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We provide here three auxiliary lemmas and their proofs, together with the proofs of Theorem 1 to
3, Corollary 1, Propositions 1 to 3 of Dolado, Rachinger and Velasco (2018, DRV henceforth), as well as
provide some further simulations for the LM and LMW-type break tests implemented in Regimes 1 and 2.

Lemmata

Lemma A.1. Let xT;t = rT;t (L) "t and yT;j = sT;t (L) "t where rT;t (L) =
Pt
j=0 rT;jL

j and sT;t (L) =Pt
j=0 sT;jL

j denote �lters, possibly depending on T; with jrT;j j � K jjj&�1+ and jsT;j j � K jjj&�1+ as T !1
for & < 0:5; where jjj+ = max fjjj ; 1g ; and "r is iid

�
0; �2

�
with �nite fourth moment. Then

zT (�) = T�1
[T�]X
t=1

(xT;tyT;t � E [xT;tyT;t])!p 0

uniformly for � 2 [0; 1] :
Proof. First we show that for every �; zT (�)!p 0 and therefore zT (�)!d 0; since E [zT (�)] = 0 and

V ar [zT (�)] is equal to

T�2
[T�]X
t=1

[T�]X
t0=1

(E [xT;tyT;txT;t0yT;t0 ]� E [xT;tyT;t]E [xT;t0yT;t0 ])

= T�2
[T�]X
t=1

[T�]X
t0=1

�
E [xT;txT;t0 ]E [yT;tyT;t0 ]� E [xT;tyT;t0 ]E [xT;t0yT;t]

+cum (xT;t; yT;t; xT;t0 ; yT;t0)

�
:

Then

E [xT;tyT;t0 ] =
tX

j=0

t0X
j0=0

rT;jsT;j0E ["t�j"t0�j0 ] = �2
t^t0X
j=0

rT;jsT;jt�t0j+j

and therefore, uniformly in T;

jE [xT;tyT;t0 ]j � K
t^t0X
j=0

jjj&�1+

�
jt� t0j+ + j

�&�1 � K (t ^ t0)& jt� t0j&�1+ ;
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where we assume w.l.o.g. & > 0 (because if & � 0 we can replace it by an arbitrarily small positive number)
and K > 0 is a constant that may change from line to line, while by independence of "t;

cum (xT;t; yT;t; xT;t0 ; yT;t0) =
tX

j=0

t0X
j0=0

tX
k=0

t0X
k0=0

rT;jsT;j0rT;ksT;k0cum ("t�j ; "t0�j0 ; "t�k; "t0�k0)

= �4

t^t0X
j=0

r2T;js
2
T;jt�t0j+j = O

0@t^t0X
j=0

jjj2&�2+

�
jt� t0j+ + j

�2&�21A
= O

�
jt� t0j2&�2+

�
for & < 0:5; so

Pt^t0
j=0 jjj

2&�2
+ = O (1) ; where �4 is the fourth order cumulant of "t and therefore, compiling

the two type of contributions,

V ar [zT (�)] = O

 
T 2&�2

TX
t=1

TX
t0=1

jt� t0j2&�2+

!
= O

�
T 2&�1

�
= o (1) :

To show uniformity in � we show weak convergence of zT (�) to the zero function in D ([0; 1]) ; the space
of càdlàg functions on [0; 1] with Skorokhod J1-metric, by showing that zT (�) is tight because for all T large
enough and 0 � �1 < �2 � 1;

E [jzT (�2)� zT (�1)j
 ] � C j�2 � �1j� (1)

for some constants 
 > 0; � > 1 and C > 0 independent of T; Billingsley (1968). Note that we can consider
only j�2 � �1j � T�1 because otherwise zT (�2)� zT (�1) = 0:

First, for 
 = 2;

E
h
(zT (�2)� zT (�1))2

i
= T�2

[T�2]X
t=1+[T�1]

[T�2]X
t0=1+[T�1]

(E [xT;tyT;txT;t0yT;t0 ]� E [xT;tyT;t]E [xT;t0yT;t0 ])

and therefore, for & < 0:5;

E
h
(zT (�2)� zT (�1))2

i
� KT 2&�2

[T�2]X
t=1+[T�1]

[T�2]X
t0=1+[T�1]

jt� t0j2&�2+

� KT 2&�2
[T (�2��1)]X

j=0

(T (�2 � �1)� j) jjj2&�2+

� KT 2&�1 (�2 � �1)
[T (�2��1)]X

j=0

jjj2&�2+

� K (�2 � �1)2�2&

because 2& � 2 < 0; so (1) holds with � = 2� 2& > 1; and the lemma follows. �

Lemma A.2. Let xT;t = rT;t (L) "t where rT;t (L) =
Pt
j=0 rT;jL

j denotes a �lter, possibly depending

on T; with jrT;j j � K jjj&�1+ as T ! 1 for & < 0:5; where jjj+ = max fjjj ; 1g ; and "r is iid
�
0; �2

�
with

�nite fourth moment. Let �t � Ct�� as t!1 for � 2 (�0:5; 0:5) : Then

zT (�) = T ��1
[T�]X
t=1

�txT;t !p 0
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uniformly for � 2 � = [�; 1� �] ; � > 0:
Proof. As in Lemma A.1, �rst we show that for every �; zT (�)!p 0 and therefore zT (�)!d 0; since

E [zT (�)] = 0 and V ar [zT (�)] is equal to

T 2��2
[T�]X
t=1

[T�]X
t0=1

�t�t0E [xT;txT;t0 ] = �2T 2��2
[T�]X
t=1

[T�]X
t0=1

t^t0X
j=0

�t�t0rT;jrT;jt�t0j+j ;

so that, assuming & > 0 w.l.o.g., if � < 0;

V ar [zT (�)] � KT &+2��2
[T�]X
t=1

[T�]X
t0=1

j�tj j�t0 j jt� t0j
&�1
+

� KT &+2��2
[T�]X
t=1

[T�]X
t0=1

t��t0�� jt� t0j&�1+

� KT &�2
[T�]X
t=1

[T�]X
t0=1

jt� t0j&�1+ � KT 2&�1

while if � � 0

V ar [zT (�)] � KT &+2��2
[T�]X
t=1

t�2�
[T�]X
t0=t

jt� t0j&�1+

� KT &+2��2T 1�2�T & � KT 2&�1

because �2� > �1 and & � 1 > �1; so V ar [zT (�)]! 0 as T !1 because & < 0:5:

To show uniformity in � we show again weak convergence of zT (�) to the zero function in D (�), by
showing that zT (�) is tight because for 0 < � � �1 < �2 � 1� � < 1;

E
h
(zT (�2)� zT (�1))2

i
= T 2��2

[T�2]X
t=1+[T�1]

[T�2]X
t0=1+[T�1]

