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We provide here three auxiliary lemmas and their proofs, together with the proofs of Theorem 1 to
3, Corollary 1, Propositions 1 to 3 of Dolado, Rachinger and Velasco (2018, DRV henceforth), as well as
provide some further simulations for the LM and LMW-type break tests implemented in Regimes 1 and 2.

Lemmata

Lemma A.1. Let zpy = (L) e and yr; = s (L) e, where rp, (L) = Z;:o rr; L7 and sp4 (L) =
Zi':o st ;L7 denote filters, possibly depending on 7', with |rp ;| < K |j|f|:1 and |sp ;| < K |j|i_1as T — o0
for ¢ < 0.5, where |j|, =max {|j|,1}, and &, is iid (0,0?) with finite fourth moment. Then
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uniformly for A € [0,1].

Proof. First we show that for every A, zp (A\) —, 0 and therefore zp (X\) —4 0, since E [zr (A)] = 0 and
Var [zr (A)] is equal to
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where we assume w.l.o.g. ¢ > 0 (because if ¢ < 0 we can replace it by an arbitrarily small positive number)
and K > 0 is a constant that may change from line to line, while by independence of &,

Cum(xT,t,yT,t,IET,tuyT,t/) = E E E E TT,jST,j/"'T,kST,k’Cum(5t7j75t’7j’a5t7k75t’7k’)
j=0j'=0 k=0 k’=0
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= B Th ST ey = Z| e (t =21 +7)
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for ¢ < 0.5, so Zt/\t ki \QC ? = 0(1), where ky is the fourth order cumulant of ¢; and therefore, compiling

the two type of contributions,

Var [z (\)] = <T2< 2zz|t—t|’“ 2) =0 (T* ") =0(1).

t=11t'=1

To show uniformity in A we show weak convergence of zr (\) to the zero function in D ([0,1]), the space
of cadlag functions on [0, 1] with Skorokhod J;-metric, by showing that z (A) is tight because for all T large
enough and 0 < A\; < Ay < 1,

Eflzr (A2) = 2zr (M) < C' A2 = M[* (1)
for some constants v > 0, & > 1 and C > 0 independent of T', Billingsley (1968). Note that we can consider
only [A2 — Ai| > T~ because otherwise zr (A2) — 27 (A1) = 0.

First, for v = 2,
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and therefore, for ¢ < 0.5,
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because 2¢ — 2 < 0, so (1) holds with & =2 — 2¢ > 1, and the lemma follows. O
Lemma A.2. Let 274 = rpy (L) e, where rpy (L) = ZE:O rr ;L7 denotes a filter, possibly depending

on T, with |rp ;| < K|j|jf1 as T — oo for ¢ < 0.5, where |j|, = max{[j|,1}, and &, is iid (0,0?) with
finite fourth moment. Let &, ~ Ct~° as t — oo for § € (—0.5,0.5). Then
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uniformly for A€ A =[e,1 —¢],e > 0.

Proof. Asin Lemma A.1, first we show that for every A, zp (A) —, 0 and therefore zp (A) —4 0, since
E 27 (N)] =0 and Var [z¢ (\)] is equal to

[TA] [TA] [TA] [TA] ¢nt’
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so that, assuming ¢ > 0 w.l.o.g., if § < 0,
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while if § > 0
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because —2§ > —1 and ¢ — 1 > —1, so Var [zr (A)] — 0 as T — oo because ¢ < 0.5.

To show uniformity in A we show again weak convergence of z7 (\) to the zero function in D (A), by
showing that zp (A) is tight because for 0 <e < A\ <Ay <1—€e< 1,
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because max(ry,j<t<[Tx,] \t/T|_(S < K, so (1) holds for v = 2 and a = 2, and the lemma follows. [J

Lemma A.3. Let 274 = rp (L) e, where rpy (L) = Zj':o rT,ij denotes a filter, possibly depending
on T, with rpp = 0 and |rp ;| < K|j* " as T — oo for ¢ < 0.5, and &, is iid (0,0?) with finite eight

moments. Then
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is tight in D ([0,1]).



Proof. We check condition (1) for v = 4. For that, and denoting by us and p, the third and fourth
moments of €;, respectively,

[TAz] (T'A2] [TA2] [TA2]
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noting that, since zr.e; is a martingale difference (as zp; and e; are independent and zero mean), the
product moment E [T 1, €4, T1,15E4, TT,t5E1, TT,1,E¢, ] 18 only different from zero when the largest two values
in {tl, tQ, t3, t4} are equal.

