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Abstract

Bahadur and Savage (1956) (hereafter BS) showed that any valid test procedure about
the mean of a sequence of i.i.d. random variables has power not larger than its size when
the distribution is not specified. We refer to this situation as non-testabilty. We propose
extensions of BS’s result to multivariate models with dependence and/or heterogeneity
and where the parameter of interest does not necessarily coincide with the expectation.
We show for instance that the covariance or the linear correlation matrix parameters are
non-testable parameters. When non-testability obtains, asymptotic consistent test pro-
cedures necessarily have level 1 in the limit, regardless of the claimed level. Moreover,
the convergence of the type 1 risk to the nominal level α is arbitrarily slow. These prop-
erties are true even when “corrections” for size distortion (e.g.,bootstrapping) are made.
Non-testability problems are then investigated in econometric models, where a distinc-
tion between exogenous and endogenous variables is made, and where the parameters
of interest are defined by moment conditions. We propose a valid and somewhere pow-
erful test for the slope coefficients of a linear regression model when the error terms
are identically distributed. However, we also show that the slope parameters are typi-
cally non-testable when the assumption of identically distributed errors is relaxed (for
instance if the error terms are assumed independent and homoskedastic). We show how
to extend these results to nonlinear regression and nonparametric regression models.
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1 Introduction

Providing inference procedures that are robust to various specifications of the DGP (data
generating process) may undoubtedly be regarded as a major goal in econometrics. No
less than five chapters of the two last issues of the Handbook of Econometrics deal with
this issue [see Aı̈t-Sahalia et al. (2001), Powell (1994), Andrews (1994), Arellano and
Honoré (2001), Matzkin (1994)]. Procedures have been proposed to handle semipara-
metric specifications for limited dependent endogenous variables, time series and panel
models. The rapidly growing development of computing capacities has undoubtedly
played a large role in these achievements.

Nevertheless, several recent papers cast doubts on the validity of some of the tech-
niques proposed: see for instance Dufour (1997), Gleser and Hwang (1987). More
recently, Pötscher (2002) pointed at a class of “ill-posed” problems where reliable and
meaningful inference procedures do not exist.

A pioneering result in this context is Bahadur and Savage (1956) (hereafter BS).
In a semiparametric setting, BS proves that any valid test shows power not larger than
its size, when the parameter of interest is an expectation. Moreover in this model, a.s.
bounded confidence regions have necessarily zero coverage probability and the loss of
point estimators cannot be controlled.

A typical result obtained by Bahadur and Savage (1956) is the following. Assume
X1, . . . , Xn are i.i.d. random variables whose common expectation is either 0 or 1,
and whose all higher order moments exist. Then the power of any α-level test of H0 :

E(X1) = 0 against H1 : E(X1) = 1 is necessarily less than α (see example 2 below).
Moreover, if C is a confidence set for E(X1) such that Pj(k 6∈ C) = 1 when j 6= k,
where Pj is a probability forX1 with expectation j, j, k = 0, 1, then the confidence level
of C cannot be 1− α, for all α ∈ ]0, 1[. In other words, C coincide with the parameter
space with probability 1.

Although the results by BS are not restricted to testing problems, it has been sug-
gested to refer to this situation as “non-testability” [Dufour (2003)]. Tibshirani and
Wasserman (1988) generalized the results of Bahadur and Savage. More recently Ro-
mano (2004) examined the size and power properties of the t-test in a semiparametric
setting.

Despite their theoretical importance, BS’s results —as well as those obtained by
Tibshirani and Wasserman (1988) and Romano (2004) — deal with finite random sam-
ples (i.i.d. observations). Now, most semiparametric inference methods are developed

2



in the non-i.i.d. case and are justified on asymptotic grounds. As such, the results ob-
tained by BS and their followers do not directly apply in this context. Therefore, it could
be claimed that using covariates and/or relying on asymptotic approximations could be
a way out of BS’s non-testability results.

This paper investigates non-testability issues in the context of statistical models
more relevant to the econometrician.

First, we provide a formal definition of (non)-testability of a testing problem. This
definition is naturally extended to a parameter. Roughly speaking, a testing problem is
non-testable is the power of any test cannot exceed its level. A parameter θ is thus said
non-testable whenever any hypothesis of the form θ = θ0 is non-testable against the
alternative θ 6= θ0. We stress that non-testability of a property of a testing problem and
not that of a particular test or inference method. We therefore study how this property
is affected by various transformations of the testing problem (enlargement of the null
and/or alternative hypothesis, parameter mappings, etc). In particular, we show that any
transformation of a non-testable parameter is non-testable.

Second, as an extension of BS’s initial result, we provide sufficient conditions for
non-testability in more general settings. In particular, our result applies to possibly
multidimensional parameters, not necessarily related to the expectation of a distribution,
and dependence and/or heterogeneity are allowed. Interestingly, we relate this to results
obtained by Pötscher (2002) and show that when non-testability holds, there is no small
enough neighbourhood in the alternative hypothesis over which the type II risk can
be bounded. Based on this result, we provide examples of non testable parameters.
Specifically, we show that no meaningful test procedure exists for the covariance or the
linear correlation matrix parameters. The variance and the bounds of the support of a
random variable are partially non-testable parameters, a weaker form of non-testability.

Next we consider a possible departure from the original context of BS’s result by
letting the sample size be arbitrarily large. We investigate the asymptotic properties of
test procedures for non-testable problems. We show that non-testability (either partial or
not) implies that any asymptotic consistent test procedure necessarily has level 1 in the
limit, regardless of its claimed level. This holds even when “corrections” (for instance
bootstrapping) are made in order to reduce the discrepancies between the actual and
the claimed level. As a consequence, we prove that the convergence towards α of the
null rejection probabilities of an asymptotic consistent test is arbitrarily slow when the
problem under test is non-testable.

Finally, we examine testability issues that are more specific to econometric models,
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where the parameters of interest are defined in terms of moment conditions. We first
consider a basic semiparametric linear regression model. Surprisingly, although the ex-
pectation of the dependent variable is non-testable (due to BS’s original result), a valid
α-level and somewhere powerful test may be provided for the slope parameters when
the errors terms are assumed identically distributed. Thus non-testability concerns the
intercept parameter only. This shows that using covariates may indeed be a way out
of BS’ impossibility results. However, when the assumption of identically distributed
error terms is relaxed, testability of the slopes is typically lost. In particular, the param-
eters of a linear regression model with independent and homoskedastic error terms are
non-testable. We next show how to extend this problem to nonlinear or nonparametric
regression models. In this last case, neither the regression function nor the hypothesis
of significance of a given regressor are testable.

The paper is organized as follows. In section 2, we provide the formal definitions
of the concepts of testability and non-testability, and we derive basic properties related
to these concepts that are free of a particular specification of the underlying statistical
model. Section 3 presents some extensions of the main result of Bahadur and Savage
(1956). Section 4 is devoted to the study of the asymptotic behavior of tests in presence
of non testability. In section 5, we provide various examples of non-testability. We
investigate testability of the parameters of linear regression models in section 6 and
extensions to more general models are considered in section 7. Section 8 concludes.
All proofs are given in the appendix section.

2 Testability and non-testability

Before investigating issues related to the results presented in this paper, we provide
the definitions of size, level and power of a test used in the paper. These definitions
are those of Lehmann (1986). Let P be a family of probability distributions for a n-
tuple (X1, . . . , Xn) of random vectors whose distribution is determined by a probability
measure P ∈P. We consider the problem of testing

H0 : P ∈P0 against H1 : P ∈P1 , (2.1)

where P0 and P1 are two subsets of P. We denote this problem by the ordered pair
(H0, H1). A test ϕ for (H0, H1) is a (possibly random) function of (X1, . . . , Xn) to
{0, 1}. We shall write ϕn for ϕ(X1, . . . , Xn). The equality ϕ = 1 is interpreted as the
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action of “rejecting” H0 (against H1) and ϕ = 0 is the action of “accepting” H0.

The size of ϕ is the number supP∈P0
P(ϕn = 1). The test ϕ has level α whenever

its size is less than or equal to α. Moreover, ϕ is similar at level α if P(ϕn = 1) = α,

∀P ∈ P0. The power of ϕ is the function P ∈ P1 7−→ P(ϕn = 1). Finally, a test ϕ
is biased at level α, if (1) ϕ has level α, and (2) for some P ∈ P1 the power of ϕ is
strictly less than α. Note also that P(ϕn = 1) = EP(ϕn), where EP is the expectation
associated with P.

Whatever α ∈ [0, 1], it is always possible to obtain a test with size α. This test is
denoted ϕ∗(α) and is defined by

ϕ∗(α) = I(U[0,1] ≤ α), (2.2)

where U[0,1] is uniform on [0, 1] and I(A) is the indicator function of the event A. It is
therefore clear that the main issue in any testing problem is whether a test better than
ϕ∗(α) exists. If not, ϕ∗(α) is UMP at level α. In other words, it is optimal not to use
the data for deciding H0 or H1. The hypotheses under test are then called non-testable,
in the sense that no data can provide information that helps discriminating between the
null and the alternative. We provide a formal definition of this concept.

2.1 Definitions

Definition 2.1 (TESTABILITY AND NON-TESTABILITY). Let (H0, H1) be the testing

problem in (2.1) and let α ∈ [0, 1].

(1) H0 is testable at level α against H1 iff there exists a test ϕ for (H0, H1) such that:

(i) P(ϕ = 1) ≤ α for all P ∈ P0, and (ii) P(ϕ = 1) > α for at least one

P ∈P1.

(2) H0 is non-testable at level α against H1 iff H0 is not testable at level α against H1.

(3) H0 is testable againstH1 iffH0 is testable at level α againstH1 for some α ∈ [0, 1].

(4) H0 is non-testable against H1 iff H0 is non-testable at level α against H1 for all

α ∈ [0, 1].

In parts (1) and (2) of the above definition, we formally allow α = 1; but for α = 1, it
is clear that H0 cannot be testable at level α against any hypothesis H1 and the property
that H0 is non-testable at level 1 against H1 necessarily holds irrespective of the pair
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(H0, H1) considered. From the above definition, it is also easy to see that H0 is non-

testable at level α against H1 iff

P(ϕn = 1) ≤ α, ∀P ∈P0 ⇒ P(ϕn = 1) ≤ α, ∀P ∈P1, (2.3)

i.e., if the power of any level-α test of H0 against H1 cannot exceed the level α. In
such cases, a test of the form ϕ∗(α) in (2.2) which does not depend on the data is UMP
at level α. Similarly, H0 is non-testable against H1 iff the power of any test does not
exceed its level, irrespective of the level α ∈ [0, 1]. When H0 is non-testable (at level
α) against H1, we also say that the problem (H0, H1) is non-testable (at level α).

In certain situations, it is useful to consider a weaker notion of non-testability, we
call partial non-testability.

Definition 2.2 (PARTIAL NON-TESTABILITY). Let (H0, H1) be the testing problem in

(2.1) and let α ∈ [0, 1].

(1) H0 is partially non-testable at level α against H1 iff for any α-level test ϕ of H0,

there exists a non empty set P̂1 ⊂P1 such that P(ϕ = 1) ≤ α, ∀P ∈ P̂1.

(2) H0 is partially non-testable against H1 iff H0 is partially non-testable at level α

against H1 for all α ∈ [0, 1].

When H0 is partially non-testable (at level α), against H1, we also say that the

problem H = (H0, H1) is partially non-testable (at level α). Partial non-testability
of H simply means that the power of any test of H0 against H1 collapses for some
alternatives. The subset P̂1 over which the power of a test does not exceed its level
may depend on the level and on the test used. Obviously, non-testability implies partial
non-testability with (for instance) P̂1 = P1 for all α and all test ϕ.

Non-testability (or partial non-testability) of a given problem directly follows from
the specification of the statistical model P in which it is formulated. Non-testability
(or partial non-testability) is then a property of the model itself.

Testability and (partial) non-testability may be extended to a parameter in a natural
way. Let θ : P → Θ be a parameter defining mapping on P —which defines the
parameter θ— and θ ∈ Θ denote the image of the true DGP P: θ ≡ θ(P). When
introducing a testing problem about the parameter θ, we will denote a null hypothesis
as H0 : θ ∈ Θ0, which is a shortcut for

H0 : P ∈ {P ∈P : θ(P) ∈ Θ0}. (2.4)
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In particular, let us write:

H0(θ0) : P ∈ {P ∈P : θ(P) = θ0}, H1(θ0) : P ∈ {P ∈P : θ(P) 6= θ0}. (2.5)

In statistical applications, the mapping θ defines the parameter of interest. Notice that
fully nonparametric models are allowed by choosing the mapping θ as the identity map-
ping on P, i.e., θ(P) = P.

Definition 2.3 (TESTABLE PARAMETER). Consider a family of testing problems in-

dexed by θ0 ∈ Θ as defined in (2.5) and let Θ∗ be a non empty subset of Θ.

(1) The parameter θ is testable at level α on Θ∗ iff H0(θ0) is testable at level α against

H1(θ0) for any θ0 ∈ Θ∗.

(2) θ is testable on Θ∗ iff H0(θ0) is testable against H1(θ0) for any θ0 ∈ Θ∗.

(3) The parameter θ is (partially) non-testable on Θ∗ iff H0(θ0) is (partially) non-

testable against H1(θ0) for any θ0 ∈ Θ∗.

(4) The parameter θ is (partially) non-testable iff it is (partially) non-testable on θ(P).

Since θ is a mapping, the parameter is necessarily identified in the usual sense
where: P(θ1) ∩P(θ2) 6= ∅ ⇒ θ1 = θ2. To account for non-identifiability, we need
consider θ as a correspondence P → P(Θ), where P(Θ) is the set of all subsets of
Θ. Now assume that we face a non-identified parametric problem i.e, there exists two
distinct values θ1, θ2 in Θ such that P(θ1) ∩P(θ2) 6= ∅. Consider H0 : θ ⊂ Θ0 and
H1 : θ 6⊂ Θ0. When θ1 ∈ Θ0 and θ2 6∈ Θ0 H0 is partially non-testable against H1.

Unless explicitly mentioned, we address testability issues that arise when the parameter
is identified and θ is therefore a mapping.

2.2 Testability and confidence regions

It is well known that confidence regions and testing problems are closely related. We
have the following property.

Proposition 2.4 (NON-INFORMATIVE PROPERTY OF CONFIDENCE REGIONS ON NON-
TESTABLE PARAMETERS).Let C be a confidence region with level 1−α for the param-

eter θ taking values in Θ. If θ is non-testable at level α on Θ∗, then P(θ0 ∈ C) ≥ 1−α
for all admissible value of θ0 ∈ Θ∗ and all P ∈P.
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This shows that non-testability entails that valid confidence regions are totally un-
controllable. In particular, if some metric on Θ is available, we obtain results similar to
Dufour (1997). For instance, if Θ is an unbounded set and the confidence set C is al-
most surely bounded, confidence regions on non-testable parameters have zero coverage
probability.

2.3 Invariance properties

We examine how testability of a testing problem is preserved when the problem is trans-
formed through modifications of the null hypothesis or the alternative hypothesis.

2.3.1 Modifications of the testing problem

Let P be a statistical model and let P̃0 and P̃1 be defined as P̃k = Pk ∩ P̃ 6= ∅,
k = 0, 1 for some subset P̃ of P and P0 ∪P1 = P. Clearly, P̃k ⊆ Pk, k = 0, 1,

so that P̃k is more restrictive than Pk. Let us also define

Hk : P ∈Pk, H̃k : P ∈ P̃k, (2.6)

k = 0, 1.

Proposition 2.5 (MONOTONICITY OF PARTIAL NON-TESTABILITY). If (H̃0, H̃1) is

partially non-testable then (H0, H1) is partially non-testable.

One may think that if a problem is non-testable, it remains non-testable in a larger
model. Proposition 2.5 shows this is true for partially non-testable problems. However
it may not hold for non-testable ones as shown by the following example.