�t�t0E [xT;txT;t0 ]

� KT &�2
[T�2]X

t=1+[T�1]

[T�2]X
t0=1+[T�1]

jt=T j�� jt0=T j�� jt� t0j&�1+

� KT &�1 j�2 � �1j
[T (�2��1)]X

j=0

jjj&�1+

� K j�2 � �1j2

because max[T�1]<t�[T�2] jt=T j
�� � K; so (1) holds for 
 = 2 and � = 2; and the lemma follows. �

Lemma A.3. Let xT;t = rT;t (L) "t where rT;t (L) =
Pt
j=0 rT;jL

j denotes a �lter, possibly depending

on T; with rT;0 = 0 and jrT;j j � K jjj&�1 as T ! 1 for & < 0:5; and "r is iid
�
0; �2

�
with �nite eight

moments. Then

zT (�) = T�1=2
[T�]X
t=1

xT;t"t

is tight in D ([0; 1]) :
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Proof. We check condition (1) for 
 = 4: For that, and denoting by �3 and �4 the third and fourth
moments of "t; respectively,

E
h
(zT (�2)� zT (�1))4

i
= T�2

[T�2]X
t1=1+[T�1]

[T�2]X
t2=1+[T�1]

[T�2]X
t3=1+[T�1]

[T�2]X
t4=1+[T�1]

E [xT;t1"t1xT;t2"t2xT;t3"t3xT;t4"t4 ]

= 6�2T�2
[T�2]X

t1=1+[T�1]

[T�2]X
t2=1+[T�1]

[T�2]X
t3=1+[T�1]

E
�
xT;t1"t1xT;t2"t2x

2
T;t3

�
1ft3>max(t1;t2)g (2)

+4�3T
�2

[T�2]X
t1=1+[T�1]

[T�2]X
t2=1+[T�1]

E
�
xT;t1"t1x

3
T;t2

�
1ft2>t1g (3)

+�4T
�2

[T�2]X
t=1+[T�1]

E
�
x4T;t

�
(4)

noting that, since xT;t"t is a martingale di¤erence (as xT;t and "t are independent and zero mean), the
product moment E [xT;t1"t1xT;t2"t2xT;t3"t3xT;t4"t4 ] is only di¤erent from zero when the largest two values
in ft1; t2; t3; t4g are equal.

Then, with t3 = t4; (2) is equal to

6�2T�2

0@ 3Y
i=1

[T�2]X
ti=1+[T�1]

1A0@ 4Y
i=1

tiX
ji=1

rT;ji

1AE ["t1�j1"t1"t2�j2"t2"t3�j3"t3�j4 ] 1ft3>max(t1;t2)g;

where we evaluate the expectation, using the formula that relates the expectation of a product of random
variables to their cumulants,

E [X1 � � �Xn] =
X
�

Y
B2�

cum(Xi : i 2 B) (5)

where the summation runs over all partitions � of f1; : : : ; ng and cum(�) denotes joint cumulant.
Given E ["t] = 0; then the expression (5) for E ["t1�j1"t1"t2�j2"t2"t3�j3"t3�j4 ] involves only partitions

� for which the cardinality jBj of the index sets B involved for each � are (6) ; (4; 2) ; (3; 3) ; (2; 2; 2) ; and,
given independence of "t; all i 2 B have to be equal for each set B for �(Xi : i 2 B) = �jBj to be (possibly)
di¤erent from zero, where �i is the i-th order marginal cumulant of "t: This fact imposes at least three
restrictions among the indexes ti and ji to obtain non-zero contributions to the expectation, some of them
non-feasible because ji > 0; so, for instance, � ("t1�j1 ; "t1) = E ["t1�j1"t1 ] = 0 because "t1�j1 and "t1 are
independent. There are two typical combinations of restrictions involved:

Case a: One restriction ji = ji0 + ti � ti0 for some i = 1; 2; i0 = 1; : : : ; 4; i 6= i0; and two restrictions
jk = tk � tk0 for k0 = 1; 2 and some k 2 f1; : : : ; 4g = fi; i0; k0g :

Case b: Two restrictions ji = ji0 + ti � ti0 for some i; i0 = 1; : : : ; 4; i 6= i0; and the restriction t1 = t2:

Then, assuming & > 0 w.l.o.g., we can bound the contribution to (2) of the Case a terms of (5) by

KT�2

0@ 3Y
i=1

[T�2]X
ti=1+[T�1]

1A t3=t4X
j4=1

��rT;j4+jt4�t1j�� ��rT;jt2�t1j�� ��rT;jt2�t3j�� jrT;j4 j
� KT�2

0@ 3Y
i=1

[T�2]X
ti=1+[T�1]

1A��rT;jt2�t1j�� ��rT;jt2�t3j�� t3=t4X
j4=1

jrT;j4 j
2

� KT�2
[T�2]X

t1=1+[T�1]

[T�2]X
t2=1+[T�1]

jt2 � t1j&�1+

[T�2]X
t3=1+[T�1]

jt2 � t3j&�1+

� KT�2 (T j�2 � �1j)1+2& � KT 2&�1 j�2 � �1j1+2& (6)
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because & < 0:5; while the Case b terms, excluding the combinations (1; 2) and (3; 4) ; can be bounded by

KT�2

0@ 3Y
i=2

[T�2]X
ti=1+[T�1]

1A t2X
j2=1

t3=t4X
j4=1

jrT;j2 j jrT;j4 j
��rT;j4+jt1�t3j�� ��rT;j2+jt2�t3j��

� KT�2

0@ 3Y
i=2

[T�2]X
ti=1+[T�1]

1A sup
j4

��rT;j4+jt1�t3j�� sup
j2

��rT;j2+jt2�t3j�� t2X
j2=1

t3=t4X
j4=1

jrT;j2 j jrT;j4 j

� KT�2
[T�2]X

t3=1+[T�1]

jt1 � t3j&�1+

[T�2]X
t2=1+[T�1]

jt2 � t3j&�1+ T 2&

� KT 2&�2 (T j�2 � �1j)2& � KT 4&�2 j�2 � �1j2& ; (7)

while the case with j1 = j2 + t1 � t2 = j2 and j3 = j4 + t3 � t4 = j4 is bounded using & < 0:5 by

KT�2

0@ 3Y
i=2

[T�2]X
ti=1+[T�1]

1A t2X
j2=1

t3=t4X
j4=1

jrT;j2 j
2 jrT;j4 j

2

� KT�2
[T�2]X

t3=1+[T�1]

[T�2]X
t2=1+[T�1]

1

� K j�2 � �1j2 : (8)

Since we can consider only j�2 � �1j � T�1 because otherwise zT (�2) � zT (�1) = 0; we have that (6), (7)
and (8) are bounded by K j�2 � �1j2�2& ; as are the contributions in the presence of additional restrictions
and from (3) and (4) following a similar, but simpler argument. Then (1) holds for � = 2� 2& > 1 because
& < 0:5, and the lemma follows. �

Proof of Theorem 1
The consistency and rate of convergence of the restricted estimators

�
~d0T ; ~�

0
0T ; ~�0T

�
under the null of

no break follow from Hualde and Nielsen (2017),

~d0T � d0 = Op(T
�1=2);

~�0T � �0 = Op(T
d0�1=2);

~�0T ��0 = Op(T
�1=2);

and the same result can be shown under H1;T (�0) with minor modi�cations of their arguments in the
present situation, which is simpler because the order of the deterministic trend is assumed known, though
asymptotic distributions are a¤ected by a local drift.

