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Abstract

In this paper we investigate the impact of non-stationary cycles on the asymptotic and �nite
sample properties of standard unit root tests. Results are presented for the augmented Dickey-Fuller
normalised bias and t-ratio-based tests (Dickey and Fuller, 1979, and Said and Dickey, 1984), the
variance ratio unit root test of Breitung (2002) and theM class of unit-root tests introduced by Stock
(1999) and Perron and Ng (1996). The limiting distributions of these statistics are derived in the
presence of non-stationary cycles. We show that while the ADF statistics remain pivotal (provided
the test regression is properly augmented), this is not the case for the other statistics considered and
show numerically that the size properties of the tests based on these statistics are too unreliable to
be used in practice. We also show that the t-ratios associated with lags of the dependent variable
of order greater than two in the ADF regression are asymptotically normally distributed. This is an
important result as it implies that extant sequential methods (see Hall, 1994 and Ng and Perron,
1995) used to determine the order of augmentation in the ADF regression remain valid in the presence
of non-stationary cycles.

Keywords: Nonstationary cycles; unit root tests; lag augmentation order selection.
JEL classi�cations: C20, C22
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1 Introduction

Peaks at low non-zero frequencies imply the existence of cycles in time series, a feature present in many
macroeconomic, �nancial and other time series; see, inter alia, Conway and Frame (2000), Birgean and
Kilian (2002) and Priestley (1981). The importance and interest in trend growth, cyclicality and seasonal
�uctuations in economic and �nancial time series dates back several decades; see Burns and Mitchell
(1946). For instance, Canova (1996) discusses the literature on Bayesian learning (Nyarko, 1992) and on
noisy traders in �nancial markets (Campbell and Kyle, 1993) where models which generate irregularly
spaced but signi�cant cycles in economic activity and asset prices are proposed. The presence of cycles
is also documented in the political economy literature (electoral cycles in government variables, Alesina
and Roubini, 1992), and naturally arises in the business cycle literature.
Interestingly, the existence of both complex and real unit roots can induce growth cycles similar

to those observed in economic data; see Allen (1997). Autoregressive (AR) processes with roots on the
complex unit circle are non-stationary and display persistent cyclical behavior similar to that of persistent
business cycles (Pagan, 1999 and Bierens, 2001). Bierens (2001) �nds evidence that business cycles may
indeed be due to complex unit roots. Shibayama (2008) studies inventories and monetary policy by
estimating VAR models and also detects complex roots that generate cycles of around 55 to 70 months,
which are close to business cycle lengths.
Given that cycles are an important feature of economic and �nancial variables it is important to

evaluate their implications on the performance of pre-testing procedures, in particular on the limiting
null distributions and �nite sample properties of zero frequency unit root test statistics. Consequently,
following the body of empirical evidence summarised above, in this paper we will focus on the case where
the cyclical component is characterised by a second order autoregressive component with complex roots
in the neighbourhood of unity, although generalisations to higher-order non-stationary factors will also
be discussed.
The asymptotic distributions of the least-squares estimates of an AR(2) with complex unit roots has

been addressed in Ahtola and Tiao (1987), Gregoir (2004) and Tanaka (2008), the latter generalises the
results in Ahtola and Tiao (1987) by allowing the error term in the AR(2) model to follow a stationary
process. For asymptotic results for general AR processes see, inter alia, Chan and Wei (1988). Chan and
Wei (1988) considered the limiting distributions of the least squares estimate of a general nonstationary
AR model of order p (AR(p)) with characteristic roots at di¤erent frequencies on or outside the unit circle,
each of which may have di¤erent multiplicities (see also Nielsen, 2001). This was the �rst comprehensive
treatment of least squares estimates for a general nonstationary AR(p) model. Chan and Wei (1988)
showed that the location of the roots of the time series played an important role in characterizing the
limiting distributions. Jeganathan (1991) generalized this idea to the near-integrated context where
the limiting distributions of the least-squares estimators are expressed in terms of Ornstein-Uhlenbeck
processes. Extensions to vector AR processes are provided in Tsay and Tiao (1990) and to processes with
deterministic trends in Chan (1989).
We will focus attention on the conventional augmented Dickey-Fuller [ADF] tests (Dickey and Fuller,

1979, Said and Dickey, 1984, Hamilton, 1994), the variance ratio unit root test of Breitung (2002) and
the trinity of so-called M unit-root tests introduced by Stock (1999) and popularised by Perron and Ng
(1996). The M tests have been increasingly popular in the unit root literature; indeed, in discussing
the ADF tests Haldrup and Jansson (2006,p.267) argue that �... practitioners ought to abandon the
use of these tests...� in favour of the M tests because of �... the excellent size properties and �nearly�
optimal power properties� of the latter. The results we present in this paper, however, suggest quite
the opposite conclusion holds in cases where the time series process admits (near-) unit roots at cyclical
frequencies. In particular we show that while the limiting distributions of the two ADF statistics remain
pivotal (provided the test regression is properly augmented), this is not the case for the variance ratio or
the three M statistics, all of which become too unreliable to be used in practice. We also show that the
normalized bias and the t-ratio tests associated with the lags of the dependent variable (of order greater
than two) in the ADF regression are asymptotically normally distributed. This is an important result
as it implies that the standard sequential methods (see Hall, 1994, and Ng and Perron, 1995) used to
determine the order of augmentation in the ADF regression remain valid when cyclical (near-) unit roots
are present in the data.
The remainder of the paper is organized as follows. In section 2 we outline our reference time series

model which allows for cyclical unit roots and brie�y outline the ADF, variance ratio and M unit root
tests. In Section 3, in the case where cyclical unit roots are present in the data, we establish the large
sample behaviour of these tests together with those of the conventional t-ratios for testing the signi�cance
of lagged dependent variables in the ADF test regression. Extensions to allow for near unit roots (both
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at the zero and cyclical frequencies) and deterministic variables are discussed in section 4. Finite sample
simulations are reported in section 5. Section 6 concludes. All proofs are collected in an mathematical
appendix.
In the following �b�c�denotes the integer part of its argument, �)�denotes weak convergence, �p!�

convergence in probability, and �x := y�(�x =: y�) indicates that x is de�ned by y (y is de�ned by x).

2 The Model and Unit Root Tests

2.1 The Time Series Model

We consider a univariate time series fxtg generated according to the following data generation process
[DGP],

	(L) (1� aL)xt = "t; "t � IID(0; �2); t = 1; 2; : : : ; n: (1)

We assume throughout that the process is initialised at x�2 = x�1 = x0 = 0, although weakening this to
allow these starting values to be of op(n1=2) would not change any of the asymptotic results which follow.
In (1) the autoregressive polynomial 	(L) =

�
1� 2b cos(�)L+ b2L2

�
, with � 2 (0; �), and where L

denotes the usual lag operator. Consequently, when b = 1 (jbj < 1), 	(L) admits the complex conjugate
pair of unit (stable) roots, exp (�i�) � cos (�)� i sin (�), at the spectral frequency �. We do not assume
that the value of � is known to the practitioner. The process additionally admits a zero frequency unit
root when a = 1. In the case where a = b = 1, fxtg is therefore integrated of order one at both the zero
and � spectral frequencies, denoted I0(1) and I�(1), respectively. In this case, it follows that zt := �xt,
where � := (1 � L), will be I�(1) but I0(0), while ut := ��xt, where �� :=

�
1� 2 cos(�)L+ L2

�
, will

be I0(1) but I�(0).
Our focus in this paper is on testing the standard zero frequency unit root null hypothesis that

xt � I0(1), H0 : a = 1, against the alternative that xt � I0(0), H1 : jaj < 1, in the case where 	(L)
admits the pair of complex unit roots at frequency �.

Remark 1. The model in (1) is arguably quite simple. However, it can be extended to allow for: near
unit roots at the zero and/or � frequencies; deterministic components; weak dependence in f"tg, and unit
roots at other cyclical frequencies lying in (0; �) and/or at the Nyquist (�) frequency, without altering
the qualitative conclusions which can be drawn from the analysis of (1). For expositional purposes we
will therefore focus on (1) but we will discuss how our results generalise to these cases.

Remark 2. Notice that �� =
�
1� 2 cos(�)L+ L2

�
generates a (non-stationary) cycle of 2�=� periods.