Then, with t3 = t4, (2) is equal to

3 [TX2] 4t
2 2
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where we evaluate the expectation, using the formula that relates the expectation of a product of random
variables to their cumulants,

E[X;-Xp] =Y ][ com(X;:i € B) (5)

where the summation runs over all partitions 7 of {1,...,n} and cum(-) denotes joint cumulant.

Given E [g;] = 0, then the expression (5) for E (g4, —j,€¢,64,—j,Et,Et5—jsEts—ja) iVolves only partitions
7 for which the cardinality |B| of the index sets B involved for each 7 are (6), (4,2), (3,3), (2,2,2), and,
given independence of &, all ¢ € B have to be equal for each set B for (X, : i € B) = K|p| to be (possibly)
different from zero, where k; is the i-th order marginal cumulant of ;. This fact imposes at least three
restrictions among the indexes ¢; and j; to obtain non-zero contributions to the expectation, some of them

non-feasible because j; > 0, so, for instance, & (€4, —j,,€¢,) = E[et,—j,€¢,] = 0 because &4, _;, and &, are
independent. There are two typical combinations of restrictions involved:

Case a: One restriction j; = ji + t; — t; for some 7 = 1,2,¢ = 1,...,4,7 # 1'; and two restrictions
Jk =tk —ti for K =1,2 and some k € {1,...,4} /{i,7,K'}.

Case b: Two restrictions j; = ji +t; — t;» for some 7,7’ = 1,...,4, 1 # i'; and the restriction t; = ¢s.

Then, assuming ¢ > 0 w.l.o.g., we can bound the contribution to (2) of the Case a terms of (5) by
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because ¢ < 0.5, while the Case b terms, excluding the combinations (1,2) and (3,4), can be bounded by
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while the case with j; = jo +t1 — to = j2 and j3 = jy + t3 — t4 = j4 is bounded using ¢ < 0.5 by
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Since we can consider only |A\y — A;| > T~! because otherwise z7 (\2) — zr (A1) = 0, we have that (6), (7)
and (8) are bounded by K |Ay — A1|*" %, as are the contributions in the presence of additional restrictions
and from (3) and (4) following a similar, but simpler argument. Then (1) holds for a = 2 — 2¢ > 1 because
¢ < 0.5, and the lemma follows. [

Proof of Theorem 1

The consistency and rate of convergence of the restricted estimators (JOT, & /]OT) under the null of
no break follow from Hualde and Nielsen (2017),

JOT —dy = Op(T_l/Q),
for — Mo = Op(Tdo_l/Q)v
Qo — g = OP(T71/2),

and the same result can be shown under Hp g (A\o) with minor modifications of their arguments in the
present situation, which is simpler because the order of the deterministic trend is assumed known, though
asymptotic distributions are affected by a local drift.

~ /
Denoting 7 = (d,&')’, 79 = (do, )’ and For = (doT75¢6T> and, after concentrating out p,, we can

write
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and e () = & (L) Af (y¢ — figr (7)), and
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with m; (1) = a (L) A%1. Then
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where e = ¢; (1)

= T=To
Z; 185 (1) L7 = (log Ay, —c (L; 79) (L,..., LP)") where s; (19) = — (571 ¢j—1(T0) -+, Cimap (’T()))/ S0
that ¢ (L;7) = 1/a (L) = Y72, ¢j (1) L.
Then
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where rp, (L; 1) = 2221 rr,; (To) L? denotes a filter that might change from case to case, possibly de-
pending on T, with |7 ; (70)|| < Kj*~! as T — oo for any ¢ > 0.

Therefore, s; (L; T¢) ) is equal to
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where HCTtH < KT%=1/210gT as T — oo, and it follows that
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Likewise, using the same arguments on figy = figr (Tor), under Hip,
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Writing £§ 1 (A) = Lo, (0,0,0,do, o, 19, 0%, X) and &, = ei(Pyp),
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where & = afiy (£) Af7 (4 — pf) with [[97 — ol < iz — 44
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Then, uniformly in A and under H;7, it holds that
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using Lemma D.5 of Robinson and Hualde (2003) to Taylor expand the functions of ¢y around %, until
an order high enough and bound uniformly in A the contribution of each term using Lemmas A.1 and A.2.
Then, uniformly in A,
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uniformly in A, and therefore

