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Abstract

In this paper we study the effects of a change in some exogenous variable (the number of
players or a parameter in the payoff functions) on the strategies played and payoffs
obtained in a Nash equilibrium in the framework of an Aggregative Game (a generaliza-
- tion of the Cournot model). We assume a strong concavity condition which implies that the
best reply function of any player is decreasing in the sum of the strategies of the remaining
players (i.e. strategic substitution). Our results generalize and unify those known in the
Cournot model.
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1. Introduction

In this paper we study the effects of changes in the number of players and shifts
in their payoff function on the strategies played and the payoffs obtained in a
Nash equilibrium. We will assume, in the class of games under consideration, that
the payoff function of each player fulfills the following:

(1) Tt can be written as a function of a player’s own strategy (assumed to be
one dimensional) and the sum of the strategies of all players. This assumption has
been called the ‘Aggregation Axiom’ by Dubey et al. (1980), p. 346) and the
corresponding games are called aggregative games. According to Shubik (1984) p.
325): ‘Games with the above property clearly have much more structure than a
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game selected at random. How this structure influences the equilibrium points has
not yet been explored at depth’.

(2) It satisfies a strong concavity condition slightly stronger than the Strategic
Substitutes case studied by Bulow et al. (1985). The latter implies that the best
reply function of each player (i.e. the mapping selecting the best strategy for a
player, given the strategies of the remaining players) is decreasing in the strategies
of the other players. This strong concavity condition is a generalization of the
so-called Hahn stability conditions (see Hahn, 1962).

Notice that the class of games satisfying (1) and (2) is large and include:

(a) Models of strategic interaction among firms like competition in quantities
(i.e. the Cournot model and certain models with heterogeneous goods), competi-
tion under rationing schemes (see Romano, 1988), technological competition (see
Loury, 1979), the problem of the commons (see Dasgupta and Heal, 1979, pp.
55-78), and pollution games.

(b) Models of group interaction, i.e. rent-seeking, public goods, etc. (see
Olson, 1971, esp. pp. 23-43).

(¢) Models focusing on the internal organizaion of firms or the like as
contribution and revelation games and principal-many agents models.

In all the above cases uncertainty, taxes and payoff functions different from
profit functions (i.e. sales) are allowed. The latter is specially important in
imperfectly competitive markets since the classical hypothesis of profit maxi-
mization lacks a convincing foundation in those markets (see, for example,
Baumol, 1959, and Vickers, 1985).

We first prove that the best reply functions of a game satisfying the aggregation
axiom and the strategic substitution condition do not have any structural property
beyond that they depend on the sum of strategies of the remaining players and
that they are decresing (Proposition 0). This result can be used to motivate the
need of our strong concavity assumption. Assuming the latter we show that:

(1) An increase in the number of players (a) decreases the value of the strategy
of any incumbent, and increases the sum of all strategies (Proposition 1); (b)
decreases the payoff of incumbents (Propositions 2 and 3).

(2) A shift raising the marginal payoff curve of a player, say i, (a) increses the
sum of strategies and the strategy of Player i, and decreases the strategy of any
other player (Proposition 4); (b) increases the payoff of player i and decreases the
payoff of any other player (Proposition 5).

(3) A shift raising the marginal payoff curve of all players increases the sum of
all strategies (Proposition 6).

"It should be remarked that the fact that the utility of incumbents decreases with the number of
agents plays a crucial part in Olson’s theory of collective action (see Olson, 1971). According to this
author, large groups are unlikely to form since the private benefit to joining such a coalition may be
negative. On the contrary, small groups usually provide high benefits to its members and thus the
incentive to stay is preserved.



(4) We provide counterexamples to all propositions when the strong concavity
assumption is not fulfilled. Also two more examples are used to show that in the
case considered in (3) above nothing can be said about individual strategies and
utilities. Some of these examples are taken from previous work and are included
here for the sake of completeness.

Summing up, (1), (2) and (3) above show that under our assumptions, the
effects of an increase in the number of players or a shift in their payoff function
agrees with our a priori intuition. (1) above has been studied in the Cournot case
by McManus (1962, 1964), Frank (1965), Ruffin (1971), Okuguchi (1973), Seade
(1980) and Szidarovsky and Yakowitz (1982). It must be noticed that our
approach not only generalizes these results but allows for simpler proofs and does
not require that the number of players can be treated as a continuous variable.
Parts (2)-(3) above have been studied in the Cournot case by Dixit (1986) and
Quirmbach (1988).

