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cut-off, and Landweber-Fridman. Unlike in the identified case, estimation of the

operator has non-negligible impact on convergence rates and inference. We develop

inferential methods for linear functionals in such models. Lastly, we demonstrate

the discontinuity in the asymptotic distribution in case of weak identification. In

particular, the estimator has a degenerate 𝑈 -statistics type behavior, in the extreme

case of weak instrument.
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1 Introduction

Structural nonparametric or high-dimensional models may be formalized by an inverse problem

which is very often linear. Among many examples, we may quote the non-parametric instrumental

regression, functional linear regression models, or deconvolution. All these examples reduce to a

functional linear equation

𝐾𝜙 = 𝑟,

where 𝜙 is the functional parameter of interest, 𝑟 is an element of a functional space, and 𝐾 is a

linear operator. Usual inverse problem literature assumes that 𝐾 is given and 𝑟 is estimated

with some error. Econometric examples lead to problems, where both 𝐾 and 𝑟 are estimated.

Identification is an important question in econometrics. In linear inverse problems 𝑟 and 𝐾

are identified by the DGP and 𝜙 is identified if the equation 𝐾𝜙 = 𝑟 has a unique solution. We

assume that the solution exists or equivalently that 𝑟 is in the range of 𝐾. Unicity of the solution

is equivalent to 𝐾𝜙 = 0 implies 𝜙 = 0 or 𝐾 is a one-to-one operator. Note that in most of the

cases when 𝐾 is unknown, the estimated operator 𝐾̂ has a finite-rank and is not one-to-one for

any finite sample size.

Maximum likelihood method when there is lack of identification leads to a flat likelihood

in some regions and then some ambiguity on the choice of a maximum. It is then natural to

characterize the limit of the estimator in the case of potentially non-identified model.

In non-identified models there exists a set of solutions 𝜙 + 𝒩 (𝐾), where 𝜙 is a particular

solution and 𝒩 (𝐾) is the null space of 𝐾. In the case of usual Tikhonov estimation with 𝐾

known, it is well-known that the estimator converges to the element of this set of minima with

the smallest norm. This limit is also equal to the projection of the 𝜙 on the orthogonal of the

null-space of 𝐾, see (Engl, Hanke, and Neubauer, 1996) or (Florens, Johannes, and Van Bellegem,

2011).

This paper recalls this result and gives some illustration of this property. Our approach can be

considered as an alternative to the partial identification approach, where we focus on the whole

identified set, Santos (2012).

More originally, we consider the case when 𝐾 is estimated. This gives further illustration that

the identification property is not crucial.

As 𝐾 (or 𝐾̂) may be not one-to-one and do not have a continuous inverse, a regularization

method is needed to solve the equation 𝐾𝜙 = 𝑟. Several methods are commonly used and we will

focus our presentation on the Tikhonov method, when the solution takes form (𝛼𝑛𝐼+𝐾
*𝐾)−1𝐾*𝑟,

where 𝐾* is the adjoint operator of 𝐾 and 𝐾, 𝐾*, and 𝑟 are replaced by their estimates. However,
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all the results of the paper may be applied to smooth regularization, when the solution takes the

form 𝑔𝛼(𝐾
*𝐾)𝐾*𝑟, see (Engl et al., 1996). Particular cases include the iterated Tikhonov, the

Landweber iteration, etc. Tikhonov regularizatoin is a solution of the penalized mean-square

problem

min ‖𝑟 −𝐾𝜙‖2 + 𝛼‖𝜙‖2

and may be extended by using a penalty ‖𝐿𝜙‖, when 𝐿 is a differential operator. This extension

is called the regularization in Hilbert scale.

All these methods lead to a well-defined estimator even if the model is not identified. This is

different from the parametric context. Even if the convergence result remains the same if 𝐾 is

estimated, the convergence rate may be affected by the identification in the estimated case. The

last new element of this paper is to consider the behavior of the regularized estimator in the 𝐿∞

norm in the non-identified case.
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2 Consistency and rates of convergence

Let us consider a linear equation

𝑟 = 𝐾𝜙, (1)

where 𝜙 ∈ ℰ and 𝑟 ∈ ℱ are two Hilbert spaces, and 𝐾 is a linear operator from ℰ to ℱ . We

assume that the equation is well-specified in the sense that there exists a solution to (1), or

equivalently that 𝑟 is in the range of the operator 𝐾. This solution is unique if 𝐾 is one-to-one,

or if the null space of 𝐾

𝒩 (𝐾) = {𝜙 ∈ ℰ : 𝐾𝜙 = 0}

reduces to {0}. We observe a noisy version of 𝑟, say 𝑟𝑛, depending on the sample of size 𝑛, such

that E ‖𝑟𝑛 − 𝑟‖2 = 𝑂(𝛿𝑛), where 𝛿𝑛 → 0 if 𝑛→ ∞. We focus our attention to the case where 𝐾

is compact. The problem is then ill-posed because even if 𝐾 is one-to-one, it does not have a

continuous inverse on ℱ when ℰ is infinite-dimensional. Then we consider a regularized solution

of (1), for example, the Tikhonov solution:

𝜙𝛼𝑛 = (𝛼𝐼 +𝐾*𝐾)−1𝐾*𝑟𝑛, (2)

obtained by the minimization of the Tikhonov functional

‖𝑟𝑛 −𝐾𝜙‖2 + 𝛼‖𝜙‖2. (3)

We want to consider cases where 𝐾 is not necessarily one-to-one, or in econometric terminology

when the model is not identified. Let us illustrate this point by two examples.

Example 1. Functional linear instrumental regression, see (Florens and Van Bellegem, 2015).

We consider an equation 𝑌 = ⟨𝑍,𝜙⟩+ 𝑈 , where 𝑌 ∈ R, 𝑍 ∈ ℰ , 𝜙 ∈ ℰ and 𝑈 is a random noise

verifying E[𝑈𝑊 ] = 0. The instrumental variable 𝑊 belongs to another Hilbert space ℱ . For

simplicity we assume that 𝑍 and 𝑊 have mean zero. This model leads to the linear equation

E[𝑌𝑊 ] = E[𝑊 ⟨𝑍,𝜙⟩]. (4)

In this example 𝐾𝜙 = E[𝑊 ⟨𝑍,𝜙⟩] is the second-order moment between 𝑊 and 𝑍 defining an

operator from ℰ to ℱ and the identification condition is

E[𝑊 ⟨𝑍,𝜙⟩] = 0 =⇒ 𝜙 = 0. (5)
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This condition is essentially the injectivity of the cross-covariance operator of 𝑍 and 𝑊 , gener-

alizing rank condition in the linear IV model, and may be interpreted as a requirement for the

sufficient linear dependence between 𝑍 and 𝑊 .

Example 2. Non-parametric instrumental variables. Let 𝑌 ∈ R, 𝑍 ∈ R𝑝, and 𝑊 ∈ R𝑞 be three

random elements and we assume that 𝑌 = 𝜙(𝑍) + 𝑈 with E[𝑈 |𝑊 ] = 0. This assumption implies

the linear equation

E[𝑌 |𝑊 ] = E[𝜙(𝑍)|𝑊 ]

and 𝐾 is the conditional expectation operator from 𝐿2
𝑍 to 𝐿2

𝑊 (defined with respect to the true

distribution of (𝑌,𝑍,𝑊 )). Completeness (or more precisely 𝐿2 completeness, see (Florens,

Mouchart, Rolin, et al., 1990)) is defined by E[𝜙(𝑍)|𝑊 ] = 0 =⇒ 𝜙 = 0 and is a (non-linear)

dependence condition between 𝑍 and 𝑊 .

We claim two fundamental properties of the Tikhonov regularized estimation:

1. The estimator is well-defined even if 𝐾 is not injective.

2. If 𝛼 is suitably chosen, 𝜙𝛼𝑛 converges to the best approximation of the true 𝜙 by identified

element.

Let us precise these two points. First, let us consider the family of singular values of 𝐾,

denoted (𝜆𝑗). By compactness of 𝐾 this family is discrete, 𝑗 = 1, 2, . . . , 𝜆𝑗 ∈ [0, ‖𝐾‖], and

𝜆𝑗 → 0 if 𝑗 → ∞. The singular values of 𝛼𝐼 +𝐾*𝐾 are 𝛼+ 𝜆2𝑗 and they don’t vanish for 𝛼 ̸= 0,

even if 𝜆𝑗 = 0 for some 𝑗. Moreover

𝜙𝛼𝑛 =

∞∑︁
𝑗=1

𝜆𝑗
𝛼+ 𝜆2𝑗

⟨𝑟𝑛, 𝜓𝑗⟩𝜙𝑗 ,

where 𝜙𝑗 and 𝜓𝑗 are singular vectors of 𝐾*𝐾 and 𝐾𝐾*, and 𝜙𝛼𝑛 is always well-defined, because

‖𝜙𝛼𝑛‖
2 ≤

∞∑︁
𝑗=1

⟨𝑟𝑛, 𝜓𝑗⟩2 <∞.

Second, let us consider the limit of 𝜙𝛼𝑛. Recall that the null space of a bounded operator is a

closed linear subspace. This allows us to decompose the parameter of interest uniquely as

𝜙 = 𝜙0 + 𝜙1,

where 𝜙0 is the orthogonal projection of 𝜙 on 𝒩 (𝐾) and 𝜙1 is the orthogonal projection on

𝒩 (𝐾)⊥, the orthogonal complement to the null space of 𝐾, equal to the closure of the range of

5



𝐾*, denoted ℛ(𝐾*), (Luenberger, 1997, p.157).

If 𝐾 is not one-to-one, we are faced to the problem of a set identified model. The identified

set has the form of linear manifold 𝜙1 +𝒩 (𝐾), where 𝜙1 ∈ ℛ(𝐾*). Equivalently, the identified

parametric space is ℰ/𝒩 (𝐾), the quotient space of ℰ by the linear subspace 𝒩 (𝐾). A set

estimation is then given by the linear manifold 𝜙𝛼𝑛 +𝒩 (𝐾), which is an estimator of ℰ/𝒩 (𝐾),

converging to the identified parameter in ℰ/𝒩 (𝐾).

While it may be interesting from the theoretical point of view to develop inferential methods

for 𝜙1 +𝒩 (𝐾), this identified set is usually not very tractable. For example, if the null space of

𝐾 is the set of all polynomials of degree 𝑚, the identified set is simply too big to be useful in

empirical applications. In this case, what we can only hope to learn is the best approximation

𝜙1.

The following two regularity conditions are needed for the first result of this paper.

Assumption 1. Suppose that 𝜙1 ∈ ℛ(𝐾*𝐾)𝛽/2 for some 𝛽 > 0.

Assumption 2. Suppose that 𝐾 and 𝐾* are estimated by 𝐾̂ and 𝐾̂* so that for all 𝜑 ∈ 𝐿2

E

⃦⃦⃦
(𝐾̂ −𝐾)𝜑

⃦⃦⃦
= 𝑂(𝜌1,𝑛), E

⃦⃦⃦
𝑟 − 𝐾̂𝜙

⃦⃦⃦2
= 𝑂 (𝛿𝑛) ,

and that

E

⃦⃦⃦
𝐾̂ −𝐾

⃦⃦⃦2
= 𝑂(𝜌2,𝑛), E

⃦⃦⃦
𝐾̂* −𝐾*

⃦⃦⃦2
= 𝑂(𝜌2,𝑛).

We characterize convergence rates for the mean-integrated squared error in the following result.

Unlike in the identified case treated in (Darolles, Fan, Florens, and Renault, 2011), the noise

coming from the estimation of the operator is now important and the convergence rate is also

driven by the rate at which we estimate the operator 𝐾.

Theorem 1. Suppose that Assumptions 1 and 2 are satisfied, then

E ‖𝜙𝛼𝑛 − 𝜙1‖2 = 𝑂

(︂
𝛿𝑛 + 𝜌1,𝑛

𝛼𝑛
+ 𝜌2,𝑛𝛼

𝛽∧1−1
𝑛 + 𝛼𝛽∧2𝑛

)︂
.

Assumption 3. Suppose that for some bounded sequence 𝜉𝑛, we have

E

⃦⃦⃦
𝐾̂* −𝐾*

⃦⃦⃦2
2,∞

= 𝑂(𝜉𝑛),

where ‖𝐾*‖2,∞ = sup‖𝜓‖≤1 ‖𝐾*𝜓‖∞ <∞.
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Theorem 2. Suppose that Assumption 1 is satisfied with 𝛽 > 1. Suppose also that Assumptions 2

and 3 hold and that 𝜉𝑛 is bounded for all 𝑛 ∈ N. Then

E ‖𝜙𝛼𝑛 − 𝜙1‖∞ = 𝑂

(︃
𝛿
1/2
𝑛 + 𝜌

1/2
1,𝑛

𝛼𝑛
+
𝜉
1/2
𝑛

𝛼
1/2
𝑛

+ 𝜌
1/2
2,𝑛𝛼

𝛽−1
2

∧1−1
𝑛 + 𝛼

𝛽−1
2

∧1
𝑛

)︃
.

2.1 Functional linear IV regression

Assume for simplicity that the data are i.i.d.1 In this example 𝑟 = E[𝑌𝑊 ] is estimated by

1
𝑛

∑︀𝑛
𝑖=1 𝑌𝑖𝑊𝑖 and 𝛿𝑛 = 1

𝑛 , whenever E‖𝑈𝑊‖2 < ∞. Moreover, 𝐾 and 𝐾* are respectively

estimated by 𝐾̂ = 1
𝑛

∑︀𝑛
𝑖=1𝑊𝑖⟨𝑍𝑖, .⟩, and 𝐾̂* = 1

𝑛

∑︀𝑛
𝑖=1 𝑍𝑖⟨𝑊𝑖, .⟩, and 𝜌1,𝑛 = 𝜌2,𝑛 = 1

𝑛 , whenever

E‖𝑍𝑊‖2 <∞. The risk becomes

E ‖𝜙𝛼𝑛 − 𝜙1‖2 = 𝑂

(︂
1

𝛼𝑛𝑛
+ 𝛼𝛽∧2𝑛

)︂
.

Then conditions 𝛼→ 0 and 𝛼𝑛→ ∞ are sufficient to ensure the convergence of 𝜙 to 𝜙1 in the

mean-square risk and so in probability.

For uniform convergence we need additionally to assume that trajectories of 𝑍 and 𝑊 are

sufficiently smooth, e.g. Hölder continuous, to ensure that 𝛿𝑛 = 𝜌1,𝑛 = 𝜌2,𝑛 = 1
𝑛 . This smoothness

assumption combined with Hoffman-Jørgensen’s inequality2, see (Giné and Nickl, 2015, Theorem

3.1.16), gives

(︂
E

⃦⃦⃦
𝐾̂* −𝐾*

⃦⃦⃦2
2,∞

)︂1/2

=

⎛⎝E ⃦⃦⃦⃦⃦ 1𝑛
𝑛∑︁
𝑖=1

𝑍𝑖𝑊𝑖 − E[𝑍𝑖𝑊𝑖]

⃦⃦⃦⃦
⃦
2

∞

⎞⎠1/2

= 𝑂

(︃
E

⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝑍𝑖𝑊𝑖 − E[𝑍𝑖𝑊𝑖]

⃦⃦⃦⃦
⃦
∞

+ 𝑛−1

(︂
max
1≤𝑖≤𝑛

‖𝑍𝑖𝑊𝑖‖2∞
)︂1/2

)︃
.