Consequently, in the case of data observed with a seasonal periodicity of S, � = 2�j=S; j 2 f1; 2; : : : ; S�g,
where S� := b(S � 1)=2c, �� generates non-stationary seasonal cycles.

2.2 Zero Frequency Unit Root Tests

A large number of procedures have been proposed to test for zero frequency unit roots; see, for example,
Stock (1994), Maddala and Kim (1998) and Phillips and Xiao (1998) for excellent overviews. In this
Section we review three popular classes of such tests.
The �rst tests we consider are the augmented Dickey-Fuller [ADF] normalised bias and t-ratio tests.

These are computed from the auxiliary test regression,

�xt = �xt�1 +
kX
j=1

�j�xt�j + "k;t: (2)

In (2), k denotes the lag truncation order chosen to account (parametrically) for 	(L) and any weak
dependence in f"tg; in the simplest form of the DGP given in (1), where "t is IID, k = 2. More generally,
where "t is a linear process satisfying standard summability and moment conditions (see Chang and Park,
2002), k needs to be such that 1=k + k3=n!1 as n!1; see Said and Dickey (1984) and Chang and
Park (2002). Based on OLS estimation of (2), the ADF t-ratio for testing H0 against H1 will be denoted
tb� := b�=se (b�) and the associated normalised bias statistic as Zb� := nb�=(1 �Pk

i=1 b�i). The ADF tests
remain the most popularly applied unit root tests due in part to their ease of construction. At this point
we also outline the sequential lag selection method due to Hall (1994) and Ng and Perron (1995). Here
one starts from a maximum lag length, kmax say in (2), satisfying the rate condition above. One then
runs the standard t-test for the signi�cance of the terminal lag using critical values from the standard
normal distribution. If the null is rejected the ADF statistics are computed from (2) with lag length
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kmax; otherwise, the lag length is reduced to kmax � 1 and the procedure repeated until the lag length
cannot be reduced further, or if a pre-speci�ed value for the minimum lag length is attained, at which
point the ADF statistics are computed for that lag length.
Secondly we will consider the trinity of so-called M unit root tests due to Stock (1999) and Perron

and Ng (1996), inter alia:

MSB :=

 
�̂
�2
n�2

nX
t=1

x2t�1

!1=2
(3)

MZ� :=

 
2n�2

nX
t=1

x2t�1

!�1 �
n�1x2n � �̂

2
�

(4)

MZt := MSB �MZ� (5)

where �̂
2
is an estimator of the long run variance of f"tg. Following Perron and Ng (1996) we can consider

two alternative estimators for the long-run variance. Firstly, a non-parametric kernel estimator based on

the sample autocovariances, �̂
2
= s2WA, with s

2
WA :=

Pn�1
h=�n+1 !(h=m)̂h, ̂h := n

�1Pn�jhj
t=1 "̂0;t"̂0;t+jhj,

where "̂0;t are the OLS residuals from regressing xt on xt�1, with kernel function ! (�) satisfying e.g. the
general conditions reported in Jansson (2002, Assumption A3) and the bandwidth parameter m 2 (0;1)
satisfying 1=m+m2=n! 0 as n!1 (which corresponds to Assumption A4 of Jansson, 2002). Secondly,

a parametric autoregressive spectral density estimator, �̂
2
:= s2AR; of the form suggested by Berk (1974),

where s2AR := �̂
2
k=
�
1�

Pk
i=1 b�i�2 where �̂2k := n�1Pbe2t ; b�i; i = 1; :::; k; and bet are obtained from the

OLS estimation of (2) for a given value of k satisfying the same conditions as given above in the context of
the ADF tests. As noted in section 2, it has been suggested by some authors (e.g. Haldrup and Jansson,
2006) that the M tests, when coupled with the modi�ed AIC lag selection method of Ng and Perron
(2001), are preferable to the standard ADF tests outlined above due to their superior size properties,
relative to the latter, in the presence of weak dependence in f"tg.
Finally, we will consider the variance ratio test (V RT ) proposed by Breitung (2002),

V RT := n�2

 
nX
t=1

x2t

!�1 nX
t=1

0@ tX
j=1

xj

1A2

: (6)

The variance ratio test has some appealing properties. First of all it requires no correction, parametric
or non-parametric, for serial correlation from f"tg and/or 	(L). Second, by virtue of its lack of such a
correction factor, it has been advocated by some authors (see, for example, Müller, 2008) as a unit root
test which avoids the criticisms of Faust (1996) regarding the (theoretical) uncontrollability of the size of
unit root tests based around (parametric or non-parametric) corrections for general weak dependence in
f"tg.

3 Asymptotic Behaviour under Non-Stationary Cycles

For the purpose of analysing the impact of non-stationary cycles on the limit distributions of the zero
frequency unit root tests discussed in section 2.2 it will prove useful to �rst consider frequency speci�c
orthogonal decompositions of xt and �xt. These results are collected together in Lemma 1.

Lemma 1 Let the time series process fxtg be generated by (1) with a = b = 1. Then for any � 2 (0; �)
the following decompositions hold:

xt = �0S0(t) +
���
sin�

[sin (�(t+ 1))S�;�(t)� cos (�(t+ 1))S�;�(t)]

+
���
sin�

[cos (� (t+ 1))S�;�(t) + sin (� (t+ 1))S�;�(t)] +Op(1) (7)

�xt =
1

sin�
[sin (�(t+ 1))S�(t)� cos (�(t+ 1))S�(t)] (8)

where S0(t) :=
Pt

j=1 "j, S�;�(t) :=
Pt

j=1 "j cos (j�), S�;�(t) :=
Pt

j=1 "j sin (j�), �0 := 1=2 (1� cos�),
��� := (1� cos (�)) =2 (1� cos�), and �

�
� := � sin (�) =2 (1� cos�).
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Remark 3. It is straightforward to show that the results stated in Lemma 1 continue to hold under weaker
linear process conditions on f"tg provided Assumptions 1.1-1.2 of Gregoir (2004), adapted slightly to our
situation, are satis�ed. Precisely, these conditions entail that "t = d(L)et, where ("t;Ft) is a martingale
di¤erence sequence, with �ltration (Ft), such that E

�
"2t jFt�1

�
= �2 and suptE

�
j"tj2+�jFt�1

�
< 1

a.s. for some � > 0, and where d(L) := 1 +
P1

j=1 djz
j is such that d (z) 6= 0 for z = 0 and z = �, andP1

j=1 j jdj j <1.

Using the decompositions provided in Lemma 1, we are now in a position to state the large sample
behaviour of the elements which form the unit root tests under analysis. These results are collected
together in Lemma 2.
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Lemma 2 Let the conditions of Lemma 1 hold. Then, for any � 2 (0; �), the following results hold as
n!1,

1p
n
xt ) ��0W0 (r) +

����p
2 sin�

h
sin (�(t+ 1))W�

� (r)� cos (�(t+ 1))W
�
� (r)

i
+

����p
2 sin�

h
cos (� (t+ 1))W�

� (r) + sin (� (t+ 1))W
�
� (r)

i
:= �b(r) (9)

1

n2

nX
t=1

x2t�1 ) �2

4 (1� cos�)2
Z 1

0

W 2
0 (r) dr

+
1

2 (1� cos�)
�2

4 sin2 �

Z 1

0

��
W�
� (r)

�2
+
h
W �
� (r)

i2�
dr (10)

1

n2

nX
t=1

�x2t =
1

n2

nX
t=1

�x2t�1 + op(1) =
1

n2

nX
t=1

�x2t�2 + op(1)

) �2

4 sin2 �

Z 1

0

��
W�
� (r)

�2
+
h
W �
� (r)

i2�
dr (11)

1

n2

nX
t=1

xt�1�xt�1 ) �2

8 sin2 �

Z 1

0

��
W�
� (r)

�2
+
h
W �
� (r)

i2�
dr (12)

1

n2

nX
t=1

xt�1�xt�2 )
�2
�
cos�+ 1

2

�
4 sin2 �

Z 1

0

��
W�
� (r)

�2
+
h
W �
� (r)

i2�
dr (13)

1

n

nX
t=1

xt�1"t ) �2

2 (1� cos�)

Z 1

0

W0 (r) dW0 (r)

+
�2

4 sin�

Z 1

0

�
W�
� (r) dW

�
� (r)�W

�
� (r) dW

�
� (r)

�
� �2

4(1� cos (�))

Z 1

0

�
W�
� (r) dW

�
� (r) +W

�
� (r) dW

�
� (r)

�
(14)

1

n

nX
t=1

�xt�1"t ) �2

2 sin�

Z 1

0

�
W�
� (r) dW

�
� (r)�W

�
� (r) dW

�
� (r)

�
(15)

1

n

nX
t=1

�xt�2"t ) �2 cos�

2 sin�

Z 1

0

�
W�
� (r) dW

�
� (r)�W

�
� (r) dW

�
� (r)

�
��

2

2

Z 1

0

�
W�
� (r) dW

�
� (r) +W

�
� (r) dW

�
� (r)

�
(16)

where �0, �
�
� and �

�
� are as de�ned in Lemma 1, and W0 (r) ; W

�
� (r) and W

�
� (r) are independent standard

Brownian motion processes.

