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1 Introduction

The confoundness issues raised in Diebold and Inoue (2001) and Granger and Hyung (2004) have

spurred controversy on the origin of long-memory features in some time series. On the one hand,

there is the issue of whether these features are truly driven by fractionally integrated processes of

order d, FI(d), or are spuriously generated by level shifts in short-memory time series (see, e.g.,

Lobato and Savin (1998), Mikosch and Starica (2004), and Perron and Qu (2010)). On the other

hand, it has also been pointed out that stochastic processes with breaks in d could be misleadingly

interpreted as having breaks in the level, � (see, e.g., McCloskey (2010) and Shao (2011)).

This debate has led to two strands in the literature on this topic (see Aue and Horváth (2011)

for a nice overview). The �rst one has focused on testing for breaks in d. Motivated by the

popular rationalization of FI(d) processes in terms of aggregation arguments (Robinson (1978) and

Granger (1980)), it has been argued that changes in the distribution of the persistence parameters

of the disaggregated components of many macro and �nancial variables may be due to regime shifts

in monetary policy, �nancial regulation or industrial and labour policies. As a result, the long-

memory properties of relevant aggregates (e.g., in�ation, unemployment, GDP, squared �nancial

returns, etc.) are likely to have experienced shifts over relevant subsamples (see, e.g. Gadea and

Mayoral, 2005, for empirical evidence on this issue). Accordingly, several tests in both the time

and frequency domains have been proposed to test the null of a constant value of the memory

parameter d against the alternative of a break at known or unknown dates; see, inter alia, Beran

and Terrin (1996) and (1999), Sibbertsen and Kruse (2009), Hassler and Scheithauer (2011) and

Yamaguchi (2011). Forerunners of this line of research are the approaches proposed by Kim et al.

(2002), Busetti and Taylor (2004), and Harvey et al. (2009) to test for changes in time series from

being I(0) to being I(1) or viceversa. Multiple changes are tackled in Leybourne et al. (2007)

and Kejriwal et al. (2013). In parallel, there has been another strand of the literature which has

focused on developing tests for breaks in the level or other deterministic components of a time

series with stationary long-memory disturbances, but without allowing for breaks in d; see, e.g.,

Hidalgo and Robinson (1996), Kuan and Hsu (1998), Lavielle and Moulines (2000), Shao (2011),

and Iacone et al. (2013). Finally, there is also research devoted to the design of robust estimation

procedures of the memory parameter in the presence of level shifts or other deterministic trends,

as e.g., in McCloskey and Perron (2013).

Nevertheless, seemingly less attention has been paid to considering potential joint breaks in

both d and � (and possibly in the short-run dynamics). Whenever a break is detected, a joint test

would help identify whether it originates in only one or in all parameters simultaneously.1 Among

1Dolado et al. (2005) argue that it is important to distinguish between long memory, breaks in d and

breaks in the level for at least three reasons. First, because it can improve forecasting. In particular, the
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the scant literature addressing this issue, the following works are the most closely related to ours.

Gil-Alaña (2008) is the �rst one to propose a single-step testing procedure based on an F-test whose

limiting distribution is conjectured to correspond to the one derived by Bai and Perron (1998) for

parameter breaks in regressions involving I(0) series. However, no formal proof of this claim is

provided. Next, Hassler and Meller (2014) have extended Robinson (1994) and Breitung and

Hassler�s (2002) LM test of I(1) vs. FI(d) to deal with breaks in d while allowing also for level

shifts. This test is conducted in a two-step sequential way. Initially, the location of the mean break

is detected using Hsu�s (2005) semiparametric testing approach; next, the corresponding broken

intercept is removed from the time series to test for a break in d. How the two-step procedure

a¤ects the asymptotic properties of the test on d is not formally investigated and, in some cases,

this could be problematic. For example, at the demeaning stage, the level could be very imprecisely

estimated when d is close to 0:5, due to the T 1=2�d rate of convergence of the sample mean. Thus, if

results hinge on correct demeaning, there is additional uncertainty which is not properly taken into

account in their testing procedure. Some of these shortcomings have been recently addressed in

Rachinger (2017), who proposes a uni�ed testing procedure for modeling parameter breaks jointly,

rather than sequentially. Following Gil-Alaña (2008), his approach relies on extending Bai and

Perron�s (1998) test from I(0) to FI(d) processes. Speci�cally, when d 2 [0; 0:5), a Likelihood Ratio
(LR) version of the well�known Chow test for parameter stability of d and � is derived. Consistency

results, T -rate convergence of the break fraction estimator and the limiting distributions of the

estimated parameters under di¤erent sources of break are provided.

In line with Hassler and Meller (2014), our goal in this paper is to propose LM alternatives

to the LR test for joint breaks which are simpler to compute since parameter estimation is only

required under the null. However, we di¤er from these authors in two respects. First, we derive

a single-step testing procedure rather than a sequential one with the caveat pointed out above.

Second, given that Wald tests often exhibit higher power than LM tests, but at the cost of being

more di¢ cult to implement, we propose another test statistic which combines the computational

simplicity of the LM test with the power gains of the Wald test. Inspired by Wooldridge (1990),

these are LM regression-based tests which can also be interpreted as Wald tests since the relevant

coe¢ cients to be tested in the estimated regression are linearly related to the parameter of interest.

For this reason, they are labeled as "LMW-type" tests in the sequel.

larger d is, the more observations are required to produce good forecasts. Further, forecasting requires some

knowledge on the stability of the series. Secondly, because it can help to identify shocks. For economic

modeling it matters whether the underlying shocks are persistent or transitory. Take, for example, the

characteristics of the in�ation rate as a measure of the credibility of the central bank. The less persistent

the shocks are, the more credible is the central bank. Finally, in order to model two series as fractionally

cointegrated, both series should share the same memory. Thus, if the memory is estimated too high due to

instabilities, fractional cointegration could be a spurious outcome.
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LMW-type tests have been proposed by Dolado et al. (2002, 2009), and Lobato and Velasco

(2007) to test the nulls of I(1)/I(0) vs. the alternative of FI(d) processes, with d 2 (0; 1). We
generalize their approach to testing for joint breaks in d and � when the null is an FI(d) process

with stable parameters. Moreover, both LM and LMW-type tests can deal with shifts in d 2
(�0:5; 0:5) under the alternative, which covers a wider range of values of d than those considered
in the derivation of Rachinger´s (2017) LR tests, where it is assumed that d 2 [0; 0:5). This

is so because the only requirement for implementing our tests is adequate performance of the

constrained estimators under the null while LR tests require good performance of the constrained

and unconstrained estimators of d under the null. Lastly, an additional advantage of our proposed

tests is that, under a parametric setup, they provide a simple way of dealing with shifts in short-

memory parameters, in addition to breaks in memory and level.2

Overall, this paper contributes to the relevant literature on the source of breaks in persistent

time-series processes by deriving single-step LM and LMW-type tests (and their asymptotic dis-

tribution under the null and local alternatives) to test for the presence of a break either due to

non-stable dynamics and/or level parameter. Both tests are easy to compute under the joint null of

parameter constancy and have similar asymptotic behaviour under the null and local alternatives.

However, we illustrate in �nite-sample simulations that LMW-type tests could lead to power gains

under �xed alternatives, especially when they involve a break in d.3 Second, we brie�y discuss how

to extend the previous tests when breaks in di¤erent parameters may not be coincidental in time,

as well as how they can be modi�ed to test for multiple breaks.

The rest of the paper is structured as follows. In Section 2, we lay out the data generating

processes (DGP). In Sections 3 and 4, we derive the asymptotic properties of the LM and LMW-

type tests, respectively, both under the null and under local alternatives. We distinguish between

two di¤erent settings: known and unknown break dates. In Section 5, we provide simulation

results regarding the �nite-sample performance of the tests. In Section 6 we apply the proposed

methodology to the empirical analysis of structural changes in the forward discount of exchange

rates. Finally, in Section 7 we draw some conclusions and brie�y sketch how the tests could be

generalized to allow for multiple breaks, therefore relaxing the previous simplifying assumption

of coincident breaks in time. All the proofs and additional simulation results are collected in an

online Appendix.

2Although a semiparametric approach would help us abstract from short-term dynamics when estimating

d, we opt here for a parametric approach due to our interest in identifying further potential breaks in short-

term dynamics.
3Notice that, in spite of the nonlinear nature of our proposed tests, this result someone echoes the

well-known ranking in terms of power of Wald and LM tests in linear regression setups; see Engle (1984).
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2 Data generation process

For simplicity, we start with the case of a single breakpoint (at a known or unknown date) which

changes in the asymptotics as a fraction �0 of the sample size which lies in the interval � = [�; 1� �],
where � > 0 is assumed to be known. In particular, it is assumed that the time-series process is

autoregressive FI(d0) with d0 2 D; where D � (�0:5; 0:5) for t = 1; : : : ; [T�0], while it becomes

FI(d1) with d1 2 D for t = [T�0] + 1; : : : ; T .4 The level of the series is denoted as �0 in the �rst

subsample and as �1 in the second subsample, with �0; �1 2 M , where M is a compact set. The

following transition model is considered in the sequel as the DGP

�t (L)�
dt
t (yt � �t) = "t; t = 1; 2; : : : ; (1)

where "t is i.i.d.(0; �2), so that

�t (L)�
dt
t = 1 (t � [T�0])�0 (L)�d0

t + 1 (t > [T�0])�1 (L)�
d1
t ;

�t = 1 (t � [T�0])�0 + 1 (t > [T�0])�1;

where 1(�) is an indicator function of the relevant subsample, and �i (L) = 1 � �1;iL � � � � �p;iL
p

are stable AR lag polynomials of order p with all roots outside the unit circle and a vector of

unknown coe¢ cients �i = (�1;i; : : : ; �p;i)
0, i = 0; 1.5 Moreover, at [�0T ], there could be a shift

in the parameters of DGP (1), so that d1 = d0 + �0, �1 = �0 + �0, and �1 (L) = �0 (L) + � (L) ;

where � (L) is another lag polynomial with � (0) = 0 and coe¢ cients � =
�
�1; : : : ; �p

�0. Finally,
�b
t :=

t�1P
j=0

�j(b)L
j , with �j (b) :=

�(j�b)
�(�b)�(j+1) ; j = 0; 1; : : : ; denotes the (truncated or "Type II")

fractional-di¤erencing �lter for b 2 D.

