlated at all leads and lags. Assumption 5 on the independence
among the different groups is stronger than the usual assumptions
made by BN (2002). Notice, however, that we could have also
assumed somedependence between these groups and then impose
some restrictions on this dependence when necessary. Yet, this
would complicate the proofs without essentially altering the
insight underlying our approach. Thus, for the sake of simplicity,
we assume them to be independent in the sequel.

3. The effects of structural breaks

In this section, we study the effects of structural breaks on the
estimation of both the number of factors based on the information
criteria (IC, henceforth) proposed by BN (2002) and the factors
themselves through PCA. Our main finding is that, in contrast to
Stock and Watson’s (2002, 2009) consistency result for the true
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factor space under small breaks, the factor space estimated by
PCA is inconsistent, and that the number of factors tends to be
overestimated under big breaks.

3.1. The estimation of factors

Let us rewrite model (4) with k1 big breaks and k2 small breaks
in the more compact form:

Xt = AFt + ΛG1
t + ϵt (5)

where ϵt = HG2
t + et . The idea is to show that the new error terms

ϵt still satisfy the necessary conditions for (5) being a standard FM
with new factors F∗

t = [F ′
t G1′

t ]
′ and new factor loadings [A Λ].

Let r̄ be the selected number of factors, either chosen by some
prior knowledge or by using some consistent estimator such as
the IC of BN (2002). Notice that r̄ is not necessarily equal to r . Let
F̂ be

√
T times the r̄ eigenvectors corresponding to the r̄ largest

eigenvalues of the matrix XX ′, where the T × N matrix X =

[X̄1, X̄2, . . . , X̄T ]
′, X̄t = [Xt1, Xt2, . . . , XtN ]

′, F̂ = [F̂1, F̂2, . . . , F̂T ]′.
Then we have:

Proposition 1. For any fixed r̄ (1 ≤ r̄ ≤ r + k1), under As-
sumptions 1–5, there exists a full rank r̄ × (r + k1) matrix D and
δN,T = min{

√
N,

√
T } such that:

F̂t = DF∗

t + Op(δ
−1
N,T ) for t = 1, 2, . . . , T . (6)

This result implies that F̂t estimates consistently the space of
the new factors, F∗

t , but not the space of the original factors, Ft .
Let us next consider two cases. First, when k1 = 0 (no big

breaks), we have that G1
t = 0, and F∗

t = Ft , so that (6) becomes

F̂t = DFt + Op(δ
−1
N,T ) (7)

for a r̄ × r matrix D of full rank. This just trivially replicates the
well-known consistency result of BN (2002).3

Secondly, in themore interesting casewhere k1 > 0 (big breaks
exist), we can rewrite (6) as

F̂t = [D1 D2]


Ft
G1
t


+ op(1) = D1Ft + D2G1

t + op(1) (8)

where the r̄×(r+k1)matrixD is partitioned into the r̄×r matrixD1
and the r̄ × k1 matrix D2. Note that, by the definition of Gt , G1

t = 0
for t = 1, 2, . . . , τ , and G1

t = F 1
t for t = τ + 1, . . . , T , where F 1

t
is the k1 × 1 sub-vector of Ft that is subject to big breaks in their
loadings. Therefore (8) can be expressed as:

F̂t = D1Ft + op(1) for t = 1, 2, . . . , τ , (9)

F̂t = DĎ
2Ft + op(1) for t = τ + 1, . . . , T (10)

where DĎ
2 = D1 + [D2 0], 0 is a r̄ × (r − k1) zero matrix, and

D2 ≠ 0 when r̄ > r . Hence, since D1 ≠ DĎ
2, this implies that, in

contrast to small breaks where D2 tends to 0 due to the local-to-
zero properties of the elements of H (see Assumption 1(b)), under
big breaks the estimated factors F̂ will not be consistent for the
space of the true factors F . Accordingly, as will be discussed below,
imposing a priori the number of estimated factors to be used as
predictors or explanatory variables in standard factor-augmented
models may lead to misleading results.

3 Notice that, for the estimator F̂ defined here, r̄ has to be smaller or equal to r
for (7) to hold.
To illustrate the consequences of having big breaks in the
factor loadings, consider the following simple Factor Augmented
Regression (FAR) model (see BN, 2006a):

yt = a′Ft + b′Wt + ut , t = 1, 2, . . . , T (11)

whereWt is a small set of observable variables and the r ×1 vector
Ft contains the r common factors driving a large panel data set Xit
(i = 1, 2, . . . ,N; t = 1, 2, . . . , T ) which excludes both yt and
Wt . The parameters of interest are the elements of vector b while
Ft is included in (11) to control for potential endogeneity arising
from omitted variables. Since we cannot identify Ft and a, only the
product a′Ft is relevant. Suppose that there is a big break at date τ .
From (9) and (10), we can rewrite (11) as:

yt = (a′D−

1 )(D1Ft) + b′Wt + ut for t = 1, 2, . . . , τ ,

yt = (a′DĎ−
2 )(DĎ

2Ft) + b′Wt + ut for t = τ + 1, . . . , T

where D−

1 D1 = DĎ−
2 D2 = Ir , or equivalently

yt = a′

1F̂t + b′Wt + ũt for t = 1, 2, . . . , τ , (12)

yt = a′

2F̂t + b′Wt + ũt for t = τ + 1, . . . , T (13)

where a′

1 = a′D−

1 and a′

2 = a′DĎ−
2 , and ũt = ut + op(1).

If the number of factors is a priori known to be r̄ = r , then
D−

1 = D−1
1 , DĎ−

2 = DĎ−1
2 . If we assume D1 ≠ DĎ

2, it follows that
D−1
1 ≠ DĎ−1

2 and thus a1 ≠ a2. Therefore, using the indicator
function 1(t > τ), (12) and (13) can be rewritten as

yt = a′

1F̂t + (a2 − a1)′F̂t1(t > τ) + b′Wt + ũt ,

t = 1, 2, . . . , T . (14)

A straightforward implication of the previous result is that if we
were to impose the number of factors, on a priori ground, therefore
ignoring the set of regressors F̂t1(t > τ) in (14), in general the
estimation of bwill become inconsistent due to omitted variables.

Remark 2. Interestingly, there aremany examples in the literature
where, for theoretical or practical reasons, the number of factors
is imposed as a prior. For example, to name a few, a single
common factor representing a global effect is assumed in the well-
known study by Bernanke et al. (2005) on measuring the effects of
monetary policy in Factor AugmentedVAR (FAVAR)models, aswell
as in the risk analysis in portfolios of corporate debt by Gagliardini
andGouriéroux (2011)where a single factor is supposed to capture
a latent macro-variable. Likewise, two factors are a priori imposed
by Rudebusch andWu (2008) in theirmacro-financemodel. Notice
that a similar argument will render inconsistent the impulse
response functions in FAVAR models where the regressand in (11)
becomes yt+1 = (Ft+1,Wt+1)

′. �

Remark 3. Alternatively, if the number of factors is not a priori
imposed and it is estimated by the IC of BN (2002), we will show
in the next section (Proposition 2) that the estimated number of
factors will tend to r + k1 as the sample size grows. In this case, D1

and DĎ
2 are (r + k1) × r matrices, and by the definitions of D1 and

DĎ
2, it is easy to show that we can always find a r × (r + k1) matrix

D−
= D−

1 = DĎ−
2 such that D−D1 = D−DĎ

2 = Ir . If we define

ā′
= a′D−, (15)

then a′

1 = a′

2 = ā′ so that (12) and (13) can be rewritten as

yt = ā′F̂t + b′Wt + ũt , t = 1, 2, . . . , T , (16)

so that the estimation of (11) will not be affected by the estimated
factors under big breaks if r̄ = r + k1. �
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Remark 4. Yet, even in this case, the factors themselves may be
the direct subject of interest and thus their interpretation can
have important implications for structural analysis. For example,
a large body of empirical research in financial economics is
concerned with identifying the factors that determine asset
returns.4 However, the existence of big breaks may hamper this
identification procedure. For instance, ifr = 2, a relevant question
would be: are there two genuine factors or one factor and one
break? Our testing procedure provides a useful tool to disentangle
these two cases (see Section 4.4 below).

Another area where our testing approach could be useful is
in applications where the estimated factors are modeled in a
VAR in order to identify the structural shocks driving them (see
e.g. Charnavoki and Dolado, 2012). This identification becomes
more difficult as the number of factors increases. For this reason,
it is very important to determine whether the selection of a large
number of factors is due to having several genuine factors or to a
break affecting some of them. The insight is that instead of having
to identify r + k1 shocks we would only have to identify r . �

Summing up, the use of estimated factors as the true factors
when assuming that the number of factors is a priori known will
lead to inconsistent estimates in a FAR under big breaks. As a
simple remedy, F̂t1(t > τ) should be added as regressors when
big breaks are detected and the break date is located. Alternatively,
without pretending to know a priori the true number of factors,
the estimation of FAR will be robust to the estimation of factors
under big breaks if the number of factors is chosen according
to some consistent estimator. Yet, this may hinder the correct
interpretation of the estimated factors in terms of observables.
As a result, in order to run regression (16), our advice is to avoid
imposing the number of factors a priori, unless a formal test of big
breaks is implemented. We will illustrate these points in Section 5
bymeans of simulations in a typical forecasting exercise where the
predictors are common factors estimated by PCA.

3.2. The estimated number of factors

BE (2011) havepreviously argued that thepresence of structural
breaks in the factor loadings may lead to the overestimation of the
number of factors. Yet, since they do not provide a formal proof of
this result, we proceed to fill this gap.

Let r̂ be the estimated number of factors in (5) using the IC
proposed by BN (2002), and ϑ1

NT be the largest eigenvalue of
(NT )−1T

t=1 ete
′
t . Then, the following result holds:

Proposition 2. Suppose ϑ1
NT = Op(δ

−2
NT ) and Assumptions 1–5 hold,

then:

lim
N,T→∞

P[r̂ = r + k1] = 1.

Again, absent big breaks (k1 = 0), this result trivially replicates
Theorem 2 of BN (2002). However, under big breaks (k1 > 0), their
IC will overestimate the number of original factors by the number
of big breaks (0 < k1 ≤ r) because, as shown above, a FM with
this type of break admits a representationwithout a break butwith
more factors.