Using the results in Lemma 2, we are now in a position in Theorem 1 to detail the asymptotic null
distributions of the unit root tests from section 2.2 when the DGP contains non-stationary cycles. Sub-
sequently, in Theorem 2, we will establish corresponding results for the t-ratios on the lagged dependent
variables appearing in the ADF regression (2).

Theorem 3 Let the conditions of Lemma 1 hold. Then for any � 2 (0; �), the following results hold as
n!1, and for k � 2 in (2)

tb� )
R 1
0
W0 (r) dW0(r)qR 1
0
[W0 (r)]

2
dr
:= DF1 (17)

Zb� )
R 1
0
W0 (r) dW0(r)R 1
0
[W0 (r)]

2
dr

:= DF2 (18)

V RT )
R 1
0

�R r
0
b (s) ds

�2
dr�

�20

R 1
0
W0(r)2dr

4(1�cos(�))2 +

�R 1
0 [W

�
� (r)]

2
dr+

R 1
0 [W

�
� (r)]

2
dr
�

2(1�cos(�)) 4 sin(�)2

� (19)
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for �̂
2
= s2WA,

MSB = Op

�
[mn]

�1=2
�
; MZ� = Op (mn) ; MZt = Op

�
[mn]

1=2
�

(20)

while for �̂
2
= s2AR

MSB )
 Z 1

0

W0 (r)
2
dr +

(1� cos (�))
2 sin (�)

2

�Z 1

0

�
W�
� (r)

�2
dr +

Z 1

0

h
W �
� (r)

i2
dr

�!1=2
(21)

MZ� )
b (1)

2 �
�
4 [1� cos (�)]2

��1
� R 1

0
W0(r)

2dr

2(1�cos(�))2 +

�R 1
0 [W

�
� (r)]

2
dr+

R 1
0 [W

�
� (r)]

2
dr
�

(1�cos(�))4 sin(�)2

� (22)

MZt )
p
2 [1� cos (�)]b (1)2 �

�
2
p
2 [1� cos (�)]

��1r R 1
0
W0(r)

2dr

2(1�cos(�))2 +

�R 1
0 [W

�
� (r)]

2
dr+

R 1
0 [W

�
� (r)]

2
dr
�

(1�cos(�))4 sin(�)2

(23)

where m is the bandwidth used to compute s2WA, and where W0 (r) ; W
�
� (r) and W

�
� (r) and b (r) are as

de�ned in Lemma 2.

Remark 4. In the case where jbj < 1 in 	(L) in (1), so that no non-stationary cycles are present, it
is well known that both tb� and MZt weakly converge to DF1, while Zb� and MZ� weakly converge to
DF2. Moreover, in this case MSB )

�R 1
0
W0 (r)

2
�1=2

=:MSB and V RT )
R 1
0 [
R r
0
W0(s)ds]

2
drR 1

0
W0(r)2dr

=: VRT .
Comparing these representations with those given in Theorem 1, it is seen that only the two ADF
statistics, tb� and Z�̂, computed from (2) retain their usual pivotal limiting null distributions in the
presence of non-stationary cycles. In contrast, the limiting null distributions of V RT and the trinity of
M statistics with autoregressive spectral density estimators of the long-run variance are non-pivotal, their
functional forms depending in a complicated way on both non-stochastic and stochastic functions, while
the results in (20) show that the trinity of M statistics computed using a kernel-based estimator of the
long-run variance have degenerate limiting null distributions in the presence of non-stationary cycles. This
result obtains because �xt is non-stationary which causes the kernel-based long-run variance estimator
to diverge to +1 at rate Op(mn); see Taylor (2003). Since both n�1x2n and 2n

�2Pn
t=1 x

2
t�1 are of Op(1),

the divergence of �̂
2

WA to +1 implies that both the MZ� and MZt statistics will diverge to �1, while
MSB will converge in probability to zero, in each case at the rates stated in (20). Consequently, the
three M tests based on these statistics will therefore all have asymptotic size of unity in the presence of
non-stationary cycles. The impact on the �nite sample size of the unit root tests based on each of the
statistics discussed in Theorem 1 when using the standard asymptotic critical values (appropriate to the
case where non-stationary cycles are not present) will be investigated in section 5.

Remark 5. In this paper we have not included the Z� and Zt unit root tests of Phillips (1987) and Phillips
and Perron (1988) in the set of tests under discussion. However, noting from expressions (2.7) and (2.10) of
Perron and Ng (1996,p.437) that Z� =MZ��(n=2)(b��1)2 and Zt =MZt�0:5(Pn

t=1 x
2
t�1=s

2
WA)

1=2(b��
1)2, in each case for the version of the M test using the kernel-based long run variance estimator s2WA,
we see immediately from the discussion in Remark 4 that both Z� and Zt will also diverge to �1 at the
same rates as are given for MZ� and MZt, respectively, in (20).

Remark 6. The result in (17) for tb� has previously been given in Nielsen (2001), and is also shown to
hold for case of seasonally integrated data in Ghysels et al. (1994).

Remark 7. It is straightforward but tedious, using Lemma 2 of Bierens (2000), to show that the results
given in (17), (18) and (20) of Theorem 1 will not alter if we allow for weak dependence in f"tg of
the form given in Remark 3. The limiting null distributions for V RT and the trinity of M statistics
with autoregressive spectral density estimators of the long-run variance will now depend on additional
nuisance parameters arising from the MA parameters, fdjg1j=1. Moreover, the results in Theorem 1 are
qualitatively unchanged if we allow 	(L) to be a pth order polynomial containing additional unit roots
with frequencies in the range (0; �], provided k � p in (2). Speci�cally, in this case the results in (17) and
(18) will continue to hold, as will the order results in (20), while the limiting null distributions for V RT
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and the trinity of M statistics with autoregressive spectral density estimators of the long-run variance
will now depend on stochastic and non-stochastic functions relating to these frequencies but will remain
non-degenerate.

In Theorem 2 we now establish the large sample behaviour of the t-ratios on the lagged dependent
variables in (2).

Theorem 4 Let the conditions of Lemma 1 hold and de�ne the vector of parameters from (2) as �0 :=
[�; �1; �2; �3 � � ��k] =: [�; �1; �2;�0]. For k � 2 in (2), then as n!1,

n(�̂1 � �1) ) A cos (�) +B

V2(A2 + B2) (24)

n(�̂2 � �2) ) A

V2(A2 + B2) (25)

p
n
�
�̂� �

�
) N

�
0; �2H2�

�1H2

�
(26)

where

A := 2

�
V2
Z 1

0

�
W�
� (r) dW

�
� (r) +W

�
� (r) dW

�
� (r)

�
+ V2(A2 + B2)

�
B := 2

�
V2
Z 1

0

�
W�
� (r) dW

�
� (r)�W

�
� (r) dW

�
� (r)

�
sin (�)� V2(A2 + B2)

�
V2 :=

Z 1

0

W 2
0 (r)dr; A2 :=

Z 1

0

�
W�
� (r)

�2
dr; B2 :=

Z 1

0

h
W �
� (r)

i2
dr

where W0 (r) ; W
�
� (r) and W

�
� (r) are as de�ned in Lemma 2, and where H2 and � are de�ned in (A.29)

and (A.22), respectively, in the Appendix. Moreover, for 2 < i � k,

tb�i := (b�i � �i)=s:e:(b�i)) N(0; 1): (27)

Remark 8. The results in (A.26) and (A.27) imply that �̂1 and �̂2, like b�, are super-consistent. From
(26), it is seen that the parameters on the lagged di¤erence terms from lag three onwards are root-
n consistent asymptotically normal [CAN]. Under the conditions of Theorem 2, � = 0, since "t �
IID(0; �2); however, the stated results also hold when "t is a stationary AR(k�) process provided k � k�.
Moreover, where "t displays the general weak dependence of the form given in Remark 3 the foregoing
results still remain valid although here, for a given lag truncation k, the parameters �j , j � 3, take
the role of pseudo-parameters in the same sense as in, for example, Chang and Park (2002) and Ng and
Perron (1995).