Lopr V) = L% rN)—T1-NEFor—70) +0 (TW)
T
1
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Next, using similar arguments as for (11) and Lemmas A.1 and A.2,
1 T
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uniformly in A\ under Hir, and therefore, using (16) and (17), 5(975)7T (\) is equal to

[AT]

1 A —
(AL =2X) = (A=) )8(67 22 s¢ (L;To)er) e — —22 st (L; 7o) & st—l—op(Tl/z)
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Hence, under Assumption 1 and using a standard central limit theorem for martingale differences and the
tightness from Lemma A.3, we can show that for A € A in D (A)

T 2L,5.0 (A) = (M1 =X0) = (A= X)) E(0,7) +EY2[Bp1 (\) = ABpyr (1], (18)

where = denotes weak converge with the Skorohod metric.

Next, in the direction of v, for a given A,
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First, by a Taylor expansion,
T T
< 1 . ~
Lr) = = (ao( )AL )€t+— (dOT—dO) 3 (aOT( Jlog A ABT )
T =[AT)+1 T t=[AT]+1
1
t— ([OlOT (L) = a0 (D] AL 1) &t
T
T
_ L Z (a (L) Ado ) T1/2=do
= =3 0 L) &+ op( )
OT [ T]4+1
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The terms (20) and (21) are of smaller order than the remaining ones above by Lemma A.2 and For — 79 =
O, (T71/?).
Next, from the term (22),

T Z?: Agol Ado T] N
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since, without loss of generality, for p = 1,
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where the second term is of order (¢ — 1)_d°_1 and thus negligible and the resulting factor ap (1) in (23)

cancels. The first factor of (23) converges deterministically in A to L (dp; 0, A) where

1

L (dy,a,b) = (1— QdO)/ (s—a) % (s—b)"%ds
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with L (do,a,a) = (1 —a)'"2%. Therefore, combining the term (22) with (19), yields, up to 0,(T"/?~do)
terms, that £, 7 is equal to
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Using again (10), the first term in (24) can be rewritten as
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plus terms of smaller order of magnitude.

The last term in (25), multiplied by T4 ~1/2 s
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uniformly in A, while the second term of (25) is of smaller order. Multiplied by 79 ~1/2, the first term of
(25) converges weakly to
ap (1) Wy, (A, 1)
o0/ (1 = 2do) T2 (1 — dp)’

where, under Assumption 1, the following convergence holds, similar to Marinucci and Robinson’s (2000)

results,
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with Wy, (a,b) = (1 — 2d0)1/2 f; (s —a)"% dB(s), (so that Wy, (0, 1) has unit variance) and the convergence
can be shown to be joint with (18). The fractional Brownian motion Wy, (0, A) has the same marginal
distribution as the standard one Wy, (A) = (1 — 2do)1/2 fo)\ (A — )% dB (s) but has a different covariance,

Cov (Wdo (A1), Wy, (0, 1)) = L(dp:0, ). (27)

rather than
Cov (Wa, (1), W, (X)) = 1+ X 72% — B[Wy, (1) — Wy, (V)]

The second term of (24) converges to
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so that, combining the limits of the terms in (24), T%~Y/2L, r (\) converges weakly to
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(28)

Finally, defining,
Dy = diag (T‘l/Q,T‘1/2Ipxp,Td°_1/2> ,

then, by combining the joint convergence of 2(9,5)771 (\) and EV,T (A) as described in (18) and (28), the
normalized score for the LM test for a break in all parameters behaves as

- oL SA
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: (29)
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with the two components being uncorrelated.

In addition, using similar methods, the relevant block of the inverse Hessian converges uniformly in A
as
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because the limit of the Hessian is block diagonal between o2 and the rest of elements of v, while

02Lr (1, ) ’ Dy 2 ) 0 )
9(d, o', 1) 0 (d,o, ) | g, @y (1) za—zay rei=dy)

PLr () oo [(G-NE 0
T T — L(do; A
0 (67 /6/7 V)/ 0 (07 /6/7 V) 0 Oég (1) 0'5(1—2(d0)1—‘2()1—d0)

_DT

o [1

—~

’¢'=77)T

and the cross-derivatives block has the same last limit noticing that L (do;0,A) = L (do; A\, A) .
Finally, (29) and (30) establish the result.
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Proof of Corollary 1