In sum, when we use PCA to estimate the factor space and
the IC of BN (2002) to estimate the number of factors, the small
breaks can be safely ignored, while the big breaks will lead to the
inconsistencies of F̂t and r̂ .

4 Chen et al. (1986) and Shanken and Weinstein (2006) are good illustrations of
attempts to interpret the underlying forces in the stock market developments in
terms of some observed macro variables.
4. Testing for structural breaks

4.1. Hypotheses of interest and test statistics

Our goal here is to develop a test for big breaks. As mentioned
above, if we were to follow the usual approach in the literature to
test for structural breaks, wewould consider the following null and
alternative hypotheses in (1) and (2): H0 : A = B vs. H1 : A ≠ B.
However, this standard formulation faces two problems. First, if
only small breaks occur, the estimation and inference based on
PAC are not affected. Thus, we can ignore these breaks. Secondly,
and foremost, since A and B are N × r matrices, we would face
an infinite-dimensional parameter problem as N grows if we were
to consider differences in all their individual elements. To solve
the first problem, we focus only on big breaks and consider H0 :

k1 = 0 vs. H1 : k1 > 0, where the new null and alternative
hypotheses correspond to the cases where there are no big breaks
(yet there may be small breaks) and there is at least one big break,
respectively.

Relying upon the discussion in Section 3.1 about the inconsis-
tency ofF for the space of the true factors F when big breaks occur,
our strategy to circumvent the second problem is to focus on how
the dependence properties of the r̄ estimated factors (using the
whole sample) change before and after the potential break date.
Since, in line with the standard assumption in FM, the number of
true factors (r) is considered to be invariant to the sample size, our
previous result in Proposition 2 ensures that r + k1, with k1 ≤ r , is
finite-dimensional.

To test the above null hypothesis, we consider the following
two-step procedure:

1. In the first step, the number of factors to estimate, r̄ , is deter-
mined and r̄ common factors (F̂t ) are estimated by PCA.

2. In the second step, we consider the following linear regression
of one of the estimated factors on the remaining r̄ − 1 ones. For
example, using the first factor as the regressand, this leads to
the regression:

F̂1t = c2F̂2t + · · · + cr̄ F̂r̄ t + ut = c ′F̂−1t + ut (17)

where F̂−1t = [F̂2t , . . . , F̂r̄ t ]′ and c = [c2, . . . , cr̄ ]′ are (r̄−1)×1
vectors. Then we test for a structural break of c in the above re-
gression. If a structural break is detected, then we reject H0 :

k1 = 0; otherwise, we cannot reject the null of no big breaks.

Remark 5. In the first stage, we have recommended to choose
r̄ as some consistent estimator of r to obtain the best size and
power properties. Although our Proposition 2 is based on the r̂
estimated by the IC of BN (2002), one can also use other procedures
to consistently estimate r . For example, Onatski (2009, 2010),
and Ahn and Horenstein (2013) show that their methods have
better finite sample properties than BN (2002) especially when the
errors are cross sectionally correlated. That being said, as will be
discussed below, one important feature of our tests is that they do
not rely on the correct estimation of r . In the second step, although
there are many methods of testing for breaks in a simple linear
regression model, we follow Andrews (1993) to define the LM and
Wald tests when the possible break date is assumed to be known,
and their Sup-type versions when there is no prior knowledge
about it. Moreover, since the LM, Wald and LR test statistics have
the same asymptotic distribution under the null, we focus on the
first two because they are computationally simpler. �

Define D∗
= V−1/2Υ ′Σ

1/2
A as the limit of the matrix D in

Eq. (7), where V = diag(v1, v2, . . . , vr), v1 > v2 > · · · >

vr are the eigenvalues of Σ
1/2
A ΣFΣ

1/2
A , and Υ is the correspond-

ing eigenvector matrix (see Bai, 2003). Define F1t = D∗

1Ft and
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F−1t = D∗

−1Ft , where D∗

1 is the first row of D∗ and D∗

−1 is the
matrix containing the second to last rows of D∗. Finally, let the
(r − 1) × (r − 1) matrix S = lim Var

 1
T

T
t=1 F−1tF1t


.

Following Andrews (1993), the LM test statistic is then defined
as follows:

L(π̄) =
1

π̄(1 − π̄)


1

√
T

τ
t=1

F̂−1t ût

′

Ŝ−1


1

√
T

τ
t=1

F̂−1t ût


(18)

where π̄ = τ/T , τ is a pre-assumed date for the potential break,
ût is the residual in the OLS regression (17), which by construction
equals F̂1t , and Ŝ is a consistent estimator of S.5

The corresponding Sup-LM statistic is defined as:

L(Π) = sup
π∈Π

1
π(1 − π)


1

√
T

[Tπ ]
t=1

F̂−1t ût

′

Ŝ−1

×


1

√
T

[Tπ ]
t=1

F̂−1t ût


(19)

where Π is any set whose closure lies in (0, 1).
Similarly, the Wald and Sup-Wald test statistics can be

constructed as:

L∗(π̄) = π̄(1 − π̄) · T

ĉ1(π̄) − ĉ2(π̄)

′ Ŝ−1 ĉ1(π̄) − ĉ2(π̄)

(20)

and

L∗(Π) = sup
π∈Π

π(1 − π) · T

ĉ1(π) − ĉ2(π)

′ Ŝ−1

×

ĉ1(π) − ĉ2(π)


(21)

where ĉ1(π) and ĉ2(π) are OLS estimates of c using subsamples
before and after the break point : [Tπ ].6

To illustrate why our two-step testing procedure is able to
detect the big breaks, it is useful to consider a simple example
where r = 1, k1 = 1 (one common factor and one big break).
Then (5) becomes:

Xt = Aft + Bgt + et

where gt = 0 for t = 1, . . . , τ , and gt = ft for t = τ + 1, . . . , T .
By Proposition 2, we will tend to get r̂ = 2 in this case. Suppose
now that we estimate 2 factors (r̄ = 2). Then, by Proposition 1, we
have:
f̂1t
f̂2t


= D


ft
gt


+ op(1)

where D =


d1 d2
d3 d4


is a non-singular matrix. By the definition of

gt we have:

f̂1t = d1ft + op(1) f̂2t = d3ft + op(1) for t = 1, . . . , τ ,

f̂1t = (d1 + d2)ft + op(1) f̂2t = (d3 + d4)ft + op(1)
for t = τ + 1, . . . , T ,

5 See Appendix A.3 for discussions on the estimation of S.
6 We can also construct the Wald test as T


ĉ1(π̄) − ĉ2(π̄)

′
Ŝ1
π̄

+

Ŝ2
(1−π̄)

−1
ĉ1(π̄) − ĉ2(π̄)


and the Sup-Wald test similarly, where Ŝ1 and Ŝ2

are estimates of S using subsamples. Yet, in all our simulations, the results based
on these two methods are very similar. Therefore, for brevity, we focus on the ones
obtained using the full sample estimation of S, as in (20) and (21).
which imply that:

f̂1t =
d1
d3

f̂2t + op(1) for t = 1, . . . , τ ,

f̂1t =
d1 + d2
d3 + d4

f̂2t + op(1) for t = τ + 1, . . . , T .

Thus, we can observe that the two estimated factors are linearly
related and that the coefficients d1

d3
and d1+d2

d3+d4
before and after the

break date must be different due to the non-singularity of the D
matrix. As a result, regressing one of the estimated factors on the
other and testing for a structural break in this regression,we should
reject the null of no big break. In the case where d3 = 0, the above
argument fails. But since d1 and d4 are non-zeros (otherwise Dwill
have reduced-rank), the estimated slope in the first subsamplewill
diverge while it will converge to some bounded number in the
second subsample. Therefore our test also has power in this case.7

Likewise, if the break date τ is not a priori assumed to be known,
the Sup-type tests will yield a natural estimate of τ at the date
when the test reaches its maximum value. In what follows, we
derive the asymptotic distribution of the test statistics (18)–(21)
under the null hypothesis, as well as extend the intuition behind
this simple example to themore general case to show that our tests
have power against relevant alternatives.

4.2. Limiting distributions under the null hypothesis

Since inmost applications the number of factors is estimated by
means of BN’s (2002) IC, and it converges to the true one under the
null hypothesis of no big break, we start with the most interesting
case where r̄ = r . To derive the asymptotic distributions of
the LM and Wald statistics, we adopt the following additional
assumptions:

Assumption 6.
√
T/N → 0 as N → ∞ and T → ∞.

Assumption 7. {Ft} is a stationary and ergodic sequence, and
{FitFjt − E(FitFjt), Ωt} is an adapted mixingale with γm of size −1
for i, j = 1, 2, . . . , r , that is:
E

E(Yij,t |Ωt−m)2


≤ ctγm

where Yij,t = FitFjt − E(FitFjt), Ωt is a σ - algebra generated by the
information at time t, t − 1, . . . , {ct} and {γm} are non-negative
sequences and γm = O(m−1−δ) for some δ > 0.

Assumption 8. supπ∈[0,1] ∥
1

√
NT

Tπ
t=1
N

i=1 αiF ′
t eit∥

2
= Op(1).

Assumption 9. ∥Ŝ − S∥ = op(1), and S is a (r − 1) × (r − 1)
symmetric positive definite matrix.

Assumption 10. The eigenvalues of the r × r matrix ΣAΣF are
distinct.

Assumptions 6 and 8 are required to bound the estimation
errors of F̂t , while Assumption 7 is needed to derive the weak
convergence of the test statistics using the Functional Central Limit
Theorem (FCLT). Assumption 10 corresponds to Assumption G
of Bai (2003), which is required for D

p
→D∗.