EXAMPLE 1. Let P̃ be the set of all continuous distributions on R with finite expec-
tation. The null hypothesis is H̃0 : EP(X) = 0 and H̃1 : EP(X) 6= 0. According
to Bahadur and Savage (1956), the problem H̃ = (H̃0, H̃1) is non-testable. Now let
P = P̃ ∪ {δ{1}} where δ{1} is the Dirac mass at point 1. Let H0 : EP(X) = 0 and
H1 : EP(X) 6= 0. Let 0 < α < 1 and consider the following test procedure “if the
first observation of the sample is 1 reject the null otherwise draw U in the uniform dis-
tribution on [0, 1] and reject the null whenever U is smaller than α”. Under the null,
the distribution is continuous, hence the event X1 = 1 has probability zero. Thus the
procedure has level α. Now under the alternative δ{1} the rejection probability is 1 > α.
�
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As for non-testability, we have the following result.

Proposition 2.6 (MONOTONICITY OF NON-TESTABILITY).For each α ∈ ]0, 1[ if (H̃0, H1)

is non-testable at level α, then (H0, H̃1) is non-testable at level α.

The last result of this section shows that when enlarging a testable problem, a some-
where powerful α-level test of the “small” problem cannot be valid for the “large” one,
if this large problem is non-testable.

Proposition 2.7 Suppose H̃0 is testable at level α against H̃1, while H0 is not testable

ate level α against H1. If ϕ is not dominated by ϕ∗(α) for testing (H̃0, H̃1) then ϕ is

not a test with level α for testing (H0, H1).

2.3.2 Parameter transformations

We consider the problem of testability of functions of a parameter.

Proposition 2.8 (TRANSFORMATIONS OF NON-TESTABLE PARAMETERS). Let P be

a statistical model and θ : P → Θ be a parameter s.t. θ(P) is defined ∀P ∈ P. Let

g : Θ → Λ be any mapping and define λ : P → Λ by λ = g ◦ θ. If θ is non-testable

then λ is non-testable.

However, if θ is partially non-testable only, some transformations of this parameter may
be testable (see Proposition 6.2 below for an example).

As a related result, we now consider the case Θ = Γ× Ψ so that any θ ∈ Θ can be
decomposed as θ = (γ, ψ) ∈ Γ×Ψ. We may define the sub-parameter mappings γ and
ψ as the projections of θ on Γ and Ψ, respectively. The true values of θ, γ and ψ are
θ = θ(P) = (γ, ψ), with γ ≡ γ(P) and ψ ≡ ψ(P).

Proposition 2.9 (MARGINILIZATION OF NON-TESTABLE PARAMETERS). If θ is non-

testable, then γ is non-testable.

Proposition 2.10 (SUBPARAMETERS OF NON-TESTABLE PARAMETERS). If ∀γ0 ∈ Γ,

∀ψ0 ∈ Ψ, Hψ0

0 (γ0) : {γ = γ0, ψ = ψ0} is non-testable against Hψ0

1 (γ0) : {γ 6= γ0, ψ =

ψ0}, then

(1) γ is non-testable;
(2) θ is partially non-testable.
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3 Bahadur-Savage result and its extensions

As we already mentioned Bahadur and Savage (1956) provide an example of a non-
testable parameter. Bahadur and Savage (1956) consider a n-tuple of i.i.d. real ran-
dom variables. They establish in this setting a general result which implies the non-
testability of the expectation. The purpose of this section is to extend BS’s result to
models more relevant to econometrics, by considering models where the i.i.d. assump-
tion is not required: dependence and/or heterogeneity is allowed. Moreover, probability
distributions are possibly multivariate and parameters are not necessarily defined as an
expectation.

3.1 A generalized BS-type theorem

The main result is given by Theorem 3.1 below. It formally proves BS’s comments on
possible extensions of their Theorem 1 (and the accompanying corollaries) to parame-
ters other than the expectation.

Theorem 3.1 (GENERALIZED BAHADUR-SAVAGE THEOREM).For a real random vec-

tor X of Rd, consider a family of probability distributions P. For some set Θ, let

θ : P → Θ be a mapping such that θ(P) is defined for all P ∈ P, and let P(θ) ≡
{P ∈P : θ(P) = θ}. Suppose the following conditions are satisfied:

(BSE1) for every θ ∈ Θ, there exists a P ∈P such that θ(P) = θ;

(BSE2) for all π ∈ ]0, 1[, θ1 ∈ Θ, θ2 ∈ Θ and P1 ∈ P(θ1), there exists a probability

distribution P̃ such that πP1 + (1− π)P̃ ∈P(θ2).

For any positive integer ν, Bν denotes the set of all Borel functions defined on Rν , taking

values in [0, 1]. Then for any integer N ≥ 1, for any θ ∈ Θ and any function f ∈ BNd,

sup
P∈P(θ)

EP(fN) = sup
P∈P

EP(fN) and inf
P∈P(θ)

EP(fN) = inf
P∈P

EP(fN) ,

where for f ∈ BNd and P ∈P, fN ≡ f(X1, . . . , XN) and:

EP(fN) ≡
∫

RNd
f(x1, . . . , xN)dP⊗N(x1, . . . , xN).

In most applications of Theorem 3.1, we will have N = 1 and X = (X1, . . . , Xn)

where Xi is a real random q-vector, so that d = qn. Notice Theorem 3.1 also applies to
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fully nonparametric models if we set θ(P) = P.

Corollary 3.2 (PROPERTIES OF UMP AND SIMILAR TESTS FOR NON-TESTABLE HY-
POTHESES).Let P be a statistical model for a n-tuple (X1, . . . , Xn) of real random q-

vectors, with true distribution P ∈P. Let θ be the mapping of Theorem 3.1. Consider

the problem of testing H0 : θ(P) ∈ Θ0 against H1 : θ(P) ∈ Θ1, where Θ0 and Θ1 are

disjoint non empty subsets of Θ with Θ0 ∪ Θ1 = Θ. If BSE1 and BSE2 hold, then for

any α ∈ ]0, 1[ and any α-level test ϕ,

(1) the test ϕ∗(α) defined in (2.2) is UMP for testing H0 against H1;

(2) if ϕ is similar at level α, then EP(ϕn) = α, ∀P ∈P.

(3) if ϕ is not similar then ϕ is biased at level α.

As part (1) of Corollary 3.2 holds whatever the choices for Θ0 and Θ1, BSE1 and
BSE2 are sufficient conditions for the non-testability of θ.

3.2 Refined results

A careful look at the proof of Theorem 3.1 shows if BSE1 and BSE2 hold, for any θ0 ∈
Θ, any Q 6∈ P(θ0), we may find P ∈ P(θ0) such that ∀N ≥ 1, supg∈BNq |EP(gN) −
EQ(gN)| is arbitrarily small. In the context of testing H0(θ0) against H1(θ0) with a
sample (X1, . . . , Xn) ∈ Rqn, this translates into

∀ε > 0, ∀Q 6∈P(θ0),∃P ∈P(θ0) such that |EP(ϕn)−EQ(ϕn)| < ε,∀ϕ ∈ Bnq. (3.1)

In other words, under BSE1 and BSE2, for any test ϕ the distance between the type-1
risk and the power must be arbitrarily small under any alternative. This means that
when bounding the type-1 risk (or the size) of a test, one also necessarily bounds its
power. This leads to part (1) of Corollary 3.2.

This conclusion can be refined by noting that under BSE1 and BSE2, (3.1) holds
whatever the choice of θ1 6= θ0 and any P1 with θ(P1) = θ1. In particular, if Θ is a metric
space with metric ρ, we have (3.1) with ρ(θ0, θ1) arbitrarily large. As D(P0,P1) ≡
supϕ∈Bnd |E(ϕn) − E(ϕn)| defines a pseudo-distance on P, we may interpret (3.1) in
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terms of continuity of the parameter mapping θ. Indeed we have under BSE1 and BSE2:

∀P1 ∈P(θ1),∀0 < ε ≤ diam(Θ), ∀δ > 0,∃P0 ∈P(θ0) such that

D(P1,P0) < δ and ρ
(
θ(P1), θ(P0)

)
≥ ε,

where diam(Θ) denotes the diameter of Θ. This implies that (i) the mapping θ is dis-
continuous at every P1 ∈ P(θ1) and (ii) discontinuity jumps are of arbitrarily large
amplitude.

This result is similar to those obtained by Pötscher (2002) in the context of point
estimation. Pötscher (2002, Corollary 2.2) shows that when the parameter is a discon-
tinuous function of probability distributions, the minimum risk of any estimator of the
parameter is strictly positive in every neighborhood of the true value. It is possible to
derive a similar result for tests when the parameter of interest is non-testable.

Proposition 3.3 (PROBABLITY OF TYPE II ERROR FOR A NON-TESTABLE HYPOTHE-
SIS). If θ is a non-testable parameter, then for any α ∈ ]0, 1[, any θ0 ∈ Θ and any

P1 6∈P(θ0), we have

inf
ϕ∈Φα

inf
ε>0

sup
P∈Vε(P1)

[
1− EP(ϕn)

]
≥ 1− α

where Vε(P1) ≡ {P ∈ P : D(P,P1) ≤ ε} and Φα is the set of all tests ϕ such that

supP∈P(θ0) E(ϕn) ≤ α.

Suppose we are interested in testing H0 : θ = θ0 against H1 : θ 6= θ0. The above
proposition shows that for any distribution P1 in the alternative there is no small enough
neighborhood of P1 such that the type 2 risk of an α-level test is less than 1− α.

A further refined result is obtained by noting that BSE2 is actually not a necessary
condition for obtaining 1 of Corollary 3.2. Define P(Θk) ≡ {P ∈ P : θ(P) ∈ Θk},
k = 0, 1. Result 1 of Corollary 3.2 follows as soon as P(Θ0) is dense in P(Θ1) w.r.t.
D:

(BSE3) ∀ε ∈ ]0, 1],∀P1 ∈P(Θ1),∃P0 ∈P(Θ0), s.t. D(P0,P1) < ε ;

[see Tibshirani and Wasserman (1988, definition of section 2) or Romano (2004, con-
dition A)]. Using Lemma B.2 (see the Appendix), it is easily seen that BSE3 holds
whenever

(BSE4) ∀π ∈]0, 1[, ∀P1 ∈P(Θ1),∃P̃ s.t. πP1 + (1− π)P̃ ∈P(Θ0)
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holds, where P̃ is some probability distribution. Condition BSE4 is weaker than BSE2.
It requires that contaminating appropriately any distribution in the alternative hypothesis
yields a distribution in the null. In our paper, many results similar to (1) of Corollary
3.2 will be shown to follow directly from BSE4.

Results related to Theorem 3.1 and Corollary 3.2 have been obtained by Tibshi-
rani and Wasserman (1988), Devroye and Lugosi (2002), Romano (2004) and Forchini
(2005). Gleser and Hwang (1987), Blough (1992), Pfanzagl (1998), Dufour (1997)
and Faust (1999) derived similar results for set and point estimation. Some of these
references also provide a result similar to the following one.

Proposition 3.4 (CONTINUITY OF NON-TESTABILITY).Let P = {Pθ : θ ∈ Θ} define

a statistical model for a random vector X, with Θ a set on which some mode of conver-

gence may be defined. Consider the testing problem H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1.

Let Θ∗1 be the set of all elements of Θ1 defined by

θ1 ∈ Θ∗1 ⇐⇒ (∃{θ0,n : n ≥ 1} ⊂ Θ0, lim
n→∞

θ0,n = θ1).

Introduce the following assumption:

(BSE5) {θn : n ≥ 1} ⊂ Θ and limn→∞ θn = θ ∈ Θ implies Pθn
w−→ Pθ, n → ∞,

where w−→ denotes weak convergence.

Let ϕ be an α-level test ofH0 againstH1 and assume Θ∗1 6= ∅.Under assumption BSE5,

if for some θ1 ∈ Θ∗1 we have Pθ1
(
∂{X : ϕ(X) = 1}

)
= 0, then infθ∈Θ1 Pθ(ϕ = 1) ≤ α.

Moreover, if this holds for any θ1 ∈ Θ∗1 and Θ∗1 = Θ1, then supθ∈Θ1
Pθ(ϕ = 1) ≤ α.

3.3 Non-testability and the “size” of models

It is certainly true that non-testability does not arise in sufficiently “small” statistical
models. This is for instance true if the set of possible probability distributions is reduced
to only two elements, for in that case, we may invoke the Neyman-Pearson lemma. It
may thus be thought that non-testability arises when the problem under test is “too
large”, in the sense that the model is not constrained enough. The following examples
show that what is a “constrained enough” model is unclear.

EXAMPLE 2. Consider a model for a n-tupleX1, . . . , Xn of i.i.d. real random variables.
In this model it is assumed that E(X1) exists and is either θ0 or θ1, so that Θ = {θ0, θ1}.
The family P consists of all such probability distributions for X1, . . . , Xn. Consider
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testing H0 : θ = θ0 against H1 : θ = θ1. Choose ε ∈ ]0, 1[, π ∈ ]0, 1[ such that
1− πn < ε, and P1 ∈P such that θ(P1) = θ1. Now define θ̃ ≡ θ0−πθ1

1−π and

X̃i = UiXi + (1− Ui)θ̃, i = 1, . . . , n, (3.2)

where X1, . . . Xn are i.i.d. P1 and U1, . . . , Un i.i.d. Bernoulli B(π), with X1, . . . , Xn,

U1, . . . , Un independent. We easily check that E(X̃i) = θ0. In other words, if P0 denotes
the distribution of X̃1, P0 satisfies the null hypothesis. From equation (3.2) and Lemma
B.3 (see the Appendix), we get

∣∣E(g(X1, . . . , Xn)
)
− E

(
g(X̃1, . . . , X̃n)

)∣∣ < ε for all
measurable function g : Rn −→ [0, 1]. If ϕ is a test of H0 against H1, the above
inequality establishes that the probability of rejecting the null under P0 (i.e., when the
null is true) can differ from the probability of rejecting it under P1 (i.e., when the null is
false) by at most ε. As this holds for any positive ε, if ϕ has level α, we get part (1) of
Corollary 3.2. �

EXAMPLE 3. Denote A = {0, 1} and let P be the set of all probabilities with support
A, i.e., P ∈ P ⇐⇒ P(A) = 1. Let P ∈ P be the true probability distribution
from which we observe an i.i.d. sample X1, . . . , Xn. For some reason, one wishes to
test H0 : P ∈ P0 against H1 : P ∈ P \P0, where P0 ≡ {P ∈ P : P({0}) > 0}.
H0 is non-testable against H1, as we now prove. Take ε ∈ ]0,∞[ and π ∈ ]0, 1[ such
that 1− πn < ε. Choose P1 ∈P \P0 and define P0 = πP1 + (1− π)δ{0}, where δ{0}
is the Dirac mass at 0. It is easily checked that P0 ∈ P0. Using Lemma B.2, (see the
Appendix) we may conclude, as in the previous example, thatH0 is non-testable against
H1.

1 �

In the opposite direction, hypotheses about the parameters of some very “large”
models turn out to be testable. Consider for instance a model for a n-tuple of indepen-
dent (non necessarily identically distributed) random variables with common median.
This typically qualifies as a very large model. However, it is well known that the median
is a testable parameter in this model [see Lehmann and D’Abrera (1998)].

4 Non-testability and asymptotic approximations

We now consider consequences of BS-type results for testing procedures based on
asymptotic approximations. It is frequently claimed that, although a given testing prob-

1In this example, if the null and alternative hypotheses are exchanged, P({0}) = 0 is testable against
P({0}) > 0.
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lem (H0, H1) may be non-testable, there could exist valid and consistent test proce-
dures for this problem. In the terminology of Section 2, testability of (H0, H1) may be
achieved for a sufficiently large sample size in the following sense.

Definition 4.1 (ASYMPTOTIC TESTABILITY). Consider {Pn : n ≥ 1} a sequence of

statistical models, where for any n,Pn is a set of probability distributions for a n-tuple

(X1, . . . , Xn) of real random q-vectors. Let also Pn ∈ Pn be the true distribution

of (X1, . . . , Xn), n = 1, 2, . . . A sequence of null hypotheses H0,n : Pn ∈ P0,n is

asymptotically testable against the sequence of alternatives H1,n : Pn ∈P1,n when for

any given α ∈ ]0, 1[ there exists a sequence {ϕn : n ≥ 1} of tests such that

AT1. lim supn→+∞ supPn∈P0,n
EPn(ϕn) ≤ α,

AT2. lim infn→+∞ EPn(ϕn) > α, for any sequence {Pn : n ≥ 1} with Pn ∈ P1,n

∀n.