Remark 1. Notice that the previous de�nition of �dt
t implies that the �lter applied to (yt��t)

is
Pt�1

j=0 �
�
j (d0;�0) when t < [T�0] and

Pt�1
j=0 �

�
j (d1;�1) when t > [T�0], where �i (L)�

di
t :=Pt�1

j=0 �
�
j (di;�i)L

j : We prefer to use a truncated "Type II" �lter, rather than an non-truncated

"Type-I �lter, because it is easier to accommodate nonstationary series with d > 1=2 after �rst

di¤erencing (see Remark 3 below).

4Our choice of the invertible range D � (�0:5; 0:5) is dictated in part by the result in Hualde and
Nielsen (2017) showing that consistent estimation of the level in an ARFIMA (p; d; q) process with a constant

term (
0 =1, in their notation) and d lying in an arbitrarily large �nite interval requires d < 0:5. However,

when d > 0:5; the estimates of the other parameters governing the dynamics of the process are consistent

and asymptotically normal, as in Hualde and Robinson (2011). Remark 3 below includes further discussion

about the implementation of our tests when d0; d1 > 0:5.
5Formally the previous expression for the �lter �t (L)�

dt
t should be multiplied by 1(t > 0) since nesting

the AR(p) lag polynomial �t (L) with the truncated fractional �lter �
dt
t would require using pre-sample

observations (negative lags). For simplicity we omit this more precise notation in the sequel.
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Remark 2. Notice also that, by rewriting the DGP as yt = �0+
�
1� �0 (L)�d0

t

�
(yt � �0)+"t,

and using recursively the truncated �lters ��j (di;�i), i = 0; 1, it follows that

yt = �0 �
t�1X
j=1

��j (d0;�0) fyt�j � �0g ; for t � [T�0]

yt = �1 �
t�[T�0]�1X

j=1

��j (d1;�1) fyt�j � �1g �
t�1X

j=t�[T�0]
��j (d1;�1) fyt�j � �0g+ "t; for t > [T�0];

so that the chosen �ltering guarantees that the lags of yt in the autoregression are centered around

the appropriate value of �t.

Remark 3. Our approach can also deal with a non-stationary process with both d0; d1 > 0:5,

and a potentially breaking linear trend, such that

�t(L)�
dt
t (yt � �t � �tt) = "t;

�t = �01 (t � [T�0])+�11 (t > [T�0]) ; by applying our testing procedure to the �rst-di¤erenced data
to test for breaks in the intercept �t and in the memory dt � 1 of the increments �yt. This yields
a consistent estimator of d0 since Hualde and Nielsen�s (2017) procedure works for a process with

a single deterministic component and the memory lying in an arbitrarily large compact interval.

In sum, using the previous notation for potential shifts in the memory parameter (�0), the AR

stable component (�) and in the level (�0), and relabeling the indicator of the �rst and second

regime as R(1)t (�) = 1 (t � [T�]) and R(2)t (�) = 1 (t > T�), the models to be considered in Sections

3 and 4 are as follows�
�1 (L)�R(1)t (�0)� (L)

�
�
d1��0R(1)

t (�0)
t

�
yt � �1 + �0R

(1)
t (�0)

�
= "t, t = 1; : : : ; T; (Regime 1)

�
�0 (L) +R

(2)
t (�0)� (L)

�
�
d0+�0R

(2)
t (�0)

t

�
yt � �0 � �0R

(2)
t (�0)

�
= "t, t = 1; : : : ; T; (Regime 2)

where, for brevity, we focus on the case where the indicator variable in (2) is R(2)t (implementation of

the test in Regime 2 ) to derive the properties of the tests. The consequences of using R(1)t = 1�R(2)t
(Regime 1 ) instead of R(2)t will be brie�y discussed once these properties are established and a

proposal for a symmetric test using both regimes is made.

One further issue which is worth discussing before presenting our proposed tests is the assump-

tion of known lag length p for the AR process capturing short memory. In practice, one can �x

a su¢ ciently large �nite value of p such that the residuals of the model �nally chosen are i.i.d.

under the null of parameter stability (if not rejected) or under the alternative (if the null of no

break is rejected). Whatever is the conclusion of the test, if the residuals in the �nally chosen

model do not pass the typical diagnostics, then p should be increased to clean the residuals from
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autocorrelation, and the whole testing procedure should be repeated. If this does not work, then

this is an indication that the time series does not follow our proposed model.6

3 LM tests

According to the LM principle, we test the null hypothesis:

H0 : (�0;�
0
0; �0) = 0: (H0)

As for the alternative, we start by analyzing the case where all parameters shift at an unknown

fraction �0 of the sample size, and later deal with the simpler case of known �0,

H1(�0) : (�0;�
0
0; �0) 6= 0: (H1)

For the chosen speci�cation in Regime 2, the following Gaussian pseudo-log-likelihood function is

used

LT ( ; �) = �
T

2
log
�
2��2

�
� 1

2�2

TX
t=1

"t ( ; �)
2 , (2)

for every possible breakpoint �, and  =
�
�;�0; �; d0;�00; �0; �

2
�0 where, using the Regime 2 indi-

cator R(2)t , the residuals are de�ned as follows

"t ( ; �) =
�
�0 (L) +R

(2)
t (�)� (L)

��
�
d0+�R

(2)
t (�)

t (yt � �0)� ��
d0+�R

(2)
t (�)

t R
(2)
t (�)

�
:

For each �, the LM test is based on the derivatives of LT ( ; �) in the direction of  evaluated
at the restricted estimates ~ T = (0;00; 0; ~d0T ; ~�

0
0T ; ~�0T ;~�

2
T )
0, where the last four elements of ~ T

denote estimates under the null of no break of parameters d0;�00; �0 and �
2, respectively, using

the whole sample of observations, t = 1; : : : ; T (see below for further details on the estimation

procedure),

gLM2;T (�) =
@LT ( ; �)

@ 0

����
 =~ T

 
� @2LT ( ; �)

@ @ 0

����
 =~ T

!�1
@LT ( ; �)

@ 

����
 =~ T

; (3)

where the subscript 2 in gLM2;T (�) indicates that LM test is implemented in Regime 2.

6Ideally the number and location of breaks, and the order of the model (and of the trend) should all be

chosen simultaneously, but this is well beyond the scope of the paper. Thus, it is preferable to shape our

approach for break testing as being robust to the choice of p by taking it large enough to provide a good �t,

but not tending to in�nite with T (since this would involve a completely di¤erent theory).
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In particular, the score in the directions of �, � and � can be expressed as,

~L�;T (�) =
@LT ( ; �)

@�

����
 =~ T

= � 1

~�2T

TX
t=[�T ]+1

(log�t~"t) ~"t

~L�;T (�) =
@LT ( ; �)

@�

����
 =~ T

=
1

~�2T

TX
t=[�T ]+1

0BB@
~��1T (L) ~"t�1

: : :

~��1T (L) ~"t�p

1CCA~"t
~L�;T (�) =

@LT ( ; �)
@�

����
 =~ T

=
1

~�2T

TX
t=[�T ]+1

(�
~d0T
t�[�T ]1)~"t;

where log�t~"t = �
Pt�1

j=1 j
�1~"t�j depends on the restricted residuals ~"t de�ned as,

~"t = "t

�
~ T

�
= ~�0T (L)�

~d0T
t (yt � ~�0T ) ; t = 1; 2; : : : ; T: (4)

The restricted estimates of the parameters using the whole sample, denoted as ( ~d0T ; ~�0T ; ~�0T ),

which are used to compute ~"t and ~�2T , result from minimizing the conditional sum of squares

(CSS),

( ~d0T ; ~�0T ; ~�0T ) = arg min
d2D;�2A;�2M;

TX
t=1

�
� (L)�d

t (yt � �)
�2
; (5)

while the corresponding variance estimator is

~�2T =
1

T

TX
t=1

~"2t : (6)

The properties of ~d0T have been discussed, inter alia, in Chung and Baillie (1993), Robinson (2006)

and Hualde and Robinson (2011) in models without drift (� = 0), while Hualde and Nielsen (2017)

extend the results in the last paper to cover joint estimation of memory and level. Using the results

in Hualde and Nielsen (2017), the estimators ~d0T and ~�0T are T 1=2-consistent and asymptotically

normal for d0 2 Int (D) and �0 2 Int (A), while ~�0T is T 1=2�d0-consistent.

The relevant block of the inverse Hessian matrix concerning the subset of parameters
�
�;�0; �

�
of  can be approximated by24 @2LT ( ; �)

@ @ 0

����
 =~ T

!�135
[1:(2+p);1:(2+p)]

= eP�1=22

0@ @2LT ( ; �)
@
�
�;�0; �

�0
@
�
�;�0; �

������
 =~ T

1A�1eP�1=22 (1 + op (1)) ;

where the scaling matrix corresponding to testing in Regime 2, eP2, de�ned as
eP2 = P2

�
�; ~d0T

�
=

0@ � � Ip+1 0

0
LT ( ~d0T ;�;�)

LT ( ~d0T ;�;�)�L2T ( ~d0T ;0;�)

1A , (7)
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captures the e¤ect of replacing the unknown values of d0, �0 and �0 by their (restricted) estimates,

with LT (d; a; b) = T 2d�1 (1� 2d) �2 (1� d)
PT

t=[max(a;b)T ]+1(�
d
t�[aT ]1)(�

d
t�[bT ]) and Ip+1 the p+1

dimensional identity matrix.