Note that these assumptions are not restrictive. Assumption 6
allows T to be O(N1+δ) for −1 < δ < 1. As for Assumption 7, it
allows us to consider a quite general class of linear processes for

7 This is the case for theWald test butmay not be true for the LM test, because our
Wald test is directly built upon the difference between the estimated coefficients.
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the factors: Fit =


∞

k=0 θikvi,t−k, where vt = [v1t . . . vrt ]
′ are i.i.d.

with zero means, and Var(vit) = σ 2
i < ∞. In this case, it can be

shown that:
E

E(Yij,t |Ωt−m)2


≤ σiσj


∞

k=m

|θik|


∞

k=m

|θjk|


for which it suffices that

∞
k=m

|θik|


= O(m−1/2−δ)

for some δ > 0, which is satisfied for a large class of ARMA
processes. Assumption 8 is similar to Assumption F.2 of Bai (2003),
which involves zero-mean random variables. Finally, a consistent
estimate of S can be calculated by a HAC estimator such as Newey
and West’s (1987) estimator with a Bartlett kernel, which is the
one used in our simulations below.8

Let ‘‘
d

→’’ denote convergence in distribution, then:

Theorem 1. Under the null hypothesis H0 : k1 = 0 and Assump-
tions 1–10 as N, T → ∞, we have that both the LM and Wald tests
verify

L(π̄), L∗(π̄)
d

→ χ2(r − 1)

where π̄ = τ/T for a given τ ; and

L(Π), L∗(Π)
d

→ sup
π∈Π

(Wr−1(π) − πWr−1(1))′

× (Wr−1(π) − πWr−1(1)) /[π(1 − π)]

for any set Π whose closure lies in (0, 1), where Wr−1(·) is a r − 1
vector of independent Brownian Motions on [0, 1] restricted to Π .

The critical values for the Sup-type test are provided inAndrews
(1993).

Remark 6. It is easy to show that Theorem1 still holdswhen r̄ < r .
However, when r̄ > r , the properties of F̂r̄ t are unknown since
the r̄th eigenvectors of XX ′ may be related to the properties of et .
Thus, the asymptotic distribution cannot be derived in a similar
way. Yet, as the simulations in Section 5 show, in such an instance
Theorem 1 still provides a reasonably good approximation for the
distributions of our test statistics in finite samples. Moreover, the
case where r̄ > r can be avoided if, instead of relying on a priori
choice of r̄ , practitioners use BN’s (2002) IC or other consistent
estimators of r , in line with Proposition 2. �

4.3. Performance of the tests under the alternative hypothesis

Wenow extend the insight of the simple example considered in
Section 4.1 to show that, under the alternative hypothesis (k1 > 0),
the linear relationship between the estimated factors changes at
time τ , so that the proposed tests are able to detect big breaks.

Assuming that r < r̄ ≤ r + k1, then the matrix D1 and DĎ
2 in

(9) and (10) become r̄ × r matrices. Notice that since r̄ > r we can
always find r̄ ×1 vectors ρ1 and ρ2 which belong to the null spaces
of D′

1 and DĎ′

2 separately, that is, ρ ′

1D1 = 0 and ρ ′

2D
Ď
2 = 0. Hence,

premultiplying both sides of (9) and (10) by ρ ′

1 and ρ ′

2 leads to:

ρ ′

1F̂t = op(1) t = 1, 2, . . . , τ ,

ρ ′

2F̂t = op(1) t = τ + 1, . . . , T

8 Though not reported, other estimators, like those based on Parzen kernels, yield
similar results in our simulations about the size and power properties of the LM and
Wald tests.
which, after normalizing one of the elements of ρ1 and ρ2 (e.g., the
first one) to be 1, implies that:

F̂1t = F̂ ′
−1tρ

∗

1 + op(1) t = 1, 2, . . . , τ , (22)

F̂1t = F̂ ′
−1tρ

∗

2 + op(1) t = τ + 1, . . . , T , (23)

where F̂ ′
−1t = [F̂2t , . . . , F̂r̄ t ] andρ∗

1 , ρ
∗

2 are both (r̄−1)×1 vectors.
Next, to show that ρ∗

1 ≠ ρ∗

2 , we proceed as follows. Suppose that
γ ∈ Null(D′

1) and γ ∈ Null(DĎ′

2 ), then by the definitions of D1

and DĎ
2 and by the basic properties of full-rank matrices, it holds

that γ ∈ Null(D′). Since D is a full rank r̄ × (r + k1) matrix and
r̄ ≤ r + k1, then Null(D′) = 0 and thus γ = 0. Therefore, the only
vector that belongs to the null space of D1 and DĎ

2 is the trivial zero
vector. Further, because the rank of the null space of D1 and DĎ

2 is
larger than 1, we can always find two non-zero vectors such that
ρ1 ≠ bρ2 for any constant b ≠ 0.

Notice that when r̄ ≤ r , the rank of the null spaces of D1 and
DĎ
2 will possibly become zero. Hence, the preceding analysis does

not apply in this case despite the existence of linear relationships
among the estimated factors. If we regress one of the estimated
factors on the others, with ρ̂1 and ρ̂2 denoting the OLS estimates
of the coefficients using the two subsamples before and after the
break, in general we cannot verify that plim ρ̂1 ≠ plim ρ̂2.

Remark 7. One underlying assumption in the above argument is
that one of the elements of ρ1 and ρ2 (e.g., the first ones) are
different from zero. This assumption is hard to verify since the D
matrix depends on Γ and F∗ in a highly nonlinear way,9and it is
not difficult to find DGPs where this assumption does not hold.
This normalization issue makes it really hard to come up with a
formal result on the consistency of our test. Instead, we have run a
large number of simulations to study the actual power properties
of our tests for various DGPs, including the ones where the first
elements of ρ1 and ρ2 are both zeros. The general finding is that
our Wald and Sup-Wald tests are very powerful for all the DGPs
we have considered, while the LM and Sup-LM tests may lose
power when the normalization issue arises.10 For this reason, we
recommend to use the Wald test in practice. We present some of
the representative simulation results in Section 5 but more results
are available upon request. �

Remark 8. Since our tests are based on a linear regression model,
many other available methods in the literature can also be applied
in our second-stage procedure. For instance, when the break date
is not known as a priori, one can use the CUSUM type-test first
proposed by Brown et al. (1975), and also Chen and Hong (2012)
test via nonparametric regression. Thus, this flexibility allows
practitioners to draw conclusions about breaks based on broader
evidence than that just provided by a single test. �

Remark 9. Although our tests have been designed for a single
common break at date τ , they should also exhibit powers against
other interesting alternatives such asmultiple breaks and a change
in the number of factors.11 �

9 By the result of Bai (2003), when r̄ = r + k1 , the (r + k1) × (r + k1) matrix
D = V−1

NT (F̂∗
′

F∗/T )(Γ ′Γ /N), where VNT is the diagonal matrix with the first r + k1
eigenvalues of X ′X/NT .
10 Since the LM test is the one more affected by the normalization problem, an
interesting issue raised by a referee is whether this problem could be avoided by
using maxj=1,...,r̄ LM(F̂jt ) where LM(F̂jt ) is the LM test using F̂jt as the regressand.
However, because its limiting distribution is unknown under the null and likely
dependent on nuisance parameters, we leave this analysis for our further research
agenda.
11 See our online appendix for details.
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4.4. Disentangling breaks in loadings from breaks in factors

A potential critique for all available tests of big breaks in FM
is that they cannot differentiate between breaks in factor loadings
and breaks in the covariance matrix of factors. For illustrative
purposes, let us consider a FM with r = 2, where the factor
loadings are constant but the covariance matrix of the factors
breaks, such that: E(FtF ′

t ) =


1 ρ
ρ 1


for t = 1, . . . , T/2, and

E(FtF ′
t ) =


1 −ρ

−ρ 1


for t = T/2 + 1, . . . , T , with ρ ∉ {0, 1}.

If we further assume ΣA = limN→∞ A′A/N is a diagonal matrix,
then, in view of Bai (2003), we have that F̂t = Ft + op(1), where
F̂t is a 2 × 1 vector. In this case, regressing F̂1t on F̂2t will yield
estimated coefficients close toρ and−ρ before and after the break,
respectively. As a result, our testswill reject the null of no big break
in the loadings while the true DGP has a break in the factors.

Although the above example has been excluded by our
Assumptions 2 and 7, it could well be that the factor dynamics
are subject to structural breaks in practice. For instance, if the
factors are interpreted as common shocks to the economy, then
it is likely that their volatilities may have decreased since the
beginning of 1980s, as evidenced by recent studies on the effect
of the Great Moderation (see, e.g. Gali and Gambetti, 2009). Hence,
for interpretational purposes, it becomes relevant to identifywhich
is the source of breaks.

Assuming that there is only one source of instability and that
one break in the FM has been detected at some date τ , one can
differentiate between the break in the loadings and the break in
the factor dynamics by comparing the number of factors obtained
with the whole sample to those in each of the subsamples split by
τ . To see this, notice that, absent a big break in the factor loadings,
the number of factors will be consistently estimated for the whole
sample and each subsamples, as long as the factors satisfy:

1
τ

τ
t=1

FtF ′

t
p

→ Σ1
F > 0, and

1
T − τ

T
t=τ+1

FtF ′

t
p

→ Σ2
F > 0.

One important observation is that, when the factors are stationary
and the rejection of the null is due to big breaks in the loadings,
the true number of factors, r , can be consistently estimated for
each of the two subsamples while, for the whole sample, it will
be overestimated in light of Proposition 2. Therefore, for a given
data set, if r̂ = 2 in the whole sample and our test rejects the
null with r̄ = 2, it could be that there is one factor and one big
break, or two factors with changing correlation, as shown above. In
the first case, the estimated numbers of factors in each of the two
subsamples converge to 1, while for the latter case it converges to
2. Thus, these different rank properties could become the basis of
our identification strategy for the source of the break.

When both breaks in the loadings and factors exist, our strategy
of considering a finite dimensional linear regression still works,
but the asymptotic distribution of the proposed test statistics may
be different. The reason is that the estimated factors, which are
consistent estimators of the true factor space under the null, may
also experience breaks in their dynamics. As a result, Hansen’s
(2000) results imply that the asymptotic distributions of the Wald
and Sup Wald tests may change if the dynamics of regressors
(the estimated factors in our case) have breaks. We leave this
interesting question for future research.

5. Simulations

In this section, we first use a simple factor-based forecasting
model to illustrate the consequences of ignoring big breaks, as
discussed in Section 3. Next, we study the finite sample properties
of our proposed LM/Wald and Sup-LM/Wald tests. We pay special
attention to the sizes and the powers when r̄ > r since, as
discussed previously, obtaining formal results for this case is very
difficult. A comparison with the tests of BE (2011) and HI (2012)
is also provided to illustrate the advantages of our tests in term
of power. Throughout this section, the potential breaking date is
considered to located at half of the sample (τ = T/2) and is taken
to be a priori known for the LM/Wald tests while Π is chosen
as [0.15, 0.85] for the Sup-type versions. Finally, the covariance
matrix S is estimated using the HAC estimator of Newey andWest
(1987).