Denoting � = (d;�0)0, � 0 = (d0;�00)
0 and ~� 0T =

�
~d0T ; ~�

0
0T

�0
and, after concentrating out �0, we can

write

~� 0T � � 0 = �
@2L�T (� )
@�@� 0

����
�=��0T

@L�T (� )
@�

����
�=�0

where �� 0T is some intermediate point k�� 0T � � 0k < k~� 0T � � 0k that may change from row to row of
@2L�T (� )
@�@� 0 ; with

L�T (� ) = �
1

2

TX
t=1

"�t (� )
2 , (9)
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and "�t (� ) = � (L)�dt (yt � ~�0T (� )), and

~�0T (� ) =

 
TX
t=1

mt (� )
2

!�1 TX
t=1

mt (� )� (L)�
d
t yt;

with mt (� ) = � (L)�dt 1. Then

@L�T (� )
@�

����
�=�0

= �
TX
t=1

@"�t (� )

@�

����
�=�0

"�t (� 0) = �
TX
t=1

"0t

tX
j=1

sj (� 0) "
0
t�j + op

�
T�1=2

�

= �
TX
t=1

�
st (L; � 0) "

0
t

�
"0t + op

�
T�1=2

�
;

where "0t = "t ( 0) = "t (0;0; 0; d0;�0; �0) = �0 (L)�
d0
t (yt � �0) and st (L; � 0) = (@=@� ) log�d� (L)

��
�=�0

=Pt
j=1 sj (� 0)L

j =
�
log�t;�c (L; � 0) (L; : : : ; Lp)0

�
where sj (� 0) = �

�
j�1; cj�1 (� 0) ; : : : ; cj�2+p (� 0)

�0
so

that c (L; � ) = 1=� (L) =
P1
j=0 cj (� )L

j :

Then

"0t =
�
�0 (L)�R(2)t (�0)�0 (L)

�
�
d0��0R(2)

t (�0)
t

�
yt � �0 � �0R

(2)
t (�0)

�
(10)

= �
��0R(2)

t (�0)
t "t �R(2)t (�0)�0 (L)

h
�d0t (yt � �0)

i
+ �0�0 (L)�

d0
t R

(2)
t (�0)

= "t + T
�1=2R

(2)
t (�0)

h
�� log�t"t �

Xp

j=1

j�

�1
0 (L) "t�j + �T

d0�0 (L)�
d0
t�[�0T ]1

i
+T�1rT;t (L; � 0) "t +O

�
T d0�1�t�[�0T ]�1 (d0 � 1)

�
;

where rT;t (L; � 0) =
Pt
j=1 rT;j (� 0)L

j denotes a �lter that might change from case to case, possibly de-
pending on T; with krT;j (� 0)k � Kj&�1 as T !1 for any & > 0:

Therefore, st (L; � 0) "0t is equal to

st (L; � 0) "t + T
�1=2rT;t (L; � 0) "t + �T;t;

where


�T;t

 � KT d0�1=2 log T as T !1; and it follows that

T�1=2
@L�T (� )
@�

����
�=�0

!p �
2
0 (1� �0)� (�; 
0)

0 � T�1=2
TX
t=1

(st (L; � 0) "t) "t: (11)

Since a similar reasoning leads to,
1

T

@2L�T (� )
@�@� 0

����
�=��0T

!p �
2
0�;

we �nd that

T 1=2 (~� 0T � � 0)!p (1� �0) (�; 
0)0 � T�1=2
�
�20�

��1 TX
t=1

(st (L; � 0) "t) "t: (12)

Likewise, using the same arguments on ~�0T = ~�0T (~� 0T ), under H1T ;

T 1=2�d0 (~�0T � �0) = T 1=2�d0

 
TX
t=1

mt (� 0)
2

!�1 TX
t=1

mt (� 0) "
0
t + op (1)

= �

 
TX
t=1

mt (� 0)
2

!�1 TX
t=[�0T ]+1

mt (� 0)
�
�0 (L)�

d0
t�[�0T ]1

�

+T 1=2�d0

 
TX
t=1

mt (� 0)
2

!�1 TX
t=1

mt (� 0) "t + op (1) :
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Writing L0�;T (�) = L�;T
�
0;0; 0; d0;�0; �0; �

2; �
�
and ~"t = "t(~ T );

~"t = "0t + (
~d0T � d0) log�t"�t + (~�0T (L)� �0 (L))

"�t
��0T (L)

� (~�0T � �0)��0T (L)�
d�0T
t 1; (13)

where "�t = ��0T (L)�
d�0T
t (yt � ��0T ) with k 

�
T �  0k �




~ T �  0


 ;  �0T = (d�0T ;��00T ; ��0T )0 yields
~L�;T (�) = L0�;T (�)

�( ~d0T � d0)
1

~�2T

TX
t=[�T ]+1

n�
(log�t)

2"�t
�
"�t + (log�t"

�
t )
2
o

(14)

+

pX
j=1

(~�j;0T � �j;0T )
1

~�2T

TX
t=[�T ]+1

�
(log�t"

�
t )

"�t�j
��0T (L)

+

�
log�t�j

"�t�j
��0T (L)

�
"�t

�

+(~�0T � �0)
1

~�2T

TX
t=[�T ]+1

n�
log�t�

�
0T (L)�

d�

t�[�0T ]1
�
"�t + (log�t"

�
t )�

�
0T (L)�

d�

t�[�0T ]1
o
:

Then, uniformly in � and under H1T , it holds that

T�1
TX

t=[�T ]+1

�
(log�t)

2"�t
�
"�t

p! 0

T�1
TX

t=[�T ]+1

(log�t"
�
t )
2 p! (1� �)�20

�2

6

T�1
TX

t=[�T ]+1

�
(log�t"

�
t )

"�t�j
�� (L)

+

�
log�t�j

"�t�j
�� (L)