Condition AT1 insures that ϕn is a uniformly asymptotically α-level test [see Ro-
mano (2004)], which is obviously stronger than the pointwise control on type-1 error,
but allows for approximation of the size in finite samples. A test for which AT1 holds
has level α in the limit.

Obviously, if a consistent α-level test [see Lehmann (1986, p.478)] exists, then AT1
and AT2 hold. Notice that in that case, the type 2 risk converges to 0 for any sequence
of alternatives. We call a test with this property everywhere consistent. If along some

sequence of alternatives, the lim sup of the type 2 risk of a test converges to 0, we say
this test is somewhere consistent. Finally a test is nowhere consistent if the lim sup of
its type 2 risk is strictly positive for any sequence of alternatives.

Asymptotic implications of (non-)testability cannot be obtained as an immediate
consequence of BS-type results. Indeed it is assumed in Bahadur and Savage (1956)
that the sample is a.s. finite. However, it is easy to see that non-testability also entails
domination of asymptotic procedures by the uniform test ϕ∗(α). We have the following
result, which shows that for a (partially) non-testable problem AT1 and AT2 cannot hold
simultaneously.

Proposition 4.2 (IMPOSSIBILITY OF AN ASYMPTOTICALLY VALID TEST WITH NON-
TRIVIAL POWER FOR A NON-TESTABLE HYPOTHESIS).Consider a sequence of statis-

tical models Pn and a corresponding sequence of testing problems defined by H0,n :

Pn ∈P0,n and H1,n : Pn ∈P1,n with Pn = P0,n ∪P1,n.
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(1) Assume for any n, H0,n is partially non-testable againstH1,n. Any test ϕn with level

α < 1 in the limit cannot be everywhere consistent.

(2) Assume for any n, H0,n is non-testable against H1,n. Any somewhere consistent test

ϕn has level 1 in the limit.

One particular case of Proposition 4.2 is the original result of BS on the testability
of the expectation. Indeed, let P1 be the set of all probability distributions on R with
a finite expectation. For any sample size n ≥ 1, define Pn the set of all n-fold prod-
uct probabilities P⊗n such that P is in P1. For any Pn ∈ Pn, let θn(Pn) denote the
expectation of Pn. Fix a real number θ0, and consider testing H0,n : Pn ∈P0,n against
H1,n : Pn ∈ P1,n, where P0,n ≡ {Pn ∈ Pn : θn(Pn) = θ0ιn}, P1,n ≡ Pn \P0,n,

and ιn ≡ (1, . . . , 1)′ ∈ Rn. If we choose P ∈ P1 such that Pn = P
⊗n
, it is clear that

this problem amounts to testing θ1(P) = θ0 against θ1(P) 6= θ0 from an i.i.d. random
sample of size n of X ∼ P. Bahadur and Savage (1956) show that for any sample size
n, this problem is non-testable. Therefore, any consistent test ϕ must have size 1 in
the limit. To obtain a “uniformly” asymptotically α-level and consistent t-test, Romano
(2004, see equation (9)) imposes some kind of uniform integrability condition on the
standardized random variable (X − E(X))/σ(X).

Consistent tests are typically derived invoking a central limit theorem showing that
for some α < 1, a given sequence of tests {ϕn : n ≥ 1} has a type 1 risk converging
to α for any sequence of null distributions, while its power converges to 1 for some
sequences of alternatives. The following Corollary of Proposition 4.2 shows that for
such tests, the approximation of the size must be arbitrarily bad when non-testability
problems arise.

Corollary 4.3 (IMPOSSIBILITY OF UNIFORM SIZE CONVERGENCE).Consider {Hn =

(H0,n, H1,n) : n ≥ 1}, the sequence of testing problems of Proposition 4.2, and let

{ϕn : n ≥ 1} be an associated sequence of tests satisfying

lim
n→∞

EP0,n(ϕn) = α < 1 , (4.1)

for any sequence {P0,n : n ≥ 1} ⊂P0,∞, where P0,∞ ≡
∞
×
n=1

P0,n.

(1) If {ϕn : n ≥ 1} is somewhere consistent and Hn is non-testable for all n, then the

convergence in (4.1) cannot be uniform on P0,∞.
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(2) If {ϕn : n ≥ 1} is everywhere consistent and Hn is partially non-testable for all n,

then the convergence in (4.1) cannot be uniform on P0,∞.

Corollary 4.3 shows the pointwise convergence of the type 1 risk to α is arbitrarily
slow over P0,∞. As a consequence, no matter how large the sample size n, the limit
α of the sequence {EP0,n(ϕn) : n ≥ 1} cannot be an approximation of the size of ϕn.
Indeed, we may always find a P0,n ∈ P0,n such that EP0,n(ϕn) is arbitrarily close to 1,
provided n is large enough. As a matter of fact, techniques used in the proof of Theorem
3.1 point out sequences of null distributions for which the type 1 risk is as large as one
wishes.

Many corrections have been proposed in order to reduce discrepancies between the
actual size of a test and the desired level. Bootstrap and Bartlett’s corrections are the
most well-known. The theoretical arguments for preferring these “corrected” methods
is often based on asymptotic approximations. For instance, one shows that the actual
size of a “corrected” test converges more quickly towards α than its “usual” counterpart
(see, e.g. Davidson and MacKinnon (1999)). Under (partial) non-testability, Proposition
4.2 and Corollary 4.3 show that if both the “corrected” and “usual” procedures are
(everywhere) consistent, the asymptotic level must be 1, regardless of the claimed level
and the method of correction. In other words, these corrections fail and are ineffective
in the limit, despite their asymptotic justification.

Note that obtaining a central limit theorem typically requires imposing further con-
ditions on the model. For instance, in an i.i.d. sampling model conditions BSE1 and
BSE2 are not sufficient to guarantee convergence of the sample mean to its theoretical
value. One would typically impose the existence of moments of order 2 + δ for some
strictly positive δ. But this does not affect the non-testability of the expectation, as con-
ditions BSE1 and BSE2 are still fulfilled. Actually, imposing the existence of moments
of any order would not contradict any of the conditions BSE1 and BSE2. Therefore,
non-testability of the expectation remains. As a consequence, Proposition 4.2 and its
Corollary 4.3 apply. More generally, for a given parameter θ, as long as further con-
ditions imposed on the model with the hope of getting rid of the non-testability, are
compatible with BSE1 and BSE2 for any sample size, the problem remains.

There exist semiparametric models in which meaningful inference is indeed possi-
ble. Of course, at least one of the conditions BSE1 and BSE2 must be violated. We
already mentioned Romano (2004) who imposes a kind of uniform integrability condi-
tion to derive a consistent uniformly asymptotically α-level t-test. Another instance is
Anderson (1967) where it is assumed that the support of the distribution is bounded by
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some known values [see also Romano and Wolf (2000) for a more general treatment].
This assumption violates BSE2. It could also be argued that in the model Yi = θ + εi,

where the εis are i.i.d. with a distribution symmetrical about 0, inference on the median
θ of the Yis amounts to inference on their expectation (provided this expectation exists).
Several valid and powerful procedures have been proposed to test θ in this context. But
it is easy to see that imposing a symmetrical distribution for the Yis violates the con-
vexity condition BSE2 (take for instance a mixture of two uniform distributions with
disjoint supports). Now, when the symmetry condition is relaxed, the median does not
necessarily coincide with the expectation. While the former is testable, the latter is not.

5 Examples of non-testability: covariances and regres-
sion coefficients

As shown by Bahadur and Savage (1956), the expectation is non-testable in a simple
i.i.d. sampling model. In Theorem 3.1, we showed this could also be the case for
parameters other than the expectation. In this section, we investigate the testability of
various usual parameters.

5.1 Covariance and regression

The following Proposition 5.1 shows that the covariance is non-testable parameter.

Proposition 5.1 (COVARIANCE NON-TESTABILITY).Let P be the family of all prob-

ability distributions P for a couple Z = (X ′, Y ′)′ of random vectors X ∈ Rp and

Y ∈ Rq, for which VP(Z) exists and is finite. The parameter θ(P) = CovP(X, Y ) is

non-testable.

If P is restricted to P∗ ≡ {P ∈ P : VP(Z) is invertible}, CovP(X, Y ) remains non-

testable.

From Proposition 5.1, it is easy to show that the coefficients of the linear regression
are non-testable.

Proposition 5.2 (NON-TESTABILITY OF LINEAR REGRESSION COEFFICIENTS).In the

model P∗ of Proposition 5.1, for a given P ∈P∗, define ELP(Y |X), the linear regres-
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sion of Y on X:

ELP(Y |X) = EP(Y ) + CovP(Y,X)VP(X)−1
[
X − EP(X)

]
.

The parameter θ(P) ≡ CovP(Y,X)VP(X)−1 is non-testable.

5.2 Variance

Clearly conditions BSE1 and BSE2 (or BSE1, and BSE6 to BSE8 of Lemma B.1) imply
non-testability of a given parameter. However, although these conditions may not hold,
some testing problems about this parameter may remain non-testable. This may entail
the partial non-testability of this parameter as shown by Proposition 5.3 for the variance.

Proposition 5.3 (VARIANCE PARTIAL NON-TESTABILITY). Let P be the family of

all probability distributions P for a real random variable X for which the parameter

θ(P) ≡ VP(X) exists and is finite. Then

(1) for any strictly positive real number θ∗, H0(θ∗) : θ(P) ≥ θ∗ is non-testable against

H1(θ∗) : θ(P) < θ∗;

(2) the variance is partially non-testable.

In the model of Proposition 5.3, condition BSE7 (see Lemma B.1 in the Appendix)
fails, because we may find two variances θ1, θ2 and a λ ∈ ]1,+∞[ for which θ1 <

λ−1
λ
θ2.

In such a case, λθ1 + (1 − λ)θ2 is strictly negative and cannot be a variance. As a
consequence, although one may not test V(X) ≥ 1 against V(X) < 1, say, a powerful
test of V(X) ≤ 1 against V(X) > 1 exists.2

It is easy to see that Propositions 5.1 to 5.3 hold even if it is further assumed that P

is the common distribution of n independent couples (X1, Y1), . . . , (Xn, Yn)

BS’s results as well as Propositions 5.1 to 5.3 show that (partial) non-testability
arises for “moment” parameters. Our next result show the problem is not restricted to
such parameters.

2Such a test may be based on a Markov-type inequality involving the empirical and theoretical vari-
ances.
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5.3 Support of a distribution

Proposition 5.4 (DISTRIBUTION SUPPORT PARTIAL NON-TESTABILITY). Let P be

the family of all probability distributions on R. For P ∈ P let θ(P) be defined by

θ(P) ≡ sup{x : P(X ≤ x) < 1}. For any θ ∈ R define P(θ) = {P ∈P : θ(P) ≥ θ}.
For any θ∗ ∈ R, H0 : P ∈P(θ∗) is non-testable against H1 : P ∈P \P(θ∗) and θ is

partially non-testable.

Notice when permuting the null and alternative hypotheses we can propose a some-
where powerful valid test for the support upper bound. Indeed the following procedure
“reject H0 : P ∈ P \P(θ∗) whenever at least one observation is larger that θ∗ and
otherwise draw U as U[0,1] and reject H0 if we observe U ≤ α” has level α. Moreover
we can easily find a P ∈P(θ∗) such that the power P(Xi > θ∗ for some i = 1, . . . , n)

is strictly larger than α.

Also notice that partial non-testability obtains for the lower bound of a distribution
when permuting the null and alternative hypotheses of Proposition 5.4.

6 Testability issues in a semiparametric linear regres-
sion model

Although Bahadur and Savage (1956) result is established in the context of pure i.i.d.
sampling statistical models, we mentioned in Section 3 that the i.i.d. assumption is not
necessary for deriving a similar result (see Corollary 3.2). We may then be interested
in investigating non-testability issues in models where the form of the heterogeneity is
given. In many econometric models, the heterogeneity in the distribution of an endoge-
nous variable is “explained” by a set of covariates.

In this Section, we deal with one of the most simple of such models, namely the
linear regression model. Results will be extended to more general models in Section 7.

From the previous sections we know that (i) the expectation is a non-testable pa-
rameter and (ii) in general models, the linear regression coefficient is non-testable (see
Proposition 5.2). From this, we could expect the parameter of a linear regression model
to be non-testable. Surprisingly, in a linear regression model which could be viewed
as a natural extension of the model considered in Bahadur and Savage (1956), some
hypotheses about this parameter are testable.
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6.1 A semiparametric linear regression model with identically dis-
tributed error terms

Let X ≡ (X ′1, . . . , X
′
n)′ be a real random nK-vector and Y = (Y1, . . . , Yn)′ a real

random n vector, and let EP(Yi|X) denotes the expectation of Yi conditionally on X,
when (X ′, Y ′)′ ∼ P. Our model is the set P of all probability distributions P for
(X ′, Y ′)′ such that the following two conditions hold.

C1. ∀i = 1, . . . , n, EP(Yi|X) = µ+ β′Xi for a unique (µ, β) ∈ R× RK a.s.

C2. Conditionally on X, the error terms εi ≡ Yi − EP(Yi|X), i = 1, . . . , n, are identi-
cally distributed.

For µ ∈ R and β ∈ RK , we also denote θ ≡ (µ, β′)′ ∈ RK+1. The parameter of
interest is defined by θ : P → RK+1 with θ(P) = θ ⇐⇒ EP(Yi|X) = µ + β′Xi,

i = 1, . . . , n. We also define the sub-parameters µ and β as the projection of θ on R and
RK , respectively. Finally, P denotes the true distribution of (X ′, Y ′)′ and θ is defined as
θ = θ(P). Similarly, µ = µ(P) and β = β(P), so that θ = (µ, β ′)′.

6.1.1 Non-testability of the intercept parameter and partial non-testability of the
whole parameter

Our first result shows that in this model, a BS-type result applies to the intercept param-
eter µ.

Proposition 6.1 (INTERCEPT NON-TESTABILITY IN LINEAR REGRESSIONS WITH IDEN-
TICALLY DISTRIBUTED ERRORS). In the model defined by C1 and C2, the following

holds true:

(1) the parameter µ is non-testable;

(2) the parameter θ is partially non-testable;

(3) for all α ∈ [0, 1[, no consistent asymptotically α-level test exists for θ.

The above Proposition does not contradict results obtained in the literature on non-
parametric methods for the linear model by, e.g., Adichie (1967), Bickel (1971) and
Jureckova (1971). An overview is given by Puri and Sen (1985). They propose tests
about θ and µ under conditions C1 and i.i.d. error terms, conditionally on X (which
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is evidently stronger than C2).3 A careful look at Puri and Sen (1985) reveals that a
symmetry assumption is added every time µ is fixed under the null.4 It is interesting to
note this book contains no reference to Bahadur and Savage (1956). We already men-
tioned that the symmetry assumption allows to escape BS impossibility results (see the
last paragraph of section 4 above). More interestingly, this symmetry assumption is not

imposed for testing problems on β only. Puri and Sen (1985) provide no reason why
symmetry is needed when µ is fixed under the null and may be avoided when it is a
nuisance parameter. This will become clearer as we now show that β turns out to be
testable under C1 and C2 only and that symmetry is not necessary for existence of valid
and somewhere powerful test procedures about β.

6.1.2 Testability of the slopes

The result of this section shows that the slope parameter β is testable.

Proposition 6.2 (SUFFICIENT CONDITION FOR SLOPE TESTABILITY IN LINEAR RE-
GRESSIONS WITH IDENTICALLY DISTRIBUTED ERRORS). In the model defined by C1

and C2, choose β0 ∈ RK and consider testing H0(β0) : β = β0 against H1(β0) : β 6=
β0. Let nX,0 = maxβ∈RK\{β0}#{(β − β0)′X1, . . . , (β − β0)′Xn}. H0(β0) is testable

against H1(β0) at any level α ∈ [ 1
nX,0

, 1[. The parameter β is testable.