Remark 9. The key result in Theorem 2 is that given in (27) which establishes that standard t-tests
for the signi�cance of the lagged dependent variables of order three and above can be conducted using
standard normal critical values. This is an important result in that it implies that the sequential lag
speci�cation methods of Hall (1994) and Ng and Perron (1995), as outlined in section 2.2, remain valid in
the presence of non-stationary cycles. In contrast, it follows straightforwardly from the representations
in (A.26) and (A.27) that the t-ratios associated with �̂1 and �̂2 have non-standard limiting distribu-
tions which are functionals of the independent standard Brownian motion processes, W0 (r) ; W

�
� (r) and

W �
� (r). In the scenario considered in Remark 7 where 	(L) is a pth order polynomial of non-stationary

factors then it is straightforward but tedious to show that the OLS estimators associated with the �rst p
lagged dependent variables in (2) will have non-standard limiting distributions (now being functionals of
p independent standard Brownian motion processes) while those for p + 1 onwards will again be root-n
CAN with their associated t-ratios having standard normal limiting null distributions.

4 Extensions to Near-Integration and Deterministics

4.1 Near-Integration

In this section we generalise the results given in section 3 to the case where the data are generated
according to the near-integrated process,

(1� 'nL)
�
1� 2 cos(�)'nL+ '2nL2

�
xt = "t; "t � IID(0; �2); t = 1; 2; : : : ; n (28)
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where 'n := exp
�
c
n

�
'
�
1 + c

n

�
; and � 2 (0; �) : This process is near-integrated at the zero and �

frequencies with a common non-centrality parameter c. Under this setting we can establish the following
Lemma.

Lemma 4.1 Let the time series process fxtg be generated by (28) with x�2 = x�1 = x0 = 0. Then for
any � 2 (0; �) the following results hold:

1

�
p
n
xt = �0Jc;0;n(t=n) +

���

sin(�)
p
2

n
sin(�[t+ 1])J�c;�;n(t=n)� cos(�[t+ 1])J

�
c;�;n(t=n)

o
+

���

sin (�)
p
2

�
cos (� [t+ 1]) J�c;�;n (t=n) + sin (� [t+ 1]) J

�
c;�;n (t=n)

	
+Op

�
1=
p
n
�
(29)

where

Jc;0;n (x) :=
1

�
p
n

bxncX
j=1

'bxnc�jn "j

J�c;�;n (x) :=

p
2

�
p
n

bxncX
j=1

'bxnc�jn "j cos (j�) ; J�c;�;n (x) :=

p
2

�
p
n

bxncX
j=1

'bxnc�jn "j sin (j�)

and where, as n!1; 0@ Jc;0;n(t=n)
J�c;�;n(t=n)

J�c;�;n(t=n)

1A)

0@ Jc;0(r)
J�c;�(r)

J�c;�(r)

1A
where Jc;0(r), J�c;�(r) and J

�
c;�(r) are independent standard Ornstein-Uhlenbeck processes such that dJc;0 (r) =

cJc;0 (r) dr+dW0 (r) and dJ
j
c;� (r) = cJ

j
c;� (r) dr+dW

j
� (r), j = �; �, with W0(r), W�

k (r) and W
�
k (r) the

standard Brownian motions de�ned in Lemma 2.

Using the results in Lemma 3, it is then straightforward to show that the results given in Theorems
1 and 2 carry over to this context, substituting W0(r), W�

k (r) and W
�
k (r) by Jc;0(r), J

�
c;�(r) and J

�
c;�(r);

respectively, throughout. The comments in Remark 7 again apply in this case.

Remark 10. The assumption of a common non-centrality parameter to the zero and � frequencies, as
embodied in (28), can be relaxed. To that end, consider the case where the DGP admits a di¤erent
non-centrality parameter at the zero and � frequencies; viz,�

1� '0nL
� �
1� 2 cos(�)'�nL+

�
'�n
�2
L2
�
xt = "t; "t � IID(0; �2); t = 1; 2; : : : ; n (30)

where '0n := exp
�
c0
n

�
'
�
1 + c0

n

�
and '�n := exp

� c�
n

�
'
�
1 +

c�
n

�
: For data generated by (28) rather than

(30), the result given in Lemma 3 still hold, provided, Jc;0;n (x) ; J�c;�;n (x) and J
�
c;�;n (x) are replaced by

Jc0;0;n (x) :=
1

�
p
n

Pbxnc
j=1

�
'0n
�bxnc�j

"j , J�c�;�;n (x) :=
p
2

�
p
n

Pbxnc
j=1

�
'�n
�bxnc�j

"j cos (j�) and J
�
c�;�;n

(x) :=
p
2

�
p
n

Pbxnc
j=1

�
'�n
�bxnc�j

"j sin (j�), respectively, and Jc;0(r), J�c;�(r) and J
�
c;�(r) are similarly replaced by

Jc0;0(r), J
�
c�;�

(r) and J�c�;�(r), respectively, where dJc0;0 (r) = c0Jc0;0 (r) dr + dW0 (r) and dJ
j
c�;�

(r) =

c�J
j
c�;�

(r) dr + dW j
� (r), j = �; �. The results given in Theorems 1 and 2 again carry over, mutatis

mutandis, as do the comments in Remarks 7 and 9.

4.2 Deterministic Components

Where deterministic components are present in the DGP, the previous results can be extended in a
straightforward fashion. More speci�cally, we consider the cases where (2) is constructed from de-trended
data, denoted x̂t, obtained as the OLS residuals from the regression of xt onto either a constant (de-
meaned data) or a constant and linear trend (linear de-trended data); i.e.,

�x̂t = �x̂t�1 +
kX
j=1

�j�x̂t�j + "̂k;t;
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and similarly the variance ratio andM unit root tests are constructed using the de-trended data, although
in the de�nition of the MZ� statistic the term �n�1x̂20 needs to be added to the numerator of (4); see,
for example, Müller and Elliott (2003). In both these cases the results in Theorems 1 and 2 (together
with the corresponding results in section 4.1 for the near-integrated case) remain valid provided the
standard Brownian motion process, W0(r), and the standard Ornstein-Uhlenbeck process, Jc0;0, in (17)
and (18) are replaced by their OLS de-trended counterparts; e.g., fW0 (r) := W0 (r) �

R 1
0
W0 (s) ds, for

the OLS de-meaned case, and cW0 (r) := W0 (r)� (4� 6r)
R 1
0
W0 (s) ds� (12r � 6)

R 1
0
sW0 (s) ds, for the

OLS linear de-trended case. Finally note also, that for the corresponding unit root tests based on local
GLS de-trending (see, inter alia, Elliott, Rothenberg and Stock, 1996, and Ng and Perron, 2001) then
the previous results again hold but now replacing the standard Brownian motion, W0(r), and standard
Ornstein-Uhlenbeck processes, Jc0;0 by their local GLS de-meaned or linear de-trended counterparts; see
Elliott et al. (1996,pp 824-825) for precise details.