�
"�t

�
p! (1� �)�20�j

T d0�1
TX

t=[�T ]+1

�
log�t�

� (L)�d0t�[�0T ]1
�
"�t

p! 0

T d0�1
TX

t=[�T ]+1

(log�t"
�
t )�

� (L)�d0t�[�0T ]1
p! 0

using Lemma D.5 of Robinson and Hualde (2003) to Taylor expand the functions of  �0T around  0 until
an order high enough and bound uniformly in � the contribution of each term using Lemmas A.1 and A.2.
Then, uniformly in �;

~L�;T (�) = L0�;T (�)� T (1� �)
�
�2

6
�0
�
(~� 0;T � � 0) + op

�
T 1=2

�
Similarly, denoting c�p (L) = c (L; � �0T ) (L; : : : ; L

p)
0
;

~L�;T (�) = L0�;T (�) (15)

�( ~d0T � d0)
1

~�2T

TX
t=[�T ]+1

��
log�tc

�
p (L) "

�
t

�
"�t + (log�t"

�
t ) c

�
p (L) "

�
t

	
� 1

~�2T

TX
t=[�T ]+1

�
c�p (L) "

�
t

�0 �
c�p (L) "

�
t

�
(~�0T � �0T )

+ (~�0T � �0)
1

~�2T

TX
t=[�T ]+1

n�
c�p (L)�

� (L)�d0t�[�0T ]1
�
"�t +

�
c�p (L) "

�
t

�
�� (L)�d0t�[�0T ]1

o
= L0�;T (�)� T (1� �) (� �) (~� 0;T � � 0) + op

�
T 1=2

�
7



uniformly in �; and therefore

~L(�;�);T (�) = L0(�;�);T (�)� T (1� �)� (~� 0;T � � 0) + op
�
T 1=2

�
= L0(�;�);T (�)� T 1=2 (1� �) (1� �0)� (�; 
0)

0
+ (1� �) 1

�20

TX
t=1

(st (L; � 0) "t) "t + op

�
T 1=2

�
:(16)

Next, using similar arguments as for (11) and Lemmas A.1 and A.2,

L0(�;�);T (�) = T 1=2 (1�max f�; �0g)� (�; 
0)0 �
1

�20

TX
t=[�T ]+1

(st (L; � 0) "t) "t + op

�
T 1=2

�
(17)

uniformly in � under H1T , and therefore, using (16) and (17), ~L(�;�);T (�) is equal to

�
� (1� �0)� (�� �0)+

�
� (�; 
0)

0
+
1

�20

[�T ]X
t=1

(st (L; � 0) "t) "t �
�

�20

TX
t=1

(st (L; � 0) "t) "t + op

�
T 1=2

�
:

Hence, under Assumption 1 and using a standard central limit theorem for martingale di¤erences and the
tightness from Lemma A.3, we can show that for � 2 � in D (�)

T�1=2 ~L(�;�);T (�))
�
� (1� �0)� (�� �0)+

�
� (�; 
0)

0
+�1=2 [Bp+1 (�)� �Bp+1 (1)] ; (18)

where ) denotes weak converge with the Skorohod metric.

Next, in the direction of �, for a given �,

~L�;T (�) =
@

@�
L
�
~ T ; �

�����
 =~ T

=
1

~�2T

TX
t=1

�
R
(2)
t (�) ~�0T (L)�

~d0T
t�[�T ]1

�
~"t:

First, by a Taylor expansion,

~L�;T (�) =
1

~�2T

TX
t=[�T ]+1

�
�0 (L)�

d0
t�[�T ]1

�
~"t +

1

~�2T

�
~d0T � d0

� TX
t=[�T ]+1

�
~��0T (L) log�t�

d�0T
t�[�T ]1

�
~"t

+
1

~�2T

�
[~�0T (L)� �0 (L)]�d0t�[�T ]1

�
~"t

=
1

~�2T

TX
t=[�T ]+1

�
�0 (L)�

d0
t�[�T ]1

�
~"t + op(T

1=2�d0);

uniformly in �; where k� �0T � � 0k � k~� 0T � � 0k : Next, using again the Taylor expansion (13) around
(d0;�

0
0; �0) yields

~L�;T (�) =
1

~�2T

TX
t=[�T ]+1

�
�0 (L)�

d0
t�[�T ]1

�
"0t (19)

+
1

~�2T

�
~d0T � d0

� TX
t=[�T ]+1

�
�0 (L)�

d0
t 1
�
log�t"

�
t (20)

+
1

~�2T
(~�0T (L)� �0 (L))

TX
t=[�T ]+1

�
�0 (L)�

d0
t 1
� "�t
��0T (L)

(21)

� 1

~�2T
(~�0T � �0)

TX
t=[�T ]+1

�
�0 (L)�

d0
t 1
��

�0 (L)�
d0
t�[�T ]1

�
(22)

+op(T
1=2�d0):

8



The terms (20) and (21) are of smaller order than the remaining ones above by Lemma A.2 and ~� 0T � � 0 =
Op
�
T�1=2

�
:

Next, from the term (22),

(~�0T � �0)
TX

t=[�T ]+1

�
�0 (L)�

d0
t 1
��

�0 (L)�
d0
t�[�T ]1

�
=

PT
t=[�T ]+1

�
�d0t 1

��
�d0t�[�T ]1

�
PT
t=1

�
�d0t 1

�2 TX
t=1

�
�0 (L)�

d0
t 1
�
"0t+op (1) ;

(23)
since, without loss of generality, for p = 1,

�0 (L)�
d0
t 1 = �

d0
t 1� ��d0t�11 = �0 (1)�

d0
t 1 + �t�1 (d0)

where the second term is of order (t� 1)�d0�1 and thus negligible and the resulting factor �0 (1) in (23)
cancels. The �rst factor of (23) converges deterministically in � to L (d0; 0; �) where

L (d0; a; b) � (1� 2d0)
Z 1

max(a;b)

(s� a)�d0 (s� b)�d0 ds

with L (d0; a; a) = (1� a)1�2d0 . Therefore, combining the term (22) with (19), yields, up to op(T 1=2�d0)
terms, that ~L�;T is equal to

1

~�2T

TX
t=[�T ]+1

�
�0 (L)�

d0
t�[�T ]1

�
"0t �

L (d0; 0; �)

~�2T

TX
t=1

�
�0 (L)�

d0
t 1
�
"0t : (24)

Using again (10), the �rst term in (24) can be rewritten as

1

~�2T

TX
t=[�T ]+1

�
�0 (L)�

d0
t�[�T ]1

��
"t � T�1=2R(2)t (�0)

�
� log�t"t +

Xp

j=1

j

"t�j
�0 (L)

�
+ �T d0�1=2R

(2)
t (�0)�0 (L)�

d0
t�[�0T ]1

�
;

(25)

plus terms of smaller order of magnitude.