Then our LM test statistic for unknown �0 becomes

sup
�2�

gLM2;T (�) = gLM2;T

�
~�T

�
with � = [�; 1� �] ; 0 < � < 1=2, with � denoting the sample trimming cuto¤, and where ~�T =

argmax� gLM2;T (�) :

Remark 4. When the LM test is implemented in Regime 1, denoted as gLM1;T (�), the

derivations are similar to those above, except that the sums in the score in the directions of

�;�0 and � go from 1 to [�T ] and the scaling factor eP2 is replaced by
eP1 = P1(�; ~d0T ) =

0@ (1� �) � Ip+1 0

0
1+LT ( ~d0T ;�;�)�2LT ( ~d0T ;0;�)
LT ( ~d0T ;�;�)�L2T ( ~d0T ;0;�)

1A :

3.1 Asymptotic theory of LM tests under local alternatives

We next derive the asymptotic distributions of the proposed gLM tests under the following set of

assumptions:

Assumption 1. "t � iid
�
0; �2

�
with q moments such that q > maxf8; 2

1�2d0 g.

Assumption 2. d0 2 Int (D) ; D =
�
d; �d
�
, �0:5 < d < �d < 0:5; �0 2 Int (M) ; �0 2 Int (A) and

the compact set A excludes roots of � (L) on or inside the unit circle, and �0 2 �:

These assumptions correspond to those in Hualde and Nielsen (2017) for the particular case

where d0 2 Int (D) ; whereas these authors consider that d0 lies in compacts sets which can be

arbitrarily large and we require at least eight moments to prove tightness for weak convergence. To

assess the asymptotic null distribution and local power of the LM test, we analyze its properties

under the following local-break alternatives,

Hd;�;�
1;T (�0) :

�
�;�0; �

�
=
�
�=T 1=2;
 0=T 1=2; �=T 1=2�d0

�
; (8)

for some �0 2 �; where 
 =
�

1; : : : ; 
p

�0, and the null is recovered by setting (�;
 0; �) = 0 while
leaving �0 unspeci�ed.

We next derive the asymptotic distribution of the gLM2;T test in (3) in the case of an unknown

break fraction �. The limiting distribution is a function of both standard Brownian Motion (BM)

and a variant of fractional BM (fBM).

Let � = (�1; : : : ; �p)
0 with �k =

P1
j=k j

�1cj�k; k = 1; : : : ; p, where the cj are the coe¢ cients of

Lj in the expansion of 1=�0 (L) ; and � = [�k;j ] ;�k;j =
P1

t=0 ctct+jk�jj; k; j = 1; : : : ; p, denotes
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the Fisher information matrix for � under Gaussianity. Further, let

$p (�; �;
) = �
1=2 fBp+1 (�)� �Bp+1 (1)g+�

 
�




!�
� (1� �0)� (�� �0)+

�
; � =

 
�2=6 �0

� �

!
;

with Bp+1 being a (p+ 1)-dimensional standardised Brownian motion.

De�ne,

A0d;p (�; �;
) =
1

� (1� �)$p (�; �;
)
0 ��1$p (�; �;
)

and

A0� (d0; �; a)=

�
~Wd0 (�; 1)� L (d0; 0; �) ~Wd0 (0; 1) + a (L (d0;�; �0)� L (d0; 0; �0)L (d0; 0; �))

�2
L (d0;�; �)� L2 (d0; 0; �)

;

where L (d; a; b) = (1� 2d)
R 1
max(a;b) (s� a)

�d (s� b)�d ds (so that L (d; a; a) � (1� a)1�2d and
L (0; a; b) = 1 � max (a; b)) and where ~Wd (a; b) = (1� 2d)1=2

R b
a (s� a)

�d dB0 (s) is a variant of

fBM, B (s) and B0 (s) are two independent BM. Notice that ~Wd (a; b) di¤ers from the standard

fBM, Wd (�) = (1� 2d)1=2
R �
0 (�� s)

�d dB0 (s) ; by its particular covariance structure, given by

Cov
�
~Wd (s; 1) ; ~Wd (t; 1)

�
= L (d; s; t) :

Then, the following result holds.

Theorem 1 With an unknown break fraction �0, under Assumptions 1 and 2 and H1T (�0),

sup
�2�

gLM2;T (�)
d! sup
�2�

�
A0d;p (�; �;
) +A0�

�
d0; �;

�=�p
1� 2d0� (1� d0)

��
:

Remark 5. The distribution of the sup-gLM2;T (�) test under H0 is then given by

sup
�2�

�
A0d;p(�; 0;0) +A0� (d0; �; 0)

	
:

Notice that, due to the lack of identi�cation of the break fraction under the null of no breaks in any

of the parameters, the distribution only depends on d0, but not on �0, �0 or �0. Critical values of

such limiting distribution are shown in Table 1, for a grid of values of d0 and �, which have been

generated from Theorem 1 using 2,000 grid points for the break fraction, and 20,000 simulations.

To compute the critical values for an unknown d0, we interpolate between these values and replace

d0 by ~d0T as in (5) (see Giraitis et al., 2006, for a similar solution).

[Table 1 about here]
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Remark 6. Under local alternatives, the two components A0d;p and A0� in the asymptotic

distribution of the sup- gLM2;T (�) test capture the contributions of the local shifts of the dynamics

parameters and of the level, respectively.7 It is noteworthy that, while A0d;p (�; �;
) is symmetric
around the break fraction �0 = 0:5, A0�

�
d0; �; �=(�0

p
1� 2d0� (1� d0))

�
turns out to be positively

(negatively) skewed if d0 > 0 (d0 < 0). Hence, if there is only a break in (d;�0), the local power of

the sup-gLM2;T (�) test is maximized for �0 = 0:5. Yet, if there were either only breaks in � or in

both (d;�0) and �, then local power would be highest for some �0 < 0:5 (resp. �0 > 0:5) if d0 > 0

(resp. d0 < 0).

Theorem 1 also nests the special cases where one tests exclusively for a break in a subset of the

parameter space., e.g., for d and � (so that A0� drops) or only in � (so that A
0
d;p drops) under H 0,

re�ecting that these two tests are asymptotically independent. Notice that if it is assumed that

only a subset of the parameters breaks, a testing procedure which does not allow for a break in

the other parameters could lead to better power properties in �nite samples. However, estimation

of the model under this null could lead to misleading conclusions if the other parameters are the

ones that actually shift, while the tested parameter happens to be constant.

Lastly, Corollary 1 below provides the asymptotic distribution of the]LM2;T test for the more

restrictive case when the break fraction �0 is taken to be known.

Corollary 1 With known break fraction �0, under Assumptions 1 and 2, and hypothesis H1T (�0) ;

gLM2;T (�0)
d! �22+p (c (�0)) ;

with non-centrality parameter

c (�0) = !2p (�;
)�0 (1� �0) +
�2

�2
L (d0;�0; �0)� L2 (d0; 0; �0)

(1� 2d0) �2 (1� d0)
� cd;� (�0) + c� (�0) ;

where !2p (�;
) = (� 
 0) � (� 
 0)0 :

As expected, when �0 is known, the asymptotic distribution becomes a chi-square with 2 + p

degrees of freedom and with a non-centrality parameter c (�0) which depends on the two drifts

under local alternatives, namely cd;� (�0) and c� (�0). Moreover, as in the case of unknown �0,

Corollary 1 nests the cases of testing for a break in a subset of the parameters: (i) if we test for

7Note that the limit term A0d;p is similar to that obtained by Horváth and Shao (1999) in their test for a

break only in d using an LR test from Whittle estimation. Likewise A0� is similar to the limit term derived

by Iacone et al. (2013) for a break only in � in the �rst-di¤erenced version of their model to test for a break

only in the linear trend in a FI(d) process under any memory, using Abadir et al.� s (2007) Extended Local

Whittle estimation. Thus, our result di¤ers from these authors�results in that it allows for joint breaks in

both parameters, besides in the short-run dynamics.
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a break only in (d;�) the limiting distribution becomes �21+p (cd;� (�0)), where c� drops even if

� 6= 0, and (ii) if we test for a break only in �; the limiting distribution becomes �21 (c� (�0)), where
cd;� drops even when (� 
 0) 6= 0.

Remark 7. Martins and Rodriguez (2014) and Hassler and Meller (2014) have recently pro-

posed similar LM test statistics for a break in d, but under the assumption that the �rst-regime

memory parameter (d0) is known. In such a case, the variance of the test would be smaller than

under unknown d0, resulting in a higher local power.8 However, since the assumption of known

d0 could be quite restrictive in practice, they suggest some estimators of the memory parameter.

Martins and Rodriguez (2014) plug in a parametric estimator of d to derive the asymptotic dis-

tribution of the corresponding LM test statistic. Yet, their approximation may not be accurate

enough since it ignores the covariance between the test statistic and the estimator under the null.

As already discussed, Hassler and Meller (2014) plug in a semiparametric estimator for d but they

do not derive the limiting distribution of their LM test despite acknowledging that it would be

altered due to the lower rate of convergence of their proposed estimator.

3.2 Consistency of the LM test

In this section we prove the consistency of the LM tests for breaks in either a subset or all of the

parameters. In particular, as regards the gLM2;T tests for the null H0 :
�
�0;�

0
0; �0

�
= 0, we consider

the following alternative �xed hypotheses:

Hd;�
1 (�0) : �0 6= 0; �0 6= 0 and �0 = 0,

H�
1 (�0) : �0 = 0; �0 = 0 and �0 6= 0;

Hd;�;�
1 (�0) : �0 6= 0; �0 6= 0 and �0 6= 0:

where Hd;�
1 (�0), H

�
1 (�0) and H

d;�;�
1 (�0) entail respectively: (i) only a break in (d;�), (ii) only a

break in �, and (iii) joint breaks in (d;�) and �:

Under the corresponding alternative hypotheses, the following result holds.