5.1. The effect of big breaks on forecasting

In this section we consider the effect of having big breaks in
a typical forecasting exercise where the predictors are estimated
common factors. First, we have a large panel of data Xt driven by
the factors Ft which are subject to a big break in the factor loadings:

Xt = AFt1(t ≤ τ) + BFt1(t > τ) + et .

Secondly, the variable we wish to forecast yt , which is excluded
from to Xt , is assumed to be related to Ft as follows:

yt+1 = a′Ft + vt+1.

We consider a DGP where N = 100, T = 200, τ = 100, r = 2,
a′

= [1 1], Ft are generated as two AR(1) processes with coeffi-
cients 0.8 and 0.2, respectively, et and vt are i.i.d. standard normal
variables, and the break size is characterized by a range of mean
shifts between 0 and 1.

The following forecasting procedures are compared in our
simulation:

Benchmark Forecasting: The factors Ft are treated as observed
and are used directly as predictors. The one-step-ahead forecast of
yt is defined as ŷt+1|t = â′Ft , where â is the OLS estimate of a in the
regression of yt+1 on Ft .

Forecasting 1: We first estimate 2 factors F̂t from Xt by PCA,
which are then used as predictors in ŷt+1|t = â′F̂t , where â is the
OLS estimate of a in the regression of yt+1 on F̂t .

Forecasting 2:We first estimate 2 factors F̂t from Xt by PCA, and
then use F̂t and F̂t1(t > τ) as predictors. ŷt+1|t = â′

[F̂ ′
t F̂t1(t >

τ)′]′, where â is the OLS estimate of a in the regression of yt+1 on
F̂t and F̂t1(t > τ).

Forecasting 3: We first estimate 4 factors (replicating r + k1 =

4) F̂t from Xt by PCA, which are then used as predictors in ŷt+1|t =

â′F̂t , where â is the OLS estimate of a in the regression of yt+1 on F̂t .
The above forecasting exercises are implemented recursively,

e.g., at each time t , the data Xt , Xt−1, . . . , X1 and yt , yt−1, . . . , y1
are treated as known to forecast yt+1. This process starts from
t = 149 to t = 199, and the mean square errors (MSEs) are
calculated by

MSE =

199
t=149

(yt+1 − ŷt+1|t)
2

51
.

To facilitate the comparisons, theMSEs of the Benchmark Forecast-
ing is standardized to be 1.

The results obtained from 1000 replications are reported in
Fig. 1, plotting MSEs against the different break sizes in the above-
mentioned range. It is clear that the MSEs of the Forecasting 1
method increases drastically with the size of the breaks, in line
with our discussion in Section 3. By contrast, the Forecasting 2 and
3 procedures perform equallywell and theirMSEs remain constant
as the break size increases. Notice, however, that they cannot
outperform the benchmark forecasting due to the estimation
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Table 1
Empirical sizes of the nominal 5% size tests for different choices of r when r = 3.

N T α̂0.05|r̄ = 2 α̂0.05|r̄ = 3 α̂0.05|r̄ = 4
LM Sup LM Wald Sup Wald LM Sup LM Wald Sup Wald LM Sup LM Wald Sup Wald

100 100 5.0 1.0 5.9 4.8 2.3 0.2 4.2 6.7 0.5 0.2 1.3 11.6
100 150 5.0 1.9 4.9 3.1 3.5 0.7 3.7 4.8 1.1 0.3 1.9 7.0
100 200 5.7 2.7 5.0 4.0 4.9 1.8 4.0 3.5 3.0 0.5 2.9 3.9
100 250 5.3 3.2 5.3 3.9 4.4 1.8 4.7 3.2 2.3 0.9 3.4 3.1
100 300 6.2 4.5 6.7 4.0 5.3 2.0 5.1 3.4 3.8 1.1 4.7 3.9
150 100 5.3 1.2 5.9 5.1 2.6 0.2 4.0 7.9 0.8 0.2 2.3 12.9
150 150 5.9 1.8 5.2 4.0 2.9 0.5 3.4 4.0 1.3 0.3 2.7 6.1
150 200 5.5 2.6 6.2 4.5 3.5 1.2 5.1 3.4 2.3 0.9 3.0 4.3
150 250 6.0 2.9 6.9 3.8 3.5 1.6 5.7 3.1 3.2 0.5 3.6 4.7
150 300 5.8 3.7 6.3 4.4 3.9 2.5 5.1 4.0 3.5 1.3 4.0 3.7
200 100 4.6 1.1 5.4 5.0 2.3 0.1 3.0 8.6 0.4 0.4 1.5 15.6
200 150 4.7 2.3 5.6 3.2 2.8 0.2 3.7 4.3 1.2 0.1 2.7 5.6
200 200 5.4 3.0 5.1 2.9 4.0 1.6 3.4 2.5 2.6 1.3 3.2 3.5
200 250 6.2 3.7 7.0 4.0 3.8 2.0 6.8 4.1 2.4 1.1 4.1 5.2
200 300 5.3 3.1 5.5 4.6 3.2 1.5 3.5 4.0 3.4 1.3 2.6 4.5
250 100 5.2 0.8 7.4 5.1 2.1 0.4 4.5 7.0 0.6 0.2 3.5 12.9
250 150 4.1 2.5 5.7 3.6 2.9 0.5 3.9 4.2 1.6 0.0 2.4 6.4
250 200 5.3 2.6 6.5 4.9 3.5 0.8 4.6 5.0 2.9 0.3 3.4 5.2
250 250 5.3 3.1 6.2 4.3 4.7 1.8 5.6 3.1 4.0 0.7 3.5 3.6
250 300 5.5 4.0 5.1 3.7 4.3 1.5 4.0 3.3 3.4 1.4 2.9 3.7
300 100 4.7 0.6 5.2 5.4 1.5 0.2 3.4 8.5 0.3 0.3 2.9 14.0
300 150 4.6 1.8 6.4 5.4 2.9 0.8 4.8 4.7 1.7 0.5 2.8 7.0
300 200 3.7 2.6 7.0 4.0 3.2 0.8 6.5 4.1 1.7 0.5 4.2 5.5
300 250 5.9 3.5 6.3 4.1 4.8 1.7 5.2 3.4 2.7 1.0 3.3 3.5
300 300 5.7 4.2 4.2 4.1 6.2 3.2 4.4 3.4 3.9 1.4 2.8 3.2

1000 1000 5.7 6.1 7.1 5.9 5.8 4.2 6.2 4.9 6.5 4.7 5.8 3.5

Notes: The DGP is Xit =
3

k=1 αikFkt + eit where Fkt = φkFk,t−1 + vkt , αik, eit , vkt ∼ i.i.d. N(0, 1), and [φ1, φ2, φ3] = [0.8, 0.5, 0.2] (see Section 5.2).
Fig. 1. TheMSEs of different forecastingmethods in the presence of big breaks (see
Section 5.1).

errors of the factors for the chosen sizes of N and T . In line with
our previous analysis, the lesson to be drawn from this exercise is
that, in case of a big break, imposing the number of factors a priori
can significantly worsen forecasts.

5.2. Size properties

We first simulate data from the following DGP:

Xit =

r
k=1

αikFkt + eit

where r = 3, αik and eit are generated as i.i.d standard normal
variables, and {Fkt} are generated as:

Fkt = φkFk,t−1 + vkt

where [φ1, φ2, φ3] = [0.8, 0.5, 0.2], and vkt is another i.i.d stan-
dard normal error term. The number of replications is 1000. We
consider both the LM and Wald tests and their Sup-type versions.
Table 1 reports the empirical sizes (in percentages) for the
LM/Wald tests and Sup-LM/Wald tests using 5% asymptotic critical
values for sample sizes (N and T ) equal to 100, 150, 200, 250,
300 and 1000.12 We consider three cases regarding the choice of
the number of factors to be estimated by PC: (i) the correct one
(r̄ = r = 3), (ii) smaller than the true number of factors (r̄ = 2 <

r = 3), and (iii) larger than the true number of factors (r̄ = 4 >

r = 3).13 Although, forN, T ≥ 100, BN’s (2002) IC very often select
3 factors, there are some cases where 2 and 4 are also selected.

Broadly speaking, the LM andWald tests are slightly undersized
for r = 2 and 3, and especially so when r = 4. Yet, the empirical
sizes converge to the nominal size as N and T increase. This finite
sample problem is more accurate with the Sup-LM test especially
for small T , in line with the findings in other studies (see Diebold
and Chen, 1996). This is hardly surprising because, for instance,
when T = 100 and Π = [0.15, 0.85], we only have 15 obser-
vations in the first subsample. By contrast, although the Sup-Wald
test is too liberal for T = 100, in general it behaves better than the
Sup-LM test (see Kim and Perron, 2009). Theoretically, the asymp-
totic distribution in Theorem 1 applies only for r̄ = 2, 3. Yet, the
results in Table 1 show that this distribution also provides reason-
ably good approximations for the case r̄ = 4, the only exception
being the Sup-Wald test, which is oversized for T = 100.