Our results can be compared with those obtained under the (polar) assumption
of supermodularity. Roughly speaking, a game is supermodular when for each
player her strategy set is the product of compact intervals and the marginal
profitability of any action increases with any other action of any player (see
Topkis, 1979), for a more general definition). When strategy sets are one-
dimensional the above definition reduces to that of a game with strategic
complementarities (see Bulow et al., 1985). It can be shown that if the marginal
profitability of any action is increasing in a parameter, say 7 (this is identical to
our Assumption 4 below), the largest and smallest Nash equilibria are increasing
functions of 7, so if the Nash equilibrium is unique, it is increasing in 7 (see
Lippman et al., 1987; Milgrom and Roberts, 1990; and Milgrom and Shannon,
1992).? This is analogous to our Propositions 4 and 6 (but in our case individual
strategies are not always increasing in 7, see Example 6). Notice that the
distinction between idiosyncratic and generalized shocks does not play any role in
supermodular games. To the best of my knowledge there are no results in this
literature on the effect of entry (Propositions 1-3 below) or the effect of a change
in 7 on payoffs (Proposition 5 and Example 6).

The rest of the paper is organized as follows. Section 2 explains the basic model
and the main assumptions. Section 3 studies the effect of an increase in the
number of players and Section 4 focuses on shifts of the marginal payoff curve.
Finally Section 5 gathers our final comments.

? Other properties of supermodular games are that (1) the existence of a Nash equilibrium does not
require quasi-concavity of the payoff functions, and (2) under certain cirumstances, if there are several
Nash equilibria, they can be Pareto-ranked. Applications of supermodular games include Bayesian
games and oligopolistic competition (see Vives, 1990), stability and learning (see Lippman et al., 1987;
Milgrom and Roberts, 1990; and Krishna, 1992 and coordination problems in a macroeconomic
framework (see Silvestre, 1993, for a survey of this literature). For general surveys on supermodular
games, see Fudenberg and Tirole (1991) and Vives (1993).



2. The model

In this section we explain the main concepts which will be used in the rest of the
paper.

Definition 1. An aggregative game (U,(-), S;),c, consists of

(a) a set of players (also called agents) 1 =1,2,..,n;

(b) a collection of strategy sets S, =R_;

(¢) a collection of payoff functions U,: X, §,— R of the form U (x;, x), where

X, €S, and x =X, x,.

In words, in an aggregative game, the so-called ‘Aggregation Axiom’ holds (see
Dubey et al., 1980, p. 346), so the (one-dimensional) strategies of the players can
be aggregated in an additive way. We remark that all the propositions below can
be proved if x=f(x,,...,x,) (f(-) strictly increasing), introducing suitable
concavity assumptions. An aggregative game can be thought of as a generalization
of the well-known Cournot model. In this case U, = p(x)x; — C,(x;), x; being the
output of firm i, x total output, p(x) the inverse demand function and C(x,) the
cost function of firm i. This case will be used in most examples below. We remark
that our approach can deal with (a) payoff functions different from profit (i.e.
welfare-maximizing publicly owned firms; see Fershtman, 1990; (b) symmetric
uncertainty (for the Cournot case see Horowitz, 1987); (c) taxes (for the Cournot
case see Dierickx et al., 1988); and (d) in some cases, heterogeneous product
(using the trick of Yarrow, 1985, p. 517). Other examples of aggregative games
(technological competition, the problem of the commons, preference revelation,
contribution games, pollution and wage-setting trade unions) are explained in
Table 1. Olson (1971) provides several applications to political science.

Now we state our solution concept.

Definition 2. Given an aggregative game (U/(-),S,),c;» &%, x*),e; with x* =
VieX%, x*€S, Viel, is said to be a Nash equilibrium (N.E.) if Vi €[
Ut x*) = Ufx, x* —x7 +x,), Yx, €S,

Now we state and discuss our main assumptions. Let €’ be the class of
continuous functions and 4° be the class of functions which are s times
continuously differentiable.

Assumption 1. U(-)E €', Vi€ L.