Proposition 1 Under Assumptions 1 and 2; then:

The LM test statistics for a break in all parameters, gLM2;T (�0) and sup� gLM2;T (�) ; diverge: (i)

at rate T under either Hd;�;�
1 (�0) or H

d;�
1 (�0), and (ii) at rate T 1�2d0 (resp. T ) under H

�
1 (�0)

with d0 � 0 (resp. d0 < 0). The same results hold for]LM1;T (�0) and sup� gLM1;T (�) :

Remark 8. As anticipated above, it is important to remark that the use of individual gLM
tests for breaks in a single parameter �say, in d or ��may lead to spurious rejections when the

8Notice that this result can also be easily extended to the case of a known �rst-regime level (�0):
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non-tested parameter happens to be the only one breaking. In the rest of this subsection, we

discuss this issue in further detail.

Whenever the joint gLM2;T tests reject the null of parameter stability, one may also be then

interested in identifying the source of the break under any of the aforementioned �xed alternatives.

For ease in the following exposition, let us consider the simple case where �0 is known, �0(L) = 1,

and �0 = 0. To achieve break-source identi�cation in this case, it is convenient to derive individual

LM tests under the following two simple null hypotheses,

Hd
0 (�0) : �0 = 0;

H�
0 (�0) : �0 = 0;

which, unlike the versions of the gLM2;T tests which assume that the other parameters are constant,

abstain from specifying whether the other (non-tested) parameter is breaking or not. Then, a

sequential procedure can be designed to test �rst for the presence of breaks in d and � using the

joint gLM2;T tests and, in case of rejection of the joint null, then a test of the individual null

Hd
0 (�0) (resp. H

�
0 (�0)) could be applied at a second stage to con�rm if d (resp. �) is actually

breaking, irrespectively of whether the other parameter shift or not. To robustify these individual

tests against misleading inference, it is preferable to remain agnostic about how the non-nested

parameter behaves. For example, to implement a robust test of the null Hd
0 (�0) against the

alternative Hd
1 (�0) : �0 = 0, rather than using a gLM2;T test based on the score in the direction

of � with H0-restricted estimates ( ~d0T ; ~�0T ) as in (6), the following H
d
0 (�0)-restricted estimates

should be considered

( �d0T ; ��0T ; ��0T ) = arg min
d2D;�;�+�2M

TX
t=1

�
�d
t

�
yt � �� �R(2)t (�0)

��2
; (9)

where di¤erent levels are allowed in each of the two regimes. Then, the robust individual version

of the LM test for Hd
0 (�0), denoted as LM

d
2;T (�0), is given by

LM
d
2;T (�0) =

@LT ( ; �0)
@ 

����
 =� T

 
� @2LT ( ; �0)

@ @ 0

����
 =� T

!�1
@LT ( ; �0)

@ 

����
 =� T

;

where � T = (0; ��0T ; �d0T ; ��0T ; ��
2
T )
0 and ��2T = T�1

PT
t=1 �"

2
t uses the H

d
0 (�0)-restricted residuals �"t =

"t
�
� T
�
= �

�d0T
t

�
yt � ��0T � ��0TR

(2)
t (�0)

�
. Likewise, we can de�ne LM

�
2;T (�0) to test H

�
0 based

on the corresponding H�
0 (�0)-restricted estimation, where this time � T = (�0T ; 0; �d0T ; ��0T ; ��

2
T )
0.

Similar robusti�ed test statistics can be derived under the �rst regime, namely, LM
�
1;T (�0) and

LM
�
1;T (�0).

The following Proposition discusses the asymptotic behaviour of the robusti�ed LM tests.

Proposition 2 Under Assumptions 1 and 2:
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(a) The robusti�ed test statistic LM
d
2;T (�0) for a break only in the memory; diverges at rate

T under either Hd;�
1 (�0) or Hd

1 (�0). By contrast, it converges to a �
2
1 distribution under

H�
1 (�0), namely, when only � breaks. The same results hold for LM

d
1;T (�0):

(b) The robusti�ed test statistic LM
�
2;T (�0) for a break only in the level, diverges: (i) at rate

T 1�2d0 (resp. T ) for 0 < d < 0:5 (resp. -0:5 < d < 0) under H�
1 (�0); (ii) at rate T

1�2d1

(resp. T ) for 0 � d1 < 0:5 (resp. -0:5 < d1 < 0) and Hd;�
1 (�0). By contrast, it converges

to a �21 distribution under H
d
1 (�0), namely, when only d breaks. The same results hold for

LM
�
1;T (�0); except that the divergence rate in (ii) is T

1�2d0 for 0 � d0 < 0:5 and H
d;�
1 (�0).

Proposition 2 illustrates why, upon rejection in the �rst stage, the robust individual tests

LM
d
2;T (�0) and LM

�
2;T (�0) help identify which parameter or parameters actually break. The

reason is that the individual test of Hd
0 (�0) (resp. H

�
0 (�0)) will reject asymptotically this null

under Hd
1 (�0) (resp. H�

1 (�0)) but will have only trivial power under H
�
1 (�0) (resp. Hd

1 (�0)).

Notice also that, from Propositions 1 and 2, the rates of divergence of the test statistics gLMd;�

2;T

and LM
�
2;T (�0) under H

�
1 (�0) depend on the value of the memory parameter during the second

regime: d0 if memory is constant, or d1 if it breaks. We conjecture that, when �0 is unknown,

then it can be replaced by the estimate of the break date obtained from the �rst step, namely,e�T = argmax� gLM2;T (�), following the arguments by Rachinger (Theorems 1 and 2, 2017) on

how e�T provides a T-consistent estimator of �0. Although Rachinger�s (2017) consistency proof
relies on conditional sums of squares (CSS) rather than on scores, LM tests based on the latter

can be re-formulated in terms of CSS, as in Breitung and Hassler (2002) and Hassler and Meller

(2014).

4 Regression-based LMW-type tests

As an alternative to the LM test based on the restricted ML estimates, an LMW-type test based on

an auxiliary regression can be derived along the lines of Lobato and Velasco (2007; LV henceforth).

Building upon previous results by Dolado et al. (2002), LV derive an E¢ cient Fractional Dickey

Fuller (EFDF) test for the null hypothesis of d = 1 against the alternative of d < 1. Later on,

Dolado et al. (2009) have generalized this testing approach by allowing the null to be any memory

d = d0 against the alternative d 6= d0.9 Moreover, they argue that, while remaining asymptotically

equivalent under local alternatives, the LMW-type EFDF test could achieve higher power than the

LM test under �xed alternatives. Thus, relying upon this approach, a similar test for joint breaks

in d;� and � is proposed here, focusing on the null hypothesis (H0) in Regime 2.

9They also consider the estimation of a deterministic component and show that its pre-estimation does

not a¤ect the asymptotic distribution of the test.
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For simplicity, we start by considering the case where the parameters in Regime 1, d0;�0 and

�0 are assumed to be known, so the data in Regime 2, t = [T�0] + 1; : : : ; T , satis�es

�0 (L)�
d0
t (yt � �0) = �0 (L)�

d0
t (yt � �0)� �1 (L)�d1

t (yt � �t) + "t

= �0 (L)
h
1���0

t

i
�d0
t (yt � �0) + � (L)�d1

t

�
yt � �0 � �0R

(2)
t (�0)

�
+�0�0 (L)�

d1
t R

(2)
t (�0) + "t;

where recall that d1 = d0+ �0; �1 (L)=�0 (L)+� (L) and �1 = �0+ �0 with �t = �0+ �0R
(2)
t (�0)

and �d
tR

(2)
t (�) =

Pt�1
j=0 1 (j < t� [T�])�j (d) =

Pt�[T�]�1
j=0 �j (d) = �t�[T�]�1 (d� 1) : Then, a test

for the joint null of
�
�0;�

0; �0
�
= 0 can be constructed by means of a joint test of

H0 : #1 = #2 = � � � = #2+p = 0

in the following regression model,10

�0 (L)�
d0
t (yt � �0) = #1�0 (L)

"
1���0R

(2)
t (�)

t

�0

#
�d0
t (yt � �0) (10)

+

pX
j=1

#j+1R
(2)
t�j (�)�

d1
t�j

�
yt�j � �0 � �0R

(2)
t�j (�)

�
+#p+2�0 (L)�

d1
t R

(2)
t (�) + "t;

for t = 1; : : : ; T , and each �: De�ning � = (#1; #2:::; #2+p)
0 ; Y 0t = �0 (L)�

d0
t (yt � �0) and for

each (�; �; �; d;�0; �)

Xt (�) =

 
� (L)

"
1���R

(2)
t (�)

t

�

#
�d
t (yt � �) ;

n
R
(2)
t (�)�d+�

t�j

�
yt�j � �� �R(2)t�j (�)

�op
j=1

; � (L)�d+�
t R

(2)
t (�)

!0
;

the regression (10) can be rewritten in a more compact way as

Y 0t = �
0X0

t (�) + "t; (11)

with X0
t (�) = Xt (�0; �0; d0;�0; �0) :

Under the more realistic assumption of unknown d0;�0 and �0, running regression (11) requires

the estimation of those parameters, on top of � and �. For d0;�0 and �0, one can use the restricted

estimates ~d0T , ~�0T and ~�0T obtained under the null using the whole sample, (5). As for � and �,

one can set �̂T (�) = d̂1T (�) � ~d0T and �̂T (�) = �̂1T (�) � ~�0T where d̂1T (�) and �̂1T (�) are the
CSS estimates obtained from the second subsample, de�ned by a given �: Our main justi�cation

for the estimation of (d0;�0; �0) based on the minimization of (5) with observations for the whole

10As pointed out in LV (2007) notice that, for � ! 0, the �lter
h
1���

t

�

i
becomes � log�t when � ! 0,

which corresponds to the well-known lag �lter
Pt�1

k=1 k
�1Lk used in the regression-based LM test.
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sample, rather than just for Regime 1, is that it facilitates comparison of the LM and LMW-type

tests, since both use the same parameter estimates under the null.11 This leads to the following

feasible regression model
~Yt = �

0 ~Xt (�) + et (12)

with ~Yt = ~�0T (L)�
~d0T
t (yt � ~�0T ) on ~Xt (�) = Xt

�
�; �̂T (�); �̂T (�) ; ~d0T ; ~�0T ; ~�0T

�
.