To further study how the size of our Wald tests is affected by
the selection of r̄ in a more general setup, we repeat the above
simulations by generating the idiosyncratic errors in the following

12 As mentioned earlier, the critical values of the Sup-type tests are taken
from Andrews (1993).
13 Notice that the choice of r = 3 allows us to analyze the consequences of
performing our proposed testwith the under-parameterized choice of r = 2, where
two factors are needed to perform the LM/Wald tests. Had we chosen r = 2 as the
true number of factors, then the test could not be implemented for r̄ = 1.
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way as in BN (2002):

eit = ρei,t−1 + uit + β

i−1
h=i−J

uht + β

i+J
h=i+1

uht

where uit ∼ i.i.d. N(0, 1), β and J control the cross sectional cor-
relation of eit , and ρ controls the serial correlation of eit . The other
parts of the DGP remain the same as above, and we consider three
different types of et : (1) only serially correlated (ρ = 0.2, 0.5, 0.7),
(2) only cross sectionally correlated (β = 0.2, 0.5, J = 5, 10), (3)
both cross sectionally and serially correlated. To save space, we fix
N = 100 (similar to the data set in our application) and focus on
the role of T .14

The results are reported in Table 2 for the Wald and Sup-
Wald tests, where two conclusions can be drawn. First, the serial
correlations of et generally have a larger impact on the sizes than
the cross-sectional correlations. Second, the size distortions of the
Wald tests disappear as the sample size grows. Overall, the Wald
tests have correct sizes for r̄ = 4 when T = 200.15

5.3. Power properties

We next consider similar DGPs as in Table 1 but this time with
r = 2 and now subject to big breaks which are characterized
as deterministic shifts in the means of the factor loadings.16 The
factors are simulated as AR(1) processes with coefficients of 0.8
for the first factor and 0.2 for the second. The shifts in the loadings
are 0.2 and 0.4 at time τ = T/2. The other parts of the DGP
are the same as in Table 1. Table 3 reports the empirical powers
of the LM/Wald and Sup-LM/Wald tests in percentage terms with
1000 replications. As expected, both tests are powerful to detect
the breaks as long as r̄ > r = 2, while the power is trivial when
r̄ = r = 2.

Next, we study the powers of our tests when the argument in
Section 4.3 fails, i.e., the first element of ρ1 and ρ2 are both zero.
The DGPs are constructed as follows:

Xit = A1F1t + A2F2t + e1t for t = 1, . . . , T/2
Xit = B1F1t + A2F2t + e1t for t = T/2 + 1, . . . , T ,

where F1t and F2t are two AR(1) process defined as above, A1 ∼

N(0, 1), A2 ∼ 0.9 · N(0, 1), B1 ∼ 0.8 · N(0, 1), and eit ∼ N(0, 1).
Define G1

t = F1t1(t ≥ τ), Γ = [A1 A2 (B1 − A1)], and F∗
t =

(F1t F2t G1
t )

′. Then, if r̄ = 3, using results of Bai (2003) it is easy
to show that17:

F̂t = D∗F∗

t + op(1) for t = 1, . . . , T ,

where

D∗
=

 0 0.6 0
−1.38 0 1.38

0 0 −1.38


.

It then follows from the definition of F∗
t that ρ1 and ρ2 should be

vectors taking the form (0, 0, a) and (0, b, 0), respectively, with
a, b ≠ 0. Our tests are applied to such DGPs for r̄ = 2, 3, 4, first

14 More simulation results with different N and T are available upon request.
15 The only exception is when the errors are all strongly correlated (ρ = 0.7
implies that the errors are evenmore persistent than two of the factors). In practice,
this can be tested since et can be consistently estimated.
16 The results with other types of breaks, such as random shifts, are similar and
available upon request.
17 The matrix D∗ is defined as in Section 4.1 with ΣA and ΣF replaced by ΣΓ and
ΣF∗ .
using F̂1t as the regressand and then F̂2t . The results with 1000
replications are reported in Tables 4 and 5.

First, it is clear that, even for this special DGP, our Wald and
Sup-Wald tests exhibit good power in finite samples when F̂1t is
used as the regressand. Second, although our LM and Sup-LM tests
lose power when F̂1t is the regressand, this is not the case when
F̂2t is used as the regressand. Finally, the Wald and Sup-Wald tests
strongly dominates the LM and Sup-LM tests in term of power.
Many other simulations have been run in which the power of our
Wald and Sup-Wald tests are found to be strong and robust. As will
be discussed below, the differences between the power of our LM
and Wald tests for this DGP can be explained by the fact that the
former uses much less information than the latter. Therefore, we
recommend the use of Wald and Sup-Wald on the basis of their
good size and power properties.

5.4. Comparison with the BE test

As discussed earlier, the BE test relies on the consistent
estimation of the original factors. These authors construct N test
statistics si for each of the hypothesis αi = βi, but not for the joint
hypothesis A = B. Their method have two limitations. First, as we
have shown, the big breaks lead to a new FM representation, as
in (5), in which the new factor loadings are constant. Thus, the BE
test will lose power when the number of factors is chosen to be
r + k1, which is quite possible in light of our Proposition 2. On the
contrary, our testswill not suffer from this problemwhen r̄ > r . To
compare the performances of our test and the BE test for the joint
hypothesis (A = B), we need to construct the following pooled
statistic as suggested by Remark A of BE (2011):
N
i=1

si − Nr̄
√
2Nr̄

where si is the individual LM statistics in BE (2011). This test should
converge to a standard normal distribution as long as eit and ejt are
independent, a restrictive assumption that we also adopt here for
comparative purpose. For simplicity, we only report results for the
case of known break dates.

We first generate FMs with r = 2, and compare the perfor-
mances of the pooled BE test with our Wald test under the null.
The DGPs are similar to those used in the size study. The second
set of columns in Table 6 (no break) reports the 5% empirical sizes.
In general, we find that both tests exhibit similar sizes.

Then, we generate a break in the loadings of the first factor
while the other elements of the DGPs remain the same as in Table 3
where we study the power properties. The break is generated as a
shift of size 0.1 in the mean of the loadings. As before, we consider
two cases: (i) the number of factors is correctly selected: r̄ = r =

2; and (ii) the selected number of factors is larger than the true
one: r̄ = 3 > r = 2. The third and fourth columns in Table 6
report the empirical rejection rates of both tests. In agreementwith
our previous discussion, the differences in power are quite striking:
when r̄ = 2, the pooled BE test is much more powerful while the
opposite occurs when r̄ = 3. Notice that, as discussed above, for
r̄ = 2, our test will not be able to detect the break whereas, for
r̄ = 3, the pooled BE test will be powerless. However, according to
our Proposition 2, the use of BN’s (2002) IC will yield the choice
of r̄ = 3 as a much more likely outcome as N and T increase.
For example, for this simulation, on average the PCp1 of BN (2002)
choosesr = 3 in 94.6% of the cases.

The second problem of the BE approach is that, even when
r is assumed to be known, their method may falsely reject the
null hypothesis αi = βi for some i. To see this, we can use the
same argument as in (11)–(13) to show that, in the presence of big
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Table 3
Empirical power of nominal 5% size tests for different choices of r̄ when r = 2 and k1 = 2.

N T α̂0.05|r̄ = 2 α̂0.05|r̄ = 3 α̂0.05|r̄ = 4
LM Sup LM Wald Sup Wald LM Sup LM Wald Sup Wald LM Sup LM Wald Sup Wald

100 100 6.3 1.8 8.1 5.4 77.9 1.8 100 98.3 41.7 0.5 100 97.3
100 150 8.9 2.5 10.0 4.8 95.8 24.0 100 100 88.8 2.8 100 99.9
100 200 8.9 4.1 9.3 5.4 97.6 72.9 92.0 92.0 95.5 39.6 91.8 92.5
100 250 12.0 5.3 12.4 6.5 99.1 98.0 97.4 97.4 99.0 77.9 97.4 97.4
100 300 13.0 6.5 11.6 6.0 99.6 98.0 83.6 83.6 99.4 94.1 83.5 83.7

150 100 6.1 2.2 7.8 5.9 77.9 1.4 99.7 99.5 41.6 0.6 99.8 99.0
150 150 7.5 2.2 8.3 5.0 95.4 24.5 100 100 88.5 2.2 100 100
150 200 8.8 4.1 9.8 5.4 98.8 76.5 100 100 97.7 40.2 100 100
150 250 9.7 4.8 10.3 6.0 99.4 94.4 99.0 99.1 98.5 79.1 99.0 99.1
150 300 11.4 6.3 10.8 7.1 99.7 98.6 90.5 91.1 99.7 94.5 90.7 91.1

200 100 6.4 1.5 7.6 4.6 79.4 2.3 100 97.7 42.9 0.7 100 99.2
200 150 8.5 3.4 9.5 6.3 97.0 24.1 100 100 89.0 3.0 100 100
200 200 8.6 3.5 9.3 4.5 99.0 77.6 100 100 98.0 38.8 100 100
200 250 11.5 4.5 12.3 5.7 100 96.8 100 100 100 82.7 100 100
200 300 11.2 5.4 12.6 6.4 99.8 98.8 99.9 99.9 99.7 95.1 99.9 99.9

250 100 5.1 1.4 6.7 4.5 80.4 1.8 100 99.7 45.2 1.0 100 99.2
250 150 6.7 2.4 7.8 5.0 97.0 24.5 99.9 100 90.7 3.2 100 100
250 200 7.2 3.4 7.8 5.0 99.2 78.9 100 100 98.4 40.9 100 100
250 250 10.5 5.5 11.3 5.8 99.8 95.6 100 100 99.7 82.4 100 100
250 300 11.5 5.7 12.0 7.6 99.9 99.2 100 100 99.9 95.1 100 100

300 100 6.0 1.6 7.0 6.7 80.1 1.2 100 99.1 45.4 0.3 100 98.9
300 150 8.6 2.1 9.9 4.7 97.3 24.9 100 100 91.5 3.4 100 100
300 200 8.6 4.3 9.2 6.8 99.3 79.0 100 100 98.4 43.3 100 100
300 250 11.4 4.4 11.9 5.8 99.8 94.3 100 100 99.5 82.6 100 100
300 300 11.3 5.9 12.1 7.7 99.8 99.0 100 100 99.8 96.3 100 100

Notes: The DGP is Xit =
2

k=1 αikFkt + eit where Fkt = φkFk,t−1 + vkt , αik, eit , vkt ∼ i.i.d. N(0, 1), and [φ1, φ2] = [0.8, 0.2]. The shifts in the means of the factor loadings are
0.4 and 0.2 at τ = T/2 (see Section 5.3).
Table 4
Empirical power of nominal 5% size tests for different choices of r̄ when r = 2, k1 = 1, and F̂1t is used as the regressand.