Notice that condition C1 ensures nX,0 ≥ 2. Proposition 6.2 is demonstrated by
fixing β0 and exhibiting an α-level test of H0(β0) with power arbitrarily close to 1 for
some distribution compatible with H1(β0). Incidentally, it appears that no such test has
been proposed in the context of models defined by C1 and C2.

The next section shows that, in a semiparametric linear regression model, β becomes
non-testable if the assumption of identically distributed error terms is relaxed.

6.2 Semiparametric linear models with non-identically distributed
error terms

In this section we examine non-testability issues in linear regression models when the
condition C2 is no longer imposed. The model we consider now is the set P of all prob-

3It is easy to check that the proof of part (1) of Proposition 6.1 establishes that µ remains non-testable
when we further assume independent error terms.

4See Puri and Sen (1985, p.137 equation (5.2.26), p.146 first line, p.186 first line, and p.240 Theorem
7.2.1; see also p.11 third line of the second paragraph).
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ability distributions P for (X ′, Y ′)′ which satisfies condition C1.We have the following
result:

Proposition 6.3 (SLOPE NON-TESTABILITY IN LINEAR REGRESSIONS WITH NON-
IDENTICALLY DISTRIBUTED ERRORS).In the model defined by C1, the parameter β is

non-testable.

In view of Propositions 6.2 and 6.3, a natural issue to address is the search of restric-
tions that can be imposed on P to achieve the testability of β. Proposition 6.3 above
shows that if only the identifiability of β and the linearity of the conditional expectation
are assumed, the slope coefficient is non-testable. As shown by Proposition 6.2, impos-
ing identically distributed error terms is one way to recover the testability of β. Our next
result shows that, if other possibilities exist, they cannot be obtained by a combination
of homoskedasticity, uncorrelatedness and independence of the error terms.

Proposition 6.4 (SLOPE NON-TESTABILITY IN LINEAR REGRESSIONS WITH NON-
IDENTICALLY DISTRIBUTED ERRORS UNDER STRONGER ASSUMPTIONS).In the model

P defined above, β remains non-testable even if it is further assumed that the error

terms are homoskedastic and/or uncorrelated and/or independent, conditionally on X.

As a particular case of Proposition 6.4, the parameters of the usual textbook linear
regression model with (conditionally) uncorrelated and homoskedastic error terms are
non-testable (see point 3 in the proof of Proposition 6.4).

6.3 Linear regression model with i.i.d. observations and semipara-
metric limited dependent variable models

Finally, we mention imposing an i.i.d. condition on the observable variables or on the
error terms are very different assumptions. We know from Proposition 6.2 that in a
semiparametric linear regression model, the slopes are testable when it is assumed that
the error terms are i.i.d.5 Consider instead a semiparametric linear regression model
where we assume the following condition:

C3. (X ′1, Y1)′, . . . , (X ′n, Yn)′ are i.i.d.

We then have the following property.
5In Proposition 6.2, it is only assumed that errors are identically distributed conditionally on the

regressors. Actually, the proof of this proposition shows that the slopes remain testable if we assume that,
conditionally on X, the error terms are also independent.
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Proposition 6.5 (NON-TESTABILITY OF LINEAR REGRESSIONS FOR I.I.D. OBSERVA-
TIONS).In the model defined by C1 and C3 above, the parameter β is non-testable.

The condition C3 is common in nonparametric settings (see section 7.2 below). It
also appears in papers dealing with semi-parametric inference in single index models
[see Lee (1996) for an overview]. In many cases, the underlying latent structure fulfills
conditions C1, C3 and the following conditions.

C4. the K-th component of X1 has an everywhere positive Lebesgue density condi-
tional on the other components;

C5. β belongs to the unit sphere of RK and the K-th coordinate of β is non zero.

The reason for condition C3 is that investigation of the asymptotic behaviors of the
proposed procedures relies on U -statistics introduced by Serfling (1980) and Lehmann
and D’Abrera (1998). Conditions C4 and C5 are motivated by identification issues
arising in these models.

It is easy to see the proof of Proposition 6.5 remains valid when condition C4 on the
distribution of the regressors is further imposed. Moreover, one can also check that C5
plays no role in this result. An immediate corollary to this result is the non-testability
of the slope coefficients in single index models based on conditions C1 and C3 to C5
only [see for instance Sherman (1993)]. Indeed, inference in single index models may
be viewed as inference on the latent model, where the available procedures depend on
some function of the endogenous variable. For instance, if the latent model is defined
by C1 and C3 to C5, and if only X and Zi = sign(Yi), i = 1, . . . , n, are observed, then
the family of feasible tests on the slope β is a subset of all tests on β that would be
available if Yi, i = 1, . . . , n, where observed.

7 Non-testability in models defined by moment condi-
tions

We consider now general models where the parameter of interest is defined through
estimating equations taking the form of moment conditions. Let Z = (X ′, Y ′)′ =

(X ′1, . . . , X
′
n, Y

′
1 , . . . , Y

′
n)′ be a n-tuple of real random vectors, with Xi ∈ X ⊆ RpX

and Yi ∈ Y ⊆ RpY , i = 1, . . . , n. Let P be a set of probability distributions for Z, Θ

be a set and Q be a mapping defined on P × Θ taking values in Rq such that for any
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P ∈ P there exists a θ ∈ Θ such that Q(P, θ) = 0. This defines a correspondence θ :

P → P(Θ) which we call the parameter of the model P, where P(Θ) denotes the set
of all subsets of Θ. We will assume this parameter is identified in the sense that for any
P ∈P, the equality Q(P, θ) = 0 has a unique solution in Θ. With such an assumption,
θ is a mapping from P → Θ defined by the equivalenceQ(P, θ0) = 0 ⇐⇒ θ(P) = θ0

and the equality Q(P, θ) = 0 is called an estimating equation [see Godambe (1960)].

In many statistical models, this estimating equation takes the form of a moment
condition. In the simplest case we have Q(P, θ) =

(
EP(h(Z1, θ)), . . . ,EP(h(Zn, θ))

)′
for some function h, and we define:

P(θ0) ≡ {P : θ(P) = θ0} = {P : EP(h(Zi, θ0)) = 0, ∀ i = 1, . . . , n}.

Hence any test about θ is equivalent to test an hypothesis about the expectation of
h. As an immediate consequence, for any given θ0 the following two testing prob-
lems H = (H0 : θ(P) = θ0;H1 : θ(P) 6= θ0) and H̃ = (H̃0 : EP(h(Zi, θ0)) =

0, ∀ i; H̃1 : EP(h(Zi, θ0)) 6= 0, for some i) are the same. A test about θ amounts
to a test about an expectation. If BS result applies to the expectation of the variables
h(Z1, θ), . . . , h(Zn, θ), for any θ, the parameter of interest is non-testable.

A usual practice in GMM framework [see Hansen (1982)] is to avoid parametric as-
sumptions on h(Z1, θ), . . . , h(Zn, θ). Thus non-testability problems are bound to arise.
However notice that, by the above arguments, if H̃ turns out to be testable, then so is
H. In such a case, the parameter of interest is testable. This could be achieved for in-
stance, if h is chosen so that h(Z1, θ), . . . , h(Zn, θ) are symmetrical random variables
when θ = θ0 while they are not for another value of the parameter. Another way is
to choose h with bounded range, the bounds being known. We may then apply An-
derson (1967)’s technique. Notice that the availability of this technique combined with
Theorem 3.1, yields a result on the impossibility of characterizing the expectation of a
random variable by some moment conditions.

Proposition 7.1 (NON-TESTABILITY OF STRUCTURAL COEFFICIENTS DEFINED BY

NON-TESTABLE MOMENTS).The expectation of a n-tuple of i.i.d. real random variables

(Z1, . . . , Zn) cannot be characterized by the moment conditions

EP

(
h(Zi, θ0)

)
= 0,∀i = 1, . . . , n ⇐⇒ EP(Zi) = θ0,∀i = 1, . . . , n ,

where h is a function with a known bounded range.
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Another route to testability is to work with conditional moment conditions with a
particular form of heterogeneity. Notice this is why the slope parameter of a linear
regression model is testable (see Proposition 6.2) while the regression coefficients are
not (see Proposition 5.2).

7.1 A semiparametric nonlinear regression model

Let g be some known mapping from X ×Θ to R,where X ⊆ Rp.Our model is now the
set P of all probability distributions P for Z = (X ′1, . . . , X

′
n, Y1, . . . , Yn)′ ∈X n×Y n,

where Y ⊆ R, such that the following conditions hold:

C6. EP(Yi − g(Xi, θ)|X) = 0, i = 1, . . . , n, for some unique θ ∈ RK a.s.

The model is therefore defined by the moment conditions C6 above and the parameter
is defined by θ(P) = θ ⇐⇒ EP(Yi|X) = g(Xi, θ), i = 1, . . . , n.

Proposition 7.2 (NON-TESTABILITY IN SEMIPARAMETRIC NONLINEAR REGRESSIONS).
In the model defined by condition C6, the parameter θ is non-testable.

As the model defined here is a nonlinear version of that of Section 6.2 where we
have Proposition 6.3, this result should come as no surprise. We also know from section
6 that putting more constraints on the model is one way to make θ testable. We add to
C6 the following condition:

C7. Conditionally on X, the error terms Yi − EP(Yi|X), i = 1, . . . , n, are i.i.d.

Our following results show that under C6 and C7, some hypotheses about θ are testable
and some are not. We first define the binary relationR on RK × RK by

θ1Rθ2 ⇐⇒ ∃µ ∈ R s.t. g(x, θ1) = g(x, θ2) + µ,∀x (7.1)

It is easy to check that R is reflexive, symmetric and transitive. Therefore, R is an
equivalence relation and for any θ∗ ∈ RK we define its equivalence class E (θ∗) as
E (θ∗) = {θ ∈ RK : θ∗Rθ}.

Proposition 7.3 (PARTIAL NON-TESTABILITY IN SEMIPARAMETRIC NONLINEAR RE-
GRESSIONS WITH I.I.D. ERROR TERMS). Consider θ0 such that E (θ0) 6= {θ0}. Then

in the model defined by C6 and C7, H0(θ0) : θ = θ0 is partially non-testable against

H1(θ1) : θ = θ1, for any θ0 6= θ1 ∈ E (θ0).
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Partial non-testability of H0 : θ = θ0 comes from alternatives where θ belong to
the same equivalence class as θ0. Under any of these alternatives, g(X, θ) − g(X, θ0)

remains constant when X varies. Therefore, when we restrict the model to this equiv-
alence class, it is parameterized only by the parameter µ ≡ g(X, θ) − g(X, θ0), θ ∈
E (θ0). In this restricted model, the testing problem translates into hypotheses about the
value of the constant conditional expectation µ = E(Y − g(X, θ0)|X). Proposition 6.1
then applies.

Consider the particular case where the conditional expectation has an “intercept”
term, i.e., g(x, θ) = µ+ h(x, β) for some µ ∈ R and β ∈ RK−1. Condition C6 together
with the definition of the binary relation R imply that (µ1, β

′
1)′R(µ2, β

′
2)′ iff β1 = β2.

In this case, Proposition 7.3 implies the partial non-testability of the whole parameter
θ = (µ, β′)′. The presence of an “intercept” in a nonlinear model makes the whole
parameter partially non-testable.

We know non-testability problems originate from equivalent classes E` ⊆ Θ, ` ∈ L,
generated the relation R defined in (7.1). The family of all equivalence classes defines
a partition of the model

⋃
`∈L P` where P` = {P ∈ P : θ(P) ∈ E`}. According

to the above remarks and using a device as in the proof of Proposition 6.2, one might
expect that it is possible to construct an α-level test, with power somewhere above α that
discriminate equivalence classes of θ.We show this is indeed possible under conditions
C6, and condition C8 below, which is obviously weaker that C7:

C8. Conditionally on X, the error terms Yi − EP(Yi|X), i = 1, . . . , n, are identically
distributed.

Proposition 7.4 (SUFFICIENT CONDITION FOR TESTABILITY IN SEMIPARAMETRIC

NONLINEAR REGRESSIONS). Consider the model defined by conditions C6 and C8.

For some ` ∈ L, one wishes to test H0(`) : P ∈ P` against H1(`) : P 6∈ P`. Let

nX,` = maxθ 6∈E` #{g(X1, θ) − g(X1, θ`), . . . , g(Xn, θ) − g(Xn, θ`)} where θ` is any

element of E`. H0 is testable against H1 at any level 1 > α ≥ 1
nX,`

.

It seems difficult to derive further results on testability of certain hypotheses about
general functions of θ without specifying the regression function g. Consider the fol-
lowing example

g(X, θ) = λ exp(γX)

where θ = (λ, γ)′ ∈ R2. It easily checked that E
(
(γ, λ)′

)
= {(γ, λ)′} whenever λγ 6= 0

and that otherwise E
(
(0, γ)′

)
= {0} × R and E

(
(λ, 0)′

)
= R× {0}. For given λ0 and
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γ0, consider the testing problemH0 : (λ, γ)′ = (λ0, γ0)′ againstH1 : (λ, γ)′ 6= (γ0, λ0)′.

When λ0 6= 0 and γ0 = 0, for any given µ ∈ R, we can find θ1 = (µ + λ0, 0)′ ∈
E
(
(γ0, λ0)′

)
such that g(X, θ1) = µ+g(X, θ0). In other words, Proposition 7.3 applies:

H0 : (λ, γ)′ = (λ0, 0)′ is partially non-testable against H1 : (λ, γ)′ 6= (λ0, 0)′. This
holds for any λ0 6= 0.

Next consider the case where λ0γ0 6= 0. As E
(
(γ0, λ0)′

)
= {(γ0, λ0)′}, the null H0

is obviously equivalent to H0 : θ ∈ E
(
(γ0, λ0)′

)
. From Proposition 7.4, we know H0 is

testable.

7.2 Nonparametric regression models

In the previous sections, we addressed testability issues in regression models where the
regression function in known up to a finite dimensional parameter θ. We know investi-
gate the same issues when the regression function is totally unknown.

Formally, the statistical model we consider is a family P of probability distributions
for a real random (nK + n)-vector (X ′, Y ′)′ = (X ′1, . . . , X

′
n, Y1, . . . , Yn). Let Θ be the

set of all Borel mappings from RK into R. The family P is defined by the following
condition. A probability distribution P on RnK+n is an element of P if and only if
(X ′, Y ′)′ ∼ P implies condition C3 and

C9. ∀i = 1, . . . , n, EP(Yi|X) exists.

As usual, for P ∈ P and θ ∈ Θ, we write θ(P) = θ iff EP(Yi|X) = θ(Xi), i =

1, . . . , n. Condition C3 is a usual maintained assumption in nonparametric regression
estimation [see for instance Härdle and Linton (1994)]. We are interested in testing
H0(θ0) : θ(P) = θ0 against H1(θ0) : θ(P) 6= θ0, where θ0 is some known element of Θ.

Proposition 7.5 (NON-TESTABILITY OF HYPOTHESIS PAIRS IN NONPARAMETRIC RE-
GRESSIONS).Consider the family P defined by C3 and C9. Define P(θ0, θ1) ≡ {P ∈
P : θ(P) = θ0 or θ(P) = θ1}, where θ0 and θ1 are arbitrary distinct elements of Θ.

Then H0 : θ(P) = θ0 is not testable against H1 : θ(P) = θ1 in P(θ0, θ1).

We therefore have the following immediate corollary.

Corollary 7.6 (PARAMETER NON-TESTABILITY IN NONPARAMETRIC REGRESSIONS).
In the model P defined by C3 and C9, the parameter θ is non-testable.
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Although the assumption C3 is common, it is obviously not necessary for obtaining
the non-testability result of Proposition 7.5 and its Corollary.