Therefore, assuming that trajectories of 𝑍𝑖 and 𝑊𝑖 are bounded, we obtain 𝜉𝑛 = 1
𝑛 and

E ‖𝜙𝛼𝑛 − 𝜙1‖∞ = 𝑂

(︂
1

𝛼𝑛𝑛1/2
+ 𝛼

𝛽−1
2

∧1
𝑛

)︂
.

Then conditions 𝛼𝑛 → 0 and 𝛼𝑛𝑛
1/2 → ∞ are sufficient to ensure uniform convergence of 𝜙 to

𝜙1.

1This can be easily relaxed to weakly dependent data, e.g. covariance stationarity in the 𝐿2 sense.
2Notice that continuity of trajectories ensures that the supremum is actually countable.
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2.2 Non-parametric IV

We rewrite the model as

𝑟(𝑤) := E[𝑌 |𝑊 = 𝑤]𝑓𝑊 (𝑤) =

∫︁
𝜙(𝑧)𝑓𝑍𝑊 (𝑧, 𝑤)d𝑧 =: (𝐾𝜙)(𝑤),

where now 𝐾 is an operator from 𝐿2(R
𝑝,d𝑧) to 𝐿2(R

𝑞,d𝑤). In this example 𝑟 and 𝐾 are

estimated by

𝑟(𝑤) =
1

𝑛ℎ𝑞𝑤

𝑛∑︁
𝑖=1

𝑌𝑖𝐾𝑤

(︀
ℎ−1
𝑤 (𝑊𝑖 − 𝑤)

)︀
,

(𝐾̂𝜑)(𝑤) =

∫︁
𝜑(𝑧)𝑓𝑍𝑊 (𝑧, 𝑤)d𝑧,

𝑓𝑍𝑊 (𝑧, 𝑤) =
1

𝑛ℎ𝑝𝑧ℎ
𝑞
𝑤

𝑛∑︁
𝑖=1

𝐾𝑧

(︀
ℎ−1
𝑧 (𝑍𝑖 − 𝑧)

)︀
𝐾𝑤

(︀
ℎ−1
𝑤 (𝑊𝑖 − 𝑤)

)︀
.

If ℎ𝑧 = ℎ𝑤 = ℎ𝑛, by Proposition 1, 𝛿𝑛 = 𝜌1,𝑛 = 1
𝑛ℎ𝑞𝑛

+ ℎ2𝑠𝑛 and 𝜌2,𝑛 = 1
𝑛ℎ𝑝+𝑞

𝑛
+ ℎ2𝑠𝑛 , where 𝑠 is the

regularity of the joint density of 𝑍 and 𝑊 . So we have in that case

E ‖𝜙𝛼𝑛 − 𝜙1‖2 = 𝑂

(︂
1

𝛼𝑛

(︂
1

𝑛ℎ𝑞𝑛
+ ℎ2𝑠𝑛

)︂
+

1

𝑛ℎ𝑝+𝑞𝑛

𝛼𝛽∧1−1
𝑛 + 𝛼𝛽∧2𝑛

)︂
.

We also know that 𝜉
1/2
𝑛 =

√︂
log ℎ−1

𝑛

𝑛ℎ𝑝+𝑞
𝑛

+ℎ𝑠𝑛, see (Babii, 2016b, Proposition 5) under the assumption

that 𝑓𝑍𝑊 is in the Hölder class 𝐵𝑠
∞,∞, and so

E‖𝜙𝛼𝑛 − 𝜙1‖∞ = 𝑂

⎛⎝ 1

𝛼𝑛

(︃
1√︀
𝑛ℎ𝑞𝑛

+ ℎ𝑠𝑛

)︃
+

1

𝛼
1/2
𝑛

√︃
log ℎ−1

𝑛

𝑛ℎ𝑝+𝑞𝑛

+ 𝛼
𝛽−1
2

∧1
𝑛

⎞⎠ .
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3 Inference for functional linear regression

3.1 Inference for linear functionals

In many economic applications, the object of interest is not necessary a function 𝜙, but rather

its linear functional. By Riesz representation theorem any continuous linear functional can

be represented as an inner product with some function 𝜇 ∈ 𝐿2. In this section we show that

in case of identification failures we will still have convergence of suitably normalized plug-in

estimator of linear functionals. Decompose 𝜇 = 𝜇0 + 𝜇1 for 𝜇0 ∈ 𝒩 (𝐾) and 𝜇1 ∈ 𝒩 (𝐾)⊥. Put

𝜂𝑛,𝑖 = (𝛼𝑛𝐼 +𝐾*𝐾)−1𝐾*𝑊𝑖(𝑈𝑖 + ⟨𝑍𝑖, 𝜙0⟩).

Under mild assumptions, suitably normalized inner products with any 𝜇0 ∈ 𝒩 (𝐾) have

𝑈 -statistics type behavior as illustrated below.

Assumption 4. (i) the data 𝑋𝑖 = (𝑌𝑖, 𝑍𝑖,𝑊𝑖) ∈ 𝐿2(𝒳 ,X , 𝑃 ), 𝑖 = 1, . . . , 𝑛 are i.i.d.; (ii)

E
[︀
𝑈2
1 ‖𝑊1‖2

]︀
< ∞ and E

[︀
‖𝑍1‖2‖𝑊1‖2

]︀
< ∞; (iii) E‖𝑊1‖‖𝑍1‖|𝑈 | < ∞, E‖𝑊1‖‖𝑍1‖2 < ∞,

and E‖𝑊1‖2‖𝑍1‖2(𝑈1 + ⟨𝑍1, 𝜙0⟩)2 <∞.

Let (𝜆𝑗 , 𝜙𝑗 , 𝜓𝑗)𝑗≥1 denote the SVD decomposition of the covariance operator 𝐾, i.e. 𝐾𝜙𝑗 =

𝜆𝑗𝜓𝑗 ,𝐾
*𝜓𝑗 = 𝜆𝑗𝜙𝑗 , 𝑗 ≥ 1. To state the first result of this section, notice that there exists a

unique orthogonal decomposition 𝑊𝑖 =𝑊 0
𝑖 +𝑊 1

𝑖 , where 𝑊
0
𝑖 is the orthogonal projection of 𝑊𝑖

on the null set of 𝐾*, and 𝑊 1
𝑖 is the projection on 𝒩 (𝐾*)⊥.

Theorem 3. Suppose that Assumptions 1 and 4 (i), (iii) are satisfied and that the sequence

of regularization parameters 𝛼𝑛 → 0 is such that 𝑛𝛼1+𝛽∧2
𝑛 → 0 while 𝑛𝛼𝑛 → ∞. Suppose that

the instrumental variable 𝑊𝑖 is such that 𝑊 0
𝑖 is a non-degenerate random variable such that

Assumption 4, and 𝑊 1
𝑖 ∈ ℛ [(𝐾𝐾*)𝜅] , 𝜅 > 0. Then for any 𝜇0 ∈ 𝒩 (𝐾), we have

𝑛𝛼𝑛⟨𝜙− 𝜙1, 𝜇0⟩
𝑑−→ E [‖𝑊1‖(𝑈1 + ⟨𝑍1, 𝜙0⟩)⟨𝑍1, 𝜇0⟩] +

∞∑︁
𝑗=1

𝜆𝜇0𝑗 (𝜒2
1,𝑗 − 1),

where (𝜆𝜇0𝑗 )𝑗≥1 are eigenvalues of the conditional expectation operator

𝑇𝜇0 : 𝐿2(𝑋1) → 𝐿2(𝑋1)

𝑓 ↦→ E [ℎ𝜇0(𝑋1, 𝑋2)𝑓(𝑋2)|𝑋1 = 𝑥1] ,

and for 𝑋𝑖 = (𝑊𝑖, 𝑍𝑖, 𝑈𝑖),

ℎ𝜇0(𝑋1, 𝑋2) =

⟨︀
𝑊 0

1 ,𝑊
0
2

⟩︀
2

{⟨𝑍1, 𝜇0⟩(𝑈2 + ⟨𝑍2, 𝜙0⟩) + ⟨𝑍2, 𝜇0⟩(𝑈1 + ⟨𝑍1, 𝜇0⟩)} .
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Otherwise, if 𝑊 0
𝑖 is degenerate, 𝑛𝛼𝑛⟨𝜙− 𝜙1, 𝜇0⟩

𝑑−→ 0.

For inner products with 𝜇1, we need some additional assumptions.

Assumption 5. For all 𝜖 > 0,

lim
𝑛→∞

E
[︁
|⟨𝜂𝑛,𝑖, 𝜇1⟩|2 1{|⟨𝜂𝑛,𝑖,𝜇1⟩|≥𝜖𝑛1/2‖Σ1/2𝐾(𝛼𝑛𝐼+𝐾*𝐾)−1𝜇1‖}

]︁
⃦⃦
Σ1/2𝐾(𝛼𝑛𝐼 +𝐾*𝐾)−1𝜇1

⃦⃦2 = 0,

Since for any 𝛿 > 0

E
[︁
|⟨𝜂𝑛,𝑖, 𝜇1⟩|2 1{|⟨𝜂𝑛,𝑖,𝜇1⟩|≥𝜖𝑛1/2‖Σ1/2𝐾(𝛼𝑛𝐼+𝐾*𝐾)−1𝜇1‖}

]︁
≤ E |⟨𝜂𝑛,𝑖, 𝜇1⟩|2+𝛿

𝜖𝛿𝑛𝛿/2
⃦⃦
Σ1/2𝐾(𝛼𝑛𝐼 +𝐾*𝐾)−1𝜇1

⃦⃦𝛿 ,
a sufficient condition for Assumption 5 is a Lyapunov-type restriction

E |⟨𝜂𝑛,𝑖, 𝜇1⟩|2+𝛿⃦⃦
Σ1/2𝐾(𝛼𝑛𝐼 +𝐾*𝐾)−1𝜇1

⃦⃦2+𝛿 = 𝑂(1). (6)

Notice that this condition is satisfied when𝑊𝑖 ∈ ℛ
[︀
(𝐾*𝐾)𝛾

]︀
, E |𝑈𝑖‖𝑊𝑖‖|2+𝛿 <∞, E |‖𝑍𝑖‖‖𝑊𝑖‖|2+𝛿 <

∞, and the following assumption is satisfied with 𝛾 ≥ 1/2− 𝛾.

Assumption 6. For any 𝜇1 ∈ 𝒩 (𝐾)⊥, let 𝛾 ≥ 0 be such that 𝜇1 ∈ ℛ [(𝐾*𝐾)𝛾 ].

To see that above assumptions are sufficient for Lyapynov’s condition in Eq. (6), notice that

|⟨𝜂𝑛,𝑖, 𝜇1⟩| ≤ |𝑈𝑖 + ⟨𝑍𝑖, 𝜙0⟩|
⃦⃦
(𝐾*𝐾)𝛾(𝛼𝑛𝐼 +𝐾*𝐾)−1𝐾*(𝐾*𝐾)𝛾

⃦⃦
‖𝑊𝑖‖‖𝜇1‖.

Assumption 7. Suppose that 𝛽, 𝛾 > 0 and the sequence of tuning parameters 𝛼𝑛 → 0 are such

that (i) 𝜋𝑛𝛼
𝛽
2
∧1

𝑛 → 0 for 𝜋𝑛 = 𝑛1/2
⃦⃦
Σ1/2𝐾(𝛼𝑛𝐼 +𝐾*𝐾)−1𝜇1

⃦⃦−1
and (ii) 𝜋𝑛𝛼

𝛾∧1/2
𝑛
𝑛𝛼𝑛

→ 0.

Notice that this assumption is the most restrictive when 𝜋𝑛 = 𝑂
(︀
𝑛1/2

)︀
. In this case we need

𝑛𝛼𝛽∧2𝑛 → 0 and 𝑛𝛼2−2𝛾∧1
𝑛 → ∞, or 𝛽 ∧ 2 > 2− 2𝛾 ∧ 1. For smooth functions 𝜇1 with 𝛾 ≥ 1/2,

this requirement holds when 𝛽 > 1, while for less smooth functions 𝜇1 with 𝛾 < 1/2, we will need

𝛽 > 2− 2𝛾, i.e. more smoothness of 𝜙. Therefore, having 𝛽 > 2 will always ensure existence of

the sequence of tuning parameters 𝛼𝑛 → 0 satisfying Assumption 7.

Theorem 4. Suppose that Assumptions 1, 4, 5, 6, and 7 are satisfied. Then for any 𝜇1 ∈ 𝒩 (𝐾)⊥

𝜋𝑛⟨𝜙− 𝜙1, 𝜇1⟩
𝑑−→ 𝑁(0, 1).
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3.2 Asymptotic distribution in the case of irrelevant instrument

In this section we illustrate that there is a discontinuity in the asymptotic distribution when

instrumental variable becomes weak. We look at the extreme case of the irrelevant instrumental

variable. Let 𝒮2 be the space of Hilbert-Schmidt operators.

Theorem 5. Suppose that Assumption 4 is satisfied, E[⟨𝑍, 𝛿⟩𝑊 ] = 0, ∀𝛿 ∈ 𝐿2 and 𝛼𝑛𝑛→ ∞.

Then

𝛼𝑛𝑛(𝜙− 𝜙1)
𝑑−→ G𝑔

in the product topology of 𝒮2 × 𝐿2([0, 1], d𝑠), where G is a zero-mean Gaussian random element

in 𝒮2 with covariance operator 𝐴 ↦→ E [trace(𝐴*⟨𝑊, .⟩𝑍)⟨𝑊, .⟩𝑍] and 𝑔 is a zero-mean Gaussian

random element in 𝐿2([0, 1], d𝑠) with covariance operator 𝜑 ↦→ E[𝑌1⟨𝑊1, 𝜑⟩𝑊1]. Alternatively,

𝛼𝑛𝑛(𝜙− 𝜙1)
𝑑−→ E

[︀
𝑍1‖𝑊1‖2𝑌1

]︀
+ 𝐽2(ℎ)

under the topology of 𝐿2([0, 1],d𝑡), where ℎ(𝑋1, 𝑋2) = 1
2⟨𝑊1,𝑊2⟩(𝑍1𝑌2 + 𝑍2𝑌1) and 𝐽2 :

𝐿2(𝒳 ,X , 𝑃 ) → 𝐿2([0, 1],d𝑡) is a two-fold Wiener-Itô integral with respect to the Gaussian

random measure on 𝒳 .

For any orthonormal basis (𝜙𝑗)𝑗≥1 of 𝐿2(𝒳 ,X , 𝑃 ), the multiple Wiener-Itô integral has the

following representation

𝐽2(ℎ) =𝑑

∞∑︁
(𝑖1,𝑖2)=1

E [ℎ(𝑋1, 𝑋2)𝜙𝑖1(𝑋1)𝜙𝑖2(𝑋2)]
{︀
(𝜒2

1,𝑗 − 1)𝛿𝑖1,𝑖2 + 𝜉𝑖1𝜉𝑖2(1− 𝛿𝑖1,𝑖2)
}︀
,

where 𝜉𝑗 , 𝑗 = 1, 2, . . . are i.i.d. 𝑁(0, 1) and 𝛿𝑖,𝑗 = 1 if 𝑖 = 𝑗 and 0 otherwise, see Appendix C for

more details.