The last term in (25), multiplied by T d0�1=2, is

T 2d0�1
�

�20

TX
t=[max(�;�0)T ]+1

�
�0 (L)�

d0
t�[�T ]1

��
�0 (L)�

d0
t�[�0]T 1

�
p! �

�20

�20 (1)L (d0;�0; �)

(1� 2d0) �2 (1� d0)
;

uniformly in �; while the second term of (25) is of smaller order. Multiplied by T d0�1=2, the �rst term of
(25) converges weakly to

�0 (1) ~Wd0 (�; 1)

�0
p
(1� 2d0) �2 (1� d0)

;

where, under Assumption 1, the following convergence holds, similar to Marinucci and Robinson�s (2000)
results,

T d0�1=2
[�T ]X
t=1

�
�0 (L)�

d0
t 1
�
"t

p! �0 (1)T
d0�1=2

[�T ]X
t=1

�t�1 (d0 � 1) "t )
�0�0 (1) ~Wd0 (0; �)p
(1� 2d0) �2 (1� d0)

; (26)

T d0�1=2
TX

t=[�T ]+1

�
�0 (L)�

d0
t�[�T ]1

�
"t

p! �0 (1)T
d0�1=2

TX
t=[�T ]+1

�t�[�T ]�1 (d0 � 1) "t )
�0�0 (1) ~Wd0 (�; 1)p
(1� 2d0) �2 (1� d0)

9



with ~Wd0 (a; b) = (1� 2d0)
1=2 R b

a
(s� a)�d0 dB (s), (so that ~Wd0 (0; 1) has unit variance) and the convergence

can be shown to be joint with (18). The fractional Brownian motion ~Wd0 (0; �) has the same marginal
distribution as the standard one Wd0 (�) = (1� 2d0)

1=2 R �
0
(�� s)�d0 dB (s) but has a di¤erent covariance,

Cov
�
~Wd0 (�; 1) ;

~Wd0 (0; 1)
�
= L (d0; 0; �) : (27)

rather than
Cov (Wd0 (1) ;Wd0 (�)) = 1 + �

1�2d0 � E [Wd0 (1)�Wd0 (�)]
2
:

The second term of (24) converges to

� �

�20

�20 (1)L (d0; 0; �)L (d0; 0; �0)

(1� 2d0) �2 (1� d0)
� L (d0; 0; �)

�0 (1) ~Wd0 (0; 1)

�0
p
(1� 2d0) �2 (1� d0)

;

so that, combining the limits of the terms in (24), T d0�1=2 ~L�;T (�) converges weakly to

�0 (1)
~Wd0 (�; 1)� L (d0; 0; �) ~Wd0 (0; 1)

�0
p
(1� 2d0) �2 (1� d0)

+ ��20 (1)
L (d0;�; �0)� L (d0; 0; �0)L (d0; 0; �)

�20 (1� 2d0) �2 (1� d0)
: (28)

Finally, de�ning,

DT = diag
�
T�1=2; T�1=2Ip�p; T

d0�1=2
�
;

then, by combining the joint convergence of ~L(�;�);T (�) and ~L�;T (�) as described in (18) and (28), the
normalized score for the LM test for a break in all parameters behaves as

DT
~L(�;�0;�);T (�) = DT

@LT ( ; �)
@
�
�;�0; �

�0 j =~ T
)

0BB@ �1=2 (Bp+1 (�)� �Bp+1 (1)) +
�
� (1� �0)� (�� �0)+

�
�

�
�




�
�0 (1)

~Wd0
(�;1)�L(0;�) ~Wd0

(0;1)

�0
p
(1�2d0)�2(1�d0)

+ ��20 (1)
L(d0;�;�0)�L(d0;0;�0)L(d0;0;�)

�20(1�2d0)�2(1�d0)

1CCA ; (29)

with the two components being uncorrelated.

In addition, using similar methods, the relevant block of the inverse Hessian converges uniformly in �
as

D�1
T

 
� @2LT ( ; �)

@ @ 0

����
 =~ T

!�1
[1:(p+2);1:(p+2)]

D�1
T

p!
 
� (1� �)� 0

0 �20 (1)
L(d0;�;�)�L2(d0;0;�)
�20(1�2d0)�2(1�d0)

!�1
; (30)

because the limit of the Hessian is block diagonal between �2 and the rest of elements of  ; while

�DT
@2LT ( ; �)

@ (d;�0; �)
0
@ (d;�0; �)

����
 =~ T

DT
p!
 
� 0

0 �20 (1)
1

�20(1�2d0)�2(1�d0)

!

�DT
@2LT ( ; �)

@
�
�;�0; �

�0
@
�
�;�0; �

� �����
 =~ T

DT
p!
 
(1� �)� 0

0 �20 (1)
L(d0;�;�)

�20(1�2d0)�2(1�d0)

!

and the cross-derivatives block has the same last limit noticing that L (d0; 0; �) = L (d0;�; �) :

Finally, (29) and (30) establish the result.
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Proof of Corollary 1

As a special case of Theorem 1 in DRV, for a known break fraction �0, because

V ar [Bi (�)� �Bi (1)] = �+ �2 � 2�2 = � (1� �) ; i = 1; :::; p+ 1;

the distribution of the derivative in the direction of memory and autoregressive component is,

T�1=2 ~L(�;�);T (�0)
d! N

�
�0 (1� �0)�

�
�




�
; �0 (1� �0)�

�
, (31)

where the drift and the asymptotic variance are symmetric around �0 = 1
2 . Further, this convergence is

joint with that of the derivative in the direction of the level,

T d0�1=2 ~L�;T (�0)
d! N

�
�

�0
�0 (1)

L (d0;�; �)� L2 (d0; 0; �)
(1� 2d0) �2 (1� d0)

; �20 (1)
L (d0;�; �)� L2 (d0; 0; �)
(1� 2d0) �2 (1� d0)

�
;

because

V ar
h
~Wd0 (�; 1)� L (d0; 0; �) ~Wd0 (0; 1)

i
= L (d0;�; �) + L

2 (d0; 0; �)� 2L2 (d0; 0; �)

= L (d0;�; �)� L2 (d0; 0; �) ;

and with zero correlation with the limit in (31). Combining with the behaviour of the Hessian in (30)
establishes the convergence to a �22+p(c) under H

d;�;�
1;T (�0) :

Proof of Proposition 1
Consistency of the test in the second regime follows from the fact that the limit of

�
~d0T ; ~�

0
0T ; ~�0T

�
,

di¤ers from (d1;�
0
1; �1) ; which is true since�

~d0T ; ~�
0
0T ; ~�0T

�
= arg min

d;�0;�

[�0T ]X
t=1

�
� (L)�dt (yt � �)

�2
+

TX
t=[�0T ]+1

�
� (L)�dt (yt � �)

�2
(32)

and noticing that the argmin of the sum of two convex terms di¤ers from the argmins of the respective
summands.