In the nonparametric regression literature, the issue of “significance testing” has
received a lot of attention [see e.g., Matzkin (1994), Fan and Li (1996), Lavergne and
Vuong (2000) and Aı̈t-Sahalia et al. (2001)]. The problem arises when the regressors are
separated as Xi = (W ′

i , Z
′
i)
′, where Wi and Zi are random real KW - and KZ-vectors,

respectively, with KW +KZ = K, i = 1, . . . , n. One wishes to test H0(W ) : P ∈PW

against H1(W ) : P 6∈ PW , where PW ≡ {P ∈ P : EP(Yi|X) = EP(Yi|W ),P-a.s.}.
We have the following result.

Proposition 7.7 (NON-TESTABILITY OF PARTIAL HYPOTHESIS IN NONPARAMETRIC

REGRESSIONS). In model P defined by C3 and C9, H0(W ) is non-testable against

H1(W ).

Various results may be derived along the same lines. For instance, shape restrictions
on EP(Y1|X) (as a function of X), such as monotonicity or concavity, may be imposed.
As this kind of restrictions arise naturally in economic contexts, constrained nonpara-
metric testing has been extensively studied (see e.g., Matzkin (1994)). Such restrictions
cannot entail testability (see for instance the proof of Proposition 7.5).

8 Conclusion

As first recognized by Bahadur and Savage (1956) some pairs of hypotheses (H0, H1)

are non-testable in the sense that a test procedure that makes no use of the data is UMP.

This paper investigates this result extends to models and settings of more relevance
to the econometrician. We establish that when non-testability prevails, asymptotic ap-
proximations based on central limit theorem provide misleading insights. In particular
we show that consistency and control of the level are incompatible. Moreover, pointwise
convergence of the type 1 risk of somewhere consistent test is arbitrarily slow. This ap-
plies in particular to corrections (such as those proposed by Bartlett or bootstrap) made
in order to lower the gap between targeted and actual level of the test.

In the case of a parameter, we link non-testability to a lack of continuity of the
mapping between the set of probability distributions and the set of admissible values
of the parameter. We show that several parameters linked to moments conditions are
non-testable.
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Non-testability of a parameter is a property of both the mapping defining the param-
eter and the set of probability distributions on which it is defined. To recover testability
of the parameter, the econometrician may then either change the mapping (by consid-
ering for instance inference about the median rather than the expectation) or change
the domain of the mapping (for instance by imposing more conditions on the set of
distributions).

In the context of regression models, results are twofold. When errors are assumed
identically distributed, parts of the parameter (e.g. the slope coefficients in a linear
regression model) are testable whereas testability is typically lost for heterogeneous
error terms. In particular the slope parameter of a linear regression model is non-testable
if it is only assumed that the error terms are independent and homoskedastic.

Although many of these results apply to cross-section, times series and panel data,
it is clear that further reasearch is needed to assert the full range of (non-)testability
concepts in econometric models. This is in particular the case in times series models
where the same parameter may be linked to first- and second-order moments conditions.
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Appendix

A Proofs

Proof of Proposition 2.4 LetC be a 1−α level confidence region for θ, i.e., P(θ(P) ∈
C) ≥ 1 − α, for all P ∈ P. Choose any θ0 ∈ Θ∗ and consider testing H0 : θ = θ0

against H1 : θ 6= θ0. The test ϕn = I(θ0 6∈ C) has level α. As θ is non-testable at level
α on Θ∗, for any P we must have EP(ϕn) ≤ α, or equivalently, P(θ0 6∈ C) ≤ α.

QED

Proof of Proposition 2.5 Consider an α-level test ϕ for (H0, H1). The procedure ϕ
has also level α for (H̃0, H̃1). Now since (H̃0, H̃1) is partially non-testable, there exists
P̂1 ⊆ P̃1 ⊆P1 such that supP∈P̂1

EP(ϕn) ≤ α. QED

Proof of Proposition 2.6 Assume (H0, H̃1) is testable at level α and (H̃0, H1) is non-
testable. Consider then an α-level test ϕ for (H0, H̃1). As P̃0 ⊆ P0, ϕ is α-level
for (H̃0, H1). Now as we assumed (H0, H̃1) testable, we may find P̃1 ∈ P̃1 such
that EP̃1

(ϕn) > α. But P̃1 ⊆ P1 implies P̃1 ∈ P1. Hence (H̃0, H1) is testable, a
contradiction. QED

Proof of Proposition 2.7 Let ϕ be an α-level test for (H̃0, H̃1). If supP∈P0
EP(ϕn) ≤

α, then non-testability of (H0, H1) implies supP∈P̃1
EP(ϕn) ≤ supP∈P1

EP(ϕn) ≤ α.

Thus ϕ is dominated by ϕ∗(α) for testing (H̃0, H̃1). QED

Proof of Proposition 2.8 Let λ0 be any element of Λ and consider the following
testing problem H0(λ0) : λ(P) = λ0 against H1(λ0) : λ(P) 6= λ0. This amounts to
testing H0 : θ(P) ∈ g−1(λ0) against H1 : θ(P) 6∈ g−1(λ0) which by the non-testability
of θ is a non-testable problem. QED

Proof of Proposition 2.9 Fix α ∈ ]0, 1[. Assume H0(γ0) : γ = γ0 is testable against
H1(γ0) : γ 6= γ0. Then there exists ψ1 ∈ Ψ and P1 ∈ P with γ(P1) = γ1 6= γ0 and
ψ(P1) = ψ1 such that EP1(ϕn) > α for some α-level test ϕ of H0(γ0). This test is
also α-level for testing Hψ1

0 (γ0) : θ = (γ0, ψ1) against Hψ1

1 (γ0) : θ = (γ1, ψ1) As θ is
non-testable, for all distribution P̃1 with θ(P̃1) 6= (γ0, ψ1), we have EP̃1

(ϕn) ≤ α. But
P1 is such a distribution. We thus have a contradiction. As this is true for any α ∈ ]0, 1[
and any α-level test ϕ, H0(γ0) : γ = γ0 is non-testable against H1(γ0) : γ 6= γ0. This is
true for any γ0 ∈ Γ and thus γ is non-testable. QED
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Proof of Proposition 2.10

(1) Choose γ0 ∈ Γ, ψ0 ∈ Ψ, and define P0 ≡ {P ∈P : γ(P) = γ0} and Pψ0 ≡ {P ∈
P : ψ(P) = ψ0}. Then apply Lemma B.5 (see Appendix B) with I = Ψ. As this is
true whatever the choice of γ0, use Definition 2.3 to conclude.

(2) Consider θ0 = (γ0, ψ0) ∈ Θ, and H0(θ0) : θ = θ0 and H1(θ0) : θ 6= θ0. If ϕ is
an α-level test of H0(θ0), then it has level α for Hψ0

0 (γ0). But as it is assumed that
Hψ0

0 (γ0) is non-testable against Hψ0

1 (γ0), we must have supP∈P1∩Pψ0EP(ϕn) ≤ α.
But for any P ∈ P1 ∩Pψ0 , the alternative H1(θ0) is true. Therefore, H0(θ0) is
partially non-testable against H1(θ0). As this holds for any θ0, θ is partially non-
testable. QED

Proof of Theorem 3.1 Choose and fix N ∈ {1, 2, . . .}. For any P and Q in P define
the pseudo distance D(P,Q) ≡ supg∈BNd

∣∣EP(gN) − EQ(gN)
∣∣. Take f ∈ BNd, ε ∈

]0, +∞[, θ0 ∈ Θ and θ1 ∈ Θ. Under BSE1, we may always find a P0 in P(θ0). Take
any π ∈ ]0, 1[ such that 1 − πN < ε. Under BSE2, we can find P̃ ∈ P such that
P1 ≡ πP0 + (1 − π)P̃ is in P(θ1). From Lemma B.2 (see the Appendix) we have
D(P0,P1) ≤ 1 − πN , which, together with 1 − πN < ε, implies D(P0,P1) < ε. As
this inequality is true for any ε ∈]0, +∞[ and any P0 ∈ P(θ0), it shows that for any
element P0 of P(θ0), we can find an element of P(θ1) which is arbitrarily close to
P0 according to D. As this property holds for any θ0 ∈ Θ and any θ1 ∈ Θ, we can
conclude, using BSE1, that for any P ∈ P and any θ ∈ Θ, we can find a P0 in P(θ)
which is arbitrarily close to P. Therefore, for any θ ∈ Θ, P(θ) is dense in P w.r.t.
D. The function Λ : P −→ [0, 1] defined by Λ(P) =EP(fN) is obviously continuous
w.r.t. the pseudo-distance D (see Lemma B.4). Indeed, fix ε ∈]0, +∞[ and P ∈ P.
If Q is such that D(P,Q) < ε, then clearly |Λ(P)− Λ(Q)| = |EP(fN)− EQ(fN)| < ε.
A straightforward application of Lemma B.4 with A = P(θ), B = P and h = Λ
concludes the proof. QED

Proof of Corollary 3.2 Define P(Θj) ≡ {P ∈ P : θ(P) ∈ Θj}, j = 0, 1. We
have for any θ ∈ Θj, supP∈P(θ) EP(ϕn) ≤ supP∈P(Θj)

EP(ϕn) ≤ supP∈P EP(ϕn). As
ϕn ∈ Ξnq, Theorem 3.1 (with N = 1 and d = nq) implies that the LHS and the RHS
are equal, and thus supP∈P(Θj)

EP(ϕn) = supP∈P EP(ϕn). But this is true for j = 0, 1,
and then

sup
P∈P(Θ1)

EP(ϕn) = sup
P∈P(Θ0)

EP(ϕn). (A.1)

By the same argument, infP∈P(θ) EP(ϕn) ≥ infP∈P(Θj) EP(ϕn) ≥ infP∈P EP(ϕn) and
Theorem 3.1 entails

inf
P∈P(Θ1)

EP(ϕn) = inf
P∈P(Θ0)

EP(ϕn). (A.2)

If ϕ has level α, the RHS of (A.1) is less than α, which proves 1. If ϕ is similar at level
α, we have infP∈P(Θ0) EP(ϕn) = supP∈P(Θ0) EP(ϕn) = α, which yields EP(ϕn) = α,
∀P ∈ P(Θ0). If P is complete, this entails ϕn = α, a.s.-P, ∀P ∈ P(Θ0). Equations
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(A.1) and (A.2) imply infP∈P(Θ1) EP(ϕn) = supP∈P(Θ1) EP(ϕn) = α. Thus EP(ϕn) =
α, ∀P ∈P(Θ1). This proves 2. If ϕ is not similar, we can find P0 ∈P(Θ0) such that
EP0(ϕn) < α. Hence by (A.2) we have EP1(ϕn) < α for some P1 ∈P(Θ1). Thus ϕ is
biased. QED

Proof of Proposition 3.3 Let ϕ be an α-level test of H0 : θ = θ0 against H0 : θ 6= θ0.
Choose P1 6∈ P(θ0). For any ε > 0 and any P ∈ Vε(P1) we have either θ(P) = θ0 or
θ(P) 6= θ0. As θ is non-testable, in both cases we have EP(ϕn) ≤ α. QED

Proof of Proposition 3.4 Let ϕ be an α-level test of H0 and assume Θ∗1 6= ∅. Assume
Pθ1
(
∂{X : ϕ(X) = 1}

)
= 0 for some θ1 ∈ Θ∗1. By definition of Θ∗1 we may find a

sequence {θ0,n : n ≥ 1} in Θ0 with limit θ1. Under the above assumption and under
assumption BSE5, we have Pθ0,n(ϕ = 1) −→ Pθ1(ϕ = 1), as n → ∞. But as ϕ
has level α, Pθ0,n(ϕ = 1) ≤ α, ∀n, which implies Pθ1(ϕ = 1) ≤ α. Now if this is
true for any θ1 ∈ Θ∗1 and if Θ∗1 = Θ1, the same argument yields Pθ1(ϕ = 1) ≤ α,
∀θ1 ∈ Θ1. QED

Proof of Proposition of 4.2 For each n, let ϕn be a test of Hn = (H0,n : Pn ∈
P0,n , H1,n : Pn ∈P1,n).

(1) If for any n, Hn is partially non-testable, then ∀n,∃P1,n ∈P1,n such that

EP1,n(ϕn) ≤ sup
Pn∈P0,n

EPn(ϕn). (A.3)

If ϕn is asymptotically α-level, α ∈ ]0, 1[, then the lim sup of the RHS of (A.3) is
α < 1 and ϕn is not everywhere consistent.

(2) If for any n, Hn is non-testable, then (A.3) holds for any n and any P1,n ∈ P1,n.
If ϕn is somewhere consistent, then there exists a sequence {P1,n : n ≥ 1} with
P1,n ∈P1,n ∀n, such that the lim inf of the LHS of (A.3) converges to 1. Thus ϕn
has level 1 asymptotically. QED

Proof of Corollary 4.3

(1) Assume the sequence of tests {ϕn : n ≥ 1} is somewhere consistent. As Hn is
non-testable for all n, we conclude from Proposition 4.2 that

lim inf
n→∞

sup
P0,n∈P0,n

EP0,n(ϕn) = 1 = lim
n→∞

sup
P0,n∈P0,n

EP0,n(ϕn).

(2) Assume the sequence of type-1 risks associated with {ϕn : n ≥ 1} converges
uniformly to α < 1, while lim infn→∞ EP1,n(ϕn) = 1, for any sequence {P1,n :
n ≥ 1} such that P1,n ∈P1,n for all n ≥ 1. According to Proposition 4.2, this is a
contradiction when Hn is non-partially testable for all n. QED
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Proof of Proposition 5.1 Denote Θ = Mp,q, the set of (p, q) matrices with real en-
tries. We must show that for any θ0 ∈Mp,q, H(θ0) =

(
H0(θ0), H1(θ0)

)
is non-testable,

where H0(θ0) : P ∈P(θ0), H1(θ0) : P ∈P \P(θ0), and P(θ0) ≡ {P ∈P : θ(P) =
θ0}. Fix any µ0 ∈ Rp+q and define Pµ0 ≡ {P ∈ P : EP(Z) = µ0}. We first show
that BSE1 and BSE6 to BSE8 (see Lemma B.5) hold for Pµ0 and θ(P) = CovP(X, Y ).
To show BSE1, we show that for any any given θ ∈ Mp,q the family Pµ0 contains the
(p+ q) dimensional normal distribution N (µ0, V ), where

V ≡

(
σ2Ip θ

θ′ σ2Iq

)
,

for some σ ∈ ]0,∞[ such that V is positive semidefinite. The matrix V is positive
semidefinite iff for all a ∈ Rp+q with ‖a‖ = 1 we have σ2 + a′Λa ≥ 0, where ‖ · ‖
denotes the Euclidian norm and Λ is the (p+ q, p+ q) matrix defined by

Λ ≡

(
0 θ

θ′ 0

)
.

We may look for the element a∗ of Rp+q, with ‖a∗‖ = 1, for which a′Λa is minimized.
This is the Rayleigh-Ritz problem whose solution a∗ is the eigenvector of Λ associated
with the smallest eigenvalue of Λ, which we denote λ∗ [see Horn and Johnson (1985,
Theorem 4.2.2)]. We then have a∗′Λa∗ = λ∗. Thus if we choose σ2 = |λ∗|+ ε for some
ε > 0, the matrix (

σ2Ip θ

θ′ σ2Iq

)
is positive semidefinite. This shows BSE1 holds in Pµ0 . BSE7 is obviously true. We
next show BSE6 and BSE8 are also true. Let P1 and P2 be two distributions in Pµ0 .
Take π ∈ ]0, 1[ and consider P = πP1 + (1 − π)P2. Consider the random vector
(Z ′1, Z

′
2, U)′ where Zk ≡ (X ′k, Y

′
k)
′ is distributed as Pk, k = 1, 2, and U ∼ B(π),

with that U, Z1 and Z2 are independent. Clearly Z ≡ UZ1 + (1 − U)Z2 is distributed
as P and

E(Z) = E(UZ1) + E
(
(1− U)Z2

)
= πµ0 + (1− π)µ0 = µ0. (A.4)

Also V(UZ1) and V
(
(1 − U)Z2

)
exist, which entails the existence of V(Z). Hence

P ∈ Pµ0 which shows BSE6 holds. Moreover, as U(1 − U) = 0, U2 = U and
(1− U)2 = (1− U) always, we have

V(Z) = πE(Z1Z
′
1) + (1− π)E(Z2Z

′
2)− µ0µ

′
0 = πV(Z1) + (1− π)V(Z2). (A.5)
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Therefore, denoting µ0 = (µ′0X , µ
′
0Y )′ we have

Cov(X, Y ) = πE(X1Y
′

1) + (1− π)E(X2Y
′

2)− µ0Xµ
′
0Y (A.6)

= πCov(X1, Y1) + (1− π)Cov(X2, Y2), (A.7)

which is BSE8. From Lemma B.1, we conclude that BSE1 and BSE2 hold for the
parameter θ in model Pµ0 . Define the hypotheses Hµ0

0 (θ0) : P ∈ P(θ0) ∩Pµ0 and
Hµ0

1 (θ0) : P ∈ (P \P(θ0)) ∩Pµ0 , and the testing problem Hµ0(θ0) =
(
Hµ0

0 (θ0),
Hµ0

1 (θ0)
)
. From above, for any µ0 ∈ Rp+q, Hµ0(θ0) is non-testable. We have P =⋃

µ0∈Rp+q Pµ0 and Lemma B.5 applies. Therefore H(θ0) is non-testable. As this is true
for any θ0 ∈ Θ, we conclude that the parameter θ(P) is non-testable.