As a special case of Theorem 1 in DRV, for a known break fraction \g, because
Var[B;(N) = AB; (D] = A+ X =22 2 = (1 —=\),i=1,...,p+1,

the distribution of the derivative in the direction of memory and autoregressive component is,
_1/2 A — [ 0 _
T2L gy 7 (o) 2 N (Ao (1-X)E ( ~ ) ;Ao (1= Ao) -5) ; (31)

where the drift and the asymptotic variance are symmetric around \g = % Further, this convergence is
joint with that of the derivative in the direction of the level,

do—1/2 7 d K L (do; \,A) = L* (do;0,A) 5 -\ L(do; A, \) — L? (do; 0, M)
T ‘C”’T(AO)_’N(UOO‘O(” d—2d2(0—dy) WV "G —2a)T2i-do) )’

because
Var [Wdo (A1) = L(do; 0,\) Wy, (0,1)| = L (do; A\, A) + L% (do; 0, X) — 2L2 (do; 0, \)
= L(do;)\a >‘)7L2 (dO;Oa )‘)7

and with zero correlation with the limit in (31). Combining with the behaviour of the Hessian in (30)
establishes the convergence to a x3,,(c) under HESM (X))

Proof of Proposition 1

Consistency of the test in the second regime follows from the fact that the limit of (dOT7 Ay ﬂOT),

differs from (dy, e, p1), which is true since

[AoT] T
(dor. & pror) = rg min - 3 [a@ A @ -]+ Y [ -] (62)
T =1 t=[AoT]+1

and noticing that the argmin of the sum of two convex terms differs from the argmins of the respective
summands.

Then, in the MVT theorems in the proof of Theorem 1, equations (14), (15) and (22) respectively,
the terms (dop — do), (&g — afy) and (figp — pp) converge to nonzero constants. The proof works then
by showing that in this case, the rate needed for convergence of the numerator of the test statistics is the
square of the rate needed under the null (or local alternative). Thus, the test statistic diverges.

In particular, we analyze how the components Lo 1 (\), L5, (A) and £, (\) behave under the different
alternatives, H"* (Ao), H" (Ao) and H®** (o). Under both HI**" (Xg) and H®* (Xy), since (dor — dy) =
0, (1), the term (14) in Lg.7 (\) is of order O, (T) rather than O,(T'/?), where the rates are sharp. Under
H! (Xo), and for dy > 0, since (figp — f19) = O, (1), the term (22) in £, 7 (\) is of order O, (T1~2do)
rather than Op(Tl/ 2_‘10). For dy < 0, the estimator CZ()T converges, from an argument similar to the one in
Proposition 1 in Rachinger (2017), to 0 and thus £, 7 (\) is of order O, (T). Combining these results with
the behaviour of the denominator (30), the LM test statistics (4) in DRV for a break in both parameters
diverge at rate T if there is a break in the dynamics (H>** (Ao) or H®* (X\o)) and it diverges under H' (\o)

at rate T1—24 if d, > 0 and at rate T if dy < 0, the latter because JOT 2,0 in this case.

Proof of Proposition 2
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Part a) Under both H{l’” (Xo) and H{ (\g), dor behaves similarly as dor, implying (dor — dy) =
O, (1). Thus, the corresponding term in Ly 7 (\) similar to (14) is of order O, (T) rather than O, (T"/?).
Thus, the test diverges. Next, under Hi' (\g), the corresponding term (14) with fiy, replaced by i, behaves
as the one in Theorem 1. Thus, similarly as in Corollary 1, we obtain the x? limit.

Part b) Under H* (Xo) and H (o), figr behaves similarly as figp, implying (for — o) = Op (1).
Under HY (o), and for dy > 0, the corresponding term (22) in £, 7 ()\) is then of order O, (T"~2%) rather
than Op(Tl/Q’dO) and the test diverges at rate T'~24. For dy < 0, the estimator dyr converges, from an
argument similar to the one in Proposition 1 in Rachinger (2017), to 0 and thus £, 7 () is of order O, (T
and the test diverges at rate T. Under Hf’“ (M), for dy > 0, dir converges to d; and the test diverges at
rate 717241 for d; < 0, dy7 converges to 0 and the test diverges at rate 7. Finally, under H{ ()\g), the
corresponding term (22) with JOT replaced by dy7 behaves as the one in Theorem 1 as well. Therefore, as
in Part a) we obtain the x? limit.