5 Monte Carlo Experiments

In this section, we use simulation methods to investigate the �nite sample properties of the unit root tests
discussed in section 2.2 when (near-) non-stationary cycles are present in the data. All results reported in
this section are based on 20; 000 Monte Carlo replications using the RNDN function of Gauss 9.0. Unless
otherwise stated, results are presented for both de-meaned and linear de-trended data.
Our �rst set of experiments, reported in Tables 1a (OLS de-meaned data) and Table 1b (linear OLS

de-trended data), relate to data generated according to the DGP�
1�

�
1 +

c0
n

�
L
��
1� 2 cos(�)

�
1 +

c�
n

�
L+

�
1 +

c�
n

�2
L2
�
xt = �t � NIID(0; 1) (31)

with c0 = 0, so that the unit root null hypothesis holds, and with � 2 f�=7; �=6; �=5; �=4; �=2g and
c� 2 f0; 5; 10g, in each case for a sample size of n = 200, initialised at x�2 = x�1 = x0 = 0. Although the
frequency �=2 would not be considered a low frequency component, it is nonetheless a seasonal frequency
component for any case where the number of seasons is even (e.g. monthly or quarterly data) and
therefore seems worth including. For comparative purposes, results for the conventional random walk,
(1� L)xt = �t � NIID(0; 1); initialised at x0 = 0, are also provided in the rows labelled �0�.
The results in Tables 1a and 1b report the empirical (null) rejection frequencies of the unit root tests

from section 2.2 in each case for a nominal 5% signi�cance level using the asymptotic critical values
appropriate to the case where (near-) non-stationary cycles are not present in the data; that is, from
DF1, DF2,MSB or VRT , as appropriate. In Table 1, the ADF tb� and Z�̂ tests were computed from the
ADF regression (2) for the true lag length, k = 2. In the context of the trinity ofM tests, the superscript
used in the nomenclature of Tables 1a and 1b denotes the long run variance estimator used; the subscripts

b and q indicate that �̂
2
= s2WA with the Barlett and quadratic spectral kernels, respectively, while the

subscript AR indicates that �̂
2
:= s2AR. For �̂

2
= s2WA, results are reported for the Bartlett and quadratic

spectral kernel, using the data-dependent bandwidth formulations for these kernels suggested in Newey

and West (1994, equations (3.8) to (3.15) and Table 1). For �̂
2
:= s2AR, we again set k = 2. Also reported

in Tables 1a and 1b are the empirical rejection frequencies for the conventional t-ratio tests on the lagged
dependent variables �xt�1 and �xt�2 from (2), denoted t�̂1 and t�̂2 , in each case compared to the 0.05
level critical values from the standard normal distribution (a 5% rule).

Insert Tables 1a and 1b about here

As predicted by the asymptotic distribution theory in Theorem 1 and section 4.1, it is only the ADF
tb� and Z�̂ tests which display �nite sample size properties which are robust to the presence of (near-)
non-stationary cycles in the data. The size properties of the tb� test are somewhat better than those of
Z�̂ which is a little over-sized, most notably so in the case of linear de-trended data, but both show no
signi�cant variations in size from the random walk base case under non-stationary or near-non-stationary
cycles for all of the frequencies considered. Again in line with the predictions from the asymptotic theory,
we see that this is not the case for the other tests considered. Again as predicted by the results in
Theorem 1 and section 4.1, the empirical sizes of the V RT test vary considerably across both � and c�.
As might be expected, for a given frequency �, the size distortions in V RT decrease as c� increases; this is
because the cyclical component at frequency � moves further away from the non-stationarity boundary as
c� increases. The size distortions for the three M tests with the autoregressive spectral density estimator
show even greater variation across � than the V RT test. Overall though, even though the V RT and M
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tests with �̂
2
= s2WA are not asymptotically degenerate under (near-) non-stationary cycles the results in

Tables 1a and 1b suggest that none of these tests could reliably be used in practice. The degeneracy of the
kernel-basedM tests is clearly re�ected in Tables 1a and 1b, although again as with the V RT test there is
some amelioration of this in the case of theMSB test for a given value of � as c� is increased. Finally, we
observe that the empirical rejection frequency of the t�̂2 test with a 5% rule is unity throughout (except
in the random walk case where it is essentially correctly sized), implying that in the presence of (near-)
non-stationary cycles the sequential method of Hall (1994) and Ng and Perron (2005) will always retain
both lagged dependent variables in (2), as would be hoped. Indeed, we obtained the same outcome when
a tighter 1% rule was used. More generally, in unreported simulations we found that in the case outlined
in the latter part of Remark 6, where 	(L) is a pth order polynomial of non-stationary factors, the same
�nding holds for the t-test on the pth lag, so that p lagged dependent variables will always be included
in the ADF regression.

Insert Tables 2� 5 about here

In a second experiment, we now investigate in detail the impact of a number of conventional lag selection
methods on the empirical size and power properties of the tb� test (again run at the nominal asymptotic
5% level). Corresponding results for Z�̂ are available on request. Results are reported for the sequential
method (denoted SQ) outlined in section 2.2 using a 10% rule (as is commonly done in practice), the
standard AIC rule, and also the modi�ed AIC (denoted MAIC) rule of Ng and Perron (2001). For all
of these methods, results are reported for maximum lag lengths of kmax 4 := b4[ n100 ]

1=4c and kmax 12 :=
b12[ n100 ]

1=4c; with the subscript 4 or 12 on each method denoting which of these maximum lag lengths was
used. No minimum lag length was set for any of the selection methods. The data were again generated
according to (31) with the parameter settings as were considered for the results in Tables 1a and 1b, but
augmented to include results for c0 2 f0; 5; 10; 13; 20; 25; 30g, rather than just c0 = 0. For the case of
c0 = 0 (Table 2) results are presented only for c� = 0. To ensure comparability with the other cases of
�, the results reported for � = 0 in Tables 2 and 3 pertain to the DGP

�
1�

�
1 + c0

n

�
L
�
(1� 0:5L2)xt =

�t � NIID(0; 1) initialised at x�2 = x�1 = x0 = 0; this process, like the cases considered where � 6= 0,
has a true lag length of k = 2 in (2), but here the cyclical pair of roots are stable (both have modulusp
0:5 and lie at frequency �=2). Finally, for comparative purposes, results are presented both for tests

based on OLS de-trending and the corresponding tests based on local GLS de-trending.
Table 2 reports the empirical size (c0 = c� = 0) obtained with the three lag-order selection methods

and also reports the average order of lag augmentation selected by each approach. The results in Table 2
indicate that the empirical size of the ADF test with OLS de-trending is reasonably close to the nominal
level throughout for both SEQ and AIC, although both methods yield slightly over-sized tests in the
case of kmax 12 with linear de-trending. As regards the tests which are based on the MAIC rule, here a
degree of under-sizing is seen throughout; this is perhaps not unexpected given that the penalty function
on which the MAIC rule is based is in fact misspeci�ed when non-stationary cycles are present in the
DGP, as is the case here. Similar comments apply when local GLS de-trending is used, although here it is
noteworthy that the tests based onMAIC can be very badly undersized in the case of linear de-trending;
indeed all of the tests display a tendency to undersize here. As regards the average lag length chosen, it
is seen that SQ4, AIC4, AIC12 and MAIC4 get reasonably close to the true order (recall that this is two
throughout), while both MAIC12 and SQ12 over-�t the lag order, most notably so in the case of SQ12.
Such over-�tting will of course necessarily lead to power losses under the alternative, as will be seen in
the results Tables 3-5. In the case of SQ12 it should be noted that this result is not attributable to the
presence of non-stationary cycles because it happens to the same degree in the � = 0 case where non-
stationary cycles are not present in the data. In contrast for MAIC12 (and to a lesser extent MAIC4)
we see that the degree of over-�tting is higher when non-stationary cycles are present relative to the case
where they are not.
Table 3 (c� = 0), Table 4 (c� = 2:5) and Table 5 (c� = 10) report the empirical power of the tb� test