Notice that under Assumption 1 (A.l in what follows) if x% €int. S, the
necessary condition of a N.E. reads as follows:



Table 1

X; X Ui(x;, x) x=fx,,...,x,)

Trade unions Percent Inflation Utility Inflation

increase rate function rate as a

in wage of trade function of

rate union i wage rate

increases

Pollution Output of Amount of Profit Production

firm i pollution function of pollution
Contribution Prive inputs Quantity of Utility Production
games (public offered by i the public function function of
goods, principal good/reward of agent the public
agents) good/reward

function

Preference Preference Social state Utility Social rule
revelation parameters to function

be revealed
Problem of Inputs used An Profit Environment as
the commons by firm i environmental a function of

variable inputs

Oligopoly Output of Price Profit Inverse demand

firm i function function
Technological Input needed Technological Profit Technology
competition to produce the level function as a function

technology

used by firm i

an(xT7X*) an(XT,X*)
+ =
ax; ax

{

0, Vviel.

Let us define

U, (x;, x)  dU(x;, x)
+
ax, dx ’

14

T,=Ti(x;,x)= viel.

Let N be the set of active agents (i.c. those for whom x* €int. S, in a N.E.
with n players). N + 1 is defined accordingly. We will assume that NN + 1§,
i.e. at least one player is active in a N.E. with n and n + 1 agents, respectively.

Assumption 2. T,(x,, x) is strictly decreasing on x; and x, Vi € I.

A.2 is what we have called in the Introduction the strong concavity condition.
A sufficient condition for A.2 to hold is that U,(-) be strictly concave on x and x;

and (if U, € €7) that 3°U,()/ox, x, <0.



Implicit differentiation of 7,(-) shows that A.2 implies that the best reply
function is strictly decreasing, i.e. the assumption of Strategic Substitution in the
terminology of Bulow et al. (1985).

In the homogeneous oligopoly case A.2 is equivalent to a much used condition
in the literature on Cournot equilibrium (see, for example, Friedman, 1982, p.
496, Assumption 3, and the references therein), namely

2 2
a19(2'))Cl_+8p(')<0 g 22D @ C,-(2 ) o
ax ox ox ox

This assumption was first used by Hahn (1962) in connection with the dynamic
stability of the Cournot equilibrium.
Finally, we state our third assumption.

Assumption 3. U,(-) is strictly decreasing on x, Vi€l

This assumption will be only used in Propositions 2, 3 and 5. In the Cournot
case A.3 requires a strictly decreasing inverse demand curve.

Notice that A.1 and A.2, plus a compactness requirement, imply the existence
of an unique N.E. and that under A.1 and A.3 any interior N.E. can be shown to
be inefficient, i.e. there is a strategy vector for which all players are better off (for
proofs of these facts see Friedman, 1977, pp. 25-26 and 169-171). Obviously
these conditions are far from necessary; see, for example, Kukushkin (1994)).

The reader may wonder if, under the aggregation axiom, strategic substitution
alone may be sufficient to yield well-defined answers to our comparative statics
questions. The following auxiliary proposition looks for structural properties of
best reply functions under these two assumptions and finds a negative result.
First, let us define x_, =X, x;.

Proposition 0. Let x,=f(x_,), i=1,...,n, be a collection of ¢’ functions with
x; €S, (S, compact) and such that f(-) is strictly decreasing Vi, then
(@) Vi, AU(x,,x), U(-)EE', concave on x; such that

fix_;)=arg max U,a+x_;), Vx
Moreover, U(-) can be taken to be decreasing on x (i.e. fulfilling A.3).

(b) Vi, Ja€' cost function C(x,) and a linear inverse demand function p = A —
x such that

fix_)y=argmag (A—b—x_)b—Ci(b), Vx_,.
bES;

Proof. (a) First notice that f,(-) is invertible. Also, f;'(-) is integrable since
f7'(-)E®’ (by the continuity of f(-); see Bartle, 1976, p. 156), and it is



bounded (see Bartle, 1976, p. 427). Let g,(x;) be the primitive of f; '(x,). Define
U;=q/x;) + x; — x,x. Notice that U, is decreasing on x. Then we have that

108 1 -1
e = f ) 2 X —x=f ) — X =0,

And since f;'(+) is strictly decreasing, U, is concave on x;, so the second-order
condition of payoff maximization is satisfied, and thus (a) holds.

(b) Let p(x)=A—x and C(x,)=Ax,—x.—q,x,)+ B, where ¢(-) is as
defined in part (a) above. Since x, is defined on a compact set, B can be taken
large enough such that C(x;) =0, Vx,. Also, taking A large enough, the marginal
cost is positive. Then,

Ui=px)x;, — Clx;) = (A —x)x, — Ax, + x? +4q,(x;)— B
=q,(x;) +x?_xxi ~B,

which is identical to the utility function constructed in part (a) above.