Testing for breaks in all parameters corresponds to the joint null hypothesis of #1 = #2 = ::: =

#2+p = 0 in (12), while testing for example for a break only in the dynamics (resp. only in �)

corresponds to the null hypothesis of #1 = ::: = #1+p = 0 (resp. #2+p = 0).12 Then, the LMW-type

test statistic (implemented in Regime 2 ) from regression (12) for the joint hypothesis H0 : � = 0

is de�ned as

L̂MW 2;T (�) = ~�T (�)
0 ~V �1T (�) ~�T (�) ; (13)

where ~�T (�) =
�
~#1T (�) ; ~#2T (�) ; :::; ~#2+pT (�)

�0
denotes the LS estimate of �. We, further, set

~VT (�) = �̂2T (�)
eP 1=22

 
TX
t=1

~Xt (�) ~Xt (�)
0
!�1 eP 1=22 ;

where

�̂2T (�) =
1

T

[T�]X
t=1

�
�̂0T (L)�

d̂0T
t (yt � �̂0T )

�2
+
1

T

TX
t=[T�]+1

�
�̂1T (L)�

d̂1T
t�[T�] (yt � �̂1T )

�2
(14)

with
�
d̂0T ; �̂0T ; �̂0T

�
and

�
d̂1T ; �̂1T ; �̂1T

�
being the CSS estimators for Regimes 1 and 2, respec-

tively, de�ned by �, and eP2 as in (7). Notice that in the construction of the LMW-type test, we
use the variance estimate under the alternative to improve its power properties.

From the discussion in Wooldridge (2002) and LV (2007), it follows that, when (d0;�0; �0) are

taken as known, the estimation of (�; �) by
�
�̂T (�) ; �̂T (�)

�
does not a¤ect the null asymptotic dis-

tribution of the Wald-type test derived from (11). However, this is no longer true when (d0;�0; �0)

need to be estimated since these parameters a¤ect the left-hand-side variable in regression (12),

and, as with the LM test, this estimation of the parameters (d0;�0; �0) increases the variance of

the LMW-type test statistic. This is re�ected in the need to pre- and post-multiply by eP 1=22 in the

de�nition of ~VT (�) compared to the usual LS expression. Then, our test statistic becomes

sup
�2�

L̂MW 2;T (�) = L̂MW 2;T (~�T );

11In addition, as found in our simulation study, the size in �nite samples of the test becomes closer to

the nominal size when the longer sample is used.
12As before, note that if it assumed that only a subset of the parameters breaks, a test not allowing for

a break in the non-tested parameter again should enjoy better �nite sample properties (e.g. set �0 = �1 or

� = 0 in (10) when testing for a break in the dynamics, that is H0 : #1 = #2 = ::: = #1+p = 0).
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where ~�T = argmax�2� L̂MW 2;T (�).

Remark 9. As in the case of the LM test, the LMW-type test can also be implemented in

the �rst regime, being denoted as L̂MW 1;T (�) ; by means of the R
(1)
t indicator. The previous

regression model then becomes,

~�1T (L)�
~d1T
t (yt � ~�1T ) = #1

241����̂TR(1)
t (�)

t

�̂T

35 ~�1T (L)� ~d1T
t (yt � ~�1T )

+

pX
j=1

#j+1R
(1)
t�j (�)�

d̂0T
t�j

�
yt�j � ~�1T + �̂TR

(1)
t (�)

�
+#p+2

h
R
(1)
t (�) ~�1T (L)�

d̂0T
t +

�
1�R(1)t (�)

�
�̂0T (L)

�
�d̂0Tt ��d̂0Tt�[�T ]

�i
+ ~"t:

4.1 Asymptotic properties of LMW-type tests

Using estimates ( ~d0T ; ~�0T ; ~�0T ) in place of (d0;�0; �0); we next show that the asymptotic dis-

tributions of the LMW-type tests are identical to those of the equivalent LM tests under local

alternatives. The insight for this result is that the LMW-type tests just become regression versions

of the usual LM test statistics when these restricted estimates are used to construct the dependent

variable in the regression model above.

Theorem 2 Under Assumptions 1 and 2 and under the local hypothesis H1T , for unknown para-

meters d0;�0 and �0 and for

(a) an unknown break fraction �, the asymptotic behaviour of the LMW-type test sup� L̂MW 2;T (�)

corresponds to the one derived for the sup� gLM2;T (�) test in Theorem 1, and idem for sup� L̂MW 1;T (�) :

(b) a known break fraction �0, the asymptotic behaviour of the LMW-type test L̂MW 2;T (�0) cor-

responds to the one derived for the gLM2;T (�0) test in Corollary 1, and idem for L̂MW 1;T (�0) :

In addition, we discuss the consistency of the LMW-type test for breaks in the dynamics and/or

� under �xed alternatives, where the following result holds.

Proposition 3 The LMW-type tests for a break in all parameters, L̂MW
d;�;�

2;T (�0) and sup� L̂MW
d;�;�

2;T (�) ;

behave as the joint gLM tests in Proposition 1, and idem for L̂MW
d;�;�

1;T (�0) and sup� L̂MW
d;�;�

1;T (�) :

The main di¤erence between the LM test and the LMW-type test is that while the former uses

the �lter � log�t; the latter uses (1���
t )/�; which converges to � log�t when � " 0 under local

alternatives but it can be very di¤erent under �xed alternatives, when � does not converge to zero.
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Indeed, under �xed alternatives, the (rescaled) LM and LMW-type tests have di¤erent drift terms

whose comparison can shed light on their relative asymptotic power despite not a¤ecting the rates

of divergence of the two tests. As explained in Dolado et al. (2017), these drifts are larger for the

LMW-type test than for the LM test. For example, considering the alternative of only a break in

d for known �0, with �0(L) = 1 and � = 0, we have that

p lim
T!1

gLM2;T (�)

T
=

1� �0
�0

CLM (d1; dA) ;

p lim
T!1

L̂MW 2;T (�)

T
=

1� �0
�0

CLMW (d1; dA) ;

such that the drift terms are given by,

CLM (d1; dA) =

 
1P
j=1

 
jP

k=1

�(j�k+d1�dA)
k�(j�k+1)

!
�(j+d1�dA)
�(j+1)

!2
��2d;LM
�2

1P
j=1

 
jP

k=1

�(j�k+d1�dA)
k�(j�k+1)

!2 ;

CLMW (d1; dA) =
� (1 + 2 (dA � d1))
�2 (1 + (dA � d1))

� 1;

where dA and ��2d;LM are the probability limits of the restricted estimate ed0T obtained from (5) and
the estimated variance in the gLM test, respectively, under the alternative Hd

1 (�0), which are equal

to,

dA = arg min
d2Di

�
�0
� (1� 2 (d0 � d))
�2 (d� d0 + 1)

+ (1� �0)
� (1� 2 (d1 � d))
�2 (d� d1 + 1)

�
; (15)

��2d;LM = �20

�
�0
� (1 + 2 (dA � d0))
�2 (1 + (dA � d0))

+ (1� �0)
� (1 + 2 (dA � d1))
�2 (1 + (dA � d1))

�
:

As illustrated in Figure 1 (panel a), where �0 = 0:5, d0 = 0:5, and �0 = 1, the drift terms satisfy

CLMW (d1; dA) > CLM (d1; dA), being steeper when d decreases (� < 0). Likewise, the previous

inequality between the drift terms also holds should one compute both tests under Regime 1, but in

this case the drifts are steeper when d increases (� > 0). Therefore, under Hd
1 (�0); the LMW-type

tests tend to slightly dominate the LM tests in terms of asymptotic power due their larger drift

terms.

[Figure 1 about here]

4.2 Symmetric tests

Given that the power of the LM and LMW-type test depend on the direction in which the memory

parameter d breaks, one possible suggestion to ameliorate such a dependence would be to take a
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simple average of the tests implemented in the �rst and second regimes. In what follows, these

average tests will be denoted as gLM1+2;T and L̂MW 1+2;T , respectively. Notice that, although other

possibilities for pooling information exist (such as taking the maximum of both tests), averaging

has the advantage of leading to symmetric versions of the gLM and L̂MW test statistics. For this

reason, in the sequel they will be labeled in short as symmetric tests. For example, in the case of

an unknown breaking point, these tests are de�ned as follows

sup
�2�

gLM1+2;T (�) = sup
�2�

1

2

�gLM1;T (�) +gLM2;T (�)
�

sup
�2�

L̂MW 1+2;T (�) = sup
�2�

1

2

�
L̂MW 1;T (�) + L̂MW 2;T (�)

�
;

whereas in the case where the breaking point �0 is assumed to be known, they become

gLM1+2;T (�0) =
1

2

�gLM1;T (�0) +gLM2;T (�0)
�

L̂MW 1+2;T (�0) =
1

2

�
L̂MW 1;T (�0) + L̂MW 2;T (�0)

�
;

It is worth noticing that, under the null and the alternative, the asymptotic properties of the

symmetric tests mimic those of the corresponding tests for the null that only d shifts in Theorems 1

and 2, so that they can be implemented using the same critical values provided in Table 1. The

insight is that, since both tests converge to the same stochastic limit (depending on the same

underlying BM and fBM when the break point is unknown or on the same chi-square variate when

it is known), their average converges to the same limit under the null, while the drift equals the

average drift of the tests under the �xed alternative.