N T r̄ = 2 r̄ = 3 r̄ = 4
LM Sup LM Wald Sup Wald LM Sup LM Wald Sup Wald LM Sup LM Wald Sup Wald

50 50 9.7 4.5 64.1 66.5 2.0 3.7 99.0 99.9 1.4 3.5 98.7 100
50 100 13.9 4.3 60.5 64.0 8.7 1.4 98.3 99.5 2.0 0.7 98.2 99.7
50 150 15.3 7.8 56.9 62.1 15.2 4.6 98.4 99.7 8.8 1.2 98.4 99.8
50 200 17.6 11.9 56.5 62.4 19.5 9.4 97.2 100 12.3 3.4 97.6 100

100 50 10.6 4.1 69.6 72.3 3.0 4.6 99.5 100 2.3 3.7 99.5 100
100 100 14.2 5.1 67.1 70.3 9.0 2.1 99.8 100 3.5 0.9 99.8 100
100 150 15.4 10.3 63.1 68.4 13.5 4.0 99.4 100 8.0 1.2 99.2 100
100 200 17.2 11.3 67.5 72.1 16.5 7.7 99.7 100 10.5 2.2 99.7 100

150 50 9.7 5.3 73.9 76.8 2.9 3.9 99.9 100 1.2 2.9 100 100
150 100 12.2 5.3 70.5 74.1 7.8 2.1 99.8 100 1.8 0.7 99.8 100
150 150 12.2 7.3 69.6 74.7 9.3 3.0 99.7 100 5.2 0.9 99.9 100
150 200 12.3 10.7 64.9 70.5 11.7 7.6 99.9 100 6.6 2.2 99.9 100

200 50 9.4 5.8 75.3 77.3 2.9 4.3 100 100 1.9 3.5 100 100
200 100 10.8 5.7 71.6 76.4 8.0 2.1 99.8 100 2.6 0.8 99.9 100
200 150 13.1 10.4 70.9 79.0 9.4 4.7 99.8 100 5.6 0.9 99.9 100
200 200 13.8 10.2 73.1 76.8 13.7 7.4 100 100 8.4 2.0 100 100

Notes: The DGP is Xit = αi1F1t + αi2F2t + eit for t = 1, . . . , T/2, and Xit = αi1F1t + βi2F2t + eit for t = T/2 + 1, . . . , T , where Fkt = φkFk,t−1 + vkt , αi1, αi2, βi2, eit , vkt ∼

i.i.dN(0, 1), and [φ1, φ2] = [0.8, 0.2] (see Section 5.3).
breaks, for some variables with constant loadings,18 replacing the
true factors by the estimated factors will result in a ‘‘break’’ in the
factor loadings.

5.5. Comparison with the HI test

The HI (2012) test is based on the comparison of the covariance
matrices of the estimated factors before and after the break. In view

18 This is possible since our definition for big breaks allows a fixed proportion of
variables to have no breaks.
of our results in (9) and (10), τ−1τ
t=1 F̂t F̂

′
t = D1Σ̂

1
F D

′

1 + op(1),
and (T − τ)−1T

t=τ+1 F̂t F̂
′
t = DĎ

2Σ̂
2
F D

Ď′

2 + op(1), where Σ̂1
F =

τ−1τ
t=1 FtF

′
t and Σ̂2

F = (T − τ)−1T
t=τ+1 FtF

′
t . Therefore, the

HI test is able to detect breaks if Σ̂1
F , Σ̂2

F → ΣF and D1 and DĎ
2

converge to different limits as N and T go to infinity. Specifically,
their test is defined as:

T

C(π)′V̂−1C(π)


where

C(π) = vech


1
τ

τ
1

F̂t F̂ ′

t −
1

T − τ

T
τ+1

F̂t F̂ ′

t


,



42 L. Chen et al. / Journal of Econometrics 180 (2014) 30–48
Table 5
Empirical power of nominal 5% size tests for different choices of r̄ when r = 2, k1 = 1, and F̂2t is used as the regressand.

N T r̄ = 2 r̄ = 3 r̄ = 4
LM Sup LM Wald Sup Wald LM Sup LM Wald Sup Wald LM Sup LM Wald Sup Wald

50 50 9.7 4.5 20.2 32.1 17.8 2.5 94.4 80.6 3.0 2.7 87.1 80.2
50 100 13.9 4.3 16.6.5 23.3 87.8 2.1 98.9 88.9 78.7 0.3 98.6 84.7
50 150 15.3 7.8 18.0 20.9 92.5 78.4 99.7 100 89.9 21.9 99.5 97.0
50 200 17.6 11.9 19.5 22.3 95.1 90.9 99.7 100 93.0 85.9 99.7 100

100 50 10.6 6.1 19.5 33.7 18.8 2.8 96.0 84.8 2.6 3.3 91.6 83.8
100 100 14.2 5.1 19.5 25.1 87.4 1.9 99.6 90.6 79.9 1.4 99.5 87.1
100 150 15.4 10.3 18.3 21.1 93.8 81.6 99.4 100 90.9 25.3 99.2 97.1
100 200 17.2 11.3 19.2 20.6 94.7 90.9 99.6 100 93.3 85.2 99.5 100

150 50 9.7 5.3 17.4 32.2 20.8 2.9 97.1 87.9 3.1 2.8 93.0 86.4
150 100 12.2 5.3 17.1 23.0 88.4 2.1 99.9 93.3 80.3 0.8 99.9 90.6
150 150 12.2 7.3 14.3 23.3 93.3 79.1 99.7 100 91.2 23.0 99.6 98.1
150 200 12.3 10.7 14.7 19.3 94.5 90.7 99.7 100 93.6 85.7 99.7 100

200 50 9.4 5.8 17.7 32.7 20.0 3.9 96.5 87.8 2.4 4.7 92.4 87.0
200 100 10.8 5.7 15.1 24.1 87.4 2.4 100. 94.4 78.4 1.1 99.9 90.9
200 150 13.1 10.4 15.3 23.3 93.1 80.7 99.9 100 91.2 26.2 99.8 98.4
200 200 13.8 10.2 15.8 20.3 93.9 89.6 99.7 100 92.3 84.9 99.7 100

Notes: DGP of Table 4 (see Section 5.3).
and V̂ is a HAC estimator of the covariancematrix ofC(π)which is
either constructed using the whole sample (LM version of the test)
or using subsamples before and after the break (Wald version).

Basically, the HI test exploits the same insight as our tests in
converting an infinite-dimensional problem to a finite one, except
that it relies on a different use of the estimated factors. Compared
to ours, the HI test uses more information since our LM test only
uses the first row (except the first element) of 1

τ

τ
t=1 F̂t F̂

′
t , while

our Wald test uses all the elements of the matrix except the first
one ( 1

τ

τ
1 F̂

2
1t ).

In principle, it may seem that the use of less information is the
price one has to pay to render our testing procedure much simpler
than theirs. After all, both steps in our approach can be easily
implemented in any conventional statistical software used by
practitioners, while HI’s test is computationallymore burdensome.
Yet, our Wald test exhibits very similar power to theirs in all
the simulations we have run. HI (2012) reports some simulation
results for the power comparisons with our Wald tests under very
general DGPs. Therefore, to avoid repetitions, we focus only on
small samples (N, T ≤ 100), and compare the (size-adjusted)
power curves of HI’s and our Wald tests (using the Bartlett kernel)
for the following DGP: Xit = A1iFt + eit for t = 1, . . . , T/2, and
Xit = (A1i+b)Ft+eit for t = T/2+1, . . . , T , where Ft = ρFt−1+ut ,
A1i, ut , eit ∼ i.i.d N(0, 1), ρ = 0.8, and b is the break size which
ranges from 0 to 0.5. As can be observed in Fig. 2, ourWald test has
better power properties than HI’s test in all these cases. However,
not surprisingly, as N and T get large, both tests perform very
similarly in term of power.19

6. An empirical application

To provide an empirical application of our tests, we use Stock
and Watson’s (2009) data set consisting of 144 quarterly time
series of nominal and real variables for the US ranging from
1959:Q1 to 2006:Q4. Since not all the variables are available for
the whole period, we end up using their suggested balanced panel
of standardized variables with T = 190, N = 109. This more or
less corresponds to the case where T = 200, N = 100 in Tables 1
and 2, where no severe size distortions are found.We refer to Stock

19 This can be seen from Tables 5A and 5B of HI (2012). We also have similar
unreported simulation results that are available upon request.
Table 6
Size and power comparisons of BE (2011) and our Wald test at nominal 5%
size for r = 2.

N T no break, r̄ = 2 1 break, r̄ = 2 1 break, r̄ = 3
BE Wald BE Wald BE Wald

100 100 6.0 3.9 100 5.6 21.9 96.8
100 150 5.9 5.2 100 7.2 18.2 100
100 200 5.2 4.3 100 6.2 26.0 89.8
100 250 5.3 4.8 100 8.7 17.9 97.7
100 300 5.7 4.3 100 7.4 30.2 83.9

150 100 6.4 4.3 100 5.8 18.3 94.6
150 150 5.9 5.7 100 6.6 16.2 100
150 200 5.6 4.3 100 6.2 12.5 100
150 250 5.5 4.5 100 5.7 14.9 98.3
150 300 4.9 4.0 100 5.6 20.6 89.7

200 100 5.5 4.1 100 4.1 20.0 95.8
200 150 5.4 4.8 100 6.6 15.8 100
200 200 7.0 4.5 100 6.3 14.0 100
200 250 6.5 4.7 100 7.5 12.6 100
200 300 5.0 4.7 100 7.8 12.0 99.7

250 100 6.8 3.9 100 4.2 18.8 97.0
250 150 5.4 5.3 100 5.9 14.9 100
250 200 4.5 4.6 100 6.1 11.3 100
250 250 5.1 4.2 100 6.6 10.9 100
250 300 6.6 4.9 100 8.3 7.9 100

300 100 7.3 4.7 100 5.4 19.7 96.3
300 150 7.0 3.6 100 6.1 14.4 100
300 200 5.9 3.4 100 6.0 13.6 100
300 250 5.9 5.4 100 6.7 12.0 100
300 300 5.7 6.1 100 7.0 10.0 100

Notes: DGP of Table 3. The shift in the mean of the factor loadings is either
zero (no break) or 0.1 (break) (see Section 5.4).

and Watson (2009) for the details of the data description and the
standardization procedure.