To prove this holds in the restricted model P∗, we consider P∗µ0 ≡P∗∩Pµ0 for
which we show BSE1 and BSE6 to BSE8 hold. BSE1 is true because for any θ ∈Mp,q,
the matrix (

σ2Ip θ

θ′ σ2Iq

)
,

with σ2 > |λ∗| is real, symmetric and positive definite, where λ∗ is defined as above.
Thus it is invertible. BSE7 is clearly satisfied. Equality (A.4) also holds in P∗µ0 BSE6
holds. Next consider equation (A.5). If V(Z1) and V(Z2) are invertible, they are positive
definite. Invertibility of πV(Z1) + (1 − π)V(Z2), for π ∈ ]0, 1[, follows from theorem
22 of Magnus and Neudecker (1988). Thus BSE8 holds. We conclude using Lemma
B.5 as in the first part of the proof. QED

Proof of Proposition 5.2 Consider the testing problem H0(0) : θ(P) = 0 against
H1(0) : θ(P) 6= 0. Clearly, this is equivalent to testing CovP(Y,X) = 0 against
CovP(Y,X) 6= 0. From Proposition 5.1, this problem is non-testable. Consider a given
θ0 ∈ Mp,q and define Z ≡ Y −Xθ0. The regression coefficients of Z on X are given
by

CovP(Z,X)VP(X)−1 =
[
CovP(Y,X)−θ0VP(X)

]
VP(X)−1 = CovP(Y,X)VP(X)−1−θ0.

Thus testing H0(θ0) : θ(P) = θ0 against H1(θ0) : θ(P) 6= θ0 amounts to testing
CovP(Y −Xθ0, X) = 0 against CovP(Y −Xθ0, X) 6= 0, which is non-testable. QED

Proof of Proposition 5.3 Fix a θ∗ ∈ Θ = ]0, +∞[.Define Pµ0 ≡ {P ∈P :EP(X) =
µ0}, P0(θ∗) ≡ {P ∈ P : θ(P) ≥ θ∗} and P1(θ∗) ≡ P \ P0(θ∗). Also define
Pµ0

k (θ∗) ≡ Pk(θ
∗) ∩Pµ0 , k = 0, 1. Notice that for any λ ∈ [0, 1] and any P and

Q in Pµ0 we have θ
(
λP + (1 − λ)Q

)
= λθ(P) + (1 − λ)θ(Q) [see (A.4), (A.5) and

(A.7)]. Now choose and fix ε ∈ ]0, +∞[, θ0 ∈ [θ∗,+∞[ and P1 ∈ Pµ0

1 (θ∗). De-
note θ1 ≡ θ(P1). Take a π ∈ ]0, 1[ and k ≥ n such that 1 − πk < ε. Consider the
real number θ̃ ≡ θ0

1
1−π −

π
1−πθ1. Notice we have θ1 < θ∗ ≤ θ0, and as π ∈ ]0, 1[,

θ̃ ∈ Θ. Therefore, we can find a P̃ ∈ Pµ0 such that θ(P̃) = θ̃ [take for instance
P̃ = N (µ0, θ̃)]. Consider the distribution P0 defined by P0 = πP1 + (1− π)P̃. We have
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θ(P0) = πθ(P1) + (1−π)θ(P̃) = πθ1 + (1−π)θ̃ = θ0. Moreover EP0(X) = µ0. Hence
P0 ∈ Pµ0

0 (θ∗). Now we may apply Lemma B.2 and we get D(P1,P0) < ε. As this is
true for any choice of ε and P1 ∈Pµ0

1 (θ∗), it implies that Pµ0

0 (θ∗) is dense in Pµ0

1 (θ∗).
Then ∀P1 ∈ Pµ0

1 (θ∗), we may find a sequence {P0,m,m ≥ 1} of Pµ0

0 (θ∗) such that
D(P0,m,P1) → 0, m → ∞. As for any test ϕ, EP(ϕn) is a continuous function of P
(see the proof of Theorem 3.1), we have EP0,m(ϕn) →EP1(ϕn), m → ∞. But if ϕ has
level α, we must have EP0,m(ϕn) ≤ α, ∀m ≥ 1. Taking the limit when m → ∞ yields
EP1(ϕn) ≤ α. As this holds for any P1 ∈ Pµ0

1 (θ∗), we have supP∈P1(θ∗)EP(ϕn) ≤ α.

This also holds for any α-level test ϕ and thus Hµ0

0 (θ∗) : P ∈ Pµ0

0 (θ∗) is non-
testable against Hµ0

1 (θ∗) : P ∈ Pµ0

1 (θ∗). This is true for any µ0 ∈ R, and obviously
P =

⋃
µ0∈R Pµ0 and Pk(θ

∗) =
⋃
µ0∈R Pµ0

k (θ∗). We may thus apply Lemma B.5 and
H0(θ∗) is non-testable against H1(θ∗). This is true for any θ∗ ∈ Θ.

To prove partial non-testability of the variance, define Θ =]0, +∞[ and fix θ0 ∈ Θ.
Consider the testing problem H0(θ0) : θ ∈ {θ0} against H1(θ0) : θ ∈ Θ1, where
Θ1 ≡ Θ \ {θ0}. For α ∈ [0, 1], let ϕ be an α-level test of H0(θ0) against H1(θ0).
Consider Θ̃1 = {θ1}, where θ1 is some real number such that 0 < θ1 < θ0. Now,
fix P1 ∈ θ

−1(Θ̃1). Proceeding as above, ∀ε ∈ ]0, +∞[, ∃P0 ∈ θ
−1(Θ0) such that

D(P0,P1) < ε. Therefore, we may find a sequence {P0,m,m ≥ 1} of θ
−1(Θ0) such

that D(P0,m,P1) → 0, m → ∞. As before, we get EP1(ϕn) ≤ α. This is true for any
P1 ∈ θ

−1({θ1}). Hence supP∈θ
−1(Θ̃1)EP(ϕn) ≤ α. This result holds for any θ0 ∈ Θ.

QED

Proof of Proposition 5.4 For any π ∈ ]0, 1[ and any P0, P1 in P, we clearly have
θ(πP0 + (1− π)P1) = max{θ(P0), θ(P1)}. Now choose any P1 ∈P \P(θ∗) and let
θ1 denote the value of θ(P1). Let P̃ be an element of P(θ∗), ε ∈ ]0, +∞[, k ≥ n and
π ∈ ]0, 1[ such that 1− πk < ε. Define P0 ≡ πP1 + (1− π)P̃. We have θ(P0) = θ(P̃),
hence P0 ∈ P(θ∗). Thus, using Lemma B.2, for any ε > 0, for any P1 ∈ P \P(θ∗),
there exists P0 ∈ P(θ∗) such that D(P0,P1) < ε. Using the same argument as in
the proof of Proposition 5.3, for any α-level test ϕ of H0, we have EP1(ϕn) ≤ α,
∀P1 ∈P \P(θ∗). Partial non-testability of θ follows from an argument similar to that
of Proposition 5.3. QED

Proof of Proposition 6.1

(1) Fix β0 ∈ RK and µ0 ∈ R, and define Pβ0 ≡ {P ∈ P : β(P) = β0}, P0(µ0) ≡
{P ∈ P : µ(P) = µ0}, P1(µ0) ≡ P \ P0(µ0) and Pβ0

k (µ0) ≡ Pk(µ0) ∩
Pβ0 , k = 0, 1. Consider the test of Hβ0

0 (µ0) : P ∈Pβ0

0 (µ0) against Hβ0

1 (µ0) : P ∈
Pβ0

1 (µ0). For µ1 6= µ0, let (X ′, Y ′)′ have distribution P1 such that θ(P) = (µ1, β
′
0)′.

Clearly, P1 ∈Pβ0

1 (µ0). For π ∈ ]0, 1[, let also U = (U1, . . . , Un)′ be a n-vector of
i.i.d. Bernoulli B(π) random variables, independent of (X ′, Y ′)′. Define X∗ ≡ X
and for i = 1, . . . , n,

Y ∗i ≡ UiYi + (1− Ui)
(
β′0Xi +

µ0 − πµ1

1− π

)
. (A.8)
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Obviously,

Y ∗i − β′0X∗i = Ui(Yi − β′0Xi) + (1− Ui)
µ0 − πµ1

1− π
, i = 1, . . . , n. (A.9)

Define (X̃ ′, Ỹ ′)′ ≡
(
X ′, (Xβ0 + µ0+πµ1

1−π ιn)′
)′. Let P̃ and P0 denote the distribution

of (X̃ ′, Ỹ ′)′ and (X∗′, Y ∗′)′, respectively. From (A.8), we have P0 = πP1 + (1 −
π)P̃. It is easily checked from (A.8) and (A.9) that EP0(Y

∗
i |X∗) = µ0 + β′0X

∗
i and

Y ∗1 − β′0X∗1 , . . . , Y ∗n − β′0X∗n are identically distributed, conditionally on X∗. Thus
P0 ∈ Pβ0

0 (µ0). This holds for any π ∈ ]0, 1[, any P1 such that θ(P1) = (µ1, β
′
0)′

and µ1 6= µ0. Thus BSE2 is satisfied and Hβ0

0 (µ0) is non-testable against Hβ0

1 (µ0).
As this holds for any µ0, the parameter µ is non-testable in Pβ0 . As this is true for
any β0 ∈ RK , Lemma B.5 implies that µ is non-testable.

(2) We have shown in the above point that for all µ0 ∈ R and all β0 ∈ RK , H0 : {µ =
µ0, β = β0} is non-testable against H1 : {µ 6= µ0, β = β0}. The result is then an
immediate consequence of Proposition 2.10.

(3) This follows from Proposition 4.2. QED

Proof of Proposition 6.2 We first consider the case β0 = 0 and nX,0 = n. We
show that for any β ∈ RK , β 6= 0, and any α ∈ [ 1

n
, 1[, there exist an α-level test ϕ and a

distribution P1 in P with β(P1) 6= 0 such that EP1(ϕn) > α.Choose β1 ∈ RK\{0} such
that #{β′1X1, . . . , β

′
1Xn} = n. Let ΠX : {1, . . . , n} → {1, . . . , n} be the permutation

defined by ΠX(i) = j iff β′1Xj has rank iwhen β′1X1, . . . , β
′
1Xn are ranked in increasing

order. Define Ti = β′1XΠX(i) and Ỹi = YΠX(i), i = 1, . . . , n. For any distribution P, any
real number a and any i = 1, . . . , n, we have

P(Ỹi ≤ a|X) =
n∑
k=1

P(Ỹi ≤ a,ΠX(i) = k|X) =
n∑
k=1

I(ΠX(i) = k)P(Yk ≤ a|X).

(A.10)
For a strictly positive real number δX such that δX < min{Ti − Ti−1, i = 1, . . . , n},
define

I1 =]−∞, T1+δX ], Ii =]Ti−1+δX , Ti+δX ], i = 2, . . . , n−1, In =]Tn−1+δX ,+∞[
(A.11)

Notice Ti ∈ Ii, i = 1, . . . , n. Consider the test ϕ defined by ϕn = I(Ỹi ∈ Ii, i =
1, . . . , n). If β(P) = 0, Y1, . . . , Yn are identically distributed conditionally on X. From
(A.10) we see that Ỹ1, . . . , Ỹn are also identically distributed, conditionally on X. Then
we have

EP(ϕn|X) = P(
n⋂
i=1

{Ỹi ∈ Ii}|X) ≤ min{P(Ỹi ∈ Ii|X), i = 1, . . . , n} (A.12)

= min{P(Ỹ1 ∈ Ii|X), i = 1, . . . , n}. (A.13)
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As (I1, . . . , In) is a partition of R,we must have min{P(Ỹ1 ∈ Ii|X), i = 1, . . . , n} ≤ 1
n
.

As this is true unconditionally on X, the test ϕ has level α for any choice of α ≥ 1
n
.

Now choose 0 < ηX < min{δX , Ti − Ti−1 − δX , i = 1 . . . , n}, ξ ∈ ]0, 1[, and let
ν = (ν1, . . . , νn)′ be a real random n-vector such that ν|X ∼ N(0, σ2

XIn), where σ2
X is

such that
P(|ν1| < ηX |X) > 1− ξ. (A.14)

Let P1 be the distribution of (X ′, Y ′)′, with Yi = β′1Xi + νi, i = 1, . . . , n. We clearly
have P1 ∈ {P ∈P : β(P) 6= 0}. Thus, using (A.10) we get

P1(Ỹi ∈ [Ti − ηX , Ti + ηX ]|X) =
n∑
j=1

I(ΠX(i) = j)×

P1(Yj ∈ [β′1Xj − ηX , β′1Xj + ηX ]|X) > 1− ξ,

i = 1, . . . , n where the last inequality results from (A.14). This relation also implies
P1(Ỹi ∈ Ii|X) > 1− ξ, i = 1, . . . , n and therefore

EP1(ϕn|X) =
n∏
i=1

P1(Ỹi ∈ Ii|X) > (1− ξ)n. (A.15)

For any given ξ ∈ ]0, 1[, there always exists suitable choices of ηX and σ2
X such that

(A.15) holds. Therefore EP1(ϕn|X) can be made arbitrarily close to 1.
Next, for β0 6= 0, consider a test of H0(β0) : β = β0 against H1(β0) : β 6= β0. We
define εi(β0) ≡ Yi − β′0Xi, i = 1, . . . , n. The same steps as above, with Yi replaced
by εi(β0) and, may be followed to derive a somewhere powerful α-level test of H0(β0)
against H1(β0), for any α ≥ 1

n
.

Finally, if nX,0 ≡ maxβ∈RK\{β0}#{(β−β0)′X1, . . . , (β−β0)′Xn} < n,we proceed
as above, choosing β1 6= β0 such that #{(β1 − β0)′X1, . . . , (β1 − β0)′Xn} = nX,0 and
keeping only nX,0 observations with pairwise distinct (β1 − β0)′Xi.