5 Finite sample evidence

In this section, we report some simulation results regarding size and power of LM and LMW-

type test in their symmetric versions, namely gLM1+2;T and L̂MW 1+2;T .13 First, we consider the

case of a known break fraction of �0 = 0:5 and abstract from short-run dynamics, i.e. we set

�0 (L) = 1 and �0 = 0. The signi�cance level is 0:05 and the sample sizes are T = 200; 500 and

1; 000 when considering size, and T = 200 when considering power. We assume an error variance

13Results on simulated size and power of the individual LM and LMW-type tests implemented in Regimes

1 and 2, respectively, can be found in Tables A1 and A2 in the Online Appendix. A comparison of the

results in these Tables with those displayed in Table 1 below for the symmetric versions of both tests shows

that there are some advantages from using the latter. In particular, the size of the symmetric tests is more

stable over the di¤erent values of d and that their power depends less on the direction of the break in this

parameter.
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�20 = 1 and take draws from a N (0; 1) distribution. To compute size, we allow d to take the values

f�0:4;�0:3;�0:2;�0:1; 0; 0:1; 0:2; 0:3; 0:4g and a non-breaking level of �0 = 0. To compute power,
we consider d0 2 f�0:2; 0; 0:2g; d1 2 f�0:4;�0:2; 0; 0:2; 0:4g, �0 = 0 and �1 = f0; 0:25; 0:5; 1g. The
number of simulations is 10; 000.

Table 2 (panels a and b) displays the size of the above-mentioned tests for breaks in both d and

�, respectively at a known break fraction of �0 = 0:5. The main �nding is that the gLM1+2;T test

(though slightly undersized), and the L̂MW 1+2;T test (slightly oversized) control size fairly well

and approach the nominal 5% signi�cance level as the sample size grows. Table 2 (panels c and

d) displays the power results of the two symmetric tests for a break in d and/or � at �0 = 0:5.14

Figures in bold characters correspond to size. Our simulation results con�rm that there are some

power gains from using the L̂MW 1+2;T tests in �nite samples.15 As can be inspected, power for

both tests is increasing in the magnitude of the shifts in d and �. For example, looking at the

second block in panel d, for �0 = �1 = 0, a shift in d from 0 to 0:2 increases the power of the

L̂MW 1+2;T test by 26:1 pp. (= 32:0� 5:9), whereas looking at the second block, for d0 = d1 = 0;

a shift in � from 0 to 0:25 raises power by 30:8 pp. (= 36:7 � 5:9). The corresponding gains in
power when d shifts to 0:4 (for �0 = �1 = 0) and when � shifts to 0:5 (for d0 = d1 = 0) are 81:6

pp. and 81:3 pp., respectively. Finally, as expected, the power arising from breaks in � is lower the

higher d is: For instance, using the shift in � from 0 to 0:25, this time with d0 = d1 = 0:2 instead

of d0 = d1 = 0, only raises the power of the LMW-type test by 9:2 pp. (= 15:5� 6:3).

[Table 2 about here]

Next, we report simulation results regarding size and power of the symmetric sup gLM1+2;T and

sup L̂MW 1+2;T test, abstracting again from short-run dynamics, for the case of an unknown break

fraction � 2 � = [�; 1 � �], with � = 0:25. Again, d0 takes the values f�0:4,�0:3,�0:2,�0:1,0,
0:1,0:2,0:3,0:4g; while a non-breaking level of �0 = 0 is considered for size, and d0 2 f�0:2; 0; 0:2g;
d1 2 f�0:4,�0:2,0, 0:2,0:4g, �0 = 0 and �1 = f0; 0:25; 0:5g for power. Sample sizes are T = 200; 500
for size and T = 200 for power. Table 3 shows that both tests have satisfactory size properties

for T = 500, though there are some small distortions for T = 200. In terms of power, again the

L̂MW 1+2;T test often performs better, especially for larger values of d0 and d1.

[Table 3 about here]

14Notice that the dip in power in some of the entries is due to those cases where the alternative coincides

with the null.
15We have checked whether the higher power of the L̂MW -type tests relative to the gLM test could be

due to the di¤erences in their e¤ective sizes. We do so by computing size-corrected power and found that

the power of the former test remains higher, though to a slightly lesser extent than when the nominal size

is used.
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Finally, we conduct a small Monte Carlo for the size and power properties of the two tests

this time considering short-run dynamics, captured by an AR(1) process with parameter �0 = 0

under the null, which is potentially shifting at a known fraction �0 = 0:5. For the size we consider

T = 200; 500 and 1000 and �0 = 0, d0 2 f�0:2; 0; 0:2g, and �0 2 f�0:5; 0; 0:5g while for power we
choose, T = 200 and d1 2 f�0:4;�0:2; 0; 0:2; 0:4g, �1 2 f0; 0:5g and �1 2 f�0 � 0:3; �0; �0 + 0:3g.
Table 4 (panel a) shows that size is relatively well controlled for the gLM1+2;T test. Table 5 (panel a)

illustrates that the LMW1+2;T test is still oversized for T = 200 but, as T gets larger, the e¤ective

size becomes closer to the nominal size. Again panels b in both Tables illustrate that there can

be some gains in power from using the L̂MW 1+2;T test, especially for positive autoregressive

components.

[Table 4 and 5 about here]

6 Empirical Application: Analysis of structural changes

in forward discount rates

In this section, we apply the proposed methodology to the analysis of the forward discount in

exchange rate markets. As is well known, rational expectations and risk neutrality combined with

covered and uncovered interest rate parity imply the forward exchange rate unbiasedness hypothesis

(FRUH) whereby the forward rate, ft; is an unbiased predictor of the future spot exchange rate,

st+1, that is Et (st+1) = ft. In particular, FRUH corresponds to testing H0 : �0 = 0; �1 = 1 in the

following regression

�st+1 = �0 + �1 (ft � st) + "t+1

where (ft � st) is the forward discount. This null has been often rejected and the typical �nding is
that the OLS point estimate of �1 is small or even negative (see, e.g., Engel, 1996 for an overview

of this literature), leading to what is known as the forward discount anomaly. It has been argued

that this result may be due to the unbalanced nature of the previous regression. In e¤ect, while

�st+1 is conventionally found to be I(0), there is a large body of literature documenting that the

forward discount (ft � st) follows a fractionally integrated FI(d) process with d generally lying
in the non-stationary range, 0:5 < d < 1 (see, e.g., Baillie and Bollerslev, 1994, and Maynard

and Phillips, 2001). However, Choi and Zivot (2007) have shown that previous estimates of d

are likely to be upward biased when structural instabilities in the level of the forward discount

series are not taken into account. Using the residuals of the forward discount monthly series for

�ve G7 countries, these authors �rst adjust the level of these series for several structural breaks

detected by means of Bai and Perron�s (1998) methodology (BP hereafter). Next, they estimate d

non parametrically (by means of Kim and Phillips�s (2000) log-periodogram regression approach)
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from these break-adjusted series. Their main �ndings are that (ft � st) is subject to several breaks
and that the resulting memory estimates turn out to be considerably lower than those previously

estimated in the literature, with 0 < d < 0:5.

Following this controversy, we provide here a short empirical application of our proposed tests

using the forward discount data for �ve G7 countries examined by Choi and Zivot (2007). Their

dataset includes monthly forward discount rates for the period 1976:1-1996:1 corresponding to the

exchange rates in terms of US dollars for Germany, France, Italy, Canada and U.K., where ft is

de�ned as the log 30-day forward rate.

Figure 2 displays the �ve time series. Choi and Zivot (2007) �nd �ve breaks for Germany and

U.K., four breaks for France and Italy and three breaks for Canada, which are displayed using

dashed lines in Figure 2. However, when the testing procedure is reversed (i.e., �rst d is estimated

from the time series of (ft � st) without allowing for level shifts, and then the BP procedure is

applied to the �ltered series �d
t (ft � st) to detect multiple breaks), the number of breaks is quite

smaller (none for Germany and France, one for Italy, and three for Canada and U.K.). These

contrasting results possibly re�ect the shortcomings of using a two-step procedure rather than our

proposed single-stage approach. Moreover, since we have argued that the level and the dynamics

could shift simultaneously, so that both changes can be confused, it is possible that the single-step

approach could yield more reliable estimates of the number of breaks and their origin.

To check this possibility, after �tting several alternative models, we consider an ARFIMA(1; d; 0)

model with a drift as the most appropriate for each of the �ve forward discount series, allowing

for simultaneous breaks in all three parameters (d; �; �) which are tested using our symmetric sup-gLM1+2;T and sup-L̂MW 1+2;T test statistics. To allow for multiple breaks (see the discussion in

the next Section), we test sequentially 0 vs. 1 break and, upon rejection, 1 vs. 2, and so forth, to

determine the number of breaks together with the break fractions.16 Table 6 displays in Figure 2

the found breaks for each forward discount series for the LM (thick lines) and LMW-type (thin

lines) tests. The results of the two tests are comparable, although the LMW-type test detects two

more breaks than the LM test for Canada. In general, the breaking dates estimates gather around

the early and mid- 1980s and early 1990s, possibly as a result of the creation of the European

Exchange Rate Mechanism (ERM) in 1979 and the contractionary monetary stance in the U.S.,

and Canada in the early 1980, together with the collapse of the ERM in 1992. In comparison to

Choi and Zivot (2007), we coincide in �nding a break in the early 1980s for France, Italy and U.K.

and early 1990s for U.K., Canada and Germany.