for c0 = 5; 10; 13; 20; 25; 30 under the various lag selection rules. Results in these tables are reported only
for the case of linear de-trended data; qualitatively similar results were seen for the case of de-meaned
data and may be obtained from the authors on request. Overall, for a given value of c�, the results are
qualitatively very similar regardless of the frequency at which the non-stationary cyclical roots occur.
The best power performance for both OLS and local GLS de-trending is obtained when either SQ4 or
AIC4 is used to specify the lag augmentation length, consistent with the �ndings in Table 2 on average
lag length �tted by the various rules. The rami�cations of the over-�tting seen in Table 2 for theMAIC12
and SQ12 rules is clearly seen in Tables 3-5 with the tests based on these rules showing considerably lower
power throughout than the tests based on the other lag selection methods, other things being equal.
Another interesting aspect of the power results is seen most clearly in the pure non-stationary cycles
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case in Table 3. Here we see that the �nite sample power of the OLS de-trended tests are, for a given
lag selection rule, fairly insensitive to frequency at which the non-stationary cycle occurs, and indeed as
to whether a non-stationary cycle occurs or not. The same cannot be said for the local GLS de-trended
tests. To illustrate, in the � = 0 case, where no non-stationary cycles are present, the power of the
local GLS de-trended tests are clearly superior to those of the corresponding OLS de-trended tests; for
example, with SQ4 and c0 = 20 the local GLS test has power 70.2 %, while the OLS test has power 57.4
%. However, for � 6= 0 the converse tends to be the case with the OLS de-trended tests now the more
powerful; for example, for � = �=7(�=2) using SQ4, for c0 = 13 the OLS test now has power of 61.0%
(62.7%) and the local GLS test 54.9% (33.9%). This re�ects the fact that the local GLS de-trending
method is based on the assumption that, aside from the possible zero frequency unit root, the process is
stationary, and it is clear that where this assumption is violated the �nite sample power of the local GLS
de-trended tests su¤ers considerably relative to their OLS de-trended counterparts. This is most likely
attributable to the fact that the local GLS estimates of the parameters characterising the deterministic
trend component will be highly ine¢ cient, relative to the corresponding OLS estimates, in this case. As
the cyclical component becomes less persistent (i.e. as c� increases away from zero) then so we would
expect the �nite sample power of the local GLS de-trended tests to recover, and a comparison of the
results in Tables 4 and 5 with those in Table 3 shows that this is indeed the case; in the foregoing
example when c� = 10 the local GLS test has power 77.2% and 63.6% for �=7 and �=2, respectively,
while the OLS test has power 57.3% and 61.1% for �=7 and �=2, respectively.

6 Conclusions

In this paper we have shown that among popularly applied unit root test statistics, only the ADF t-ratio
and normalised bias statistics have pivotal limiting null distributions in the presence of (near-) non-
stationary cycles in the data. Other commonly employed unit root test statistics, such as the variance
ratio statistic of Breitung (2002) and the trinity of M statistics due to Stock (1999) and Perron and
Ng (1996), were shown either to admit non-pivotal limiting null distributions or to have non-degenerate
limiting null distributions, in the latter case yielding tests with an asymptotic size of one, when (near-)
non-stationary cycles are present. Additionally, we have shown that the t-ratios on the lagged dependent
variables within the ADF test regression also retain standard normal limiting null distributions such
that sequential lag speci�cation also remains valid under (near-) non-stationary cycles. Consequently, we
strongly recommend the use of ADF unit root tests coupled with sequential lag selection in cases where
it is suspected that (near-) non-stationary cycles may be present in the data. In such cases our results
also suggest that the �nite sample power advantages of local GLS de-trended ADF-type tests over their
OLS de-trended counterparts seen when any cyclical behaviour is stationary are likely to be overturned
when non-stationary cycles are present.
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A Appendix

Before presenting the proofs of the main text, we note the following trigonometric identities which will
be used in the sequel:

sin t� � cos (�) sin (� (t+ 1))� sin (�) cos (� (t+ 1)) (A.1)

cos t� � cos (�) cos (� (t+ 1)) + sin (�) sin (� (t+ 1)) (A.2)

sin� (t� 1) � cos2 (�) sin (� (t+ 1))� 2 cos (�) sin (�) cos (� (t+ 1))
� sin2 (�) sin (� (t+ 1)) (A.3)

cos� (t� 1) � cos2 (�) cos (� (t+ 1)) + 2 cos (�) sin (�) sin (� (t+ 1))

� sin2 (�) cos (� (t+ 1)) (A.4)

cos (2�) � cos2 (�)� sin2 (�) (A.5)

where in each case � 2 (0; �):

Moreover, for the DGP in (1), and using the representation of the partial sum of an AR(2) process with
complex unit roots given in Equation (2) of Bierens (2001,p.963), we can write the following spectral
decompositions of �xt, �xt�1 and �xt�2,

�xt =
tX

j=1

sin [� (t+ 1� j)]
sin�

"j

=
1

sin�
[sin (� (t+ 1))S�(t)� cos (� (t+ 1))S�(t)] ; (A.6)

�xt�1 = L
tX

j=1

sin [� (t+ 1� j)]
sin�

"j

=
1

sin�
[sin (�t)S�(t� 1)� cos (�t)S�(t� 1)]

=
cos�

sin�
[sin (� (t+ 1))S�(t� 1)� cos (� (t+ 1))S�(t� 1)]

� sin�
sin�

[cos (� (t+ 1))S�(t� 1) + sin (� (t+ 1))S�(t� 1)] (A.7)

and

�xt�2 = L2
tX

j=1

sin [� (t+ 1� j)]
sin�

"j

=
1

sin�
[sin (� (t� 1))S�(t� 2)� cos (� (t� 1))S�(t� 2)]

=
cos (2�)

sin�
[sin (� (t+ 1))S�(t� 2)� cos (� (t+ 1))S�(t� 2)]

�2 cos� sin�
sin�

[cos (� (t+ 1))S�(t� 2)� sin (� (t+ 1))S�(t� 2)] (A.8)

where we have de�ned the �-frequency partial sum processes, S�(t) :=
Pt

j=1 "j cos (j�) and S�(t) :=Pt
j=1 "j sin (j�).

Proof of Lemma 1: From Property 2.5 in Gregoir (1999,p.440), which makes uses of the identity

1 =
1

2 (1� cos (�))
�
1� 2 cos(�)L+ L2

�
+
(1� 2 cos(�) + L)
2 (1� cos (�)) (1� L) (A.9)

see Gregoir (1999,p.462), it follows that if {xt} is generated by (1) then,

xt =
1

2 (1� cos�)

tX
j=1

"j +
1� 2 cos�+ L
2 (1� cos�)

tX
j=1

sin [� (t+ 1� j)]
sin�

"j (A.10)

=: C0t + C�t: (A.11)
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Consequently, noting that the �-frequency component, C�t; of (A.10) is,

C�t =
1� 2 cos�
2 (1� cos�)

1

sin�
(sin (�(t+ 1))S�(t)� cos (�(t+ 1))S�(t))

+
1

2 (1� cos�)
1

sin�
(sin (�t)S�(t� 1)� cos (�t)S�(t� 1))

it follows from (A.7) that, after simpli�cation,

C�t =
���
sin�

[sin (�(t+ 1))S�(t)� cos (�(t+ 1))S�(t)]

+
���
sin�

[cos (� (t+ 1))S�(t) + sin (� (t+ 1))S�(t)] +Op(1)

where ��� := 1�cos�
2(1�cos�) and �

�
� := � sin�

2(1�cos�) : As a consequence, we therefore have, on de�ning the

zero-frequency partial sum process S0(t) :=
Pt

j=1 "j , that

xt =
1

2 (1� cos�)S0(t) +
���
sin�

[sin (�(t+ 1))S�(t)� cos (�(t+ 1))S�(t)]

+
���
sin�

[cos (� (t+ 1))S�(t) + sin (� (t+ 1))S�(t)] +Op(1) (A.12)

which establishes the result in (7). The result in (8) follows directly from (A.6). �

Before proving the results in Lemma 2, we �rst provide some additional results in a preparatory
lemma, relevant to the computation of the unit root statistics from section 2.2.