Proof of Theorem 2

Part a) First, we consider the unfeasible estimates which use true values of (do, &), 110) and 6,8',v)
for a given A. Using (10), we have that under Hi r

T T
DrY XY NXPN Dr = Dr Y. XP(NXY(N) Dr+o,(1)
t=1 t=[AT]+1

2 _ 1-2dyp
= diag {(1 —\)o2E, (?O—(;)dg I‘2>(\)1 — ) } +o0,(1),

/
_ P
uniformly in ), applying Lemmas A.1 and A.2, where X? (\) = <log Ayey, {%}jil , ag (L) A R,EQ) ()\))

because we can write
!/

0 1 - Angm(A)_ 0 p2) ey " 1o+0 p(2)
Xt =[S | {2 oAt R o)
j=1
and therefore, for instance,
(2) 2 —1/2 2
1XT: e 1 XT: TN r
el - 5 t - 7 T sm—1/2) t
r= 0 T t=[AT]+1 (67172)
1 2
=7 Z ({log Ay + Tﬁl/th,T (L; 5)} 5t0)
t=[AT]+1
P > 1 7T2
B U=Nai) ===Vl
—J
Jj=1

where 714 (L; §) = 2221 rr.; (6) L7 denotes a filter depending on 7', with |rr ; (60)| < Kj*~! as T — oo for
any ¢ > 0.

Then, using similar arguments, under H; r,

T T
DrY XY = Dr 3 K4, ()
t—1 t=[AT]+1
T T
= T72Dr N XPWbr (o) +Dr Y. XY (Ner+o, (1)
t=[\T]+1 t=[AT]+1
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uniformly in A, where b, 7 (Ag) = —R§2) (Mo) ((5 log Ay + Z§:1 'yjaal (LYer—j —nT%aq (L) Afﬂ[)\oT]1> .
Next,

o 2 ne a3 ()L(doroN) |’
2Dy Z X A) b (Mo) —p [_Uo (1 —max (A, X)) (6 7') B, 77(10_2d0)p20(10_d0)]

t=[AT]+1

uniformly in A, while

(33)

0 o2 (=1/2 B ! oo (1) Wdo A\ 1) I
~ [)\ZT—HX )er = [ 0 ('_' (Bp+1 (1) = Bpya ()\))) J \/(1 —2do) T2 (1— do)}

by applying a joint FCLT, where the two terms on the right are independent.

We now deal with the estimation of the parameters. Note that with the case of unknown 6 = dy —dy can
be dealt exactly as in LV. Likewise, estimated 3'= o} — e, and v = ji; — 1y do not affect the asymptotic
distribution because they are O, (T -1/ 2) and O, (Tdo_l/ 2), respectively, under Hy 7.

To deal with the effect of estimation of the unknown parameters (dg, vg,pt) by CSS under the null using
observations for the whole sample, note that, using (13), and for X, N =X, ()\, 9T()\), o (A, dor, oT, /]OT),

we can write again under Hy 7,

T T
DrY XWX W Dr = Dr Y XX Dr o, (1)
= t=[AT]+1
2 _ 1—2dy
= diag {(1 —\) o2z, (?0—(12118 r?A(i — } +o,(1), (34)

uniformly in A, because For — 7o = O, (T7Y/2) and fiy; — py = O, (T%~1/2), s0 we can write

% 1 AR (2) ary (AL Ve, ’ dir(V) p(2)
Xe(A) = : o By (A) 9 AT ~ St = g (V) » Gor (L) AR (A)
br () far (L) =

and, for instance, uniformly in A,

AbrREM T )

T T
1 1—A; ~ 1 . 2
=3 ! & = = Y (|logA¢+00(Nre (L) +errry (Li0r(N) ) | €?) + 0, (1)
MBS N (1:8200) )
1 T 2
= 7 Y (ogdEl)’+o,(1) L (1- NPT
t=[\T]+1

where ¢ = O, (T~™/?) for some n > 2 and r; (L) = Z;Zl rr ;L7 and oy (L;60) = Z;Zl rr; (0) L7 denote
filters with |rr ;| < Kj°71, any ¢ > 0, and |rq; (0)] < Kj% log"j as T — oo, and then proceeding as in
Lemma C.5 in Robinson and Hualde (2003) choosing n large enough.