In order to provide further comparisons of our �ndings to Choi and Zivot (2007)�s, we brie�y

16Notice that when we apply the sequential procedure to test 0 vs. 1 breaks, 1 vs. 2 breaks, etc., the

critical values are the same as in Table 1. This is because, in principle, and after adjusting for sample sizes,

it becomes only a problem of multiple testing.
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apply the methodology in Subsection 3.2 to identify which parameters are shifting in each of the

break points. Table 6 shows the results obtained from applying the robusti�ed LM tests to detect

the origin of the shifts in the �ve times series of forward discount rates. It becomes clear that

while many breaks are indeed in all parameters - dynamics and level - some take place exclusively

in the dynamics and only one exclusively in the level. Therefore, it seems that some of the breaks

interpreted by Choi and Zivot (2007) as shifts in the level of forward discount rates, are instead

due to shifts in their dynamics.

7 Conclusion and discussion

The starting point of this paper is to stress that the joint modeling of breaks in the dynamics and

level of stochastic processes could be a relevant issue. By considering both breaks simultaneously,

potential confounding problems about the sources of shifts in the persistence of a time-series process

can be avoided. Our contribution here is to extend the well-known LM test for breaks only in the

memory parameter to also account for breaks in the level as well as in the short-run dynamics.

Furthermore, we propose a novel regression-based LMW -type test for FI(d) processes with a

drift that also accounts for these shifts. We also derive individual tests for constancy of a given

parameter which are robust to the behaviour of the non-tested parameters. The proposed tests

share several nice features. While LM tests are computationally attractive because they only

require estimation under the null, LMW -type tests can exploit further information about the

alternative, potentially leading to higher power without increasing computational complexity. Our

Monte-Carlo simulations, based on some analytical results, show in particular that LMW -type

tests for joint breaks can yield some power gains relative to LM tests in some instances. Finally,

our empirical application on potential breaks in forward discount rates for several G7 countries

provides new �ndings on the origin of these breaks (in dynamics and/or levels) in those time series

which have been subject to considerable attention in the literature.

An additional advantage is that these tests can be easily extended to allow for the presence of

multiple regimes, therefore allowing for breaks in d; � and � at di¤erent periods of time. In this

way, our maintained assumption that breaks are coincidental in time could be relaxed. We brie�y

sketch in the sequel how to implement the tests in this more general setup, where we consider for

notational simplicity the case of a non-breaking � (L) = 1.

Denoting the number of regimes by i = 0; : : : ;m� 1, let us consider the following DGP

�dt
t (yt � �t) = "t, t = [�iT ] + 1; : : : ; [�i+1T ];
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with

�t =
m�1X
i=0

�iR
(i+1)
t (�)

whereR(i+1)t (�) = R
(i+1)
t (�i; �i+1) = 1 ([�iT ] < t � [�i+1T ]) ; �0 = 0; �m = 1; � =(�1; : : : ; �m�1)0 :

For example, in the case of testing for 0 versus 2 regimes (so that m = 3); the joint gLM test is

derived from the following likelihood function

LT ( ;�) = �
T

2
log
�
2��2

�
� 1

2�2

TX
t=1

"t ( ;�)
2 ,

with  =
�
�1; �2; �1; �2; d0; �0; �

2
�
; � = (�1; �2) and

"t ( ;�) = �
d0+�1R

(2)
t (�)+�2R

(3)
t (�)

t

�
yt � �0 � �1R

(2)
t (�)� �2R(3)t (�)

�
where R(2)t (�) = 1 ([�1T ] < t � [�2T ]), R(3)t (�) = 1 (t > [�2T ]) : The LM test is constructed as

in (3) and its asymptotic distribution turns out to be the sum of di¤erent terms related to the two

breaks in memory and level, like in Theorem 1.

Likewise, to implement an LMW -type test when m = 3, the following regression model is used,

�d0
t (yt � �0) =

"
#1

"
1���1

t

�1

#
�d0
t (yt � �0) + #2�d0

t 1

#
R
(2)
t (�)

+

"
#3

"
1���2

t

�2

#
�d0
t (yt � �0) + #4�d0

t 1

#
R
(3)
t (�) + "t;

where a test of H0 : #1 = #2 = #3 = #4 = 0 corresponds to testing for two breaks in both

parameters, while testing H 0
0 : #1 = #3 = 0 (resp. #2 = #4 = 0) corresponds to testing for two

breaks only in d (resp. �).
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Table 1: Critical Values of LM-tests for unknown � for breaks in � and d, and in
�, � and d.

a) Critical Values of LM-tests for unknown � for breaks in � and d

� n d0 -0.49 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.49

0:15 10.9 10.9 11.1 11.2 11.3 11.8 12.4 13.4 15.0 17.2 19.1

0:2 10.5 10.5 10.6 10.7 11.0 11.3 11.9 12.9 14.6 16.7 18.6

0:25 10.0 10.1 10.1 10.3 10.5 10.8 11.5 12.4 14.1 16.3 18.1

b) Critical Values of LM-tests for unknown � for breaks in d; � and �
� n d0 -0.49 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.49

0:15 13.6 13.6 13.8 13.8 13.9 14.2 14.6 15.5 16.9 19.0 20.9

0:2 13.2 13.2 13.2 13.3 13.4 13.7 14.1 15.1 16.5 18.5 20.4

0:25 12.7 12.7 12.7 12.8 12.9 13.2 13.7 14.5 16.0 18.0 19.9

c) Critical Values of LM-tests for unknown � for breaks in d; �1,�2 and �
� n d0 -0.49 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.49

0:15 15.8 15.9 16.0 16.0 16.2 16.4 16.7 17.5 18.7 20.7 22.6

0:2 15.4 15.5 15.5 15.5 15.6 15.8 16.2 17.0 18.3 20.3 22.1

0:25 14.9 15.0 15.0 15.0 15.1 15.3 15.7 16.4 17.8 19.7 21.6
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Figure 1: Drift of the tests for a break in the memory
a) Drift of the tests in the second regime as a function of the break magnitude d1�d0.gLM2 test (dashed line) and L̂MW 2-type test (solid line) (�0= 0:5; d0= 0):
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b) Drift of the tests in the �rst regime as a function of the break magnitude d1�d0:gLM1 test (dashed line) and L̂MW 1-type test (solid line) (�0= 0:5; d0= 0).
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Table 2: Simulated size and power of symmetric LM and LMW-type tests for a
joint break in memory and level.

a) Symmetric gLM test: Size.

T n d0 : -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

200 4.9 4.7 4.2 4.4 4.6 4.0 4.5 4.8 6.3

500 5.1 4.8 4.7 4.8 4.7 4.3 4.2 5.1 5.8

1000 4.9 5.1 4.9 4.9 4.8 4.6 5.1 4.8 4.9

b) Symmetric L̂MW -type test: Size.

T n d0 : -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

200 6.3 6.4 6.5 6.3 5.9 6.4 6.3 6.6 6.4

500 5.2 6.1 6.3 5.9 5.7 6.1 6.2 6.3 6.2

1000 5.1 5.2 5.3 5.2 5.3 5.2 5.3 5.4 5.4

Rejection probabilities of 5% test for joint break in d and � at �0 = 0:5; �0 = 0, �
2
0 = 1:

c) Symmetric gLM test: Power

.

d0 -0.2 0 0.2

d1 n �1 0 0.25 0.5 1 0 0.25 0.5 1 0 0.25 0.5 1

-0.4 36.3 95.9 100 100 86.4 92.2 97.7 100 99.6 98.4 95.9 97.0

-0.2 4.2 74.3 100 100 31.7 63.7 93.0 99.9 85.1 87.0 92.7 98.2

0 20.6 53.0 96.1 100 4.6 22.9 73.4 100 29.3 35.0 56.8 91.8

0.2 78.8 83.6 93.4 100 23.8 32.6 61.9 96.7 4.5 8.1 26.6 78.1

0.4 99.7 99.1 99.5 100 84.4 83.7 89.9 95.0 30.8 37.1 45.1 73.8

d) Symmetric L̂MW -type test: Power

d0 -0.2 0 0.2

d1 n �1 0 0.25 0.5 1 0 0.25 0.5 1 0 0.25 0.5 1

-0.4 37.9 97.8 100 100 88.1 93.0 98.6 100 99.7 98.7 96.4 97.7

-0.2 6.5 87.8 100 100 36.9 71.8 96.9 100 88.7 89.8 95.6 99.5

0 30.8 74.4 98.9 100 5.9 36.7 87.2 100 36.3 46.5 72.6 98.7

0.2 86.5 90.1 97.7 100 32.0 47.0 75.2 99.2 6.3 15.5 40.7 89.1

0.4 99.7 99.3 99.9 100 87.5 86.5 92.8 96.5 34.9 41.6 48.3 76.6

Rejection probabilities of 5% test for joint break in d and � at �0 = 0:5, �0 = 0, �
2
0 = 1; T = 200:

Bold numbers correspond to size simulations.
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Table 3: Simulated size and power for symmetric LM and LMW-type tests for a
joint break in memory and level for an unknown break fraction.

a) Symmetric gLM test: Size

T n d0 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

200 7.0 7.1 6.5 6.4 4.8 4.9 5.4 5.3 6.0

500 6.2 5.6 5.6 5.1 4.9 4.7 4.8 4.8 5.2

b) Symmetric L̂MW -type test: Size

T n d0 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

200 8.3 7.4 7.1 7.3 6.9 7.0 6.2 5.8 5.7

500 6.5 6.0 6.5 5.9 6.3 6.1 6.0 5.4 5.1

Rejection probabilities of 5% test for joint break in d and �, �0 = 0, �
2
0 = 1:

c) Symmetric gLM test: Power

d0 -0.2 0 0.2

�1 n d1 -0.4 -0.2 0 0.2 -0.4 -0.2 0 0.2 0.4 -0.2 0 0.2 0.4

0 37.2 6.5 14.7 58.4 85.6 33.1 4.8 13.9 64.8 78.4 24.6 5.4 19.8

0.25 88.3 47.0 27.4 62.4 90.9 54.0 14.3 18.9 67.7 83.5 27.7 5.6 20.9

0.5 99.9 95.3 70.2 75.1 98.5 82.6 37.8 33.1 68.3 83.7 37.5 8.0 24.2

d) Symmetric L̂MW -type test: Power

d0 -0.2 0 0.2

�1 n d1 -0.4 -0.2 0 0.2 -0.4 -0.2 0 0.2 0.4 -0.2 0 0.2 0.4

0 35.5 7.1 15.7 58.9 86.0 37.9 6.9 17.4 68.8 83.2 32.5 6.2 20.7

0.25 93.9 56.3 27.5 59.3 93.1 65.1 23.6 23.5 71.3 88.6 42.5 10.4 23.1

0.5 99.8 95.8 57.2 64.9 99.5 94.9 57.8 38.5 72.2 93.3 63.4 20.0 26.6

Rejection probabilities of 5% test for joint break in d and �; � = 0:25; �0 = 0:5; �0 = 0, �
2
0 = 1; T=200.