The main consequence of Proposition 0 is that in games in which both the
aggregation axiom and the strategic substitution assumption hold, the best reply
functions depend on the sum of strategies of the other players and that they are
decreasing exhaust all the properties of best reply functions. Thus, they are, to
some extent, arbitrary (this result may be regarded as analogous to the lack of
structural properties of excess demand functions in General Equilibrium; see
Shafer and Sonnenschein, 1982, but in our case the root of the problem is not on
the aggregation side). Even if payoff functions are restricted to be profit
functions, no structural property beyond those quoted above can be found!

As an easy corollary of Proposition 0 we have (a) the equilibrium set of
strategies is arbitrary and (b) comparative statics will not yield definitive answers.
Both points can be easily seen in the case of two players by constructing best reply
mappings that intersect at any given se of points and by considering shifts of these
curves and comparing non-adjacent equilibria. Thus, we are led to conclude that
in general we need additional properties to those quoted before in order to tackle
comparative statics. As we will see, our A.2 will be sufficient for this job.

3. The effects of entry

In this section we study the effects of an increase in the number of players (see
Bresnahan and Reiss, 1991, and the references therein for the empirical evidence
in oligopolistic markets). In order to save notation let y = x, . ,(n + 1). Also, lct us
denote by x(n), x,(n) and U,(n) the equilibrium values of x, x, and U, in a game
with n players. We remind the reader that not all agents in N are active.



Proposition 1. Under A.1 and A.2 we have that
@ x(m)sx(n+1), x,(n)=x,(n+1), Vi€EN, and
(b) if y >0 the above inequalities are strict.

Proof. We first notice that if x(n)=x(n+1) and x,(n)>0, x,(n+1)=0 is
impossible since T,(x,(n), x(n)) =0 and T,(0,x(n +1))<0, so T,(x,(n), x(n))=
T.(0, x(n + 1)) = T(0, x(n)), which contradicts that T,(-) is strictly decreasing on
x,>. Take any iE NNN +1 (if i € N+ 1, by definition x,(n)>x,(n + 1) =0). In
both N.E. first-order conditions hold so

T(x,(n), x(n)) = T(x,(n + 1), x(n + 1)) . (1)

Therefore because of A.2 we have only two possiblities:
(D) x(n +1)<x(n) and x,(n + 1) = x,(n), with a strict inequality, or

(II) x(n +1)=x(n) and x,(n + 1) <x,(n).

If (I) holds, since all active players at n are active at n+ 1 and x = X x;, we
have a contradiction. Therefore part (a) is proved. Part (b) is proved noticing that
(1) implies that if x(n) =x(n+1), then x,(n)=x,(n+1), ViENNN +1. But
since all active players at n will be active at n+1 and y>0, we reach a
contradiction. Therefore x(n) <x(n + 1), A.2 plus (1) show that x,(n) >x,(n + 1),
ViENNN +1. Finally, if iZN+1butiEN, x;(n)>x,(n+1)=0. O

If A.2 does not hold, Proposition 1 fails as the following examples — which refer
to the Cournot model — show.

Example 1. (Seade, 1980). Let p =x"*, C, = x,. Using the first-order conditions

1

of profit maximization, it is easily seen that x,(1) <x,(2).

Example 2. p=a—bx, C,;=cx,+d/2x;, with a>c, d<0, d +2b>0 and d +
b < 0. (Total costs will be negative for x; large enough, but this problem does not
arise if (@ —¢)/(2b +d) < —c/d). Then x = (a — ¢c)n/(b + d + nb) so x is decreas-
ing on x if b +d < 0. On the other hand, second-order conditions are fulfilled if
d+2b>0. A graphical argument similar to this example can be found in
McManus (1964).

We now turn to study how payoffs change with entry.
Proposition 2. Under A.1, A.2 and A.3

(@ Um)=U(n+1), YieN, and
(b) If y >0, the above inequalities are strict.

* A similar argument shows that if x(n)<x(n +1) and x(n) =0, then x(n + 1) =0, so the second
inequality in (a) in Proposition 1 holds Vi€ 1.