Then, in the MVT theorems in the proof of Theorem 1, equations (14), (15) and (22) respectively,
the terms ( ~d0T � d0),

�
~�00T ��00

�
and (~�0T � �0) converge to nonzero constants. The proof works then

by showing that in this case, the rate needed for convergence of the numerator of the test statistics is the
square of the rate needed under the null (or local alternative). Thus, the test statistic diverges.

In particular, we analyze how the components ~L�;T (�), ~L�;T (�) and ~L�;T (�) behave under the di¤erent
alternatives, Hd;�

1 (�0) ;H
�
1 (�0) and H

d;�;�
1 (�0). Under both H

d;�;�
1 (�0) and H

d;�
1 (�0), since ( ~d0T � d1) =

Op (1), the term (14) in ~L�;T (�) is of order Op (T ) rather than Op(T 1=2), where the rates are sharp. Under
H�
1 (�0), and for d0 > 0, since (~�0T � �0) = Op (1), the term (22) in ~L�;T (�) is of order Op

�
T 1�2d0

�
rather than Op(T 1=2�d0). For d0 < 0, the estimator ~d0T converges, from an argument similar to the one in
Proposition 1 in Rachinger (2017), to 0 and thus ~L�;T (�) is of order Op (T ). Combining these results with
the behaviour of the denominator (30), the LM test statistics (4) in DRV for a break in both parameters
diverge at rate T if there is a break in the dynamics (Hd;�;�

1 (�0) or H
d;�
1 (�0)) and it diverges under H

�
1 (�0)

at rate T 1�2d0 if d0 � 0 and at rate T if d0 < 0, the latter because ~d0T
p! 0 in this case.

Proof of Proposition 2
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Part a) Under both Hd;�
1 (�0) and Hd

1 (�0), �d0T behaves similarly as ~d0T , implying ( �d0T � d1) =

Op (1). Thus, the corresponding term in ~L�;T (�) similar to (14) is of order Op (T ) rather than Op(T 1=2).
Thus, the test diverges. Next, under H�

1 (�0), the corresponding term (14) with ~�0T replaced by ��1T behaves
as the one in Theorem 1. Thus, similarly as in Corollary 1, we obtain the �2 limit.

Part b) Under Hd;�
1 (�0) and H

�
1 (�0), ��0T behaves similarly as ~�0T , implying (��0T � �0) = Op (1).

Under H�
1 (�0), and for d0 � 0, the corresponding term (22) in ~L�;T (�) is then of order Op(T 1�2d0) rather

than Op(T 1=2�d0) and the test diverges at rate T 1�2d0 . For d0 < 0, the estimator �d1T converges, from an
argument similar to the one in Proposition 1 in Rachinger (2017), to 0 and thus ~L�;T (�) is of order Op (T )
and the test diverges at rate T . Under Hd;�

1 (�0), for d1 � 0, �d1T converges to d1 and the test diverges at
rate T 1�2d1 ; for d1 < 0, �d1T converges to 0 and the test diverges at rate T . Finally, under Hd

1 (�0), the
corresponding term (22) with ~d0T replaced by �d1T behaves as the one in Theorem 1 as well. Therefore, as
in Part a) we obtain the �2 limit.

Proof of Theorem 2

Part a) First, we consider the unfeasible estimates which use true values of (d0;�00; �0) and
�
�;�0; �

�
for a given �: Using (10), we have that under H1;T

DT

TX
t=1

X0
t (�)X

0
t (�)

0
DT = DT

TX
t=[�T ]+1

�X0
t (�)

�X0
t (�)

0
DT + op (1)

= diag

(
(1� �)�20�;

�20 (1) (1� �)
1�2d0

(1� 2d0) �2 (1� d0)

)
+ op (1) ;

uniformly in �; applying Lemmas A.1 and A.2, where �X0
t (�) =

�
log�t"t;

n
"t�j
�0(L)

op
j=1

; �0 (L)�
d0
t R

(2)
t (�)

�0
because we can write

X0
t (�) =

0@241���R(2)
t (�)

t

�

35 "0t ; R(2)t (�)

�
"t�j
�1 (L)

�p
j=1

; �0 (L)�
d0+�
t R

(2)
t (�)

1A0

and therefore, for instance,

1

T

TX
t=1

0@241���R(2)
t (�)

t

�

35 "0t
1A2

=
1

T

TX
t=[�T ]+1

0@241��(�T�1=2)t�
�T�1=2

�
35 "0t

1A2

=
1

T

TX
t=[�T ]+1

�h
log�t + T

�1=2rt;T (L; �)
i
"0t

�2
p! (1� �)�20

1X
j=1

1

j2
= (1� �)�20

�2

6
;

where rT;t (L; �) =
Pt
j=1 rT;j (�)L

j denotes a �lter depending on T; with jrT;j (�0)j � Kj&�1 as T !1 for
any & > 0:

Then, using similar arguments, under H1;T ;

DT

TX
t=1

X0
t (�)Y

0
t = DT

TX
t=[�T ]+1

�X0
t (�) "

0
t + op (1)

= T�1=2DT

TX
t=[�T ]+1

�X0
t (�) bt;T (�0) +DT

TX
t=[�T ]+1

�X0
t (�) "t + op (1)

12



uniformly in �; where bt;T (�0) = �R(2)t (�0)
�
� log�t"t +

Pp
j=1 
j�

�1
0 (L) "t�j � �T d0�0 (L)�d0t�[�0T ]1

�
:

Next,

T�1=2DT

TX
t=[�T ]+1

�X0
t (�) bt;T (�0)!p

�
��20 (1�max (�; �0)) (� 
0)�; �

�20 (1)L (d0;�0; �)

(1� 2d0) �2 (1� d0)

�0

uniformly in �; while

DT

TX
t=[�T ]+1

�X0
t (�) "t )

"
�20

�
�1=2 (Bp+1 (1)�Bp+1 (�))

�0
;

�0�0 (1) ~Wd0 (�; 1)p
(1� 2d0) �2 (1� d0)

#0
(33)

by applying a joint FCLT, where the two terms on the right are independent.