Using various BN’s (2002) IC (ICp1, ICp2, PCp1 and PCp2) the
estimated number of factors ranges from 2 to 6, therefore we
implement our test for r̄ = 2–6. The Sup-Wald test is applied
since no priori break date is assumed to be known. In order to have
enough observations in both subsamples, we use the trimming
Π = [0.3, 0.7]. It corresponds to the time period ranging from
1973:Q3 to 1992:Q3 which includes several relevant events like,
e.g., the oil price shocks (1973, 1979) and the beginning of great
moderation period in the early 1980s. The graphs displayed in
Fig. 3 are the series of Wald tests for different values of r̄ , with the
horizontal lines representing the 5% asymptotic critical values of
the Sup-Wald tests.

We find that the Sup-Wald test rejects the null when r̄ =

5, 6. The estimated break date is seems to be around 1979 or
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Fig. 2. Power comparison of HI (2012) and our Wald Tests for N, T ≤ 100 when r = 1. Notes: The DGP is Xit = A1iFt + eit for t = 1, . . . Xit = (A1i + b)Ft + eit for
t = T/2 + 1, . . . , T , where Ft = φFt−1 + ut , A1i, ut , eit ∼ i.i.d N(0, 1), and φ = 0.8. The reported curves are the size adjusted power curves of our Wald test (blue) and HI’s
Wald test (red) when the break size b increases from 0 to 0.5 (see Section 5.5).
1980 (second oil price shock), rather than 1984, which is the only
candidate considered by Stock and Watson (2009) as a potential
break date in their empirical application with the same data set.
One possible explanation for this break date could be the Iranian
revolution at the beginning of 1979 and its subsequent impact on
monetary policy in the US (see Fernández-Villaverde et al. (2010)).

7. Conclusions

In this paper, we propose a simple two-step procedure to
test for big structural breaks in the factor loadings of large FM
that circumvents some limitations affecting other available tests.
In particular, after choosing the number of factors in the whole
sample according to BN’s (2002) IC and estimating them by PCA,
our test relies on a regression of one of the estimated factors on the
remaining ones, allowing for a break in the parameters at known
or unknown date. LM and Wald tests for the null of parameter
stability are applied.We show that our test may have better power
than the test of BE (2011) under the alternative of big breaks and,
and that it is simpler than the test of HI (2012). Despite using
less information than the latter, we show that it is used in a more
efficient way, and that our Wald test has better power properties
than the HI test when dealing with small samples.

Our testing approach can be easily implemented in any statisti-
cal package and it is useful to avoid serious forecasting/estimation
problems in standard econometric practices with factors. This
could be the case of FAR and FAVAR models, when the factor load-
ings are subject to big breaks and the number of factors is a priori
determined (as is conventional in several macroeconomic and fi-
nancial applications).

In the second step of our testing approach, a Sup-type test is
used to detect a break of the parameters in that regression when
the break date is assumed to be unknown. As the simulations show,
this test performs very well especially when T ≥ 100. For smaller
samples, as it happens with many other Sup-type tests, bootstrap
can improve the finite-sample performance of the test compared
to the tabulated asymptotic critical values of Andrews (1993), as
suggested by Diebold and Chen (1996). It is high in our research
agenda to explore this possibility.

Moreover, as discussed earlier in Remarks 8 and 9, many
other existing methods for testing structural changes in linear
regressions can also be applied in our second-stage procedure.
Further, our testing approach can allow for multiple big breaks
through sequential estimation, like in Bai and Perron (1998, 2003),
for locating the candidate break dates. Exploring further this issue
remains also high in our research agenda.

Finally, though a simple testing procedure has been outlined in
Section 4.4 to identify whether breaks stem from loadings or from
the volatility of the factors, we plan to derive other alternative tests
based on the rank of the covariancematrix of the estimated factors
in different subsampleswhich can also be extended to test for other
sources of parameter instability.

Appendix

A.1. Proof of Propositions 1 and 2

The proof proceeds by showing that the errors, factors and
loadings in model (5) satisfy Assumption A–D of BN (2002). Then,
once these results are proven, Propositions 1 and 2 just follow
immediately from application of Theorems 1 and 2 of BN (2002).
Define F∗

t = [F ′
t G1′

t ]
′, ϵt = HG2

t + et , and Γ = [A Λ]. The
proofs of Lemmas 1–8 are similar to those in BN (2002). To save
space and avoid repetition, we put them in our online appendix
(http://www.eco.uc3m.es/~jgonzalo/WP1.html).

Lemma 1. E∥F∗
t ∥

4 < ∞ and T−1T
t=1 F

∗
t F

∗
′

t
p

→ Σ∗

F as T → ∞ for
some positive matrix Σ∗

F .

http://www.eco.uc3m.es/~jgonzalo/WP1.html
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Fig. 3. US data set of Stock andWatson (2009), from 1959:Q1 to 2006:Q4. The trimming Π = [0.3, 0.7] is used for theWald tests with r̄ = 2 to 6 (from top to bottom), and
the horizontal lines are the corresponding 5% asymptotic critical values for the Sup-Wald Test.
Lemma 2. ∥Γi∥ < ∞ for all i, and N−1Γ ′Γ → ΣΓ as N → ∞ for
some positive definite matrix ΣΓ .

The following lemmas involve the new errors ϵt . Let M and M∗

denote some positive constants.

Lemma 3. E(ϵit) = 0, E|ϵit |
8

≤ M∗.

Lemma 4. E(ϵ′
sϵt/N) = E(N−1N

i=1 ϵisϵit) = γ ∗

N (s, t), |γ ∗

N (s, s)|
≤ M∗ for all s, and

T
s=1 γ ∗

N (s, t)2 ≤ M∗ for all t and T .

Lemma 5. E(ϵitϵjt) = τ ∗

ij,t with |τ ∗

ij,t | ≤ |τ ∗

ij | for some τ ∗

ij and for all
t; and N−1N

i=1
N

j=1 |τ ∗

ij | ≤ M∗.
Lemma 6. E(ϵitϵjs) = τ ∗

ij,ts and (NT )−1N
i=1
N

j=1
T

t=1
T

s=1
|τ ∗

ij,ts| ≤ M∗.

Lemma 7. For every (t, s), E|N−1/2N
i=1[ϵisϵit − E(ϵisϵit)]|

4
≤ M∗.

Lemma 8. E


1
N

N
i=1 ∥

1
√
T

T
t=1 F

∗
t ϵit∥

2


≤ M∗.

Finally, it is easy to verify that
N

i=1
T

t=1 ∥ηi∥
2E∥Ft∥2

= O(1)
and thus the new idiosyncratic errors ϵt satisfy the necessary
condition for the consistency of r̂ (see Observation 1 of Bates et al.,
2013).

Once it has been shown that the new factors: F∗
t , the new

loadings: Γ and the new errors: ϵt all satisfy the conditions of
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BN (2002), Propositions 1 and 2 just follow directly from their
Theorem 1 and 2, with r replaced by r + k1 and Ft replaced by F∗

t .

A.2. Proof of Theorem 1

Under the null: k1 = 0, when r̄ = r we have

F̂t = DFt + op(1).

Let D(i·) denote the ith row of D, and D(·j) denote the jth column of
D. Define F̂t = DFt , and F̂kt = D(k·) × Ft as the kth element of F̂t .
Let F̂1t be the first element of F̂t , and F̂−1t = [F̂2t , . . . , F̂rt ]′, while
F̂1t and F̂−1t can be defined in the sameway. Note that F̂t depends
on N and T . For simplicity, let Tπ denote [Tπ ].

Note that under H0, we allow for the existence of small breaks,
so that the model can be written as Xit = αiFt + eit + ηiG2

t .
However, since ηiG2

t is Op(1/
√
NT ) by Assumption 1, we can use

similar methods as in Appendix A.1 to show that an error term
of this order can be ignored and that the asymptotic properties of
F̂t will not be affected (See Remark 5 of Bai, 2009). Therefore, for
the sake of simplicity in the presentation below, we eliminate the
last term and consider instead the model Xit = αiFt + eit in the
following Lemmas 9–13 required to prove Lemma 14, which is the
key result in the proof of Theorem 1.

Lemma 9.

sup
π∈[0,1]

 1T
Tπ
t=1

(F̂t − F̂t)F ′

t

 = Op(δ
−2
N,T ).

Proof. The proof is similar to Lemma B.2 of Bai (2003). For details
see our online appendix. �

Lemma 10.

sup
π∈[0,1]

 1T
Tπ
t=1

F̂t F̂ ′

t −
1
T

Tπ
t=1

F̂t F̂
′

t

 = Op(δ
−2
N,T ).

Proof. Note that:

1
T

Tπ
t=1

F̂t F̂ ′

t −
1
T

Tπ
t=1

F̂t F̂
′

t =
1
T

Tπ
t=1

F̂t F̂ ′

t −
1
T

Tπ
t=1

(DFt)(F ′

tD
′)

=
1
T

Tπ
t=1

F̂t(F̂ ′

t − F ′

tD
′)

+
1
T

Tπ
t=1

(F̂t − DFt)(F ′

tD
′)

=
1
T

Tπ
t=1

(F̂t − DFt)(F̂t − DFt)′

+
1
T
D

Tπ
t=1

Ft(F̂t − DFt)′

+
1
T

Tπ
t=1

(F̂t − DFt)(F ′

tD
′).

Thus,

sup
π∈[0,1]

 1T
Tπ
t=1

F̂t F̂ ′

t −
1
T

Tπ
t=1

F̂t F̂
′

t


≤ sup

π∈[0,1]

 1T
Tπ
t=1

(F̂t − DFt)(F̂t − DFt)′

+ 2∥D∥ sup
π∈[0,1]

 1T
Tπ
t=1

(F̂t − DFt)F ′

t


≤

1
T

T
t=1

∥F̂t − DFt∥2
+ 2∥D∥ sup

π∈[0,1]

 1T
Tπ
t=1

(F̂t − DFt)F ′

t

 .

Since 1
T

T
t=1 ∥F̂t −DFt∥2

= Op(δ
−2
N,T ) and supπ∈[0,1] ∥

1
T

Tπ
t=1(F̂t −

DFt)F ′
t∥ isOp(δ

−2
N,T ) by Lemma 9, then the desired result is obtained.

�

The next two lemmas follow fromLemma10 andAssumption 6:

Lemma 11.

sup
π∈[0,1]

 1
√
T

Tπ
t=1

F̂−1t F̂1t −
1

√
T

Tπ
t=1

F̂−1t F̂1t

 = op(1).