For 𝜇 ∈ 𝐿2([0, 1],d𝑡), consider the following operator 𝑇𝜇 : 𝐿2(𝒳 ,X , 𝑃 ) → 𝐿2(𝒳 ,X , 𝑃 ), 𝑓 ↦→

E[⟨ℎ(𝑋1, 𝑋2), 𝜇⟩𝑓(𝑋2)|𝑋1 = 𝑥1]. This operator is Hilbert-Schmidt and then compact. Let

(𝜆𝜇𝑗 )𝑗≥1 and (𝜙𝜇𝑗 )𝑗≥1 be eigenvalues and eigenfunctions of 𝑇𝜇. Then

E
[︀
⟨ℎ(𝑋1, 𝑋2), 𝜇⟩𝜙𝜇𝑖1(𝑋1)𝜙

𝜇
𝑖2
(𝑋2)

]︀
= E

[︀
𝜙𝜇𝑖1(𝑋1)(𝑇

𝜇𝜙𝜇𝑖2)(𝑋1)
]︀

= 𝜆𝜇𝑖2𝛿𝑖1,𝑖2

and we obtain the following characterization of marginals

⟨𝐽2(ℎ), 𝜇⟩ =𝑑

∞∑︁
𝑗=1

𝜆𝜇𝑗 (𝜒
2
1,𝑗 − 1),
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were (𝜆𝑗)𝑗≥0 are solutions to the following eigenvalue problem

𝑆

(︂
𝑎

𝑏

)︂
= 𝜆

(︂
𝑎

𝑏

)︂
,

with 𝑎, 𝑏 ∈ 𝐿2 and 𝑆 : 𝐿2 × 𝐿2 → 𝐿2 × 𝐿2 is a matrix of operators

𝑆 =
1

2

⎛⎝E [𝑌1𝑊1⟨𝑍1, 𝜇⟩⟨𝑊1, .⟩] E
[︀
𝑊1⟨𝑍1, 𝜇⟩2⟨𝑊1, .⟩

]︀
E
[︀
𝑌 2
1 𝑊1⟨𝑊1, .⟩

]︀
E [𝑌1𝑊1⟨𝑍1, 𝜇⟩⟨𝑊1, .⟩]

⎞⎠ .

Remark 1. Assuming Hölder smoothness of the process 𝑍𝑖, we can also obtain functional

convergence under the uniform topology. The limiting distribution can be expressed in terms of

Gaussian functionals, known as Gaussian chaos, see De la Pena and Giné (2012).
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4 Inference for NPIV model

4.1 Inference for linear functionals

Assumption 8. (i) The data (𝑌𝑖, 𝑍𝑖,𝑊𝑖)
𝑛
𝑖=1 are i.i.d. realizations of (𝑌, 𝑍,𝑊 ); (ii) E[|𝑌 ||𝑍] <

∞, E[|𝑌 |2|𝑊 ] < ∞ a.s.; (iii) 𝐾̄ ∈ 𝐿∞, where 𝐾̄(𝑥) =
∫︀
𝐾𝑤(𝑢)𝐾𝑤(𝑥 − 𝑢)d𝑢 is a convolution

kernel and 𝐾𝑤 is symmetric and bounded function; (iv) 𝑓𝑍 ∈ 𝐻𝑠(R𝑝) ∩ 𝐿∞(R𝑝), 𝑠 > 0, where

𝐻𝑠(R𝑝) denotes Sobolev space;

Similarly as for the linear IV model, we decompose the function 𝑘(𝑤) := ℎ−𝑞𝑤 𝐾𝑤

(︀
ℎ−1
𝑤 (𝑊𝑖 − 𝑤)

)︀
=

𝑘0𝑖 + 𝑘1𝑖 , where 𝑘
0
𝑖 is the projection of 𝑘 on 𝒩 (𝐾), while 𝑘1𝑖 is the projection of 𝑘 on 𝒩⊥(𝐾).

Theorem 6. Suppose that Assumption 8 is satisfied, 𝑘0𝑖 is a non-degenerate random variable,

and 𝑘1𝑖 ∈ ℛ [(𝐾𝐾*)𝜅] , 𝜅 > 0. Then if the sequence of tuning parameters is such that 𝑛𝛼𝑛ℎ
𝑝
𝑧 → ∞,

𝑛𝛼1+𝛽∧2
𝑛 → 0, while ℎ𝑤 fixed, for any 𝜇0 ∈ 𝒩 (𝐾), we have

𝑛𝛼𝑛⟨𝜙− 𝜙1, 𝜇0⟩
𝑑−→ E [(𝑈1 + 𝜙0(𝑍1))𝜇0(𝑍1)] ‖𝐾𝑤‖+

∞∑︁
𝑗=1

𝜆𝜇0𝑗 (𝜒2
1,𝑗 − 1),

where 𝜆𝜇0𝑗 , 𝑗 = 1, 2 . . . are eigenvalues of the operator 𝑇𝜇0 : 𝐿2(𝑋1) → 𝐿2(𝑋1), 𝑓 ↦→ E[ℎ𝜇0(𝑋1, 𝑋2)𝑓(𝑋2)|𝑋1 =

𝑥1], where 𝑋𝑖 = (𝑌𝑖, 𝑍𝑖,𝑊𝑖), and

ℎ𝜇0(𝑋𝑖, 𝑋𝑗) =
1

2
{(𝑈𝑖 + 𝜙0(𝑍𝑖))𝜇0(𝑍𝑗) + (𝑈𝑗 + 𝜙0(𝑍𝑗))𝜇0(𝑍𝑖)}

⟨︀
𝑘0𝑖 , 𝑘

0
𝑗

⟩︀
.

Otherwise, if 𝑘0𝑖 is degenerate

𝑛𝛼𝑛⟨𝜙− 𝜙1, 𝜇0⟩
𝑑−→ 0.

4.2 Asymptotic distribution when the instrument is irrelevant

In the linear IV model, the strength of the association between the instrument and the regressor

is described by the covariance operator. In the nonparametric IV regression, it is described

by the conditional expectation operator. Consider extreme case of violation of completeness

condition, i.e. when E[𝜑(𝑍)|𝑊 ] = 0 for all 𝜑 ∈ 𝐿2,0
𝑍 =

{︀
𝜑 : E|𝜑(𝑍)|2 <∞, E𝜑(𝑍) = 0

}︀
. One

reason why this may happen is that 𝑍 ⊥⊥𝑊 . In this case the operator 𝐾 becomes a degenerate

integral operator

(𝐾𝜑)(𝑤) =

∫︁
𝜑(𝑧)𝑓𝑍(𝑧)d𝑧𝑓𝑊 (𝑤),

and the operator 𝐾*𝐾 has only one non-zero eigenvalue 𝜆1 = ‖𝑓𝑍‖2‖𝑓𝑊 ‖2 corresponding to the

eigenvector 𝑓𝑍 . As a result, the data contain almost no information on about the structural
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function 𝜙. We define 𝐾0 to be a restriction of 𝐾 to 𝐿2,0
𝑍 . Then the adjoint operator 𝐾*

0 = 𝑃0𝐾
*,

where 𝑃0 is the projection on 𝐿2,0
𝑍 . Then 𝐾0 = 𝐾*

0 = 0, 𝜙1 = 0, and obtain the following result.

In what follows, we will use 𝐾 and 𝐾* to denote 𝐾0 and 𝐾*
0 .

Theorem 7. Suppose that Assumption 8 is satisfied. Then for any 𝜇 ∈ 𝐿2(R
𝑝) ∩ 𝐶(R𝑝) if

𝑛𝛼𝑛ℎ
𝑝
𝑧 → ∞, while ℎ𝑤 is fixed

𝛼𝑛𝑛⟨𝜙− 𝜙1, 𝜇⟩
𝑑−→ E [𝑌1𝜇(𝑍1)]ℎ

−𝑞
𝑤 𝐾̄(0) +

∞∑︁
𝑗=1

𝜆𝜇𝑗 (𝜒
2
𝑗,1 − 1),

where 𝜆𝜇𝑗 are eigenvalues of the operator 𝑇𝜇 : 𝐿2
𝑋 → 𝐿2

𝑋 , 𝑓 ↦→ E[ℎ(𝑋1, 𝑋2)𝑓(𝑋2)|𝑋1 = 𝑥1].

Unlike in the linear IV model, in the NPIV model it is not possible to obtain weak convergence

of 𝛼𝑛𝑛(𝜙− 𝜙1) as a process in the Hilbert space. The situation is similar to the kernel density

estimator, for which, despite the fact that it is possible to show root-n convergence of inner

products, the underlying process is not tight.
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5 Conclusion

This paper investigates non-identified high-dimensional linear and non-parametric IV models.

Identification failures can occur due to the non-injectivity of covariance or conditional expectation

operator. We show that if the operator is not injective, a very general class of estimators converges

to the best approximation of the structural function. On the other hand, in the case of non-

identification, the Tikhonov-regularized estimator exhibits U-statistics type behavior.

15



Appendix A: General regularization schemes

Consider an ill-posed operator equation

𝐾𝜙 = 𝑟,

where 𝐾 is an operator between separable real Hilbert spaces ℰ and ℱ . The operator 𝐾 is

assumed to be bounded, but it need not to be compact. Then 𝐾*𝐾 : ℰ → ℰ is a self-adjoint

operator and so it admits spectral decomposition

𝐾*𝐾 =

∫︁
𝜎(𝐾*𝐾)

𝜆d𝐸(𝜆)

with respect to the resolution of identity 𝐸, see (Rudin, 1991, Theorem 12.23). For a bounded

Borel function 𝑔 : 𝜎(𝐾*𝐾) → R, we can define functions of the operator 𝐾*𝐾 using its spectral

decomposition

𝑔(𝐾*𝐾) =

∫︁
𝜎(𝐾*𝐾)

𝑔(𝜆)d𝐸(𝜆).

If the operator 𝐾 is compact, the spectrum of 𝐾*𝐾 is countable and the above formula reduces

to

𝑔(𝐾*𝐾) =

∞∑︁
𝑗=1

𝑔(𝜆𝑗)𝑃𝑗 ,

where 𝑃𝑗 is a projection operator on the eigenspace corresponding to 𝜆𝑗 . If (𝜙𝑗 , 𝜓𝑗)𝑗≥1 is a

sequence of eigenvectors of 𝐾*𝐾, then for all 𝜙 ∈ ℰ

𝑔(𝐾*𝐾)𝜙 =
∞∑︁
𝑗=1

𝑔(𝜆𝑗)⟨𝜙,𝜙𝑗⟩𝜓𝑗 .

In econometric applications, the operator𝐾 is typically not known. The estimate of convergence

rates in this cases depends crucially on the following inequality. A real function 𝑠 : (0, 𝑎) → R

with 𝑠(0) = 0 is called operator monotone if for any pair of self-adjoint operators 𝐴 and 𝐵 with

spectrum in [0, 𝑎) and such that 𝐴 ≤ 𝐵, we have 𝑠(𝐴) ≤ 𝑠(𝐵)3. If 𝑠 is operator monotone, the

following inequality holds

‖𝑠(𝐴)− 𝑠(𝐵)‖ ≤ 𝐶𝑠(‖𝐴−𝐵‖) (7)

for some constant 𝐶 <∞, see Mathé and Pereverzev (2002) and Lu and Pereverzev (2013).

3We say that for self-adjoint operators on the Hilbert space 𝐻, 𝐴 ≤ 𝐵 if and only if ⟨𝐴𝑥, 𝑥⟩ ≤ ⟨𝐵𝑥, 𝑥⟩, ∀𝑥 ∈ 𝐻.
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Assumption 9. The function 𝜙1 is such that for some 𝛽 ∈ (0, 𝛽0) there exists 𝜓 such that

𝜙1 = 𝑠𝛽(𝐾
*𝐾)𝜓, ‖𝜓‖2 ≤ 𝐶,

where 𝑠𝛽 : [0,∞) → R is one of the following two families of functions indexed by 𝛽 > 0

1. mildly ill-posed case: 𝑠𝛽(𝜆) = 𝜆𝛽/2.

2. severely ill-posed case: 𝑠𝛽(𝜆) = log−𝛽/2
(︀
1
𝜆

)︀
with 𝑠𝛽(0) = 0

As discussed in Mathé and Pereverzev (2002) 𝜆 ↦→ 𝜆𝛽/2 is operator monotone on (0,∞) for all

𝛽 ∈ (0, 2] and 𝜆 ↦→ log−𝛽/2
(︀
1
𝜆

)︀
is operator monotone4 on (0, 1) for any 𝛽 > 0.

Consider spectral regularization schemes, described by the family of bounded Borel functions

𝑔𝛼 : [0,∞) → R, 𝛼 > 0 such that lim𝛼→0 𝑔𝛼(𝜆) = 𝜆−1. We assume that the operator norms of

𝐾*𝐾 and 𝐾̂*𝐾̂ are bounded by some constant Λ and define regularized estimator as

𝜙𝛼 = 𝑔𝛼(𝐾̂
*𝐾̂)𝐾̂*𝑟.

Assumption 10. There exists positive constants 𝑐1, 𝑐2, and 𝑐3 such that for all 𝛽 ∈ (0, 𝛽0], 𝛽0 <

∞
(𝑖) sup

𝜆∈[0,Λ]

⃒⃒⃒
𝑔𝛼(𝜆)𝜆

1/2
⃒⃒⃒
≤ 𝑐1

𝛼
1/2
𝑛

, (𝑖𝑖) sup
𝜆∈[0,Λ]

|𝑔𝛼(𝜆)𝜆− 1| ≤ 1,

(𝑖𝑖𝑖) sup
𝜆∈[0,Λ]

|(𝑔𝛼(𝜆)𝜆− 1)𝑠𝛽(𝜆)| ≤ 𝑐2𝑠𝛽(𝛼), (𝑖𝑣) sup
𝜆∈[0,Λ]

|𝑔𝛼(𝜆)| ≤
𝑐3
𝛼
,

where 𝑠𝛽(𝜆) equals either to 𝜆𝛽/2 or to log−𝛽/2
(︀
1
𝜆

)︀
.

It is easy to verify that the following regularization schemes satisfy Assumption 10 for mildly

and severely ill-posed cases, see e.g. Vainikko and Veretennikov (1986) and Lu and Pereverzev

(2013)

1. Tikhonov:

𝑔𝛼(𝜆) =
1

𝛼+ 𝜆
.

Assumption 10 is satisfied with 𝑐1 = 1/2, 𝑐2 = 𝑐3 = 1, and 𝛽0 = 2.

2. Principal components (spectral cut-off):

𝑔𝛼(𝜆) = 𝜆−11{𝜆 ≥ 𝛼}.

Assumption 10 is satisfied with 𝑐1 = 𝑐2 = 𝑐3 = 1 and any 𝛽0 > 0.

4In this case we assume that operator norms are scaled properly.
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3. Iterated Tikhonov:

𝑔𝛼(𝜆) = 𝑔𝑚,𝛼(𝜆) =

𝑚−1∑︁
𝑗=0

𝛼𝑗

(𝛼+ 𝜆)𝑗+1
=

1

𝜆

(︂
1−

(︂
𝛼

𝜆+ 𝛼

)︂𝑚)︂

for 𝑚 = 2, 3, . . . Assumption 10 is satisfied with 𝑐1 = 𝑚1/2, 𝑐2 = 1 and 𝑐3 = 𝛽0 = 𝑚.