Lemma A.1 Let the conditions of Lemma 1 hold. Then

i)

nX
t=1

x2t�1 =
1

4 (1� cos�)2
nX
t=1

S20(t)

+
1

2 (1� cos�)
1

2 sin2 �

nX
t=1

�
S2�(t� 1) + S2�(t� 1)

�
+ op(n

2)

ii)
nX
t=1

�x2t =
nX
t=1

S2�(t) + S
2
�(t)

2 sin2 �
+ op(n

2)

iii)
nX
t=1

�x2t�1 =
nX
t=1

S2�(t� 1) + S2�(t� 1)
2 sin2 �

+ op(n
2)

iv)
nX
t=1

�x2t�2 =
nX
t=1

S2�(t� 2) + S2�(t� 2)
2 sin2 �

+ op(n
2)

v)
nX
t=1

xt�1�xt�1 =
1

4 sin2 �

nX
t=1

�
S2�(t� 1) + S2�(t� 1)

�
+ op(n

2)

vi)
nX
t=1

xt�1�xt�2 =
cos�+ 1

2

2 sin2 �

nX
t=1

�
S2�(t� 1) + S2�(t� 1)

�
+ op(n

2):

Proof of Lemma A.1: The decompositions in (i)-(vi) obtain using the results in Lemma 1, the trigono-
metric identities in (A.1)-(A.5), and invoking the result that the di¤erent partial sums that compose the
moments expressed in (i)-(vi) are asymptotically uncorrelated (see Chan and Wei, 1988, Theorem 3.4.1,
p.393). Note that the asymptotic uncorrelatedness of these components also holds in the near integrated
context considered in Section 4; see Jeganathan (1991, Proposition 5, p.281). �
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Proof of Lemma 2: First de�ne

W�
�n (t=n) :=

p
2

�
p
n

brncX
j=1

cos (j�) "j =

p
2

�
p
n
S�(r)

W �
�n (t=n) :=

p
2

�
p
n

brncX
j=1

sin (j�) "j =

p
2

�
p
n
S�(r)

and W0n (t=n) :=
1

�
p
n

Pbrnc
j=1 "j . Using these de�nitions, we then have from Lemma 1, and noting that

��xt = S0(t) =
Pt

j=1 "j , that

1p
n
xt = �

�
�0W0;n (t=n) +

���p
2 sin�

h
sin (�(t+ 1))W�

�;n (t=n)� cos (�(t+ 1))W
�
�;n (t=n)

i
+

���p
2 sin�

h
cos (� (t+ 1))W�

�;n (t=n) + sin (� (t+ 1))W
�
�;n (t=n)

i#
+ op (1)

) ��0W0 (r) +
����p
2 sin�

h
sin (�(t+ 1))W�

� (r)� cos (�(t+ 1))W
�
� (r)

i
+

����p
2 sin�

h
cos (� (t+ 1))W�

� (r) + sin (� (t+ 1))W
�
� (r)

i
:= �b(r) (A.13)

1p
n
�xt =

�p
2 sin�

h
sin (�(t+ 1))W�

�;n (t=n)� cos (�(t+ 1))W
�
�;n (t=n)

i
) �p

2 sin�

h
sin (�(t+ 1))W�

� (r)� cos (�(t+ 1))W
�
� (r)

i
(A.14)

1p
n
��xt = �W0;n (t=n)) �W0 (r) : (A.15)

Next observe that

nX
t=1

xt�1"t =
1

2 (1� cos�)

nX
t=1

S0(t� 1)"t �
1

2 sin�

 
nX
t=1

S�(t� 1)�S�(t)�
nX
t=1

S�(t� 1)�S�(t)
!

� 1

2(1� cos (�))

 
nX
t=1

S�(t� 1)�S�(t) +
nX
t=1

S�(t� 1)�S�(t)
!
+ op(n)

and, hence,

1

n

nX
t=1

xt�1"t =
�2

2 (1� cos�)

nX
t=1

W0n ((t� 1) =n)�W0n (t=n)

+
�2

4 sin�

 
nX
t=1

W�
�n ((t� 1) =n) dW

�
�n (t=n)�

nX
t=1

W �
�n ((t� 1) =n) dW

�
�n (t=n)

!

� �2

4(1� cos (�))

 
nX
t=1

W�
�n ((t� 1) =n) dW�

�n (t=n) +
nX
t=1

W �
�n ((t� 1) =n) dW

�
�n (t=n)

!
+ op(1)

) �2

2 (1� cos�)

Z 1

0

W0 (r) dW0 (r) +
�2

4 sin�

�Z 1

0

W�
� (r) dW

�
� (r)�

Z 1

0

W �
� (r) dW

�
� (r)

�
� �2

4(1� cos (�))

�Z 1

0

W�
� (r) dW

�
� (r) +

Z 1

0

W �
� (r) dW

�
� (r)

�
:

The proof of the results for n�1
Pn

t=1�xt�1"t and n
�1Pn

t=1�xt�2"t follow along similar lines and
are therefore omitted. Furthermore, the stated convergence results for n�2

Pn
t=1 x

2
t�1; n

�2Pn
t=1�x

2
t ;

n�2
Pn

t=1 xt�1�xt�1 and n
�2Pn

t=1 xt�1�xt�2 follow straightforwardly from (i), (ii), (v) and (vi) of
Lemma A.1, respectively, and applications of the CMT. �
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Proof of Theorems 1 and 2: First we de�ne zt�1 := [xt�1 �xt�1 �xt�2 �xt�3 . . . �xt�k]0 and
� := (�; �1; �2; �3; :::; �k)

0
: Hence, to analyse the convergence of the OLS parameter estimates from (2)

we will make use of the following expression for the OLS estimation error

b��� = " nX
t=1

zt�1z
0
t�1

#�1 " nX
t=1

zt�1"t

#
: (A.16)

Notice that under the conditions of Theorems 1 and 2, the true values of the parameters are given by
� = (0; �2 cos�; 1; 0; :::; 0)0.
Using a similar approach to Choi (1993), we de�ne the (k + 1)� (k + 1) matrix

A :=

2666666666666664

1 0 0 0 0 � � � 0
0 1 0 1 0 � � � 0
0 0 1 �2 cos� 1 � � � 0
0 0 0 1 �2 cos� � � � 0

0 0 0 0 1
. . . 0

...
...
...

...
...

...
...

0 0 0 0 0 �2 cos� 1
0 0 0 0 0 1 �2 cos�
0 0 0 0 0 0 1

3777777777777775
=: [A1 A2] (A.17)

where A1 is a (k + 1)� 3 matrix and A2 a (k + 1)� (k� 2) matrix. Notice that A2 is a �ltration matrix
since, A0

2zt�1 = (���xt�1;���xt�2; :::;���xt�k)
0. Using the matrix A, and introducing the scaling

matrix �n := diag f�1n;�2ng where �1n := diagfn; n; ng and �2n := diagf
p
n; :::;

p
ng; the latter a

(k � 2)� (k � 2) matrix, we can rewrite the scaled estimator from (A.16) as

�n

�b���� = A
8>>>><>>>>:�

�1
n

26664
nX
t=1

A0
1zt�1z

0
t�1A1

nX
t=1

A0
1zt�1z

0
t�1A2

nX
t=1

A0
2zt�1z

0
t�1A1

nX
t=1

A0
2zt�1z

0
t�1A2

37775
�1

��1n

9>>>>=>>>>;�
�1
n

26664
nX
t=1

A0
1zt�1"t

nX
t=1

A0
2zt�1"t

37775

= A

8>>>><>>>>:

26664
��11n

nX
t=1

A0
1zt�1z

0
t�1A1�

�1
1n op(1)

op(1) ��12n

nX
t=1

A0
2zt�1z

0
t�1A2�

�1
2n

37775
�19>>>>=>>>>;

26664
��11n

nX
t=1

A0
1zt�1"t

��12n

nX
t=1

A0
2zt�1"t

37775 :
(A.18)

We now establish convergence results for the elements in (A.18). First we observe that

��11n

nX
t=1

A0
1zt�1z

0
t�1A1�

�1
1n =

2666666664

1
n2

nX
t=1

x2t�1
1
n2

nX
t=1

xt�1�xt�1
1
n2

nX
t=1

xt�1�xt�2

1
n2

nX
t=1

xt�1�xt�1
1
n2

nX
t=1

(�xt�1)
2 1

n2

nX
t=1

�xt�1�xt�2

1
n2

nX
t=1

xt�1�xt�2
1
n2

nX
t=1

�xt�1�x
0
t�2

1
n2

nX
t=1

(�xt�2)
2

3777777775
which, as n!1; will converge, using results in Lemma 2, to

��11n

nX
t=1

A0
1zt�1z

0
t�1A1�

�1
1n ) �2

Z 1

0

�(r)dr (A.19)

where Z 1

0

�(r)dr :=

26664
V20

4(1�cos�)2 +
1

2(1�cos�)
(A2+B2)
4 sin2 �

(A2+B2)
8 sin2 �

(cos�+ 1
2 )(A

2+B2)
4 sin2 �

(A2+B2)
8 sin2 �

(A2+B2)
4 sin2 �

cos�(A2+B2)
4 sin2 �

(cos�+ 1
2 )(A

2+B2)
4 sin2 �

cos�(A2+B2)
4 sin2 �

(A2+B2)
4 sin2 �

37775
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with V20 , A2 and B2 as de�ned in Theorem 1. Consequently, for the inverse of (A.19) we have that 
��11n

nX
t=1

A0
1zt�1z

0
t�1A1�

�1
1n

!�1
)
�
�2
Z 1

0

�(r)dr

��1
(A.20)

where
hR 1
0
�(r)dr

i�1
=2664

4(1�cos(�))2
V20

2(2 cos��1)(1�cos�)
V20

� 2(1�cos�)
V20

2(2 cos��1)(1�cos�)
V20

4V20+[3�4 cos(�)](A
2+B2)