Proof. See Lemma 10 and Assumption 6. �

Lemma 12. 1
√
T

T
t=1

F̂−1t F̂
′

1t

 = op(1).

Proof. By construction we have 1
T

T
t=1 F̂−1t F̂ ′

1t = 0, and then the
result follows from Lemma 11. �

Let ⇒ denote weak convergence. F1t , F−1t , D∗ and S are as
defined in the paper (see Section 4.1). Then:

Lemma 13.

1
√
T

Tπ
t=1

(F−1tF1t − E(F−1tF1t)) ⇒ S1/2Wr−1(π)

for π ∈ [0, 1], where Wr−1(·) is a r − 1 vector of independent
Brownian motions on [0, 1].

Proof. The proof is a standard application of Functional CLT. For
details see our online appendix. �

Lemma 14.

1
√
T

Tπ
t=1

F̂−1t F̂1t ⇒ S1/2B0
r−1(π)

for π ∈ [0, 1], where the process B0
r−1(π) = Wr−1(π)−πWr−1(1)

indexed by π is a vector of Brownian Bridges on [0, 1].

Proof. If we show that

1
√
T

Tπ
t=1


F−1tF1t − T−1

T
s=1

F−1sF1s


⇒ S1/2B0

r−1(π) (24)

for π ∈ [0, 1] and

sup
π∈[0,1]

 1
√
T

Tπ
t=1

F̂−1t F̂1t

−
1

√
T

Tπ
t=1


F−1tF1t − T−1

T
s=1

F−1sF1s

 = op(1), (25)

then the result follows from Lemma 11.
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First note that

1
√
T

Tπ
t=1


F−1tF1t − T−1

T
s=1

F−1sF1s



=
1

√
T

Tπ
t=1

(F−1tF1t − E(F−1tF1t))

+
1
T

Tπ
t=1


1

√
T

T
s=1

(F−1sF1s − E(F−1sF1s))


,

hence (24) can be verified by applying Lemma 13.
To prove (25), we first define D−1 as the second to last rows of

D, and D1 as the first row of D. D∗

−1 and D∗

1 are defined in the same
manner. Then we have

F̂−1t F̂1t = D−1FtF ′

tD
′

1

and

F−1tF1t = D∗

−1FtF
′

tD
∗
′

1 .

It follows that:

1
√
T

Tπ
t=1


F̂−1t F̂1t − F−1tF1t


=

1
√
T

Tπ
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
D−1FtF ′

tD
′

1 − D−1FtF ′

tD
∗

1 + D−1FtF ′

tD
∗

1 − D∗

−1FtF
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tD
∗

1


= D−1


1

√
T

Tπ
t=1

FtF ′

t


D′

1 − D∗
′

1


+

D−1 − D∗

−1

  1
√
T

Tπ
t=1

FtF ′

t


D∗

′

1 .

Next, define FF ′ =
1
T

T
s=1 FsF

′
s , then:

1
√
T

Tπ
t=1


T−1

s
s=1

F−1sF1s


= D∗

−1


1

√
T

Tπ
t=1

FF ′


D∗

′

1

= D∗

−1


1

√
T

Tπ
t=1

FF ′


D∗

′

1 − D−1


1

√
T

Tπ
t=1

FF ′


D∗

′

1

+D−1


1

√
T

Tπ
t=1

FF ′


D∗

′

1

−D−1


1

√
T

Tπ
t=1

FF ′


D′

1 + D−1


1

√
T

Tπ
t=1

FF ′


D′

1

= −

D−1 − D∗

−1

  1
√
T

Tπ
t=1

FF ′


D∗

′

1

−D−1


1

√
T

Tπ
t=1

FF ′


D′

1 − D∗
′

1


+

1
√
T

Tπ
t=1


1
T

T
s=1

F̂−1sF̂1s


.

Combining the above results gives:

1
√
T

Tπ
t=1

F̂−1t F̂1t −
1

√
T

Tπ
t=1


F−1tF1t − T−1

T
s=1

F−1sF1s



=
1

√
T

Tπ
t=1


F̂−1t F̂1t − F−1tF1t


+

1
√
T

Tπ
t=1


T−1

T
s=1

F−1sF1s



= D−1


1

√
T

Tπ
t=1


FtF ′

t − FF ′
 

D′

1 − D∗
′

1


+

D−1 − D∗

−1

  1
√
T

Tπ
t=1


FtF ′

t − FF ′


D∗
′

1

+
1

√
T

Tπ
t=1


1
T

T
s=1

F̂−1sF̂1s


.

Following similar arguments as in Lemma 13, it can proved that

sup
π∈[0,1]

 1
√
T

Tπ
t=1


FtF ′

t − FF ′
 = Op(1).

Moreover, it is easy to check that ∥D∥ = Op(1) and ∥D − D∗
∥

= op(1) (See Bai, 2003). Finally, ∥
1

√
T

T
s=1 F̂−1sF̂1s∥ is op(1)

by Lemma 12. Then (25) holds and we obtain the desired con-
clusion. �

Theorem 1.

Proof. The results for LM and Sup-LM tests follow from Assump-
tion 9, Lemma 14, and Continuous Mapping Theorem.

For the Wald and Sup-Wald tests, notice that:
√
T

ĉ1(π) − ĉ2(π)


=


1/T

τ
t=1

F̂−1t F̂ ′

−1t

−1 
1/

√
T

τ
t=1

F̂−1t F̂1t



−


1/T

T
t=τ+1

F̂−1t F̂ ′

−1t

−1 
1/

√
T

T
t=τ+1

F̂−1t F̂1t



=

1/T τ
t=1

F̂−1t F̂ ′

−1t

−1

+


I − 1/T

τ
t=1

F̂−1t F̂ ′

−1t

−1


×


1/

√
T

τ
t=1

F̂−1t F̂1t


.

By Lemma 10 and that D − D∗
= op(1), we have:

1/T
τ

t=1

F̂−1t F̂ ′

−1t = π
1
τ

τ
t=1

F̂−1t F̂ ′

−1t

= π
1
τ

τ
t=1

F−1tF
′

−1t + op(1). (26)

When τ = T (π = τ/T = 1), this implies

Ir−1 = 1/T
T

t=1

F̂−1t F̂ ′

−1t =
1
T

T
t=1

F−1tF
′

−1t + op(1).

Notice that E(F−1tF
′

−1t) = Ir−1, because E(FtF
′
t ) = D∗ΣFD∗

=

V−1/2Γ ′Σ
1/2
Λ ΣFΣ

1/2
Λ Γ V−1/2

= Ir . Applying law of large numbers
to (26) gives:

1/T
τ

t=1

F̂−1t F̂ ′

−1t
p

→ π Ir−1

as N and T go to infinity. Then it follows from Lemma 14 that:

√
T

ĉ1(π) − ĉ2(π)


⇒

S1/2B0
r−1(π)

π(1 − π)

and the limit distributions of the Wald and Sup-Wald tests follow
easily. �
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A.3. Consistent estimator of S

We now discuss the consistent estimator of S using the
HAC estimator of Newey and West (1987). Recall that S =

lim Var


1
√
T

T
t=1 F−1tF1t


. Notice that E(F−1tF1t) = 0 as shown

above.
First, we define the infeasible estimator of S:

Ŝ(F ) = Γ̂0(F ) +

m
j=1

w(j,m)[Γ̂j(F ) + Γ̂j(F )′]

wherem = o(T
1
4 ), w(j,m) = 1 −

j
m+1 is the Bartlett kernel, and

Γ̂j(F ) =
1
T

T
t=j+1

F−1tF1tF1t−jF
′

−1t−j.

Since the above estimator is a HAC estimator, it is natural to
make the following assumption:

Assumption 11. ∥Ŝ(F ) − S∥ = op(1).

Next we consider a feasible estimator of S where Ft is replaced
by F̂t :

Ŝ(F̂) = Γ̂0(F̂) +

m
j=1

w(j,m)[Γ̂j(F̂) + Γ̂j(F̂)′]

where

Γ̂j(F̂) =
1
T

T
t=j+1

F̂−1t F̂1t F̂1t−jF̂ ′

−1t−j

then we have the following results:

Proposition 3. Assume that Assumptions 1–11 hold, under the null
H0 : k1 = 0, we haveŜ(F̂) − S

 = op(1).

Proof. Given Assumption 11, it suffices to show thatŜ(F̂) − Ŝ(F )

 = op(1).

It is easy to see that:Ŝ(F̂) − Ŝ(F )

 ≤ 2
m
j=0

Γ̂j(F̂) − Γ̂j(F )

 .

For the right-hand side we obtain that:

sup
0≤j≤m

Γ̂j(F̂) − Γ̂j(F )


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1
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1
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−1t−j
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1
T
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F1tF−1t(F̂1t−jF̂ ′
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−1t−j)


≤

 1
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F̂1t F̂−1t
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 1
T

T
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∥F1tF−1t∥
2

 .
1
T

T
t=1 ∥F̂1t F̂−1t∥

2
≤

1
T

T
t=1 ∥F̂t∥4

= Op(1) by Lemma 5 of HI
(2012), and 1

T

T
t=1 ∥F1tF−1t∥

2
≤

1
T

T
t=1 ∥Ft∥

4
= Op(1) by

Assumption 2. Furthermore,

1
T

T
t=1

∥F̂1t F̂−1t − F1tF−1t∥
2

≤
1
T

T
t=1

∥(F̂1t − F1t)F̂−1t∥
2
+

1
T

T
t=1

∥(F̂−1t − F−1t)F1t∥
2

≤

 1
T

T
t=1

∥F̂t − Ft∥
4


 1

T

T
t=1

∥F̂t∥4 +

 1
T

T
t=1

∥Ft∥
4

 .

It can be proved that 1
T

T
t=1 ∥F̂t − Ft∥

4
= Op(1/T ) + Op(1/N2)

(very similar to Theorem 2 of HI, 2012). Then, under the assump-
tion that

√
T/N → 0, it follows that

sup
0≤j≤m

1
T

T
t=j+1

∥F̂1t F̂−1t F̂1t−jF̂ ′

−1t−j − F1tF−1tF1t−jF
′

−1t−j∥

= Op(T−1/4),

which implies ∥Ŝ(F̂)− Ŝ(F )∥ = op(1) given thatm = o(T 1/4). �
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