Testability of the parameter β then follows from the above result and Definition
2.3. QED

Proof of Proposition 6.3 Choose β0 ∈ RK and consider the problem of testing
H0(β0) : P ∈ P0(β0) against H1(β0) : P ∈ P1(β0), where P0(β0) ≡ {P ∈ P :
β(P) = β0} and P1(β0) = P \ P0(β0). It follows from the definition of P that
P0(β0) and P1(β0) are non empty. Take P1 ∈ P1(β0) and let β1 be the parameter
associated with P1: β1 = β(P1). Choose ε ∈ ]0,∞[ and πi ∈ ]0, 1[, i = 1, . . . , n, such
that

∑n
i=1(1 − πi) < ε. We may always find a probability space (Ω,A ,m) and a real

random (nK + 2n)-vector Υ = (X ′, Y ′, U ′)′ defined on Ω with a distribution such that

1. (X ′, Y ′)′ ∼ P1, 2. Y⊥U |X, 3. U |X ∼
⊗n

i=1 B(πi),

where A⊥B|C stands for A is independent of B conditionally on C. Next define Ỹi ≡
[µ0+X ′iβ0−πi(µ1+X ′iβ1)]/(1−πi), i = 1, . . . , n,where µ1 ≡ µ(P1) and µ0 is any real
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number. Clearly E(Ỹi|X) = [µ0 +X ′iβ0−πi(µ1 +X ′iβ1)]/(1−πi).Now defineX∗ = X
and construct the n real random variables Y ∗i ≡ UiYi+(1−Ui)Ỹi, i = 1, . . . , n. From 1
to 3 above, we have E(Y ∗i |X∗) = πiE(Yi|X) + (1− πi)E(Ỹi|X) = µ0 +X ′iβ0. In other
words, the distribution P0 of (X∗′, Y ∗′)′ lies in P0(β0). Now, a straightforward applica-
tion of Lemma B.3 yields supg∈BnK+n

∣∣E(g(X∗, Y ∗)
)
− E
(
g(X, Y )

)∣∣ ≤∑n
i=1(1− πi).

The choice of π1, . . . , πn implies this supremum is less that ε. This holds for any
ε ∈]0, +∞[ and any P1 ∈P1(β0). It follows that for any test ϕ of H0(β0) we have

∀P1 ∈P1(β0),∀ε ∈]0, +∞[,∃P0 ∈P0(β0) such that |EP0(ϕn)− EP1(ϕn)| < ε.

Therefore, the power of any α-level test ofH0(β0) againstH1(β0) is uniformly bounded
from above by α. As this is true for any β0, the parameter β is non-testable. QED

Proof of Proposition 6.4 We fix β0 ∈ RK and consider the test of H0(β0) : β(P) =
β0 against H1(β0) : β(P) 6= β0. This testing problem is successively investigated in
various statistical models, all being subsets of P. These are defined from the following
families of probability distributions:
PH ≡ {P ∈P :V(Yi|X) =V(Yj|X),∀i, j = 1, . . . , n} ,
PU ≡ {P ∈P :Cov(Yi, Yj|X) = 0,∀i, j = 1, . . . , n, i 6= j} ,
P I ≡ {P ∈P : Y1−E(Y1|X), . . . , Yn−E(Yn|X) are independent conditionally on X}.
In each case considered below, the model is a set PL of family distributions, where L
is a character string made of some combination of the letters H, U and I. We write the
null and alternative hypotheses as H0(β0) : P ∈ PL

0 (β0) and H0(β0) : P ∈ PL
1 (β0),

where PL
0 (β0) ≡ {P ∈PL : β(P) = β0} and PL

1 (β0) ≡PL \PL
0 (β0).

1. Model PH: a linear regression model with conditionally homoskedastic error
terms. Choose any element PH

1 of PH
1 (β0) and let β1 ≡ β(PH

1 ).Choose ε ∈ ]0,∞[.
For any x ∈ RnK , let xi denote the vector of the [(i − 1)K + 1]-th to iK-th co-
ordinates of x, i = 1, . . . , n. It is easy to check that for all x ∈ RnK , we may
always find a strictly positive real number κ such that

∑n
i=1

κ(x′iβ1−x′iβ0)2

1+κ(x′iβ1−x′iβ0)2
< ε.

Let c : RnK → R be the mapping which associates such a κ with x ∈ RnK . We
may always find a probability space (Ω,A ,m) and a real random (nK + 3n)-
vector ΥH = (X ′, Y ′, ε̃′, U ′)′ defined on Ω with a distribution such that:
(aH) (X ′, Y ′)′ ∼ PH

1 , (cH) U |X ∼
⊗n

i=1 B(πi),

(bH) E(ε̃|X) = 0 and V(ε̃|X) = σ2In , (dH) Y⊥U |X and ε̃⊥U |X .

where σ2 is the conditional variance of Y1 given X , and πi ≡
[
1 + c(X)(X ′iβ1 −

X ′iβ0)2
]−1

, i = 1, . . . , n. One easily checks that this choice of the πi and the
definition of the mapping c entail

n∑
i=1

(1− πi) < ε, always. (A.16)
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Now define µ1 ≡ µ(PH
1 ), X∗ ≡ X and

Ỹi ≡ µ1 +
X ′iβ0 − πiX ′iβ1

1− πi
+ ε̃i, (A.17)

Y ∗i ≡ UiYi + (1− Ui)Ỹi, (A.18)

for i = 1, . . . , n. Let PH
0 denote the distribution of (X∗′, Y ∗′)′ ≡ (X∗′1 , . . . , X

∗′
n ,

Y ∗1 , . . . , Y
∗
n )′. Under (aH) to (dH) above, it is easy to verify that E(Y ∗i |X∗) =

µ1 + X∗′i β0 and V(Y ∗i |X∗) = πiE(Y 2
i |X) + (1 − πi)E(Ỹ 2

i |X) − (µ1 + X ′iβ0)2,
i = 1, . . . , n. Also

E(Ỹ 2
i |X) = σ2 + E(Ỹi|X)2 = σ2 + µ2

1 +
2µ1(X ′iβ0 − πiX ′iβ1)

1− πi
+

(X ′iβ0)2 + π2
i (X

′
iβ1)2 − 2πiX

′
iβ0X

′
iβ1

(1− πi)2
,

and E(Y 2
i |X) = σ2 +µ2

1 + (X ′iβ1)2 + 2µ1X
′
iβ1. Substituting and gathering terms,

we get V(Y ∗i |X∗) = σ2 + πi
1−πi (X

∗′
i β1 − X∗′i β0)2 = σ2 + 1

c(X∗)
, i = 1, . . . , n,

where the last equality results from substituting the expression of πi. The above
computations of the conditional expectation and variance of Y ∗ given X∗ show
that PH

0 ∈ PH
0 (β0). Using equation (A.16) above and Lemma B.3, we have

supg∈BnK+n

∣∣E(g(X∗, Y ∗)
)
− E

(
g(X, Y )

)∣∣ < ε. We conclude as in the proof of
Proposition 6.3.

2. Model PU: a linear regression model with conditionally uncorrelated, possi-
bly dependent, possibly heteroskedastic error terms. Choose any element PU

1 of
PU

1 (β0) and let β1 ≡ β(PU
1 ). Also choose any ε ∈ ]0,∞[ and any (π1, . . . , πn) in

]0, 1[n with
∑n

i=1(1− πi) < ε. As in the previous point, we introduce the random
vector ΥU = (X ′, Y ′, U)′ satisfying conditions (aU) to (cU) where:

(aU) (X ′, Y ′)′ ∼ PU
1 , (bU) U⊥X ∼

⊗n
i=1 B(πi), (cU) Y⊥U |X .

Set µ1 ≡ µ(PU
1 ), and define X∗ ≡ X, Ỹi ≡ µ1 +

X′iβ0−πiX′iβ1

1−πi and Y ∗i ≡ UiYi +

(1 − Ui)Ỹi, i = 1, . . . , n. Notice Cov(Yi, Ỹj|X) = Cov(Ỹi, Ỹj|X) = 0, ∀i, j. Let
PU

0 denote the distribution of (X∗′, Y ∗′)′. Under (aU) to (cU) we have E(Y ∗i |X∗) =
µ1 + X∗′i β0 and Cov(Y ∗i , Y

∗
j |X∗) = πiπjCov(Yi, Yj) = 0, for i 6= j. Therefore

PU
0 ∈PU

0 (β0). Conclude as in 1 above.

3. Model PUH ≡PU ∩PH: a linear regression model with conditionally uncorre-
lated and homoskedastic but possibly dependent error terms. Choose any element
PUH

1 of PUH
1 (β0) and let β1 ≡ β(PUH

1 ). Also choose any ε ∈ ]0,∞[. Consider the
random vector ΥUH = (X ′, Y, ε̃′, U ′)′ such that (aUH) to (dUH) hold where

(aUH) (X ′, Y ′)′ ∼ PUH
1 ,

and (bUH), (cUH), (dUH) identical to (bH),(cH), (dH), respectively, and with π1, . . . , πn
as in 1 above. We define X∗ ≡ X, and Ỹi and Y ∗i , i = 1, . . . , n, as in (A.17) and
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(A.18) and we let PUH
0 denote the distribution of (X∗′, Y ∗′)′. Using (aUH) to (dUH),

the same computations as in 1 and 2 above yield PUH
0 ∈PUH

0 . Conclude as in 1.

4. Model P I: a linear regression model with conditionally independent and possibly
heteroskedastic error terms. Choose any element PI

1 of P I
1(β0) and let β1 ≡

β(PI
1). Also choose any ε ∈ ]0,∞[ and π ∈ ]0, 1[ such that 1 − πn < ε. Consider

the random vector ΥI = (X ′, Y, U ′)′ such that (aI) to (cI ) hold where

(aI) (X ′, Y ′)′ ∼ PI
1 , (bI) U |X ∼ B(π)⊗n, (cI) Y⊥U |X .

Set µ1 ≡ µ(PU
1 ) and define X∗ ≡ X, Ỹi ≡ µ1 +

X′iβ0−πX′iβ1

1−π and Y ∗i as in (A.18)
with πi = π, i = 1 . . . , n. Let PI

0 denote the distribution of (X∗′, Y ∗′)′. Condi-
tions (aI) to (cI) entail E(Y ∗i |X∗) = µ1 + X∗′i β0. Moreover, the same conditions
imply that (Y ′, Ỹ ′, U ′)′ is a vector of independent random variables, conditionally
on X. Therefore Y ∗1 , . . . , Y

∗
n are independent, conditionally on X∗. Hence PI

0 ∈
P I

0(β0).Moreover, Lemma B.3 implies supg∈BnK+n

∣∣E(g(X∗, Y ∗)
)
−E
(
g(X, Y )

)∣∣
≤ 1− πn. Then conclude as in 1 above.

5. Model P IH ≡ P I ∩PH: a linear regression model with conditionally inde-
pendent and homoskedastic error terms. Choose any element PIH

1 of P IH
1 (β0)

and let β1 ≡ β(PIH
1 ). Also choose any ε ∈ ]0,∞[ Consider the random vector

ΥIH (X ′, Y, ε̃′, U ′)′ such that (aIH) to (dIH) hold where
(aIH) (X ′, Y ′)′ ∼ PIH

1 ,

(bIH) U⊥X ∼
⊗n

i=1 B(πi) ,

(cIH) ε̃1, . . . , ε̃n are i.i.d. conditionally on X, E(ε̃1|X) = 0, V(ε̃1|X) = σ2,

(dIH) (Y, U, ε̃) are independent conditionally on X,

and σ2 denotes the conditional variance of Y1 givenX , and π1, . . . , πn are set as in
1 above. Set µ1 ≡ µ(PIH

1 ) and define X∗ ≡ X, Ỹi and Y ∗i as in (A.17) and (A.18),
i = 1, . . . , n. Let PIH

0 denote the distribution of (X∗′, Y ∗′)′. Conditions (aIH) to
(dIH) entail E(Y ∗i |X∗) = µ1 + X∗′i β0. Also, conditionally on X∗, Y ∗1 , . . . , Y

∗
n are

homoskedastic as in 1 above. Moreover, under the same conditions, Y ∗1 , . . . , Y
∗
n

are independent conditionally on X∗. In other words PIH
0 ∈ P IH

0 (β0). Conclude
as in 1 above. QED

Proof of Proposition 6.5 Using the same notation as in the proof of Proposition 6.4,
define PR ≡ {P ∈ P : C1 and C3 hold}. Choose any element PR

1 of PR
1 (β0) and let

β1 ≡ β(PR
1 ). Choose ε ∈ ]0,∞[ and π ∈ ]0, 1[ such that 1−πn < ε. Consider the random

vector Υ = (X ′, Y ′, U ′)′ such that (aR) (X ′, Y ′)′ ∼ PR
1 and (bR) U |(X ′, Y ′)′ ∼

B(π)⊗n hold. Now define µ1 ≡ µ(PR
1 ), X∗ ≡ X, Ỹi ≡ µ1 +

X′iβ0−πX′iβ1

1−π and Y ∗i ≡
UiYi + (1 − Ui)Ỹi, i = 1, . . . , n. Let PR

0 denote the distribution of (X∗′, Y ∗′)′. Under
the above conditions (aR) and (bR), we check that PR

0 ∈ PR
0 (β0) as in the proof of

Proposition 6.4. The same conclusion applies. QED
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Proof of Proposition 7.1 We know that in a pure i.i.d. sampling scheme, the ex-
pectation is a non-testable parameter when no restrictions are put on the family of
distributions (see Bahadur and Savage (1956)), while it becomes testable when those
distributions are imposed to be bounded, with known bounds (see Anderson (1967)).
In other words, while

(
H0 : EP(Zi) = 0, ∀i;H1 : EP(Zi) 6= 0 for some i

)
is non-

testable,
(
H̃0 :EP

(
h(Zi, θ)

)
= 0, ∀i; H̃1 : EP

(
h(Zi, θ)

)
6= 0 for some i

)
is a testable

problem, for any bounded function h, with known bounds. However, the equivalence
of Proposition 7.1 implies these two problems are equivalent. QED

Proof of Proposition 7.2 Let Z = (X ′, Y ′)′ ∼ P1 ∈P1(θ0), with θ(P1) = θ1 6= θ0.
For any (π1, . . . , πn)′ ∈ ]0, 1[n, let U = (U1, . . . , Un) be distributed as

⊗n
i=1 B(πi),

independent of Z. DefineX∗ ≡ X, Ỹi ≡ g(Xi,θ0)−πig(Xi,θ1)
1−πi , and Y ∗i ≡ UiYi+(1−Ui)Ỹi,

i = 1, . . . , n. Let P0 denote the distribution of (X∗′, Y ∗′)′. We have

EP0(Y
∗
i |X∗) = πiEP0(Yi|X) + (1− π1)

g(Xi, θ0)− πig(Xi, θ1)

1− πi
= 0, i = 1, . . . , n.

Thus P0 ∈P0(θ0). This holds for any θ0 ∈ Θ. We conclude as above. QED

Proof of Proposition 7.3 Choose θ0 ∈ Θ such that is equivalence class E (θ0) is not
a singleton and choose θ1 ∈ E (θ0), θ1 6= θ0. Define P0 ≡ {P ∈ P : θ(P) = θ0} and
P1 ≡ {P ∈ P : θ(P) = θ1}, choose any P1 ∈ P1. For any π ∈ ]0, 1[, we construct
the random vector Υ ≡ (X ′, Y ′, U)′ such that
(a) (X ′, Y ′)′ ∼ P1 , (b) U : X ∼ B(π)⊗n, (c) U and Y are independent, condi-

tionally on X.

Define X∗ ≡ X, Ỹi ≡ g(Xi,θ0)−πg(Xi,θ1)
1−π and Y ∗i = UiYi + (1 − Ui)Ỹi, i = 1, . . . , n.

We let P0 denote the distribution of (X∗′, Y ∗′)′. We show P0 ∈ P0. Under conditions
(a) to (c) above, one easily checks that E(Y ∗i |X∗) = g(X∗i , θ0), i = 1, . . . , n and that
(Y ′, Ỹ ′, U ′)′ is a vector of independent random variables, conditionally on X. It follows
that ε∗1, . . . , ε

∗
n are independent conditionally on X∗, where ε∗i ≡ Y ∗i − g(X∗i , θ0), i =

1, . . . , n. Now we also have

ε∗i = Ui
[
Yi − g(Xi, θ1)

]
+ (1− Ui)

g(Xi, θ0)− πg(Xi, θ1)

1− π
+ Uig(Xi, θ1)− g(Xi, θ0)

= Ui
[
Yi − g(Xi, θ1)

]
+
π − Ui
1− π

[
g(Xi, θ0)− g(Xi, θ1)

]
.