4. Landweber-Fridman:

𝑔𝛼(𝜆) = 𝑔𝑐,𝛼(𝜆) =

1/𝛼−1∑︁
𝑗=0

(1− 𝑐𝜆)𝑗 =
1

𝜆

(︁
1− (1− 𝑐𝜆)1/𝛼

)︁

for 𝛼 = 1/𝑚,𝑚 = 1, 2, . . . and some 𝑐 ∈ (0, 1/Λ). Assumption 10 is satisfied with

𝑐21 = 𝑐2 = 𝑐𝑚, 𝑐2 =

[︂(︁
𝛽0
𝑐𝑒

)︁𝛽0]︂
∨ 1, and any 𝛽0 ∈ R.

The constant 𝛽0 is the so-called qualification of the regularization scheme. It is well-known that

Tikhonov regularization exhibits saturation effect and the bias can’t converge faster than at the

rate 𝛼2
𝑛. This effect is somewhat similar to the saturation of convergence rate for the bias of the

kernel density estimator. Iterated Tikhonov regularization allows to improve on the rate of the

bias, once sufficiently high number of iterations 𝑚 is selected, similarly to selecting higher-order

kernels for the kernel density estimator.

Assumption 11. Suppose that for all 𝜑 ∈ 𝐿2

(𝑖) E

⃦⃦⃦
𝑟 − 𝐾̂𝜙

⃦⃦⃦2
= 𝑂(𝛿𝑛), (𝑖𝑖) E

⃦⃦⃦
(𝐾̂ −𝐾)𝜑

⃦⃦⃦2
= 𝑂 (𝜌1,𝑛) ,

and

(𝑖𝑖𝑖) E
[︁
𝑠2𝛽

(︁⃦⃦⃦
𝐾̂*𝐾̂ −𝐾*𝐾

⃦⃦⃦)︁]︁
= 𝑂(𝜌2,𝑛), (𝑖𝑣) E

⃦⃦⃦
𝐾̂* −𝐾*

⃦⃦⃦2
2,∞

= 𝑂(𝜉𝑛),

where 𝑠𝛽 is the same as in Assumption 9 and 𝜉𝑛 is some bounded sequence.

The following result tells us that the estimator converges to the best approximation to the

function 𝜙1 for a general class of regularization schemes. Typically for the principal components

approach, convergence rates are obtained under assumptions on the spacing between eigenvalues

of the operator 𝐾*𝐾, see (Hall, Horowitz, et al., 2007, Assumption 3.2). The interesting feature

of the result stated below is that, it does not require such assumptions. Moreover, it allows us

to cover cases when eigenvalues of 𝐾*𝐾 decay to zero exponentially fast, including cases when

Fourier coefficients of 𝜙1 decay polynomially.
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Theorem 8. Under Assumptions 9, 10 (i)-(iii), and 11 (i)-(iii) if 𝛽 ≤ 2

E ‖𝜙− 𝜙1‖2 = 𝑂

(︂
𝛿𝑛 + 𝜌1,𝑛

𝛼𝑛
+ 𝜌2,𝑛 + 𝑠2𝛽(𝛼𝑛)

)︂
.

Proof. Decompose

𝜙𝛼𝑛 − 𝜙 = 𝐼𝑛 + 𝐼𝐼𝑛 + 𝐼𝐼𝐼𝑛

with

𝐼𝑛 = 𝑔𝛼𝑛(𝐾̂
*𝐾̂)𝐾̂*(𝑟 − 𝐾̂𝜙)

𝐼𝐼𝑛 = 𝑔𝛼𝑛(𝐾̂
*𝐾̂)𝐾̂*𝐾̂𝜙0

𝐼𝐼𝐼𝑛 =
[︁
𝑔𝛼𝑛(𝐾̂

*𝐾̂)𝐾̂*𝐾̂ − 𝐼
]︁
𝑠𝛽(𝐾̂

*𝐾̂)𝑠−1
𝛽 (𝐾*𝐾)𝜙1

𝐼𝑉𝑛 =
[︁
𝑔𝛼𝑛(𝐾̂

*𝐾̂)𝐾̂*𝐾̂ − 𝐼
]︁{︁

𝑠𝛽(𝐾
*𝐾)− 𝑠𝛽(𝐾̂

*𝐾̂)
}︁
𝑠−1
𝛽 (𝐾*𝐾)𝜙1.

By properties of functional calculus

‖𝐼𝑛‖2 ≤
⃦⃦⃦
𝑔𝛼𝑛(𝐾̂

*𝐾̂)𝐾̂*
⃦⃦⃦2 ⃦⃦⃦

𝑟 − 𝐾̂𝜙
⃦⃦⃦2

≤ sup
𝜆∈𝜎(𝐾̂*𝐾̂)

⃒⃒⃒
𝑔𝛼𝑛(𝜆)𝜆

1/2
⃒⃒⃒2 ⃦⃦⃦

𝑟 − 𝐾̂𝜙
⃦⃦⃦2
,

giving under Assumptions 10 and 11

E‖𝐼𝑛‖2 = 𝑂

(︂
𝛿𝑛
𝛼𝑛

)︂
.

Similarly,

E‖𝐼𝐼𝑛‖2 = 𝑂

(︂
𝜌1,𝑛
𝛼𝑛

)︂
.

Likewise, under Assumptions 9 and 10

‖𝐼𝐼𝐼𝑛‖2 ≤
⃦⃦⃦[︁
𝑔𝛼𝑛(𝐾̂

*𝐾̂)𝐾̂*𝐾̂ − 𝐼
]︁
𝑠𝛽(𝐾̂

*𝐾̂)
⃦⃦⃦2 ⃦⃦⃦

𝑠−1
𝛽 (𝐾*𝐾)𝜙1

⃦⃦⃦2
≤ sup

𝜆∈𝜎(𝐾̂*𝐾̂)

|(𝑔𝛼𝑛(𝜆)𝜆− 1)𝑠𝛽(𝜆)|2 ‖𝜓‖2

= 𝑂
(︀
𝑠2𝛽(𝛼𝑛)

)︀
.

Lastly, under Assumptions 9 and 10 in light of Eq. (7) operator monotonicity of 𝑠𝛽 gives

‖𝐼𝑉𝑛‖2 ≤
⃦⃦⃦
𝑔𝛼𝑛(𝐾̂

*𝐾̂)𝐾̂*𝐾̂ − 𝐼
⃦⃦⃦2 ⃦⃦⃦

𝑠𝛽(𝐾̂
*𝐾̂)− 𝑠𝛽(𝐾

*𝐾)
⃦⃦⃦2 ⃦⃦⃦

𝑠−1
𝛽 (𝐾*𝐾)𝜙1

⃦⃦⃦2
≤ 𝐶

⃦⃦⃦
𝑠𝛽(𝐾̂

*𝐾̂)− 𝑠𝛽(𝐾
*𝐾)

⃦⃦⃦2
≤ 𝐶𝑠2𝛽

(︁⃦⃦⃦
𝐾̂*𝐾̂ −𝐾*𝐾

⃦⃦⃦)︁
,
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and the result follows under Assumption 11.

In the numerical ill-posed inverse literature, the investigation of uniform convergence of

Tikhonov regularization dates back to Khudak (1966) and Ivanov (1967). The idea of using

functional calculus and spectral families to describe general regularization schemes in Hilbert

spaces is due to Bakushinskii (1967). Groetsch (1985) investigated uniform convergence rates

in the case of the general spectral regularization when the operator 𝐾 is known. Rajan (2003)

studied uniform convergence rates for the Tikhonov regularization when there is numerical error

in the operator. Whether we can have uniform convergence for general spectral regularization

schemes with deterministic or stochastic error in the operator remained an open question.

The following result is the first to describe uniform convergence rates for a general family of

spectrally-regularized estimators when the operator 𝐾 is not known and is estimated from the

data. This setting is the most relevant to econometrics and statistics.

Theorem 9. Suppose that Assumption 9 is satisfied with 𝑆𝛽(𝐾
*𝐾) = 𝐾*𝑠𝛽(𝐾𝐾

*). Suppose

also that Assumptions 10 (iv), 11 (i)-(iv) are satisfied. Then if ‖𝐾*‖2,∞ <∞ and 𝛽 ≤ 2

E ‖𝜙− 𝜙1‖∞ = 𝑂

(︃
𝛿
1/2
𝑛 + 𝜌

1/2
1,𝑛

𝛼𝑛
+
𝜌
1/2
2,𝑛

𝛼
1/2
𝑛

+ 𝑠𝛽(𝛼𝑛)

)︃
.

Proof. Consider decomposition as in the proof of the Theorem 8. We bound the first term as

‖𝐼𝑛‖∞ =
⃦⃦⃦
𝐾̂*𝑔𝛼𝑛(𝐾̂𝐾̂

*)(𝑟 − 𝐾̂𝜙)
⃦⃦⃦

≤
⃦⃦⃦
𝐾̂*
⃦⃦⃦
2,∞

⃦⃦⃦
𝑔𝛼𝑛(𝐾̂𝐾̂

*)
⃦⃦⃦ ⃦⃦⃦
𝑟 − 𝐾̂𝜙

⃦⃦⃦
≤
(︂⃦⃦⃦
𝐾̂* −𝐾*

⃦⃦⃦
2,∞

+ ‖𝐾*‖2,∞
)︂ ⃦⃦⃦

𝑟 − 𝐾̂𝜙
⃦⃦⃦

sup
𝜆∈𝜎(𝐾̂𝐾̂*)

|𝑔𝛼𝑛(𝜆)| .

Whence by Cauchy-Schwartz inequality

E‖𝐼𝑛‖∞ = 𝑂

(︃
𝛿
1/2
𝑛

𝛼𝑛

)︃
.

Similarly

E ‖𝐼𝐼𝑛‖∞ = 𝑂

(︃
𝜌
1/2
1,𝑛

𝛼𝑛

)︃
.
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The third term is treated as

‖𝐼𝐼𝐼𝑛‖∞ ≤
⃦⃦⃦
𝐾̂*
[︁
𝑔𝛼𝑛(𝐾̂𝐾̂

*)𝐾̂𝐾̂* − 𝐼
]︁
𝑠𝛽(𝐾̂𝐾̂

*)
⃦⃦⃦
2,∞

⃦⃦⃦
𝑆−1
𝛽 (𝐾*𝐾)𝜙

⃦⃦⃦
≤
(︂⃦⃦⃦
𝐾̂* −𝐾*

⃦⃦⃦
2,∞

+ ‖𝐾*‖2,∞
)︂

sup
𝜆∈𝜎(𝐾̂𝐾̂*)

|[𝑔𝛼𝑛(𝜆)𝜆− 1] 𝑠𝛽(𝜆)|𝐶1/2

whence

E‖𝐼𝐼𝐼𝑛‖∞ = 𝑂 (𝑠𝛽(𝛼𝑛)) .

Lastly,

‖𝐼𝑉𝑛‖∞ ≤
⃦⃦⃦
𝑔𝛼𝑛(𝐾̂

*𝐾̂)𝐾̂*𝐾̂ − 𝐼
⃦⃦⃦
∞

⃦⃦⃦
𝑆𝛽(𝐾̂

*𝐾̂)− 𝑆𝛽(𝐾
*𝐾)

⃦⃦⃦
2,∞

𝐶1/2,

where ⃦⃦⃦
𝑔𝛼𝑛(𝐾̂

*𝐾̂)𝐾̂*𝐾̂ − 𝐼
⃦⃦⃦
∞

≤
⃦⃦⃦
𝐾̂*
⃦⃦⃦
2,∞

⃦⃦⃦
𝑔𝛼𝑛(𝐾̂𝐾̂

*)𝐾̂
⃦⃦⃦
+ 1

≤
(︂⃦⃦⃦
𝐾̂* −𝐾*

⃦⃦⃦
2,∞

+ ‖𝐾*‖2,∞
)︂

sup
𝜆∈𝜎(𝐾̂𝐾̂*)

⃒⃒⃒
𝑔𝛼𝑛(𝜆)𝜆

1/2
⃒⃒⃒
+ 1

≤ 𝑐1

𝛼
1/2
𝑛

(︂⃦⃦⃦
𝐾̂* −𝐾*

⃦⃦⃦
2,∞

+ ‖𝐾*‖2,∞
)︂
+ 1

and

⃦⃦⃦
𝑆𝛽(𝐾̂

*𝐾̂)− 𝑆𝛽(𝐾
*𝐾)

⃦⃦⃦
2,∞

≤
⃦⃦⃦
𝐾̂* −𝐾*

⃦⃦⃦
2,∞

⃦⃦⃦
𝑠𝛽(𝐾̂𝐾̂

*)
⃦⃦⃦
+ ‖𝐾*‖2,∞

⃦⃦⃦
𝑠𝛽(𝐾̂

*𝐾̂)− 𝑠𝛽(𝐾
*𝐾)

⃦⃦⃦
.

Therefore, by Cauchy-Schwartz inequality

E‖𝐼𝑉𝑛‖∞ = 𝑂

(︃
𝜌
1/2
2,𝑛

𝛼
1/2
𝑛

)︃
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Appendix B: Proofs

Proof of Theorem 1. Decompose

𝜙𝛼𝑛 − 𝜙1 = (𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1𝐾̂*(𝑟 − 𝐾̂𝜙)

+ (𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1𝐾̂*(𝐾̂ −𝐾)𝜙0

+ (𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1𝐾̂*𝐾̂𝜙1 − (𝛼𝑛𝐼 +𝐾*𝐾)−1𝐾*𝐾𝜙1

+
(︀
(𝛼𝑛𝐼 +𝐾*𝐾)−1𝐾*𝐾 − 𝐼

)︀
𝜙1

≡ 𝐼𝑛 + 𝐼𝐼𝑛 + 𝐼𝐼𝐼𝑛 + 𝐼𝑉𝑛.

The bias term is treated exactly in the same way as in the identified case using now a source

condition on 𝜙1 in Assumption 1

‖𝐼𝑉𝑛‖2 =
⃦⃦
𝛼𝑛(𝛼𝑛𝐼 +𝐾*𝐾)−1𝜙1

⃦⃦2
= 𝑂

(︁
𝛼𝛽∧2𝑛

)︁
.

The first term under Assumption 2 is treated as

E‖𝐼𝑛‖2 ≤ E

⃦⃦⃦
(𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1𝐾̂*

⃦⃦⃦2 ⃦⃦⃦
𝑟 − 𝐾̂𝜙

⃦⃦⃦2
≤ 1

4𝛼𝑛
E

⃦⃦⃦
𝑟 − 𝐾̂𝜙

⃦⃦⃦2
= 𝑂

(︂
𝛿𝑛
𝛼𝑛

)︂
.

The second term is a new component that comes from the fact that there is identification failure

E‖𝐼𝐼𝑛‖2 ≤ E

⃦⃦⃦
(𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1𝐾̂*

⃦⃦⃦2 ⃦⃦⃦
(𝐾̂ −𝐾)𝜙0

⃦⃦⃦2
≤ 1

4𝛼𝑛
E

⃦⃦⃦
(𝐾̂ −𝐾)𝜙0

⃦⃦⃦2
= 𝑂

(︂
𝜌1,𝑛
𝛼𝑛

)︂
.