V20 (A2+B2)
(A2+B2)�2(2V20+A

2+B2) cos(�)
V20 (A2+B2)

� 2(1�cos�)
V20

(A2+B2)�2(2V20+A
2+B2) cos(�)

V20 (A2+B2)
4V20+(A

2+B2)
V20 (A2+B2)

3775 :
Next, using results in Lemma 2, we have that

��11n

nX
t=1

A0
1zt�1"t =

2666666664

1
n

nX
t=1

xt�1"t

1
n

nX
t=1

�xt�1"t

1
n

nX
t=1

�xt�2"t

3777777775
) �2Q(�)	(r) (A.21)

whereQ(�) =

264
1

2(1�cos�)
1

4 sin� � 1
4(1�cos(�))

0 1
2 sin� 0

0 cos�
2 sin� � 1

2

375 and	(r) =
2664

R 1
0
W0 (r) dW0 (r)R 1

0

�
W�
� (r) dW

�
� (r)�W

�
� (r) dW

�
� (r)

�
R 1
0

�
W�
� (r) dW

�
� (r) +W

�
� (r) dW

�
� (r)

�
3775 :

Next we have ��12n
P
A0
2zt�1z

0
t�1A2�

�1
2n =2666666666664

1
n

nX
t=1

(���xt�1)
2 1

n

nX
t=1

���xt�1���xt�2 � � � 1
n

nX
t=1

���xt�1���xt�k

1
n

nX
t=1

���xt�2���xt�1
1
n

nX
t=1

(���xt�2)
2 � � � 1

n

nX
t=1

���xt�2���xt�k

...
...

...
...

1
n

nX
t=1

���xt�k���xt�1
1
n

nX
t=1

���xt�k���xt�2 � � � 1
n

nX
t=1

(���xt�k)
2

3777777777775
and therefore by a standard law of large numbers result we have that

��12n

nX
t=1

A0
2zt�1z

0
t�1A2�

�1
2n ) � (A.22)

where � is the (k � 2)� (k � 2) variance-covariance matrix

� :=

2666664
0 1 2 � � � k�3
1 0 1 � � � k�2
2 1 0 � � � k�1
...

...
...

. . .
...

k�3 k�2 k�1 � � � 0

3777775
with j denoting the jth order autocovariance of f���xtg. Moreover, from the CLT it follows that,

��12n

nX
t=1

A0
2zt�1"t ) N(0; �2�): (A.23)

Consequently, putting the results in (A.20), (A.21), (A.22) and (A.23) together we obtain that,

�n

�b����) A

(" hR 1
0
�(r)dr

i�1
0

0 ��1

#)�
(Q(�)	(r))
N(0; �2�)

�
: (A.24)
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Before progressing we need to introduce some further notation. De�ne the (k + 1) � 1 selection
vector ei to have a 1 at the ith position and zeros elsewhere. Moreover, partition this selection vector as
ei = (e

0
1j ; e

0
2v)

0 where e1j is a 3� 1 vector and e2v is a (k� 2)� 1 vector, where the indices j and v serve
to indicate the position at which the one occurs. Note that, if one of the �rst three parameters, i.e. �; �1
or �2, is to be selected then a one will occur in the e1j vector and e2v will be a vector of zeros, and vice
versa.
For each element of b� we therefore have from (A.24) that

nb� ) 2(1� cos(�))
R 1
0
W0 (r) dW0 (r)

V20
(A.25)

n(b�1 � �1) ) A cos (�) +B

V20 (A2 + B2)
(A.26)

n(b�2 � �2) ) A

V20 (A2 + B2)
(A.27)

p
n(b�v+2 � �v+2) ) N(0; �2e02vH2�

�1H0
2e2v); for 1 � v � k � 2 (A.28)

where

H2 :=

2666666664

1 �2 cos� � � � 0

0 1
. . . 0

...
...

...
...

0 0 �2 cos� 1
0 0 1 �2 cos�
0 0 0 1

3777777775
(A.29)

and where A and B are as de�ned in Theorem 1.

Then from the result in (A.25) coupled with the consistency of the �j ; j = 1; :::; k; estimators, we
obtain that Z�̂ )

R 1
0
W0 (r) dW0 (r) =

R 1
0
W 2
0 (r)dr. This completes the proof for Z�̂. Turning to tb�, the

appropriate selection vector is given by e11 := (1; 0; 0)0, and hence

tb� =
nb�vuutb�2ke011

"
��11n

nX
t=1

A0
1zt�1z

0
t�1A1�

�1
1T

#�1
e11

)
2(1� cos(�))

R 1
0
W0 (r) dW0 (r)R 1

0
W 2
0 (r)dr

s R 1
0
W 2
0 (r)dr

4(1� cos(�))2 =
R 1
0
W0 (r) dW0 (r)qR 1
0
W 2
0 (r)dr

as required, using the fact that b�2k p! �2.

The result for the V RT statistic in (19) follows directly from the results in Lemma 2 and applications of
the CMT. For the M statistics, in addition to previous results and noting that n�1x2n ) �2b(1)2 from
(A.13) and the CMT, we also need to establish the behaviour of the long-run variance estimators used in

constructing these statistics. In the case of the autoregressive-based estimator, �̂
2
= s2AR the consistency

of the OLS parameter estimates from (2), established above, yields that s2AR
p! �2= (1� 2 cos (�) + 1)2 =

�2=(4[1 � cos(�)]2). In contrast, for �̂
2
= s2WA it follows, as shown in the proof of Theorem 2 in Taylor

(2003), that s2WA = Op (mn), since zt := (1� L)xt is non-stationary.

We now turn to establishing the results in Theorem 2. Here for 1 � v � k � 2 we have that

tb�v+2 =

p
n (b�v+2 � �v+2)

b�ke02v
8<:H2

"
��12n

nX
t=1

A0
2zt�1z

0
t�1A2�

�1
2n

#�1=29=; e2v
=

8<:b�ke02v
24H2

 
��12n

nX
t=1

A0
2zt�1z

0
t�1A2�

�1
2n

!�1=235 e2v
9=;
�1

N(0; �2e02vH2�
�1H0

2e2v) + op(1)

) N

�
0;
e02vH2�

�1H0
2e2v

e02vH2��1H0
2e2v

�
= N(0; 1): �
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Proof of Lemma 3: The proof of Lemma 3 follows along the same lines as the proof of Lemma 1, on
replacing the identity in (A.9) with the identity

1 � 1

2 (1� cos (�))
�
1� 2 cos(�)'nL+ '2nL2

�
+
(1� 2 cos(�) + 'nL)
2 (1� cos (�)) (1� 'nL) : �

Proof of Remark 9: In this case we have to use the identity

1

2 (1� cos (�))

�
1� 2 cos(�)'�nL+

�
'�n
�2
L2
�
+

�
1� 2 cos(�) + '0nL

�
2 (1� cos (�))

�
1� '0nL

�
= 1 +

cos (�)

(1� cos (�))

�
c0 � c�
n

�
L+

1

2 (1� cos (�))

" 
c2� � c20
n2

!
+

�
2c� � 2c0

n

�#
L2

and that the terms
�
c0�c�
n

�
and

�
2c��2c0

n

�
are O

�
n�1

�
and

�
c2��c

2
0

n2

�
is O

�
n�2

�
. Hence, it follows that,

1

2 (1� cos (�))

�
1� 2 cos(�)'�nL+

�
'�n
�2
L2
�
+

�
1� 2 cos(�) + '0nL

�
2 (1� cos (�))

�
1� '0nL

�
= 1 + o (1) :
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