Proof. In order to save notation let us write x,(n) as the strategies of all players
except i in a N.E. with n players, i.e. x_,(n) =x(n) — x,(n). Also define V(- )=
Uix;, x_; +x,) =Vi(x,, x_,). Then, if Proposition 2(a) were not true, V,(x,(n + 1),
x_(n+1)>Vix,(n), x_(n)=V(x(n+1), x_(n). Thus, x_(n) >x_(n+1),
which contradicts that x_,(n) is non-decreasing in n by Proposition 1(a). In order
to show (b), let us assume that U,(n) = U(n + 1). Then, reasoning as above we
get x_;(n) =x_,(n + 1), contradicting that if y >0, x_,(n) is strictly increasing in n
(by Proposition 1(b)). O

If A.2 holds but U,(-) is increasing in x, we have the reverse conclusion, i.e.
that entry increases the payoff of incumbents. The following example shows that
it A.2 does not hold, Propostition 2 may fail.

Example 3. Let us assume two agents with identical payoff functions (see Fig. 1).
Because of A.3, payoffs increase in the direction of the arrows. Point A is a
symmetrical N.E. with two players since any player can only change unilaterally x
and x; on the 45° line (x and x, change by the same amount since the strategies of
the other players are given). By the same token, B is a symmetrical N.E. with
three players and such that the payoffs of 1 and 2 are now greater (notice that if
n=1 A’A and OA were identical, the example does not work).

Notice than in Example 3 we have that n > 1. If this is not the case, i.e. there is
a unique incumbent player, the entry of a new player will always decrease the
payoff of the incumbent, i.e. her payoff is bigger under monopoly than under
duopoly, as shown by the next proposition.

Proposition 3. Under A.3 we have that
(@ u,(1)=U,(2) and
(b) if x,(2) >0, then the above inequality is strict.

Proof. Suppose it is not. Defining V,(-) as before we have that
Vi(xi(2), x2(2)) = Vi (x,(1), 0) =V, (x,(2), 0) .

And since V;(-) is decreasing on x_,, we get a contradiction. [

Notice that A.1 and A.2 are not required for the proposition to hold. As in the
case of the previous proposition, if U(-) is increasing in x, it is easy to show that
entry increases the payoff of the incumbent,

4. The effects of shocks

In this section we study the effect of an exongenous shift in the payoff function
on the relevant variables. We will assume that the payoff function of player i can
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be written as U, = U,(x,, x, t;), where ¢, is a one-dimensional parameter which is
possibly different for different players (in the Cournot model ¢#; may represent
either the factors behind the demand side or the cost side or, as in Farrell and
Shapiro, 1990, the quanity of capital owned by firm ). In this section, in order to
simplify the proofs, we assume that Nash equilibria are interior. Then, the
first-order condition reads T'(x;, x, ;) = 0. Finally, the values of the strategies and
payoffs in a Nash equilibrium will be denoted by x%, x*, and U7.

Assumption 4, T,(-) is strictly increasing in ¢,.

This assumption allows us to interpret increases in ¢; as shifts to the right of the

10



marginal payoff curve, i.e. {, can be regarded as a measure of the impact of a
shock on the marginal payoff of player i.

We distinguish two types of shocks: idiosyncratic and generalized. In the first
we study the impact on the market of a variation in a single ¢, (i.e. an increase in
the price of the factors or the taxes paid by player {). In the second we consider a
simultaneous variation in all ¢, i =1, ..., n. This corresponds, for instance, to a
shift in the common demand function or the price of a facto used by all players in
the industry. In this case, without loss of generality we will write the first-order
condition as a function of a single ¢, i.e. T,(x;,x,1) =0.

Intuition suggests that in the case of an idiosyncratic shock an increase in ¢, will
increase the strategy of player i and it will decrease the strategies of her
competitors. This intuition is formalized in the next proposition:

Proposition 4. Under A.1, A.2 and A.4 an increase in t;, (a) increases the sum of
strategies, (b) increases the strategy of player i and (c) decreases the strategy of any
other player in the market.

Proof. Since the proof is fairly analogous to the proof of Proposition 1, we will
indicate only the guidelines. First it is proven that the sum of strategies cannot be
constant. Second, if the sum of strategies decreses, the strategy of all players must
increase in order to maintain first-order conditions, and this is a contradiction.
Thus, the sum of strategies increases. Again the first-order conditions of all
players except i imply that the stretegies of these players must fall. Therefore the
strategy of / must increase. [

Of course if the inequality in A.4 is reversed so are the conclusions of
Proposition 4. An implication of this proposition is — in contrast with supermodu-
lar games — the absence of multiplier effects, i.e. dx/d¢, <dx,/d¢,; (see Fudenberg
and Tirole, 1991, p. 498). The next example — which again refers to the Cournot
model — will show that A.2 is needed for the result to hold.