The third term is decomposed further into

𝐼𝐼𝐼𝑛 = −
[︁
𝛼𝑛(𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1 − 𝛼𝑛(𝛼𝑛𝐼 +𝐾*𝐾)−1

]︁
𝜙1

= −(𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1𝛼𝑛

[︁
𝐾*𝐾 − 𝐾̂*𝐾̂

]︁
(𝛼𝑛𝐼 +𝐾*𝐾)−1𝜙1

= (𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1𝐾̂*
[︁
𝐾̂ −𝐾

]︁
𝛼𝑛(𝛼𝑛𝐼 +𝐾*𝐾)−1𝜙1

+ (𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1
[︁
𝐾̂* −𝐾*

]︁
𝛼𝑛𝐾(𝛼𝑛𝐼 +𝐾*𝐾)−1𝜙1

= 𝑉𝑛 + 𝑉 𝐼𝑛,
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where

E‖𝑉𝑛‖2 ≤
1

4𝛼𝑛
E

⃦⃦⃦
𝐾̂ −𝐾

⃦⃦⃦2 ⃦⃦
𝛼𝑛(𝛼𝑛𝐼 +𝐾*𝐾)−1𝜙1

⃦⃦2
= 𝑂

(︂
𝜌2,𝑛
𝛼𝑛

𝛼𝛽∧2𝑛

)︂
E‖𝑉 𝐼𝑛‖2 ≤

1

𝛼2
𝑛

E

⃦⃦⃦
𝐾̂* −𝐾*

⃦⃦⃦2 ⃦⃦
𝛼𝐾(𝛼𝑛𝐼 +𝐾*𝐾)−1𝜙1

⃦⃦2
= 𝑂

(︂
𝜌2,𝑛
𝛼𝑛

𝛼𝛽∧1𝑛

)︂
.

Proof of the Theorem 2. Consider the same decomposition as in the proof of Theorem 1. No-

tice that the assumption that 𝜙1 ∈ ℛ(𝐾*𝐾)𝛽/2 for 𝛽 > 1 can be re-parametrized as 𝜙1 ∈

ℛ
[︁
(𝐾*𝐾)𝛽𝐾*

]︁
for 𝛽 = 𝛽−1

2 > 0. Then the fourth term is treated similarly to the identified case

in Babii (2016a)

‖𝐼𝑉𝑛‖∞ ≤ ‖𝐾*‖2,∞
⃦⃦⃦
𝛼𝑛(𝛼𝑛𝐼 +𝐾𝐾*)−1(𝐾𝐾*)𝛽𝜓

⃦⃦⃦
= 𝑂

(︁
𝛼𝛽∧1𝑛

)︁
The first term is treated using Cauchy-Schwartz inequality

E‖𝐼𝑛‖∞ ≤ E

⃦⃦⃦
𝐾̂*
⃦⃦⃦
2,∞

⃦⃦⃦
(𝛼𝑛𝐼 + 𝐾̂𝐾̂*)−1

⃦⃦⃦ ⃦⃦⃦
(𝑟 − 𝐾̂𝜙)

⃦⃦⃦
≤ 1

𝛼𝑛

√︃(︂
2E
⃦⃦⃦
𝐾̂* −𝐾*

⃦⃦⃦2
2,∞

+ 2‖𝐾*‖22,∞
)︂
E

⃦⃦⃦
𝑟 − 𝐾̂𝜙

⃦⃦⃦2
= 𝑂

(︃
𝛿
1/2
𝑛

𝛼𝑛

)︃
.

The new term coming from the non-identification is handled similarly

E‖𝐼𝐼𝑛‖∞ ≤ ‖𝐾̂*‖2,∞
⃦⃦⃦
(𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1

⃦⃦⃦ ⃦⃦⃦
(𝐾̂ −𝐾)𝜙0

⃦⃦⃦
≤ 1

𝛼𝑛

√︃(︂
E

⃦⃦⃦
𝐾̂* −𝐾*

⃦⃦⃦2
2,∞

+ ‖𝐾*‖22,∞
)︂
E

⃦⃦⃦
(𝐾̂ −𝐾)𝜙0

⃦⃦⃦2
= 𝑂

(︃
𝜌
1/2
1,𝑛

𝛼𝑛

)︃
.

The third term is decomposed further similarly as in the proof of Theorem 1, but to bound

23



E‖𝑉𝑛‖∞ and E‖𝑉 𝐼𝑛‖∞ we will use slightly different strategy. First,

E‖𝐼‖∞ ≤ E

⃦⃦⃦
𝐾̂*
⃦⃦⃦
2,∞

⃦⃦⃦
(𝛼𝑛𝐼 + 𝐾̂𝐾̂*)−1

⃦⃦⃦ ⃦⃦⃦
𝐾̂ −𝐾

⃦⃦⃦ ⃦⃦
𝛼𝑛(𝛼𝑛𝐼 +𝐾*𝐾)−1𝜙1

⃦⃦
≤ 1

𝛼𝑛

√︃(︂
2E
⃦⃦⃦
𝐾̂* −𝐾*

⃦⃦⃦2
2,∞

+ 2‖𝐾*‖22,∞
)︂
E

⃦⃦⃦
𝐾̂ −𝐾

⃦⃦⃦2
𝑂

(︂
𝛼

𝛽−1
2

∧1
𝑛

)︂

= 𝑂

(︃
𝜌
1/2
2,𝑛

𝛼𝑛
𝛼

𝛽−1
2

∧1
𝑛

)︃
.

Second, using the inequality ‖(𝛼𝐼 +𝐾*𝐾)−1‖∞ ≤ ‖𝐾*‖2,∞/2+𝛼1/2

𝛼3/2 from Rajan (2003)

E‖𝑉 𝐼𝑛‖∞ = E

⃦⃦⃦
(𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1

⃦⃦⃦
∞

⃦⃦⃦
𝐾̂* −𝐾*

⃦⃦⃦
2,∞

⃦⃦
𝛼𝑛𝐾(𝛼𝑛𝐼 +𝐾*𝐾)−1𝜙1

⃦⃦
=

(︃
1

2𝛼
3/2
𝑛

(︂
‖𝐾*‖2,∞E

⃦⃦⃦
𝐾̂* −𝐾*

⃦⃦⃦
2,∞

+ E
⃦⃦⃦
𝐾̂* −𝐾*

⃦⃦⃦2
2,∞

)︂
+

1

𝛼𝑛
E

⃦⃦⃦
𝐾̂* −𝐾*

⃦⃦⃦
2,∞

)︃
𝑂(𝛼𝑛)

= 𝑂

(︃
1

𝛼
1/2
𝑛

√︂
E

⃦⃦⃦
𝐾̂* −𝐾*

⃦⃦⃦2
2,∞

+

√︂
E

⃦⃦⃦
𝐾̂* −𝐾*

⃦⃦⃦2
2,∞

)︃

= 𝑂

(︃
𝜉
1/2
𝑛 + 𝜉𝑛

𝛼
1/2
𝑛

+ 𝜉1/2𝑛

)︃
.

Collecting all estimates together, we obtain the result.

The following proposition provides some supplementary results for the NPIV model.

Proposition 1. Suppose that (i) (𝑌𝑖, 𝑍𝑖,𝑊𝑖)
𝑛
𝑖=1 are i.i.d. and E|𝑌1|2 < ∞; (ii) 𝑓𝑍𝑊 is in the

Nikol’ski class 𝐵𝑠
2,∞; (iii) kernel functions 𝐾𝑧 : R

𝑝 → R and 𝐾𝑤 : R𝑞 → R are such that for

𝑙 ∈ {𝑤, 𝑧}, 𝐾𝑙 ∈ 𝐿2(R),
∫︀
𝐾𝑙(𝑢)d𝑢 = 1,

∫︀
‖𝑢‖𝑠𝐾𝑙(𝑢)d𝑢 < ∞, and

∫︀
𝑢𝑘𝐾𝑙(𝑢)d𝑢 = 0 for all

multindices |𝑘| = 1, . . . , ⌊𝑠⌋. Then for all 𝜑 ∈ 𝐿2

E

⃦⃦⃦
(𝐾̂ −𝐾)𝜑

⃦⃦⃦2
= 𝑂

(︂
1

𝑛ℎ𝑞𝑛
+ ℎ2𝑠𝑛

)︂
, E

⃦⃦⃦
𝑟 − 𝐾̂𝜙

⃦⃦⃦2
= 𝑂

(︂
1

𝑛ℎ𝑞𝑛
+ ℎ2𝑠𝑛

)︂
,

and

E

⃦⃦⃦
𝐾̂ −𝐾

⃦⃦⃦2
= 𝑂

(︂
1

𝑛ℎ𝑝+𝑞𝑛

+ ℎ2𝑠𝑛

)︂
.

Proof. Decompose

(𝐾̂𝜑−𝐾𝜑)(𝑤) =

∫︁
𝜑(𝑧)

(︁
𝑓𝑍𝑊 (𝑧, 𝑤)− E𝑓𝑍𝑊 (𝑧, 𝑤)

)︁
d𝑧 +

∫︁
𝜑(𝑧)

(︁
E𝑓𝑍𝑊 (𝑧, 𝑤)− 𝑓𝑍𝑊 (𝑧, 𝑤)

)︁
d𝑧

≡ 𝑉𝑛(𝑤) +𝐵𝑛(𝑤).
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By Cauchy-Schwartz inequality

‖𝐵𝑛‖ ≤ ‖𝜑‖
⃦⃦⃦
E𝑓𝑍𝑊 − 𝑓𝑍𝑊

⃦⃦⃦
,

where the right side is of order 𝑂(ℎ𝑠𝑛) under the assumption 𝑓𝑍𝑊 ∈ 𝐵𝑠
2,∞, see (Giné and Nickl,

2015, p.404).

For the variance put

𝜂𝑛,𝑖(𝑤) = 𝐾𝑤

(︀
ℎ−1
𝑛 (𝑊𝑖 − 𝑤)

)︀
[𝜑 *𝐾𝑧] (𝑍𝑖)− E

[︀
𝐾
(︀
ℎ−1
𝑛 (𝑊𝑖 − 𝑤)

)︀
[𝜑 *𝐾𝑧] (𝑍𝑖)

]︀
,

with [𝜑 *𝐾𝑧] (𝑍𝑖) =
∫︀
𝜑(𝑧)ℎ−𝑝𝑛 𝐾𝑧

(︀
ℎ−1
𝑛 (𝑍𝑖 − 𝑧)

)︀
d𝑧, and notice that

𝑉𝑛(𝑤) =
1

𝑛ℎ𝑞𝑛

𝑛∑︁
𝑖=1

𝜂𝑛,𝑖(𝑤).

Then

E‖𝑉𝑛‖2 ≤
1

𝑛ℎ2𝑞𝑛

∫︁ ∫︁ ∫︁ ⃒⃒
𝐾𝑤(ℎ

−1
𝑛 (𝑤̃ − 𝑤))

⃒⃒2 |[𝜑 *𝐾𝑧] (𝑧)|2 d𝑤𝑓𝑍𝑊 (𝑧, 𝑤̃)d𝑤̃d𝑧

=
1

𝑛ℎ𝑞𝑛
‖𝐾𝑤‖2

∫︁
|[𝜑 *𝐾𝑧] (𝑧)|2 𝑓𝑍(𝑧)d𝑧

= 𝑂

(︂
1

𝑛ℎ𝑞𝑛

)︂
,

where the last line follows, since by change of variables, Cauchy-Schwartz inequality, and by

translation invariance of Lebesgue measure

∫︁
𝑓𝑍(𝑧) |[𝜑 *𝐾𝑧] (𝑧)|2 d𝑧 ≤ ‖𝐾𝑧‖2‖𝜑‖2.

This establishes the first claim and since

E

⃦⃦⃦
𝑟 − 𝐾̂𝜙

⃦⃦⃦2
≤ 2E ‖𝑟 − 𝑟‖2 + 2E

⃦⃦⃦
(𝐾̂ −𝐾)𝜙

⃦⃦⃦2
,

the second claim follows if we can show that E ‖𝑟 − 𝑟‖2 = 𝑂
(︁

1
𝑛ℎ𝑞𝑛

+ ℎ2𝑠𝑛

)︁
. To this end decompose

E ‖𝑟 − 𝑟‖2 = E ‖𝑟 − E𝑟‖2 + ‖E𝑟 − 𝑟‖2 .
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Under the i.i.d. assumption, the variance is

E ‖𝑟 − E𝑟‖2 = E

⃦⃦⃦⃦
⃦ 1

𝑛ℎ𝑞𝑛

𝑛∑︁
𝑖=1

𝑌𝑖𝐾𝑤

(︀
ℎ−1
𝑛 (𝑊𝑖 − 𝑤)

)︀
− E

[︀
𝑌𝑖ℎ

−𝑞
𝑛 𝐾𝑤

(︀
ℎ−1
𝑛 (𝑊𝑖 − 𝑤)

)︀]︀⃦⃦⃦⃦⃦
2

=
1

𝑛
E
⃦⃦
𝑌𝑖ℎ

−𝑞
𝑛 𝐾𝑤

(︀
ℎ−1
𝑛 (𝑊𝑖 − 𝑤)

)︀
− E

[︀
𝑌𝑖ℎ

−𝑞
𝑛 𝐾𝑤

(︀
ℎ−1
𝑛 (𝑊𝑖 − 𝑤)

)︀]︀⃦⃦2
≤ 1

𝑛ℎ𝑞𝑛
E|𝑌1|2‖𝐾𝑤‖2

= 𝑂

(︂
1

𝑛ℎ𝑞𝑛

)︂
.

By Cauchy-Schwartz inequality

E𝑟 − 𝑟 = E
[︀
𝜙(𝑍𝑖)ℎ

−𝑞
𝑛 𝐾𝑤

(︀
ℎ−1
𝑛 (𝑊𝑖 − 𝑤)

)︀]︀
−
∫︁
𝜙(𝑧)𝑓𝑍𝑊 (𝑧, 𝑤)d𝑧

=

∫︁
𝜙(𝑧) {[𝑓𝑍𝑊 *𝐾𝑤](𝑤)− 𝑓𝑍𝑊 (𝑧, 𝑤)} d𝑧

≤ ‖𝜙‖ ‖𝑓𝑍𝑊 *𝐾𝑤 − 𝑓𝑍𝑊 ‖ ,

where [𝑓𝑍𝑊 *𝐾𝑤,ℎ](𝑤) =
∫︀
𝑓𝑍𝑊 (𝑧, 𝑤̃)ℎ−𝑞𝐾𝑤

(︀
ℎ−1(𝑤 − 𝑤̃)

)︀
d𝑤̃. Since 𝑓𝑍𝑊 ∈ 𝐵𝑠

2,∞ we obtain

‖E𝑟 − 𝑟‖ = 𝑂(ℎ𝑠),

see e.g. (Giné and Nickl, 2015, Proposition 4.3.8). The third claim follows from the fact that

the operator norm can be bounded by the 𝐿2 norm of the joint density function and standard

computations for the risk of the joint density, (Giné and Nickl, 2015, Chapter 5).