Bold numbers correspond to size simulations.
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Table 4: Simulated size and power of the symmetric LM test for a joint break in
memory, level and autoregressive component.
a) Symmetric gLM test: Size

�0 -0.5 0 0.5

T n d0 -0.2 0 0.2 -0.2 0 0.2 -0.2 0 0.2

200 7.8 7.5 6.2 7.3 6.9 5.9 7.1 7.5 4.9

500 7.3 6.5 5.6 6.9 6.4 4.6 7.4 6.5 5.1

1000 7.4 6.0 6.1 7.0 6.0 5.7 7.3 6.4 5.0

Rejection probabilities of 5% test for joint break in d; � and � at �0 = 0:5; �0 = 0, �
2
0 = 1:

b) Symmetric gLM test: Power

d0 -0.2 0 0.2

�1 �0 �1n d1 -0.4 -0.2 0 0.2 -0.4 -0.2 0 0.2 0.4 -0.2 0 0.2 0.4

-0.8 96.6 71.5 38.3 49.6 99.9 95.1 70.5 39.5 54.7 99.9 95.2 69.8 43.2

0 -0.5 -0.5 37.4 7.8 34.4 85.1 87.8 36.6 7.5 37.6 89.4 85.7 31.5 6.2 41.8

-0.2 36.5 60.0 93.5 99.9 61.1 33.2 61.1 94.1 99.8 55.5 30.0 60.9 95.1

-0.3 92.4 48.5 10.2 22.3 99.0 90.8 46.4 10.7 28.9 98.9 90.5 43.7 11.5

0 0 0 36.0 7.3 30.5 81.8 77.7 34.9 6.9 32.1 86.5 79.0 29.9 5.9 37.1

0.3 18.4 47.4 90.0 99.4 28.2 16.1 44.5 89.1 98.8 28.7 14.4 47.3 91.3

0.2 77.8 36.8 8.5 10.6 89.6 79.0 37.5 6.6 14.2 90.2 78.1 34.9 8.6

0 0.5 0.5 16.6 7.1 15.2 67.1 63.2 18.4 7.5 18.9 73.8 60.3 14.9 4.9 26.3

0.8 10.2 45.4 89.6 98.8 7.9 9.5 51.9 92.7 99.1 7.3 11.2 57.9 94.2

-0.8 100 99.9 96.6 96.3 100 100 98.9 89.0 79.6 100 99.4 89.9 65.5

0.5 -0.5 -0.5 100 98.6 97.8 99.6 98.9 96.7 86.5 78.7 93.2 91.6 66.8 39.0 58.5

-0.2 100 100 100 100 97.5 96.1 95.3 98.5 100 78.1 69.4 79.6 96.6

-0.3 99.9 98.9 86.9 65.8 99.7 98.4 84.4 44.3 46.3 99.4 94.7 60.0 25.7

0.5 0 0 97.8 88.8 81.1 91.7 93.6 77.1 46.1 51.7 89.2 84.0 46.6 18.6 47.8

0.3 92.8 91.9 97.0 99.6 70.6 61.5 73.4 93.0 98.9 44.7 30.1 60.8 91.9

0.2 96.2 75.0 28.7 23.6 95.1 89.2 53.6 13.2 20.6 92.7 83.5 42.4 12.6

0.5 0.5 0.5 56.1 21.6 30.8 72.7 71.3 30.9 10.0 26.3 75.7 65.0 21.2 6.7 30.5

0.8 23.1 56.9 90.0 98.6 15.4 15.1 52.1 92.8 98.8 12.4 15.1 57.4 93.9

Rejection probabilities of 5% test for joint break in d; � and � at �0 = 0:5; �0 = 0, �
2
0 = 1; T = 200:

Bold numbers correspond to size simulations.
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Table 5: Simulated size and power of the symmetric LMW-type test for a joint
break in memory, level and autoregressive component.

a) Symmetric L̂MW -type test: Size

�0 -0.5 0 0.5

T n d0 -0.2 0 0.2 -0.2 0 0.2 -0.2 0 0.2

200 6.2 6.7 7.2 6.8 6.7 6.0 6.6 7.2 7.0

500 6.2 6.0 6.8 6.1 6.3 6.3 6.4 7.0 6.7

1000 5.9 5.8 6.0 5.6 6.1 6.2 6.0 6.1 5.9

Rejection probabilities of 5% test for joint break in d; � and � at �0 = 0:5; �0 = 0, �
2
0 = 1:

b) Symmetric L̂MW -type test: Power

d0 -0.2 0 0.2

�1 �0 �1n d1 -0.4 -0.2 0 0.2 -0.4 -0.2 0 0.2 0.4 -0.2 0 0.2 0.4

-0.8 91.4 61.9 45.4 59.9 99.8 92.2 62.8 49.0 73.2 99.8 92.8 63.6 55.1

0 -0.5 -0.5 34.4 6.2 20.2 69.5 87.1 36.2 6.7 24.2 78.9 86.9 33.7 7.2 29.5

-0.2 38.0 47.3 85.3 99.4 69.2 38.0 48.8 87.3 99.5 69.5 35.5 49.4 89.4

-0.3 87.5 39.5 11.8 24.1 99.7 85.9 38.8 13.2 37.4 99.5 86.5 37.5 19.6

0 0 0 35.3 6.8 26.0 78.2 85.6 32.5 6.7 33.0 85.2 85.6 31.6 6.0 39.7

0.3 27.2 50.4 91.3 99.8 48.6 26.6 52.2 92.3 99.8 47.1 24.6 51.6 91.8

0.2 92.2 46.3 11.7 24.1 99.9 89.9 46.1 13.2 30.1 99.7 90.9 46.3 16.9

0 0.5 0.5 32.0 6.6 29.2 81.3 85.1 29.9 7.2 30.8 83.1 83.7 29.9 7.0 36.5

0.8 20.5 62.2 97.4 100 17.1 18.4 65.2 97.4 100 17.3 20.2 69.9 97.5

-0.8 100 100 96.6 67.6 100 100 98.8 86.3 81.8 100 99.7 92.4 75.2

0.5 -0.5 -0.5 100 100 93.6 85.3 99.6 99.6 92.6 71.6 86.8 96.8 88.2 52.0 53.5

-0.2 100 100 99.5 99.9 99.4 99.3 96.4 97.1 99.7 94.3 84.8 78.3 92.4

-0.3 99.9 99.2 81.2 59.3 99.4 98.8 85.4 43.9 52.0 99.5 95.1 61.5 36.0

0.5 0 0 97.0 91.7 85.1 91.4 92.4 84.5 61.1 57.0 88.9 89.5 63.5 33.1 51.2

0.3 94.0 95.9 98.5 99.9 76.3 73.1 82.1 95.3 99.9 67.0 50.4 66.3 93.2

0.2 95.5 81.3 54.4 51.4 98.8 94.5 62.8 27.8 37.4 99.8 93.2 54.3 22.4

0.5 0.5 0.5 69.7 55.7 62.2 88.2 82.2 53.7 26.8 41.9 84.6 87.2 41.6 15.2 40.0

0.8 58.1 81.9 97.0 100 34.8 34.6 70.8 97.3 100 24.8 26.9 69.4 97.5

Rejection probabilities of 5% test for joint break in d; � and � at �0 = 0:5; �0 = 0, �
2
0 = 1; T = 200:

Bold numbers correspond to size simulations.
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Figure 2: Forward discount series

Table 6: Breaks in the forward discount series
a) LM test

Country number of breaks break dates

Canada 2 8/1980, 2/1986

France 3 10/1981, 4/1986, 3/1993

Germany 3 1/1981, 5/1989,10/1992

Italy 4 10/1980, 6/1984, 5/1988, 8/1992

U.K. 3 9/1980, 8/1984, 9/1992

b) LMW-type test

Country number of breaks break dates

Canada 4 4/1980, 2/1986, 6/1989, 11/1992

France 3 4/1983, 1/1986, 11/1992

Germany 4 3/1980, 12/1986, 6/1989, 12/1994

Italy 3 2/1983, 3/1986, 7/1992

U.K. 3 11/1980, 1/1985, 8/1993

36



Table 7: Detection of breaks in the forward discount series
Country break dates

Canada 8/1980: (d; �) 2/1986: (d; �)

France 10/1981: (d; �) 4/1986: (d; �) 3/1993: (d; �) ; �

Germany 1/1981: (d; �) 5/1989: (d; �) ; � 10/1992: (d; �) ; �

Italy 12/1982: (d; �) 3/1986: � 3/1990: (d; �) ; � 11/1992: (d; �) ; �

U.K. 9/1980: (d; �) 8/1984: (d; �) ; � 9/1992: (d; �)
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