We now deal with the estimation of the parameters. Note that with the case of unknown � = d1�d0 can
be dealt exactly as in LV. Likewise, estimated �0= �01 � �00 and � = �1 � �0 do not a¤ect the asymptotic
distribution because they are Op

�
T�1=2

�
and Op

�
T d0�1=2

�
, respectively, under H1;T :

To deal with the e¤ect of estimation of the unknown parameters (d0;�0,�0) by CSS under the null using

observations for the whole sample, note that, using (13), and for ~Xt (�) = Xt

�
�; �̂T (�); �̂T (�) ; ~d0T ; ~�0T ; ~�0T

�
,

we can write again under H1;T ,

DT

TX
t=1

~Xt (�) ~Xt (�)
0
DT = DT

TX
t=[�T ]+1

�X0
t (�)

�X0
t (�)

0
DT + op (1)

= diag

(
(1� �)�20�;

�20 (1) (1� �)
1�2d0

(1� 2d0) �2 (1� d0)

)
+ op (1) ; (34)

uniformly in �; because ~� 0T � � 0 = Op
�
T�1=2

�
and ~�0T � �0 = Op

�
T d0�1=2

�
, so we can write

~Xt (�) =

0@241���̂T (�)R(2)
t (�)

t

�̂T (�)

35~"t; R(2)t (�)

(
�
d̂1T (�)
t

 
�
�d̂1T (�)
t "t�j
�̂1T (L)

+ �1 � �̂1T (�)
!)p

j=1

; ~�0T (L)�
d̂1T (�)
t R

(2)
t (�)

1A0

and, for instance, uniformly in �;

1

T

TX
t=1

0@241���̂T (�)R(2)
t (�)

t

�̂T (�)

35~"t
1A2

=
1

T

TX
t=[�T ]+1

�h
log�t + �̂T (�)rt (L) + cT rT;t

�
L; �̂T (�)

�i
"0t

�2
+ op (1)

=
1

T

TX
t=[�T ]+1

�
log�t"

0
t

�2
+ op (1)

p! (1� �)�20
�2

6
;

where cT = Op
�
T�n=2

�
for some n > 2 and rt (L) =

Pt
j=1 rT;jL

j and rT;t (L; �) =
Pt
j=1 rT;j (�)L

j denote
�lters with jrT;j j � Kj&�1, any & > 0; and jrT;j (�)j � Kj��1 logn j as T ! 1, and then proceeding as in
Lemma C.5 in Robinson and Hualde (2003) choosing n large enough.

Then, under H1;T ; for ~Yt = ~�0T (L)�
~d0T
t (yt � ~�0T ) = ~"t, and using the same methods as in (13) and
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Lemma A.1, DT

PT
t=1X

0
t (�) ~Yt equals

DT

TX
t=[�T ]+1

�X0
t (�) "

0
t +DT

TX
t=[�T ]+1

�X0
t (�)

8><>:
( ~d0T � d0) log�t"�t

+(~�0T (L)� �0 (L)) "�t
��0T (L)

� (~�0T � �0)�0 (L)�
d�0T
t 1

9>=>;+ op (1)
= DT

TX
t=[�T ]+1

�X0
t (�) "

0
t + diag

"
�20 (1� �)� � �20 (1)L (d0; 0; �)

(1� 2d0) � (1� d0)2

#�
~ 0T � 0

�
+ op (1) (35)

= DT

TX
t=[�T ]+1

�X0
t (�) "

0
t +

�
�20 (1� �) (1� �0) (�; 
0)� � ��

2
0 (1)L (d0; 0; �)L (d0; 0; �0)

(1� 2d0) �2 (1� d0)

�0

�DT

"
(1� �)

TX
t=1

"t (st (L; � 0) "t)
0
L (d0; 0; �)

TX
t=1

mt (� 0) "t

#0
+ op (1)

uniformly in �; using (12) and (23). Then, combining this result with (33) we obtain

DT

TX
t=1

X0
t (�) ~Yt )

�
��20 (1�max (�; �0)) (� 
0)�; �

�20 (1)L (d0;�0; �)

(1� 2d0) �2 (1� d0)

�0
+

�
�20 (1� �) (1� �0) (�; 
0)�; ���

2
0 (1)L (d0; 0; �)L (d0; 0; �0)

(1� 2d0) �2 (1� d0)

�0
+

"
�20

�
�1=2 (Bp+1 (1)�Bp+1 (�))

�0
;

�0�0 (1) ~Wd0 (�; 1)p
(1� 2d0) �2 (1� d0)

#0

�
"
(1� �)�20

�
�1=2Bp+1 (1)

�0
;
�0�0 (1)L (d0; 0; �) ~Wd0 (0; 1)p

(1� 2d0) �2 (1� d0)

#0

and this together with (34) shows that the asymptotic distribution of L̂MW 2;T (�) is as in Theorem 1.

Part b) The proof follows from Part a) in a similar way as in the proof of Corollary 1.

Proof of Proposition 3
The proof follows as that of Proposition 1 by exploiting the di¤erent behaviour of estimates under the

null and the alternative. In particular, ~ 0T and  ̂1T are mimizing over di¤erent sums, the former as in (32),
the latter, for � < �0,

�
d̂1T ; �̂

0
1T ; �̂1T

�
= arg min

d1;�0
1;�1

[�0T ]X
t=[�T ]+1

h
�1 (L)�

d1
t�[�T ] (yt � �1)

i2
+

TX
t=[�0T ]+1

h
�1 (L)�

d1
t�[�T ] (yt � �1)

i2
.

As for ~ 0T , the limit of the �rst summand is minimized by (d0;�
0
0; �0), while the limit of the second

summand is minimized by (d1;�01; �1). However, the �rst summand consists for  ̂1T only of [(�0 � �)T ]
terms, with � > �, while for ~ 0T it consists of [�0T ] terms. Thus, similarly in Proposition 1, the limits of
limit of ~ 0T and  ̂1T di¤er. For � � �0, the argument simpli�es since only a term minimized by (d1;�01; �1)
remains.

Then, under the �xed alternative of one break in the dynamics in any direction, � 6= 0 and/or � 6= 0;
under Hd;�

1 and under Hd;�;�
1 plim�̂ 6= 0 and plim�̂ 6= 0 so that for a similar reason as in Proposition 1, the

OLS estimates #̂1T (�) and #̂�T (�) converge to nonzero constants and the test statistic diverges.
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Under H�
1 , similarly, plim(�̂1T � ~�0T ) 6= 0. Further, as before, ~d0T converges to d0 (resp. 0), if d0 � 0

(resp. < 0). Then, the last term in the second term in (35) is of order Op(T 1=2�d0) if d0 � 0 and of order
Op(

p
T ), if d0 < 0. Thus, L̂MW 2;T = Op

�
T 1�2d0

�
, in the former, and L̂MW 2;T = Op (T ), in the latter

case.