Proof of Theorem 3. Put 𝑏𝑛 = 𝛼𝑛(𝛼𝑛𝐼 + 𝐾*𝐾)−1𝜙1 and notice that (𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1𝐾̂* =

𝐾̂*(𝛼𝑛𝐼 + 𝐾̂𝐾̂*)−1. Using this, similarly to the proof of Theorem 1, decompose

⟨𝜙− 𝜙1, 𝜇0⟩ =
⟨
𝐾̂*(𝛼𝑛𝐼 +𝐾𝐾*)−1(𝑟 − 𝐾̂𝜙1), 𝜇0

⟩
+
⟨
𝐾̂*
(︁
(𝛼𝑛𝐼 + 𝐾̂𝐾̂*)−1 − (𝛼𝑛𝐼 +𝐾𝐾*)−1

)︁
(𝑟 − 𝐾̂𝜙1), 𝜇0

⟩
+
⟨
(𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1𝐾̂*(𝐾̂ −𝐾)𝑏𝑛, 𝜇0

⟩
+
⟨
(𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1(𝐾̂* −𝐾*)𝐾𝑏𝑛, 𝜇0

⟩
+ ⟨𝑏𝑛, 𝜇0⟩

≡ 𝐼𝑛 + 𝐼𝐼𝑛 + 𝐼𝐼𝐼𝑛 + 𝐼𝑉𝑛 + 𝑉𝑛.
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Then the first term can be written as

𝛼𝑛𝐼𝑛 =
⟨
𝛼𝑛(𝛼𝑛𝐼 +𝐾𝐾*)−1(𝑟 − 𝐾̂𝜙1), 𝐾̂𝜇0

⟩
≡ 𝐼0𝑛 + 𝐼1𝑛,

with

𝐼0𝑛 =
1

𝑛2

𝑛∑︁
𝑖,𝑗=1

(𝑈𝑖 + ⟨𝑍𝑖, 𝜙0) ⟨𝑍𝑗 , 𝜇0⟩
⟨︀
𝑊 0
𝑖 ,𝑊

0
𝑗

⟩︀
𝐼1𝑛 =

1

𝑛2

𝑛∑︁
𝑖,𝑗=1

(𝑈𝑖 + ⟨𝑍𝑖, 𝜙0⟩)⟨𝑍𝑗 , 𝜇0⟩
⟨︀
𝛼𝑛(𝛼𝑛𝐼 +𝐾𝐾*)−1𝑊 1

𝑖 ,𝑊
1
𝑗

⟩︀
.

Since projection is a bounded linear operator, it commutes with expectation and it is easy to see

that

E
[︀
𝑊 0

1 (𝑈1 + ⟨𝑍1, 𝜙0⟩)
]︀
= 0

E
[︀
𝑊 0

1 ⟨𝑍1, 𝜇0⟩
]︀
= 𝐾𝜇0 = 0.

Then

𝑛𝐼0𝑛 =: 𝜁𝑛 + 𝑛𝑈𝑛,

with

𝜁𝑛 =
1

𝑛

𝑛∑︁
𝑖=1

(𝑈𝑖 + ⟨𝑍𝑖, 𝜙0⟩)⟨𝑍𝑖, 𝜇0⟩
⃦⃦
𝑊 0
𝑖

⃦⃦
𝑛𝑈𝑛 =

1

𝑛

∑︁
𝑖<𝑗

{⟨𝑍𝑖, 𝜇0⟩(𝑈𝑗 + ⟨𝑍𝑗 , 𝜙0⟩) + ⟨𝑍𝑗 , 𝜇0⟩(𝑈𝑖 + ⟨𝑍𝑖, 𝜇0⟩)}
⟨︀
𝑊 0
𝑖 ,𝑊

0
𝑗

⟩︀
Under Assumption 4

𝜁𝑛
𝑎.𝑠.−−→ E

[︀⃦⃦
𝑊 0
𝑖

⃦⃦
(𝑈𝑖 + ⟨𝑍𝑖, 𝜇0⟩)⟨𝑍𝑖, 𝜇0⟩

]︀
,

while 𝑛𝑈𝑛 is a degenerate 𝑈 -statistics with kernel function ℎ𝜇0 , since

E𝑋2 [ℎ𝜇0(𝑋1, 𝑋2)] =
1

2

{︀
⟨𝑍1, 𝜇0⟩

⟨︀
𝑊 0

1 ,𝐾𝜙0

⟩︀
+ (𝑈1 + ⟨𝑍1, 𝜙0⟩)

⟨︀
𝑊 0

1 ,𝐾𝜇0
⟩︀}︀

= 0.

Under Assumption 4 by the standard CLT for degenerate 𝑈 -statistics, see Gregory (1977) or

Serfling (1980)

𝑛𝑈𝑛
𝑑−→

∞∑︁
𝑗=1

𝜆𝜇0𝑗 (𝜒2
1,𝑗 − 1),

where (𝜆𝜇0𝑗 )𝑗≥1 are eigenvalues of 𝑇𝜇0 .

It remains to show that all other terms after normalization with 𝑛𝛼𝑛 go to zero. It is easy

to verify that the variance of 𝑛𝛼𝑛𝐼
1
𝑛 → 0, since 𝑊 1

𝑖 ∈ ℛ [(𝐾𝐾*)𝜅]. Notice also that 𝜇0 ∈ 𝒩 (𝐾)
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implies that

(𝛼𝑛𝐼 +𝐾*𝐾)−1𝜇0 =
1

𝛼𝑛
𝜇0. (8)

Using this fact

𝐼𝐼𝑛 =
⟨
(𝛼𝑛𝐼 + 𝐾̂𝐾̂*)−1(𝐾𝐾* − 𝐾̂𝐾̂*)(𝛼𝑛𝐼 +𝐾𝐾*)−1(𝑟 − 𝐾̂𝜙1), 𝐾̂𝜇0

⟩
=
⟨
(𝛼𝑛𝐼 + 𝐾̂𝐾̂*)−1𝐾̂(𝐾* − 𝐾̂*)(𝛼𝑛𝐼 +𝐾𝐾*)−1(𝑟 − 𝐾̂𝜙1), 𝐾̂𝜇0

⟩
+
⟨
(𝛼𝑛𝐼 + 𝐾̂𝐾̂*)−1(𝐾 − 𝐾̂)𝐾*(𝛼𝑛𝐼 +𝐾𝐾*)−1(𝑟 − 𝐾̂𝜙1), 𝐾̂𝜇0

⟩
By Cauchy-Schwartz inequality

𝐼𝐼𝑛 ≤
⃦⃦⃦
(𝛼𝑛𝐼 + 𝐾̂𝐾̂*)−1𝐾̂

⃦⃦⃦ ⃦⃦⃦
𝐾* − 𝐾̂*

⃦⃦⃦ ⃦⃦
(𝛼𝑛𝐼 +𝐾𝐾*)−1

⃦⃦ ⃦⃦⃦
𝑟 − 𝐾̂𝜙1

⃦⃦⃦ ⃦⃦⃦
𝐾̂𝜇0

⃦⃦⃦
+
⃦⃦⃦
(𝛼𝑛𝐼 + 𝐾̂𝐾̂*)−1

⃦⃦⃦ ⃦⃦⃦
𝐾 − 𝐾̂

⃦⃦⃦ ⃦⃦
𝐾*(𝛼𝑛𝐼 +𝐾𝐾*)−1

⃦⃦ ⃦⃦⃦
𝑟 − 𝐾̂𝜙1

⃦⃦⃦ ⃦⃦⃦
𝐾̂𝜇0

⃦⃦⃦
= 𝑂𝑝

(︃
1

𝛼
3/2
𝑛 𝑛3/2

)︃
.

Therefore as long as 𝑛𝛼𝑛 → ∞, we will have 𝑛𝛼𝑛𝐼𝐼𝑛
𝑝−→ 0.

Next, under Assumption 1 there exists some 𝜓 ∈ 𝐿2

‖𝑏𝑛‖ =
⃦⃦⃦
𝛼𝑛(𝛼𝑛𝐼 +𝐾*𝐾)−1(𝐾*𝐾)

𝛽
2𝜓
⃦⃦⃦
= 𝑂

(︂
𝛼

𝛽
2
∧1

𝑛

)︂
,

whence, for 𝐼𝐼𝐼𝑛 and 𝐼𝑉𝑛, we have

𝐼𝐼𝐼𝑛 ≤
⃦⃦⃦
(𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1𝐾̂*

⃦⃦⃦ ⃦⃦⃦
𝐾̂ −𝐾

⃦⃦⃦
‖𝑏𝑛‖‖𝜇0‖ = 𝑂𝑝

⎛⎝ 𝛼
𝛽
2
∧1

𝑛√
𝑛𝛼𝑛

⎞⎠
𝐼𝑉𝑛 ≤

⃦⃦⃦
(𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1

⃦⃦⃦ ⃦⃦⃦
𝐾̂* −𝐾*

⃦⃦⃦
‖𝐾𝑏𝑛‖‖𝜇0‖ = 𝑂𝑝

⎛⎝𝛼(𝛽
2
+ 1

2)∧
1
2

𝑛√
𝑛𝛼𝑛

⎞⎠ .

Then 𝑛𝛼𝑛𝐼𝐼𝐼𝑛
𝑝−→ 0, since 𝑛𝛼1+𝛽∧2

𝑛 → 0 and 𝛼𝑛𝑛𝐼𝑉𝑛
𝑝−→ 0, since 𝑛𝛼2

𝑛 → 0.

Lastly, notice that bias is identically zero by Eq. (8) and orthogonality between 𝜙1 and 𝜇0

⟨𝑏𝑛, 𝜇0⟩ =
⟨︀
𝜙1, 𝛼𝑛(𝛼𝑛𝐼 +𝐾*𝐾)−1𝜇0

⟩︀
= ⟨𝜙1, 𝜇0⟩ = 0.

Proof of Theorem 4. The proof is similar to the proof of Theorem 3 and we omit steps discussed
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there. Decompose

⟨𝜙− 𝜙1, 𝜇1⟩ =

⟨
1

𝑛

𝑛∑︁
𝑖=1

(𝛼𝑛𝐼 +𝐾*𝐾)−1𝐾*𝑊𝑖(𝑈𝑖 + ⟨𝑍𝑖, 𝜙0⟩), 𝜇1

⟩

+

⟨(︁
(𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1 − (𝛼𝑛𝐼 +𝐾*𝐾)−1

)︁
𝐾̂* 1

𝑛

𝑛∑︁
𝑖=1

𝑊𝑖(𝑈𝑖 + ⟨𝑍𝑖, 𝜙0⟩), 𝜇1

⟩

+

⟨
(𝛼𝑛𝐼 +𝐾*𝐾)−1(𝐾̂* −𝐾*)

1

𝑛

𝑛∑︁
𝑖=1

𝑊𝑖(𝑈𝑖 + ⟨𝑍𝑖, 𝜙0⟩), 𝜇1

⟩

+
⟨{︁

(𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1 − (𝛼𝑛𝐼 +𝐾*𝐾)−1
}︁
𝐾̂*(𝐾̂ −𝐾)𝑏𝑛, 𝜇1

⟩
+
⟨{︁

(𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1 − (𝛼𝑛𝐼 +𝐾*𝐾)−1
}︁
(𝐾̂* −𝐾*)𝐾𝑏𝑛, 𝜇1

⟩
+
⟨
(𝛼𝑛𝐼 +𝐾*𝐾)−1𝐾*(𝐾̂ −𝐾)𝑏𝑛, 𝜇1

⟩
+
⟨
(𝛼𝑛𝐼 +𝐾*𝐾)−1(𝐾̂* −𝐾*)𝐾𝑏𝑛, 𝜇1

⟩
+
⟨
(𝛼𝑛𝐼 +𝐾*𝐾)−1(𝐾̂* −𝐾*)(𝐾̂ −𝐾)𝑏𝑛, 𝜇1

⟩
+ ⟨𝑏𝑛, 𝜇1⟩

≡ 𝐼𝑛 + 𝐼𝐼𝑛 + 𝐼𝐼𝐼𝑛 + 𝐼𝑉𝑛 + 𝑉𝑛 + 𝑉 𝐼𝑛 + 𝑉 𝐼𝐼𝑛 + 𝑉 𝐼𝐼𝐼𝑛 + 𝐼𝑋𝑛.

Under Assumption 5 by the Lindeberg-Feller’s central limit theorem

𝜋𝑛𝐼𝑛
𝑑−→ 𝑁(0, 1).

It remains to show that all other terms after normalization with 𝜋𝑛 go to zero. For 𝐼𝐼𝑛 we

have

𝐼𝐼𝑛 =

⟨
1

𝑛

𝑛∑︁
𝑖=1

𝑊𝑖(𝑈𝑖 + ⟨𝑍𝑖, 𝜙0⟩), 𝐾̂*
(︁
(𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1 − (𝛼𝑛𝐼 +𝐾*𝐾)−1

)︁
𝜇1

⟩

≤

⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝑊𝑖(𝑈𝑖 + ⟨𝑍𝑖, 𝜙0⟩)

⃦⃦⃦⃦
⃦ ⃦⃦⃦𝐾̂*(𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1(𝐾̂*𝐾̂ −𝐾*𝐾)(𝛼𝑛𝐼 +𝐾*𝐾)−1𝜇1

⃦⃦⃦
.

Since 𝜇1 ∈ ℛ [(𝐾*𝐾)𝛾 ], there exists some 𝜓 ∈ 𝐿2 such that 𝜇1 = (𝐾*𝐾)𝛾𝜓 and so

𝐼𝐼𝑛 ≤ 𝑂𝑝

(︂
1√
𝑛

)︂ ⃦⃦⃦
𝐾̂*(𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1𝐾̂*

⃦⃦⃦ ⃦⃦⃦
𝐾̂ −𝐾

⃦⃦⃦ ⃦⃦
(𝛼𝑛𝐼 +𝐾*𝐾)−1(𝐾*𝐾)𝛾𝜓

⃦⃦
+𝑂𝑝

(︂
1√
𝑛

)︂ ⃦⃦⃦
𝐾̂*(𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1

⃦⃦⃦ ⃦⃦⃦
𝐾̂* −𝐾*

⃦⃦⃦ ⃦⃦
𝐾(𝛼𝑛𝐼 +𝐾*𝐾)−1(𝐾*𝐾)𝛾𝜓

⃦⃦
= 𝑂𝑝

⎛⎝𝛼𝛾∧1𝑛 + 𝛼
𝛾∧ 1

2
𝑛

𝑛𝛼𝑛

⎞⎠ .
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while

𝐼𝐼𝐼𝑛 ≤
⃦⃦⃦
𝐾̂* −𝐾*

⃦⃦⃦ ⃦⃦⃦⃦⃦ 1𝑛
𝑛∑︁
𝑖=1

𝑊𝑖(𝑈𝑖 + ⟨𝑍𝑖, 𝜙0⟩)

⃦⃦⃦⃦
⃦ ⃦⃦(𝛼𝑛𝐼 +𝐾*𝐾)−1(𝐾*𝐾)𝛾𝜓

⃦⃦
= 𝑂𝑝

(︃
𝛼𝛾∧1𝑛

𝑛𝛼𝑛

)︃
.