As θ1 ∈ E (θ0), we can find µ ∈ R such that g(Xi, θ0) − g(Xi, θ1) = µ, ∀i =
1, . . . , n. Thus under (a) to (c), ε∗1, . . . , ε

∗
n are i.i.d., conditionally on X∗. Therefore,

P0 ∈P0 as announced. From Lemma B.3, it follows that supg∈Bnp+n
∣∣EP0

(
g(X∗, Y ∗)

)
−EP1

(
g(X, Y )

)∣∣ ≤ n(1 − π). As this is true for any π ∈ ]0, 1[ and any P1 ∈ P1, we
conclude that H0(θ0) is non-testable against H1(θ1). QED
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Proof of Proposition 7.4 We propose a proof similar to that of Proposition 6.2. Let
{E` : ` ∈ L} be the family of all equivalent classes generated by R. In each E` choose
a representative element θ` ∈ E`. For i = 1, . . . , n define εi(θ`) ≡ Yi − g(Xi, θ`) =
εi + g

(
Xi, θ(P)

)
− g(Xi, θ`), where εi ≡ Yi − EP(Yi|X) = Yi − g

(
Xi, θ(P)

)
.

We first assume nX,` = n. In this case, we may find k 6= ` such that #{g(X1, θk)−
g(X1, θ`), . . . , g(Xn, θk) − g(Xn, θ`)} = n. Define Gi ≡ g(Xi, θk) − g(Xi, θ`), i =
1, . . . , n, and ΠX : {1, . . . , n} → {1, . . . , n} such that T1 < · · · < Tn, where Ti ≡
GΠX(i), i = 1, . . . , n. Also choose 0 < δX < min{Ti − Ti−1, i = 1, . . . , n} and define
the intervals Ii, i = 1, . . . , n as in (A.11). Consider the test ϕ defined as ϕn = I(ε̃i(θ`) ∈
Ii, i = 1, . . . , n), where ε̃i ≡ εΠX(i), i = 1, . . . , n.

Assume P ∈ P`. Then εi(θ`) ≡ Yi − g(Xi, θ`) = εi + µ`, ∀i = 1, . . . , n, for
some µ` ∈ R. Condition C8 implies that under H0(`), ε1(θ`), . . . , εn(θ`) are identically
distributed, conditionally on X. Thus, using (A.10) and (A.13) for ε1(θ`), . . . , εn(θ`),
we get EP(ϕn|X) ≤ 1

n
. Thus ϕ has level α provided we choose α ≥ 1

n
. Next, choose

ξ ∈ ]0, 1[ and 0 < ηX < min{δX , Ti−Ti−1−δX , i = 1, . . . , n} and let ν = (ν1, . . . , νn)′

be the real random vector of the proof of Proposition 6.2. Now let P1 be the distribution
of (X ′, Y ′)′, with Yi = g(Xi, θ1) + νi, i = 1, . . . , n. Clearly θ(P1) = θ1 ∈ Ek and
P1 6∈P`. Then

P1(Gi−ηX ≤ εi(θ`) ≤ Gi+ηX |X) = P1(−ηX ≤ νi ≤ ηX |X) > 1−ξ, i = 1, . . . , n,

which implies P1(Ti − ηX ≤ ε̃i(θ`) ≤ Ti + ηX |X) > 1 − ξ, i = 1, . . . , n. The choice
of ηX and σ2

X entails P1(ε̃i(θ`) ∈ Ii|X) ≥ P1(Ti − ηX ≤ ε̃i(θ`) ≤ Ti + ηX |X),
i = 1, . . . , n. Thus EP1(ϕn) =

∏n
i=1 P1(ε̃i(θ`) ∈ Ii|X) > (1 − ξ)n. As this can be

obtained for any ξ ∈ ]0, 1[, we can find a distribution not in P` for which the power of
ϕn is arbitrarily close to 1.

If nX,` < n, let k 6= ` be such that nX,` = #{g(X1, θk)−g(X1, θ`), . . . , g(Xn, θk)−
g(Xn, θ`)}. Then proceed as above keeping only nX,` observations i with pairwise
distinct values of g(Xi, θk)− g(Xi, θ`). QED

Proof of Proposition 7.5 Define P(θ0) ≡ {P ∈P : θ(P) = θ0} and P(θ1) ≡ {P ∈
P : θ(P) = θ1} Choose P1 ∈ P(θ1), ε ∈ ]0, 1[ and π ∈ ]0, 1[ such that n(1 − π) < ε.
Consider the random real (nK + 2n)-vector Υ = (X ′, Y ′, U ′)′ such that

1. (X ′, Y ′)′ ∼ P1, 2. U |X ∼ B(π)⊗n, 3. U⊥Y |X.

Define X∗ ≡ X, Ỹi ≡ θ0(Xi)−πθ1(Xi)
1−π and Y ∗i ≡ UiYi + (1 − Ui)Ỹi i = 1, . . . , n.

Let P∗0 be the distribution of (X∗′i , Y
∗
i )′. We have E(Ỹi|X) = θ0(Xi)−πθ1(Xi)

1−π and then
E(Y ∗i |X∗) = θ0(X∗i ), under 2 and 3 above. Moreover, under the same conditions,
the conditional distribution of U given (X ′, Y )′ is B(π)⊗n. Therefore, under 1 to 3
above, Υ ∼ B(π)⊗n ⊗ P1 =

(
B(π) ⊗ P11

)⊗n
, where P11 is the distribution of

(X ′1, Y1)′. In other words, (X ′i, Yi, Ui)
′, i = 1, . . . , n, are i.i.d. Now as (X∗′i , Y

∗
i )′ =

g(Xi, Yi, Ui), i = 1, . . . , n, for some mapping g from RK+2 into RK+1, it follows that
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(X∗′1 , Y
∗

1 )′, . . . , (X∗′n , Y
∗
n )′ are also i.i.d. Thus P∗0 ∈P0(θ0) and the result follows as in

the proof of Proposition 6.3. QED

Proof of Proposition 7.7 Choose P1 6∈PW and define θ1 ≡ θ(P1). Choose ε ∈ ]0, 1[
and π ∈ ]0, 1[ such that n(1 − π) < ε. Consider the random real (nK + 2n)-vector
Υ = (X ′, Y ′, U ′)′ such that

1. (X ′, Y ′)′ ∼ P1, 2. U |X ∼ B(π)⊗n, 3. U⊥Y |X.

Define X∗ ≡ X, Ỹi ≡ − π
1−πθ1(Xi) and Y ∗i ≡ UiYi + (1 − Ui)Ỹi, i = 1, . . . , n. Let P∗0

be the distribution of (X∗′i , Y
∗
i )′. Under 2 and 3 we have E(Y ∗i |X∗) =E(Y ∗i |W ∗

i ) = 0.
The fact that (X∗′1 , Y

∗
1 )′, . . . , (X∗′n , Y

∗
n )′ are i.i.d. follows from the same argument as in

the proof of Proposition 7.5 above. Thus P∗0 ∈PW . QED

B Lemmas

Lemma B.1 (Sufficient conditions for BSE2) In addition to BSE1, assume the follow-
ing conditions hold:

BSE6. ∀π ∈ ]0, 1[, ∀P1 ∈P, ∀P2 ∈P, πP1 + (1− π)P2 ∈P.

BSE7. ∀λ ∈ [1,+∞[, ∀θ1 ∈ Θ, ∀θ2 ∈ Θ, λθ1 + (1− λ)θ2 ∈ Θ.

BSE8. ∀π ∈ ]0, 1[, ∀P1 ∈P, ∀P2 ∈P we have θ
(
πP1 + (1−π)P2

)
= πθ(P1) + (1−

π)θ(P2).

Then BSE2 holds.

Proof : Choose any two elements θ1 and θ2 of Θ and any π ∈ ]0, 1[. Under BSE7,
we can find θ̃ ∈ Θ such that θ2 = πθ1 + (1 − π)θ̃. Under BSE1, P(θ1)
and P(θ̃) are not empty. Then we can find P1 ∈ P(θ1) and P̃ ∈ P(θ̃).
Define P2 ≡ πP1 + (1 − π)P̃. From BSE6, P2 ∈ P. Now BSE8 implies
θ(P2) = πθ(P1) + (1−π)θ(P̃) = πθ1 + (1−π)θ(P̃) = θ2. Hence P ∈P(θ2).
This holds for any θ1 and θ2 in Θ, any P1 ∈ θ and any π ∈ ]0, 1[. Thus BSE2 is
true. QED

Lemma B.2 (Generalization of BS’s Lemma 1) Let d be some strictly positive integer
and P, Q and H be three probability distributions on Rd such that Q = πP + (1− π)H
for some π ∈ ]0, 1[. For any integer N ≥ 1, we have

sup
g∈BNd

∣∣EP(gN)− EQ(gN)
∣∣ ≤ 1− πk, ∀k ≥ N,

where for any probability F on Rd, EF(gN) ≡
∫

RNd g(t1, . . . , tN)dF⊗N(t1, . . . , tN).
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Proof : Let B(π) denote the Bernoulli distribution with parameter π. Given P and H,
define µ ≡ P⊗H⊗B(π). For any integerN ≥ 1,we may always find a proba-
bility space (Ω,A ,m) and a real random vectorWWW : Ω −→ RN(2d+1) such that
WWW ∼ µ⊗N . Thus we may write WWW = (W ′

1, . . . ,W
′
N)′, where W1, . . . ,WN are

random real (2d+1)-vectors i.i.d. µ. In turn, we may writeWi = (X ′i, Y
′
i , Ui)

′,
where Xi ∼ P, Yi ∼ H, Ui ∼ B(π) and Xi, Yi, Ui independent, i = 1, . . . , N.
Now define Zi ≡ UiXi + (1 − Ui)Yi, i = 1, . . . , N. It is easy to see that
Z1, . . . , ZN are i.i.d. Q. Next define the event A ≡

⋂N
i=1 Ai, where Ai ≡ {ω :

Ui(ω) = 1} ∈ A , i = 1, . . . , N . Notice A1, . . . , AN are independent, each
with probability m(A1) = π. Thus m(A) = πN . Let A{ ≡ Ω \ A. We have

EQ(gN) =

∫
RNd

g(t1, . . . , tN)dQ⊗N(t1, . . . , tN) =

∫
Ω

(g ◦ Z)(ω)dm(ω)

=

∫
A

(g ◦ Z)(ω)dm(ω) +

∫
Ω

(g ◦ Z)(ω)IA{(ω)dm(ω).

Because 0 ≤ g ≤ 1 always, we have (g ◦ Z)IA{ ≤ IA{ . Thus∫
Ω

(g ◦ Z)(ω)IA{(ω)dm(ω) ≤
∫

Ω

IA{(ω)dm(ω) = m(A{) = 1− πN .

Notice that from the definition of Z1, . . . , ZN , we have Z(ω) = X(ω) for all
ω ∈ A. Therefore

∫
A

(g ◦ Z)(ω)dm(ω)
∫
A

(g ◦ X)(ω)dm(ω). As 0 ≤ g ≤ 1
always,∫

A

(g ◦X)(ω)dm(ω) ≤
∫

Ω

(g ◦X)(ω)dm(ω) = Em(g ◦X) = EP(gN).

Then EQ(gN) ≤ EP(gN) + 1− πN . As this inequality is true for any g ∈ BNd,
it is also true for 1− g and thus EP(gN)− EQ(gN) ≤ 1− πN . Combining these
results, we get ∣∣EQ(gN)− EP(gN)

∣∣ ≤ 1− πN .

As this holds for all g ∈ BNd, the desired result follows. QED

Lemma B.3 Let (Ω,A ,m) be a probability space and N and d be strictly positive
integers. Let X1, . . . , XN and Y1, . . . , YN be N real random d-vectors defined on Ω.
Let Ui be a Bernoulli B(πi) random variable defined on Ω, for some πi ∈ ]0, 1[, i =
1, . . . , N. Define the N random d-vectors Zi ≡ UiXi + (1− Ui)Yi, i = 1, . . . , N. Then

sup
g∈BNd

∣∣Em

(
g(Z)

)
− Em

(
g(X)

)∣∣ ≤ N∑
i=1

(1− πi),

where Em

(
g(X)

)
≡
∫

Ω
g
(
X1(ω), . . . , XN(ω)

)
dm(ω). If U1, . . . , UN are independent,

the RHS of the inequality may be replaced with 1−
∏N

i=1 πi.
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Proof : Define A ≡
⋂N
i=1{Ui(ω) = 1} and A{ its complement in Ω. Notice that

m(A{) ≤
N∑
i=1

m
(
{Ui(ω) = 0}

)
=

N∑
i=1

(1− πi). (A.1)

Thus for any g ∈ BNd, and using the same arguments as in Lemma B.2, we
have

Em

(
g(Z)

)
=

∫
A

g
(
Z(ω)

)
dm(ω) +

∫
A{

g
(
Z(ω)

)
dm(ω) ≤ Em

(
g(X)

)
+ m(A{).

Inequality (A.1) implies Em

(
g(Z)

)
−Em

(
g(X)

)
≤
∑N

i=1(1−πi).As this is true
for any g ∈ BNd, it is also true for 1 − g and thus Em

(
g(X)

)
−Em

(
g(Z)

)
≤∑N

i=1(1 − πi). Combining these results, we get
∣∣Em

(
g(Z)

)
− Em

(
g(X)

)∣∣ ≤∑N
i=1(1− πi). Now when U1, . . . , Un are independent, m(A{) = 1−

∏n
i=1 πi.

As this holds for all g ∈ BNd, the desired result follows. QED

Lemma B.4 Let A and B be two subsets of a set S, with A ⊂ B. Let d be a pseudo-
distance on S. Let h be a real function defined on B. Continuity of h w.r.t. d is defined
in the same way as when d is a distance. Also, “A is dense in B” is defined as when d
is a distance.

If (w.r.t. d) A is dense in B and h is continuous, then supA h(x) = supB h(x) and
infA h(x) = infB h(x).

Proof : As h is continuous, ∀b ∈ B, ∀ε ∈ ]0; +∞[, ∃δ ∈ ]0; +∞[ such that x ∈
Bd
δ (b) =⇒ |h(x) − h(b)| < ε. As A is dense in B, the neighborhood Bd

δ (b)
necessarily contains a a ∈ A. This implies that

∀b ∈ B, ∀ε ∈]0; +∞[, ∃a ∈ A such that |h(a)− h(b)| < ε. (A.2)

As A ⊂ B, suppose supA h(x) < supB h(x) and define η ∈ ]0; +∞[ as η ≡
supB h(x)−supA h(x). Then clearly supB h(x)−h(a) > ε for all a ∈ A and all
ε ∈ ]0; η[.Hence ∃b ∈ B such that h(b)−h(a) ≥ ε, ∀ε ∈ ]0; η[, ∀a ∈ A,which
contradicts (A.2). Now suppose infA h(x) > infB h(x) and define ν ∈ ]0; +∞[
as ν ≡ infA h(x) − infB h(x). Then h(a) − infB h(x) > ε for all a ∈ A and
all ε ∈ ]0; ν[. Hence ∃b ∈ B such that h(a) − h(b) ≥ ε, ∀ε ∈ ]0; ν[, ∀a ∈ A,
which also contradicts (A.2). QED

Lemma B.5 Let P be a statistical model and define the testing problemH = (H0, H1),
whereHk : P ∈Pk, with ∅ 6= Pk ⊂P, k = 0, 1, and P1 = P\P0. Assume that for
some index set I we may write P =

⋃
i∈I P i, where the P is are subsets of P. For any

i ∈ I, define P i
k ≡Pk ∩P i, k = 0, 1 and the testing problem H i = (H i

0, H
i
1), where

H i
k : P ∈P i

k, k = 0, 1. If for any i ∈ I, H i is non-testable, then H is non-testable.
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Proof : Let ϕ be an α-level test of H. For any i ∈ I, as P i
0 ⊂ P0, ϕ is also an

α-level test of H i. Since for any i ∈ I it is assumed H i is non-testable, we
have supP∈Pi

1
EP(ϕn) ≤ α, ∀i ∈ I, which entails supi∈I supP∈Pi

1
EP(ϕn) ≤ α.

Now, P1 =
⋃
i∈I P i

1 and the LHS of the last inequality is supP∈P1
EP(ϕn).

As supP∈P1
EP(ϕn) ≤ α holds for any α-level test of H, this problem is non-

testable. QED
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