Finite sample properties of LM and LMW-type tests
implemented in Regimes 1 and 2

In order to illustrate the gains from the symmetric tests, we repeat the exercise leading to Table 1
in DRV but now for the tests implemented in Regimes 1 and 2 separately. In particular, consider the
case of a known break fraction of �0 = 0:5. Also here, the signi�cance level is 0:05 and the sample sizes are
T = 200; 500 and 1; 000 when considering size, and T = 200 as regards power. We take draws from a N (0; 1)
distribution. For the size, d takes the values f�0:4;�0:3;�0:2;�0:1; 0; 0:1; 0:2; 0:3; 0:4g and a non-breaking
level of �0 = 0. To compute power, we consider d0 2 f�0:2; 0; 0:2g; d1 2 f�0:4;�0:2; 0; 0:2; 0:4g, �0 = 0

and �1 = f0; 0:25; 0:5; 1g. The number of simulations is 10; 000. Table A1 (panels a through d) displays the
size of the LM and LMW-type tests, respectively, when testing in the �rst and second regime and for breaks
in both d and �. Next, Table A2 displays the power results of the two tests for a break in d and/or � at
�0 = 0:5: Figures in bold characters correspond to size. In comparison to Table 1 in DRV, here size is less
stable over di¤erent memory parameters and power stronger depends on the direction of the break.

References

[1] Billingsley, P, 1968. Convergence of Probability Measures, Wiley, New York.

[2] Hualde, J. and Nielsen, M.O., 2017. "Truncated sum of squares estimation of fractional time series
models with deterministic trends". QED Working Paper 1376.

[3] Hualde, J. and Robinson, P.M., 2011. "Gaussian pseudo-maximum likelihood estimation of fractional
time series models". Annals of Statistics 39, 3152-3181.

[4] Marinucci, D., Robinson, P.M., 2000. "Weak convergence of multivariate fractional processes". Stochastic
Processes and their Applications 83, 103-120.

[5] Rachinger, H., 2017. "Multiple breaks in long memory time series". University of Vienna, mimeo.
https://sites.google.com/site/heikorachinger/Rachinger2017.pdf

[6] Robinson, P.M. and J. Hualde, 2003, "Cointegration in fractional systems with unknown integration
orders". Econometrica 71 1727-1766.

15



Table A1: Simulated size of LM and LMW-type tests for a joint break in memory
and level.

a) LM test in Regime 1

T n d0 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

200 4.3 4.0 3.8 3.7 3.5 4.2 4.7 5.4 8.6

500 4.6 4.7 4.7 4.6 4.3 4.3 4.9 5.7 7.3

1000 5.3 4.9 4.3 4.4 4.9 4.4 5.2 5.4 6.2

b) LM test in Regime 2

T n d0 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

200 6.6 6.0 5.4 4.7 4.4 4.5 4.0 4.0 4.3

500 5.6 5.4 5.3 4.8 4.6 4.6 4.3 4.5 4.9

1000 5.7 5.5 5.1 4.8 5.1 4.6 4.8 4.5 4.7

c) LMW-type test in Regime 1

T n d0 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

200 6.6 6.4 6.2 5.8 7.8 7.4 6.8 6.3 7.1

500 5.4 5.8 6.4 6.6 6.5 6.5 6.7 7.0 7.8

1000 6.1 5.8 5.6 6.1 6.2 6.0 6.3 6.3 6.6

d) LMW-type test in Regime 2

T n d0 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

200 7.6 7.8 6.8 6.9 5.8 6.4 7.7 6.6 6.8

500 6.7 6.6 6.1 6.4 6.7 6.4 6.3 6.2 6.1

1000 6.4 6.5 6.1 5.9 6.3 5.9 5.9 5.5 5.5

Rejection probabilities of 5% test for joint break in d and � at �0 = 0:5; �0 = 0, �
2
0 = 1:
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Table A2: Simulated power of LM and LMW-type tests for a joint break in
memory and level.

a) LM test in Regime 1

d0 -0.2 0 0.2

d1 n �1 0 0.25 0.5 1 0 0.25 0.5 1 0 0.25 0.5 1

-0.4 17.6 94.6 100 100 67.4 82.2 97.8 99.9 96.1 94.9 94.3 97.3

-0.2 3.8 71.7 99.8 100 18.0 55.6 93.2 99.9 71.1 74.5 85.7 97.8

0 31.8 56.3 96.6 100 3.5 18.9 71.6 100 15.5 26.2 51.9 93.4

0.2 83.9 87.9 96.0 99.9 34.7 41.2 60.4 97.8 4.7 8.8 23.4 80.0

0.4 99.1 99.4 99.4 100 89.1 89.3 92.0 96.6 42.7 45.6 54.9 79.4

b) LM test in Regime 2

d0 -0.2 0 0.2

d1 n �1 0 0.25 0.5 1 0 0.25 0.5 1 0 0.25 0.5 1

-0.4 41.6 96.2 100 100 91.1 90.4 89.7 99.9 99.8 98.4 96.4 97.3

-0.2 5.4 74.2 99.7 100 41.6 68.8 95.0 99.9 90.1 92.1 94.4 98.3

0 11.1 49.6 96.5 100 4.4 21.5 71.5 99.9 35.1 42.6 61.9 94.2

0.2 58.1 70.7 89.0 99.9 12.9 24.1 50.0 96.8 4.0 7.2 21.8 77.9

0.4 95.1 94.4 95.4 100 62.7 66.5 72.2 89.7 18.9 21.7 30.0 64.7

c) LMW-type test in Regime 1

d0 -0.2 0 0.2

d1 n �1 0 0.25 0.5 1 0 0.25 0.5 1 0 0.25 0.5 1

-0.4 16.6 92.9 100 100 65.0 80.0 96.5 100 96.5 95.4 94.2 96.8

-0.2 6.2 84.9 100 100 17.3 49.7 92.5 100 69.7 74.8 84.1 97.3

0 44.9 83.4 99.5 100 5.8 34.6 83.5 100 17.8 27.8 52.3 93.8

0.2 91.3 94.3 98.8 100 45.7 58.5 81.8 99.4 6.5 14.4 36.2 85.7

0.4 99.7 99.8 99.8 100 92.5 92.7 94.9 98.3 46.5 50.8 59.4 82.6

d) LMW-type test in Regime 2

d0 -0.2 0 0.2

d1 n �1 0 0.25 0.5 1 0 0.25 0.5 1 0 0.25 0.5 1

-0.4 48.3 98.3 100 100 93.1 93.4 99.2 100 99.8 99.3 97.1 99.0

-0.2 8.8 84.1 100 100 49.6 79.8 98.8 100 93.0 94.3 97.1 99.9

0 14.0 49.0 95.7 100 7.8 34.8 83.5 100 45.8 58.0 80.0 99.1

0.2 63.9 70.1 86.8 99.3 16.0 24.8 51.4 95.0 7.7 14.1 33.5 83.2

0.4 96.4 96.8 97.2 99.2 66.7 68.5 75.3 88.6 17.1 21.1 28.6 57.9

Rejection probabilities of 5% test for joint break in d and � at �0 = 0:5, �0 = 0, �
2
0 = 1; T = 200:

Bold numbers correspond to size simulations.
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