For 𝐼𝑉𝑛 and 𝑉𝑛 we have

𝐼𝑉𝑛 ≤
⃦⃦⃦
𝐾̂ −𝐾

⃦⃦⃦2 ⃦⃦⃦
(𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1𝐾̂*

⃦⃦⃦
‖𝑏𝑛‖

⃦⃦
𝐾(𝛼𝑛𝐼 +𝐾*𝐾)−1𝜇1

⃦⃦
+
⃦⃦⃦
𝐾̂* −𝐾*

⃦⃦⃦ ⃦⃦⃦
𝐾̂(𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1𝐾̂*

⃦⃦⃦ ⃦⃦⃦
𝐾̂ −𝐾

⃦⃦⃦
‖𝑏𝑛‖

⃦⃦
(𝛼𝑛𝐼 +𝐾*𝐾)−1𝜇1

⃦⃦
= 𝑂𝑝

⎛⎝𝛼𝛽
2
∧1+𝛾∧ 1

2
𝑛

𝑛𝛼𝑛
+
𝛼

𝛽
2
∧1+𝛾∧1

𝑛

𝑛𝛼𝑛

⎞⎠ ,

𝑉𝑛 ≤
⃦⃦⃦
𝐾̂ −𝐾

⃦⃦⃦ ⃦⃦⃦
(𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1

⃦⃦⃦ ⃦⃦⃦
𝐾̂* −𝐾*

⃦⃦⃦
‖𝐾𝑏𝑛‖

⃦⃦
𝐾(𝛼𝑛𝐼 +𝐾*𝐾)−1𝜇1

⃦⃦
+
⃦⃦⃦
𝐾̂* −𝐾*

⃦⃦⃦2 ⃦⃦⃦
𝐾̂(𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1

⃦⃦⃦
‖𝐾𝑏𝑛‖

⃦⃦
(𝛼𝑛𝐼 +𝐾*𝐾)−1𝜇1

⃦⃦
= 𝑂𝑝

⎛⎝𝛼𝛽
2
∧ 1

2
+𝛾∧ 1

2
𝑛

𝑛𝛼𝑛
+
𝛼

𝛽
2
∧ 1

2
+𝛾∧1

𝑛

𝑛𝛼𝑛

⎞⎠ .

For 𝑉 𝐼𝑛 and 𝑉 𝐼𝐼𝑛 we obtain

𝑉 𝐼𝑛 ≤
⃦⃦⃦
𝐾̂ −𝐾

⃦⃦⃦
‖𝑏𝑛‖

⃦⃦
𝐾*(𝛼𝑛𝐼 +𝐾*𝐾)−1𝜇1

⃦⃦
= 𝑂𝑝

⎛⎝𝛼𝛽
2
∧1+𝛾∧ 1

2
𝑛√
𝑛𝛼𝑛

⎞⎠
𝑉 𝐼𝐼𝑛 ≤

⃦⃦⃦
𝐾̂* −𝐾*

⃦⃦⃦
‖𝐾𝑏𝑛‖

⃦⃦
(𝛼𝑛𝐼 +𝐾*𝐾)−1𝜇1

⃦⃦
= 𝑂𝑝

⎛⎝𝛼𝛽
2
∧ 1

2
+𝛾∧1

𝑛√
𝑛𝛼𝑛

⎞⎠ .

Lastly,

𝑉 𝐼𝐼𝐼𝑛 ≤
⃦⃦⃦
𝐾̂* −𝐾*

⃦⃦⃦ ⃦⃦⃦
𝐾̂ −𝐾

⃦⃦⃦
‖𝑏𝑛‖

⃦⃦
(𝛼𝑛𝐼 +𝐾*𝐾)−1𝜇1

⃦⃦
= 𝑂𝑝

⎛⎝𝛼𝛽
2
∧1+𝛾∧1

𝑛

𝑛𝛼𝑛

⎞⎠ .

Notice that Assumption 7 (i) ensures that 𝜋𝑛𝐼𝑋𝑛 → 0, while (ii) ensures that all other terms

except for 𝐼𝑛, multiplied by 𝜋𝑛 converge in probability to zero.

Proof of Theorem 5. Since 𝐾 = 𝐾* = 0, 𝜙 = 𝜙0, 𝜙1 = 0, and

𝛼𝑛𝑛 (𝜙𝛼 − 𝜙1) =

(︂
𝐼 +

1

𝛼𝑛
𝐾̂*𝐾̂

)︂−1

𝑛𝐾̂*𝑟.
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Notice that under Assumption 4

E‖𝐾̂‖2 ≤ E

⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝑍𝑖𝑊𝑖

⃦⃦⃦⃦
⃦
2

= 𝑂

(︂
1

𝑛

)︂

and E‖𝐾̂*‖2 = 𝑂
(︀
1
𝑛

)︀
, implying 𝐾̂*𝐾̂ = 𝑂𝑝

(︀
1
𝑛

)︀
in the space of bounded linear operators.

Therefore, as 𝛼𝑛𝑛→ ∞, by the continuous mapping theorem in metric spaces, (Van Der Vaart

and Wellner, 2000, Theorem 1.3.6),
(︁
𝐼 + 1

𝛼𝑛
𝐾̂*𝐾̂

)︁−1 𝑝−→ 𝐼 and

𝛼𝑛𝑛𝜙𝛼𝑛 = (𝑜𝑝(1) + 𝐼)𝑛𝐾̂*𝑟.

By Slutsky’s theorem in metric spaces, (Van Der Vaart and Wellner, 2000, Example 1.4.7), it

suffices to analyze the weak convergence of 𝑛𝐾̂*𝑟.

Notice that 𝜑 ↦→ ⟨𝑊,𝜑⟩𝑍 is a random element in the space of Hilbert-Schmidt operators,

denoted by 𝒮2. This space is a Hilbert space with respect to the inner product ⟨𝐴,𝐵⟩𝐻𝑆 =

trace(𝐵*𝐴),∀𝐴,𝐵 ∈ 𝒮2. Under Assumption 4

√
𝑛𝐾̂* =

1√
𝑛

𝑛∑︁
𝑖=1

⟨𝑊𝑖, .⟩𝑍𝑖

converges weakly to zero-mean Gaussian random operator G in 𝒮2 with covariance operator

𝐴 ↦→ E [trace(𝐴*⟨𝑊, .⟩𝑍)⟨𝑊, .⟩𝑍]. On the other hand,

√
𝑛𝑟 =

1√
𝑛

𝑛∑︁
𝑖=1

𝑊𝑖𝑌𝑖

converges weakly to zero-mean Gaussian random vector 𝑔 in 𝐿2 with covariance operator

𝜑 ↦→ E
[︀
𝑌 2
𝑖 ⟨𝑊𝑖, 𝜑⟩𝑊𝑖

]︀
. Therefore, under the product topology of 𝒮2 × 𝐿2 by the continuous

mapping theorem

𝑛𝐾̂*𝑟
𝑑−→ G𝑔,

establishing the first statement.

For the second statement, notice that

𝑛𝐾̂*𝑟 =
1

𝑛

𝑛∑︁
𝑖,𝑗=1

⟨𝑊𝑖,𝑊𝑗⟩𝑍𝑖𝑌𝑗

=
1

𝑛

𝑛∑︁
𝑖=1

‖𝑊𝑖‖2𝑍𝑖𝑌𝑖 +
1

𝑛

∑︁
𝑖 ̸=𝑗

⟨𝑊𝑖,𝑊𝑗⟩𝑍𝑖𝑌𝑗 .
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Assuming E
⃒⃒
‖𝑊𝑖‖2‖𝑍𝑖‖𝑌𝑖

⃒⃒
<∞, by the Mourier law of large numbers

1

𝑛

𝑛∑︁
𝑖=1

‖𝑊𝑖‖2𝑍𝑖𝑌𝑖
𝑎.𝑠.−−→ E

[︀
‖𝑊𝑖‖2𝑍𝑖𝑌𝑖

]︀
.

The second term is a normalized degenerate 𝑈 -statistics in 𝐿2 with kernel function ℎ(𝑋1, 𝑋2) =

1
2⟨𝑊1,𝑊2⟩ (𝑍1𝑌2 + 𝑍2𝑌1)

𝑛𝑈𝑛 =
2

𝑛

∑︁
𝑖<𝑗

𝑍𝑖𝑌𝑗 + 𝑍𝑗𝑌𝑖
2

⟨𝑊𝑖,𝑊𝑗⟩ .

Under the Assumption 4 (ii), by the Borovskich CLT for Hilbert-space valued U-statistics, see

Theorem 10

𝑛𝑈𝑛
𝑑−→ 𝐽2(ℎ),

where 𝐽2(ℎ) is a two-fold Wiener-Itô integral with respect to the Gaussian random measure on

𝒳 .

Proof of Theorem 6. Put 𝑏𝑛 = 𝛼𝑛(𝛼𝑛𝐼 + 𝐾*𝐾)−1𝜙1 and notice that (𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1𝐾̂* =

𝐾̂*(𝛼𝑛𝐼 + 𝐾̂𝐾̂*)−1. Using this, similarly to the proof of Theorem 1, decompose

⟨𝜙− 𝜙1, 𝜇0⟩ =
⟨
𝐾̂*(𝛼𝑛𝐼 +𝐾𝐾*)−1(𝑟 − 𝐾̂𝜙1), 𝜇0

⟩
+
⟨
𝐾̂*
(︁
(𝛼𝑛𝐼 + 𝐾̂𝐾̂*)−1 − (𝛼𝑛𝐼 +𝐾𝐾*)−1

)︁
(𝑟 − 𝐾̂𝜙1), 𝜇0

⟩
+
⟨
(𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1𝐾̂*(𝐾̂ −𝐾)𝑏𝑛, 𝜇0

⟩
+
⟨
(𝛼𝑛𝐼 + 𝐾̂*𝐾̂)−1(𝐾̂* −𝐾*)𝐾𝑏𝑛, 𝜇0

⟩
+ ⟨𝑏𝑛, 𝜇0⟩

≡ 𝐼𝑛 + 𝐼𝐼𝑛 + 𝐼𝐼𝐼𝑛 + 𝐼𝑉𝑛 + 𝑉𝑛.

Then the first term can be written as

𝛼𝑛𝐼𝑛 =
⟨
𝛼𝑛(𝛼𝑛𝐼 +𝐾𝐾*)−1(𝑟 − 𝐾̂𝜙1), 𝐾̂𝜇0

⟩
≡ 𝐼0𝑛 + 𝐼1𝑛 + 𝐼2𝑛 + 𝐼3𝑛,
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with

𝐼0𝑛 =
1

𝑛2

𝑛∑︁
𝑖,𝑗=1

(𝑈𝑖 + 𝜙0(𝑍𝑖))𝜇0(𝑍𝑗)
⟨︀
𝑘0𝑖 , 𝑘

0
𝑗

⟩︀
𝐼1𝑛 =

1

𝑛2

𝑛∑︁
𝑖,𝑗=1

(𝑈𝑖 + 𝜙0(𝑍𝑖)) ([𝜇0 *𝐾𝑧](𝑍𝑗)− 𝜇0(𝑍𝑗))
⟨︀
𝑘0𝑖 , 𝑘

0
𝑗

⟩︀
𝐼2𝑛 =

1

𝑛2

𝑛∑︁
𝑖,𝑗=1

(𝜙1(𝑍𝑖)− [𝜙1 *𝐾𝑧](𝑍𝑖))[𝜇0 *𝐾𝑧](𝑍𝑗)
⟨︀
𝑘0𝑖 , 𝑘

0
𝑗

⟩︀
𝐼3𝑛 =

1

𝑛

𝑛∑︁
𝑖,𝑗=1

(𝑌𝑖 − [𝜙 *𝐾𝑧](𝑍𝑖))[𝜇0 *𝐾𝑧](𝑍𝑗)
⟨︀
𝛼𝑛(𝛼𝑛𝐼 +𝐾𝐾*)−1𝑘1𝑖 , 𝑘

1
𝑗

⟩︀
[𝑓 *𝐾𝑧](𝑧) =

∫︁
R𝑝

𝑓(𝑢)ℎ−𝑝𝑧 𝐾𝑧

(︀
ℎ−1
𝑧 (𝑍𝑖 − 𝑢)

)︀
d𝑢

We decompose the first term further as 𝑛𝐼0𝑛 = 𝜁𝑛 + 𝑛𝑈𝑛, where

𝜁𝑛 =
1

𝑛

𝑛∑︁
𝑖=1

(𝑈𝑖 + 𝜙0(𝑍𝑖))𝜇0(𝑍𝑖)
⃦⃦
𝑘0𝑖
⃦⃦ 𝑎.𝑠.−−→ E [(𝑈1 + 𝜙0(𝑍1))𝜇0(𝑍1)] ‖𝐾𝑤‖

and

𝑛𝑈𝑛 =
2

𝑛

∑︁
𝑖<𝑗

1

2
{(𝑈𝑖 + 𝜙0(𝑍𝑖))𝜇0(𝑍𝑗) + (𝑈𝑗 + 𝜙0(𝑍𝑗))𝜇0(𝑍𝑖)}

⟨︀
𝑘0𝑖 , 𝑘

0
𝑗

⟩︀
is a degenerate U-statistics, since 𝜇0, 𝜙0 ∈ 𝒩 (𝐾), whence

E𝑋2 [ℎ
𝜇0(𝑋1, 𝑋2)] =

1

2

{︀
(𝑈1 + 𝜙0(𝑍1))

⟨︀
𝑘01,E

[︀
𝜇0(𝑍2)𝑘

0
2

]︀⟩︀
+ 𝜇0(𝑍1)

⟨︀
𝑘01,E

[︀
(𝑈2 + 𝜙0(𝑍2))𝑘

0
2

]︀⟩︀}︀
= 0

By the CLT for degenerate U-statistics, Gregory (1977)

𝑛𝑈𝑛
𝑑−→

∞∑︁
𝑗=1

𝜆𝜇0𝑗 (𝜒2
1,𝑗 − 1).

Similarly to the proof of Theorem 3, it is possible to show that after the normalization by 𝑛𝛼𝑛

all other terms tend to zero.

Proof of Theorem 7.