Then, under Hy r, for Y; = éor (L) Ag"” (yt — fior) = &, and using the same methods as in (13) and
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Lemma A.1, Dr Zt L X2 (\)Y; equals

T T (dOT_dO) IOgAtE: .
Dr Y XN +Dr Yo XPN] +(@or (D) —ao (L) 7 ¢ +o, (1)
t=[AT]+1 t=[AT]+1 _ (/JJOT _ No) ag (L) AfOTl
T
_ L (do; 0, \ -
= Dr Y X)(Ne +diag [a?)(lA)E - oo (L0 (For =) +0, (1) (35)
=[NT)+1 (1—2do) T (1 — do)®
T 2 /
o 1) L (do;0,A) L (do; 0, Ao)
_ 0 0 201 1— neg _ o (
Dr 31 KW+ =N A=A 0T -y O

/!

+0p (1)

T

T
DTll Z St LTo)&ft d(),O)\Z Et

uniformly in A, using (12) and (23). Then, combining this result with (33) we obtain

o (1) L (do; Mo, A) ]/
)

T
DrYXWT = [ (1-max () (67)3, gt E )

- o 05 Y, 05U, Ao '
! _Ug A0 )E o : (1()16(;1610()313;)([1/ (—ddo(; : ):|

1 {03 (22 (Byia (1)~ B (V) jfog(iziﬁ?((l%—lzlo)]

fa—ayoz (212 ' oo (1) L(de;0,0) W, (0,1)]'
(1 )\> ( Bp+1 ( )) ’ \/(1 — Qd()) T2 (1 — do) ]

and this together with (34) shows that the asymptotic distribution of LMW 2,7 (A) is as in Theorem 1.

Part b) The proof follows from Part a) in a similar way as in the proof of Corollary 1.

Proof of Proposition 3

The proof follows as that of Proposition 1 by exploiting the different behaviour of estimates under the
null and the alternative. In particular, 1o and 9, are mimizing over different sums, the former as in (32),
the latter, for A < Aq,

) AoT] 9 T 2
(dirGirsing) =arg min 7 Jar (WA @e—m)] 4+ Y [aa (DAL gy = )]
v t=[hoT]+1

As for gy, the limit of the first summand is minimized by (do, e, o), while the limit of the second
summand is minimized by (dy, e, pi;). However, the first summand consists for ¢4 only of [(Ag — A) T]
terms, with A > ¢, while for ¢ it consists of [\¢T] terms. Thus, similarly in Proposition 1, the limits of
limit of ¢y and ¢, differ. For A > g, the argument simplifies since only a term minimized by (d1, &}, y1;)
remains.

Then, under the fixed alternative of one break in the dynamics in any direction, 6 # 0 and/or 3 # 0,
under H f * and under H f @H plimf # 0 and plim3 # 0 so that for a similar reason as in Proposition 1, the
OLS estimates ¢17 (A\) and ¥, (\) converge to nonzero constants and the test statistic diverges.
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Under H{', similarly, plim(fi,; — figr) # 0. Further, as before, dor converges to d (resp. 0),if dy >0
(resp. < 0). Then, the last term in the second term in (35) is of order O,(T'/2~%) if dy > 0 and of order
0,(VT), if dy < 0. Thus, LMWy = O, (T*~?%), in the former, and LMW1 = O, (T), in the latter

case.

Finite sample properties of LM and LMW-type tests
implemented in Regimes 1 and 2

In order to illustrate the gains from the symmetric tests, we repeat the exercise leading to Table 1
in DRV but now for the tests implemented in Regimes 1 and 2 separately. In particular, consider the
case of a known break fraction of Ay = 0.5. Also here, the significance level is 0.05 and the sample sizes are
T = 200,500 and 1,000 when considering size, and T' = 200 as regards power. We take draws from a N (0, 1)
distribution. For the size, d takes the values {—0.4,—-0.3,—0.2,—0.1,0,0.1,0.2,0.3,0.4} and a non-breaking
level of iy = 0. To compute power, we consider dy € {—0.2,0,0.2}, d; € {-0.4,—-0.2,0,0.2,04}, pg =0
and pq = {0,0.25,0.5,1}. The number of simulations is 10,000. Table Al (panels a through d) displays the
size of the LM and LMW-type tests, respectively, when testing in the first and second regime and for breaks
in both d and u. Next, Table A2 displays the power results of the two tests for a break in d and/or p at
Ao = 0.5. Figures in bold characters correspond to size. In comparison to Table 1 in DRV, here size is less
stable over different memory parameters and power stronger depends on the direction of the break.
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Table Al: Simulated size of LM and LMW-type tests for a joint break in memory

and level.
a) LM test in Regime 1

T \dp -04 -03 -02 -01 0 01 02 03 04
200 43 40 38 3.7 35 42 47 54 86
500 46 47 47 46 43 43 49 57 73
1000 53 49 43 44 49 44 52 54 6.2
b) LM test in Regime 2
T \dp -04 -03 -02 -01 0 0.1 02 03 04