𝛼𝑛𝑛(𝜙𝛼𝑛 − 𝜙1) =

(︂
𝐼 +

1

𝛼𝑛
𝑃0𝐾̂

*𝐾̂

)︂−1

𝑛𝑃0𝐾̂
*𝑟

We first show that if 𝑛𝛼𝑛ℎ
𝑝
𝑧 → ∞, while the bandwidth ℎ𝑤 is fixed, then 1

𝛼𝑛
𝑃0𝐾̂

*𝐾̂
𝑝−→ 0 in the
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operator norm. To that end, bounding operator norm by the Hilbert-Schmidt norm, we obtain

E

⃦⃦⃦
𝐾̂*𝐾̂

⃦⃦⃦2
≤ E

⃦⃦⃦⃦∫︁
R𝑝

𝑓𝑍𝑊 (𝑧1, 𝑤)𝑓𝑍𝑊 (𝑧2, 𝑤)d𝑤

⃦⃦⃦⃦2

= E

⃦⃦⃦⃦
⃦⃦ 1

𝑛2ℎ2𝑝𝑧 ℎ
𝑞
𝑤

𝑛∑︁
𝑖,𝑗=1

𝐾𝑧

(︀
ℎ−1
𝑧 (𝑍𝑖 − 𝑧1)

)︀
𝐾𝑧

(︀
ℎ−1
𝑧 (𝑍𝑗 − 𝑧2)

)︀
𝐾̄
(︀
ℎ−1
𝑤 (𝑊𝑖 −𝑊𝑗)

)︀⃦⃦⃦⃦⃦⃦
2

≤ 2𝑇1 + 2𝑇2,

where the norm in the right-side is that of 𝐿2(R
𝑝×R𝑞, d𝑧1×d𝑧2), 𝐾̄(𝑥) =

∫︀
𝐾𝑤(𝑢)𝐾𝑤(𝑥−𝑢)d𝑢

is a convolution kernel (assuming that 𝐾𝑤 is symmetric), and

𝑇1 = E

⃦⃦⃦⃦
⃦ 1

𝑛2ℎ2𝑝
𝑧 ℎ𝑞

𝑤

𝑛∑︁
𝑖=1

𝐾𝑧

(︀
ℎ−1
𝑧 (𝑍𝑖 − 𝑧1)

)︀
𝐾𝑧

(︀
ℎ−1
𝑧 (𝑍𝑖 − 𝑧2)

)︀
𝐾̄(0)

⃦⃦⃦⃦
⃦
2

,

𝑇2 = E

⃦⃦⃦⃦
⃦ 1

𝑛2ℎ2𝑝
𝑧 ℎ𝑞

𝑤

∑︁
𝑖<𝑗

{︀
𝐾𝑧

(︀
ℎ−1
𝑧 (𝑍𝑖 − 𝑧1)

)︀
𝐾𝑧

(︀
ℎ−1
𝑧 (𝑍𝑗 − 𝑧2)

)︀
+𝐾𝑧

(︀
ℎ−1
𝑧 (𝑍𝑗 − 𝑧1)

)︀
𝐾𝑧

(︀
ℎ−1
𝑧 (𝑍𝑖 − 𝑧2)

)︀}︀
𝐾̄

(︀
ℎ−1
𝑤 (𝑊𝑖 −𝑊𝑗)

)︀⃦⃦⃦⃦⃦
2

.

The first term is treated as a sum of i.i.d. Hilbert space valued random elements

𝑇1 .
1

𝑛3
E
⃦⃦
ℎ−2𝑝
𝑧 𝐾𝑧

(︀
ℎ−1
𝑧 (𝑍𝑖 − 𝑧1)

)︀
𝐾𝑧

(︀
ℎ−1
𝑧 (𝑍𝑖 − 𝑧2)

)︀⃦⃦2
+

1

𝑛2
⃦⃦
ℎ−2𝑝
𝑧 E

[︀
𝐾𝑧

(︀
ℎ−1
𝑧 (𝑍𝑖 − 𝑧1)

)︀
𝐾𝑧

(︀
ℎ−1
𝑧 (𝑍𝑖 − 𝑧2)

)︀]︀⃦⃦2
= 𝑂

(︂
1

𝑛3ℎ2𝑝𝑧
+

1

𝑛2ℎ2𝑝𝑧

)︂
,

where we assume that 𝐾𝑧 ∈ 𝐿2(R) is symmetric.

The second term is treated as a degenerate Hilbert space valued U-statistics. To that end,

using the moment inequality in (Korolyuk and Borovskich, 1994, Theorem 2.1.6), under the

assumption that E[𝜑(𝑍)|𝑊 ] = 0, ∀𝜑 ∈ 𝐿2
𝑍 , we obtain

𝑇2 .
1

𝑛2
E

⃦⃦⃦⃦
1

ℎ2𝑝𝑧 ℎ
𝑞
𝑤

𝐾𝑧

(︀
ℎ−1
𝑧 (𝑍1 − 𝑧1)

)︀
𝐾𝑧

(︀
ℎ−1
𝑧 (𝑍2 − 𝑧2)

)︀
𝐾̄
(︀
ℎ−1
𝑤 (𝑊1 −𝑊2)

)︀⃦⃦⃦⃦2
= 𝑂

(︂
1

𝑛2ℎ2𝑝𝑧

)︂
,

assuming additionally that 𝐾̄ ∈ 𝐿∞(R). Therefore, as 𝑛𝛼𝑛ℎ
𝑝
𝑧 → ∞, 1

𝛼𝑛

⃦⃦⃦
𝐾̂*𝐾̂

⃦⃦⃦
𝑝−→ 0, whence by

the continuous mapping theorem and by the Slutsky’s theorem in metric spaces, Van Der Vaart

and Wellner (2000) it is sufficient to analyze the weak convergence of

𝑛𝑃0𝐾̂
*𝑟 = 𝑛(𝑃0 − 𝑃0)𝐾̂

*𝑟 +
1

𝑛ℎ𝑝𝑧ℎ
𝑞
𝑤

∑︁
𝑖,𝑗

𝑌𝑖𝑃0𝐾𝑧

(︀
ℎ−1
𝑧 (𝑍𝑗 − 𝑧)

)︀
𝐾̄𝑤

(︀
ℎ−1
𝑤 (𝑊𝑖 −𝑊𝑗)

)︀
,
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where the first term is negligible comparing to the second one. Therefore, putting

⟨
𝑛𝑃0𝐾̂

*𝑟, 𝜇
⟩
= 𝜁𝑛 + 𝑈𝑛 +𝑅𝑛 + 𝑜𝑝(1),

𝜁𝑛 =
1

𝑛

𝑛∑︁
𝑖=1

𝑌𝑖𝜇
0(𝑍𝑖)ℎ

−𝑞
𝑤 𝐾̄(0),

𝑈𝑛 =
2

𝑛

∑︁
𝑖<𝑗

1

2

{︀
𝑌𝑖𝜇

0(𝑍𝑗) + 𝑌𝑗𝜇
0(𝑍𝑖)

}︀
ℎ−𝑞𝑤 𝐾̄

(︀
ℎ−1
𝑤 (𝑊𝑖 −𝑊𝑗)

)︀
,

𝑅𝑛 =
1

𝑛ℎ𝑞𝑤

𝑛∑︁
𝑖,𝑗=1

𝑌𝑖𝐾̄
(︀
ℎ−1
𝑛 (𝑊𝑖 −𝑊𝑗)

)︀ {︀
[𝐾𝑧 * 𝜇0](𝑍𝑗)− 𝜇0(𝑍𝑗)

}︀
,

where 𝜇0 = 𝑃0𝜇 and [𝐾𝑧 * 𝜇0](𝑧) = ℎ−𝑝𝑛
∫︀
𝐾
(︀
ℎ−1
𝑧 (𝑧 − 𝑢)

)︀
𝜇0(𝑢)d𝑢. By the law of large numbers

𝜁𝑛
𝑎.𝑠−−→ E

[︀
𝑌1𝜇

0(𝑍1)
]︀
ℎ−𝑞𝑤 𝐾̄(0).

Since E[𝜑(𝑍)|𝑊 ] = 0, ∀𝜑 ∈ 𝐿2
𝑍 , 𝑈𝑛 is a degenerate U-statistics. By the central limit theorem,

Gregory (1977),

𝑈𝑛 =
2

𝑛

∑︁
𝑖<𝑗

ℎ(𝑋𝑖, 𝑋𝑗)
𝑑−→

∞∑︁
𝑗=1

𝜆𝜇𝑗 (𝜒
2
1,𝑗 − 1),

Lastly, we show that 𝑅𝑛
𝑝−→ 0. To that end, put 𝑅𝑛 = 𝑅1𝑛 +𝑅2𝑛 with

𝑅1𝑛 =
1

𝑛

𝑛∑︁
𝑖=1

𝑌𝑖
{︀
[𝐾𝑧 * 𝜇0](𝑍𝑖)− 𝜇0(𝑍𝑖)

}︀
ℎ−𝑞𝑤 𝐾̄(0)

𝑅2𝑛 =
1

𝑛

∑︁
𝑖<𝑗

𝑌𝑖
{︀
[𝐾𝑧 * 𝜇0](𝑍𝑗)− 𝜇0(𝑍𝑗)

}︀
ℎ−𝑞𝑤 𝐾̄

(︀
ℎ−1
𝑤 (𝑊𝑖 −𝑊𝑗)

)︀
.

My Markov’s inequality it is sufficient to control the first or the second moment. Assuming that

E[|𝑌 ||𝑍] <∞ a.s., that 𝑓𝑍 ∈ 𝐻𝑠(R𝑝) for some 𝑠 > 0, and that 𝜇0 ∈ 𝐿2(R
𝑝) ∩ 𝐶(R𝑝), by (Giné

and Nickl, 2015, Lemma 4.3.18)

E|𝑅1𝑛| .
∫︁
R𝑝

⃒⃒
[𝐾𝑧 * 𝜇0](𝑧)− 𝜇0(𝑧)

⃒⃒
𝑓𝑍(𝑧)d𝑧 = 𝑜(1).

Similarly if E
[︀
|𝑌 |2|𝑊

]︀
< ∞ a.s. and 𝐾̄ ∈ 𝐿∞, by the moment inequality in (Korolyuk and

Borovskich, 1994, Theorem 2.1.3)]

E|𝑅2𝑛|2 . E
⃒⃒
𝑌1
{︀
[𝐾𝑧 * 𝜇0](𝑍2)− 𝜇0(𝑍2)

}︀
ℎ−𝑞𝑤 𝐾̄

(︀
ℎ−1
𝑤 (𝑊1 −𝑊2)

)︀⃒⃒2
.
∫︁
R𝑝

⃒⃒
[𝐾𝑧 * 𝜇0](𝑧)− 𝜇0(𝑧)

⃒⃒
𝑓𝑍(𝑧)d𝑧 = 𝑜(1).
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Appendix C: CLT for degenerate U-statistics in Hilbert space

Gaussian random measures and Wiener-Itô integrals

Let (𝒳 ,X , 𝑃 ) be a probability measure space and 𝐻 a separable Hilbert space. Let 𝐿2(𝒳𝑚, 𝐻)

be the space of all functions 𝑓 : 𝒳𝑚 → 𝐻 such that E‖𝑓(𝑋1, . . . , 𝑋𝑚)‖2 <∞. For X𝑃 = {𝐴 ∈

X : 𝑃 (𝐴) <∞}, the stochastic process {W(𝐴), 𝐴 ∈ X𝑃 } is called the Gaussian random measure

if

1. for all 𝐴 ∈ X𝑃

W(𝐴) ∼ 𝑁(0, 𝑃 (𝐴));

2. for any collection of disjoint sets (𝐴𝑘)
𝑛
𝑘=1 in X𝑃 , W(𝐴𝑘), 𝑘 = 1, . . . , 𝑛 are independent and

W

(︃
𝑛⋃︁
𝑘=1

𝐴𝑘

)︃
=

𝑛∑︁
𝑘=1

W(𝐴𝑘).

Take a sequence of pairwise disjoint sets (𝐴𝑘)
𝑛
𝑘=1 in X𝑃 and let 𝑆𝑚 be a set of simple functions

of the form

𝑓(𝑥1, . . . , 𝑥𝑚) =

𝑛∑︁
𝑖1,...,𝑖𝑚=1

𝑐𝑖1,...,𝑖𝑚1𝐴𝑖1
(𝑥1)× · · · × 1𝐴𝑖𝑚

(𝑥𝑚),

where 𝑐𝑖1,...,𝑖𝑚 are zero if any of two indices in the set 𝑖1, . . . , 𝑖𝑚 are equal, i.e. 𝑓 vanishes on

the diagonal. For a Gaussian random measure W corresponding to 𝑃 , we define the following

random operator

𝑆𝑚 ∋ 𝑓 ↦→ 𝐽𝑚(𝑓) =

𝑛∑︁
𝑖1,...,𝑖𝑚

𝑐𝑖1,...,𝑖𝑚W(𝐴𝑖1) . . .W(𝐴𝑖𝑚) ∈ 𝐻.

The following three properties are immediate from the definition of 𝐽𝑚:

1. Linearity;

2. E𝐽𝑚(𝑓) = 0;

3. Isometry: E⟨𝐽𝑚(𝑓), 𝐽𝑚(𝑔)⟩𝐻 = ⟨𝑓, 𝑔⟩𝐿2(𝒳𝑚,𝐻).

The set 𝑆𝑚 is dense in 𝐿2(𝒳𝑚, 𝐻) and 𝐽𝑚 can be extended to a continuous linear isometry on

𝐿2(𝒳𝑚, 𝐻), called the Wiener-Itô integral.

Example 3. Let 𝐵𝑡 ∈ R be a Brownian motion on [0,∞). Then for any (𝑡, 𝑠] ⊂ [0,∞),

we can define a Gaussian random measure W((𝑡, 𝑠]) = 𝐵𝑠 − 𝐵𝑡 and a Wiener-Itô integral

𝐽 : 𝐿2([0,∞), d𝑡) → R as 𝐽(𝑓) =
∫︀
𝑓(𝑡)d𝐵𝑡.
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Central limit theorem

Let (𝒳 ,X , 𝑃 ) be a probability space, where 𝒳 is a separable metric space and X is a Borel

𝜎-algebra. Let (𝑋𝑖)
𝑛
𝑖=1 be i.i.d. random variables corresponding to this space. Consider some

symmetric function ℎ : 𝒳 ×𝒳 → 𝐻, where 𝐻 is a separable Hilbert space. 𝐻-valued 𝑈 -statistics

of degree 2 is defined as

𝑈𝑛 =
2

𝑛(𝑛− 1)

∑︁
1≤𝑖<𝑗≤𝑛

ℎ(𝑋𝑖, 𝑋𝑗).

Similarly to the real case if Eℎ(𝑥1, 𝑋2) = 0, the 𝑈 -statistics is called degenerate. The following

result provides the limiting distribution of the degenerate 𝐻-valued 𝑈 -statistics.

Theorem 10 (Borovskich (1986)). Suppose that the kernel function ℎ is such that Eℎ(𝑋1, 𝑋2) =

0, E‖ℎ(𝑋1, 𝑋2)‖2 <∞, and that the 𝑈 -statistics is degenerate. Then

𝑛𝑈𝑛
𝑑−→ 𝐽2(ℎ),

where 𝐽2(ℎ) =
∫︀
𝒳×𝒳 ℎ(𝑥1, 𝑥2)W(d𝑥1)W(d𝑥2).

Proof. See (Korolyuk and Borovskich, 1994, Theorem 4.10.2) for more general result for 𝑈 -

statistics of arbitrary degree.

If 𝐻 = R, (𝜙𝑗)𝑗≥1 is arbitrary orthonormal system in 𝐿2(𝒳 ,R) and 𝜉𝑖 are i.i.d. 𝑁(0, 1), the

Wiener-Itô integral has the following representation

𝐽2(ℎ) =𝑑

∞∑︁
(𝑖1,𝑖2)=1

E [ℎ(𝑋1, 𝑋2)𝜙𝑖1(𝑋1)𝜙𝑖2(𝑋2)]
{︀
(𝜉2𝑖1 − 1)𝛿𝑖1,𝑖2 + 𝜉𝑖1𝜉𝑖2(1− 𝛿𝑖1,𝑖2)

}︀
,

This follows from the fact that multiple Wiener-Itô integrals have representation in terms of

Hermite polynomials, see Itô (1951) and Korolyuk and Borovskich (1994). Alternatively, it is

possible to show directly that the limiting distribution of the degenerate 𝑈 -statistics of degree 2

is the expression in the right-side.
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