200 6.6 6.0 54 47 44 45 4.0 4.0 43
500 56 54 53 48 46 46 43 45 49
1000 5.7 55 51 48 51 46 48 45 4.7
¢) LMW-type test in Regime 1
T \dp -04 -03 -02 -01 0 01 02 03 04
200 66 64 62 58 78 74 68 63 7.1
500 54 58 64 66 65 6.5 6.7 7.0 7.8
1000 6.1 58 56 6.1 62 6.0 63 63 6.6
d) LMW-type test in Regime 2
T \dp -04 -03 -02 -01 0 01 02 03 04
200 76 78 68 69 58 64 7.7 66 6.8
500 6.7 66 6.1 64 6.7 64 63 6.2 6.1
1000 64 65 6.1 59 63 59 59 55 55
Rejection probabilities of 5% test for joint break in d and p at A\g = 0.5, uy =0, 03 = 1.
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Table A2: Simulated power of LM and LMW-type tests for a joint break in

memory and level.
a) LM test in Regime 1

dy -0.2 0 0.2
di\p; 0 025 05 1 0 025 05 1 0 025 05 1

-0.4 176 94.6 100 100 |67.4 822 97.8 99.9|96.1 949 943 97.3
-0.2 3.8 71.7 99.8 100 | 18.0 556 93.2 999 | 71.1 745 85.7 97.8
0 31.8 56.3 96.6 100 | 3.5 189 71.6 100 | 155 26.2 51.9 934
0.2 83.9 879 96.0 99.9 | 34.7 412 60.4 978 | 4.7 88 234 80.0
0.4 99.1 994 994 100 | 89.1 89.3 920 96.6 | 42.7 45.6 549 794
b) LM test in Regime 2
do 20.2 0 0.2
di\p; 0 025 05 1 0 025 05 1 0 025 05 1

-0.4 41.6 96.2 100 100 |[91.1 904 89.7 99.9 | 99.8 98.4 96.4 97.3
-0.2 54 742 99.7 100 | 41.6 688 950 99.9|90.1 92.1 944 98.3
0 11.1 49.6 96.5 100 | 4.4 215 71.5 99.9| 351 42.6 61.9 94.2
0.2 58.1 70.7 89.0 999 | 129 24.1 50.0 968 | 4.0 72 21.8 7T7.9
0.4 95.1 944 954 100 |62.7 66.5 722 89.7|18.9 21.7 30.0 64.7

c¢) LMW-type test in Regime 1

do -0.2 0 0.2

dy \ J 0.25 0.5 1 0 025 05 1 0 0.25 0.5 1

-0.4 16.6 92.9 100 100 | 65.0 80.0 96.5 100 | 96.5 954 94.2 96.8
-0.2 6.2 849 100 100 | 17.3 49.7 92,5 100 | 69.7 74.8 84.1 97.3
0 449 834 99.5 100 | 5.8 346 83.5 100 | 17.8 27.8 523 938
0.2 91.3 94.3 98.8 100 | 45.7 585 81.8 994 | 6.5 144 36.2 85.7
0.4 99.7 99.8 99.8 100|925 92.7 949 983 |46.5 50.8 594 82.6
d) LMW-type test in Regime 2
do -0.2 0 0.2
dy \ fy 0 0.25 05 1 0 025 05 1 0 0.25 05 1

-0.4 48.3 98.3 100 100 |93.1 934 99.2 100 |99.8 993 97.1 99.0

-0.2 8.8 84.1 100 100 |49.6 79.8 98.8 100 |93.0 94.3 97.1 99.9

0 14.0 49.0 95.7 100 | 7.8 34.8 83.5 100 | 45.8 58.0 80.0 99.1

0.2 63.9 70.1 86.8 99.3|16.0 248 514 950 | 7.7 141 335 83.2

0.4 96.4 96.8 97.2 99.2 | 66.7 685 753 88.6 | 17.1 21.1 286 579
Rejection probabilities of 5% test for joint break in d and p at \g = 0.5, py = 0, 03 = 1, T' = 200.

Bold numbers correspond to size simulations.
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