Example 4. Supposc that there are three firms and that in a (sufficiently large)
neighborhood of a N.E. the relevant functions read p=a’ ~x, C,=cx, —d/
2x7—t,x, with a’>¢, d>0, d—2<0 (so the second-order condition holds),
d—1>0, and C,=c'x,, with ¢’ >¢', i=2,3. Let d=a’' —c and let a=a’ —¢".
Profit maximization implies that x, = (x —a—¢,)/)d—1)and x,=a —x, i=2,3.
Solving the system we get x = (2a(d — 1) - a —¢,)/(3(d — 1) — 1). If, for instance,
a=10,d=1.5,¢ =5 and a=1, we have that x*=8, x¥* =4 and x% =2. But if
=55, x*=7,x7=1and x%7=3.

For the next proposition we need an additional assumption. This assumption

11



plus A.4 implies that a variation in ¢, affects both marginal and total payoff in the
same direction.

Assumption 5. U,(-) is increase on ¢;.

Proposition 5. If all payoff functions are €* and A.2-A.5 hold, an increase in t,
(@) increases the payoff of i and (b) decreases the payoff of any other player.

Proof. First, it is easy to show that A.2 implies that the Jacobian matrix of 7,(-)
has a non-vanishing determinant. Thus the implicit function theorem implies that
all the relevant variables are continuously differentiable functions of ¢ in a
neighborhood of equilibrium. Then, taking into account the first-order conditions
for player j# i, we have that

dU,/dt, = oU(+ )/ ox o (dx/dt; — dx;/dt,)
and Proposition 4 and A.3 imply (b) above. In the case of player i we have that
dU,/t, = 8U,(- )/ axo(dx/dt, — dx,/de;) + aU(- )/t

and since the strategy of all competitors has decreased and because of A.5 we
obtain (a) above. [

The next example shows the necessity of A.2 for Proposition 5 to hold

Example 5. Suppose that the market is as in Example 4. Then it is easily
calculated that if £, =5, U¥ =4 and Ut =4, i=2,3. Butif t, =5.5, U7 =0 and
Ur=9,i=2,3.

We end this section by studying the effects of a generalized shock.
Proposition 6. Under A.1, A.2 and A.4 an increase in t increases x.

Proof. First, by analogous reasoning to Proposition 1, it can be shown that x
cannot be constant. And if x decreases all x; must increase. A contradiction. (]

The effect of ¢ on individual strategies and payoffs in equilibrium depends on
how payoff functions are affected (see Dixit, 1986, and Quirmbach, 1983). This
means that, in the Cournot model, a technological improvement in costs might
decrease the output and profits of the most efficient firm (see Example 6). Finally,
without A.2 Proposition 6 does not hold (see Example 7).

Example 6. Letp=a—x,n=2, C,=c,x, and C, = acx,. Take 1 = —¢,, 50 A.2
and A.4 hold. It can be easily shown that in a N.E. x} = (¢ + ac, — 2¢,)/3 and

12



Ut = ((a—t,(e —2))/3)*. Thus if & >2, the output and profits of firm 1 (which is
the most efficient firm) decreases with ¢.

Example 7. Let p=x+t— A, C,=2.5 x;/2 and n =2, with A >t (this implies
that for x small p is negative, but since p is positive in equilibrium the inverse
demand function can be substituted by p = max(0,x +¢— A)). Thus, T, =x + 1 —
A —1.5x, so A.4 and the second-order condition are fulfilled. Then, x = 4(A —¢),
i.e. x is decreasing on ¢.

5. Conclusions

In this paper we have tried to integrate several models — some of them often
used in Industrial Organization and Welfare Economics — and to show that the
qualitative properties of comparative statics of these models conform with our
intuition as long as (i) the game is an aggregative game and (ii) a strong concavity
condition, which implies strategic substitution, is met.

It would be interesting to know if the qualitative propeties of models of
strategic substitutes and strategic complements are similar. However, the latter
case presents greater difficulties and might require different methods. First, an
additional assumption is needed in order to guarantee that the equilibrium is
unique (see, for example, Friedman, 1982, p. 504, Assumption 6, that implies that
the best reply function of any player is a contraction, or the dominant diagonal
assumption used by Dierker and Grodal, 1994). And second, unless additional
assumptions are made, the game is not an aggregative game so it is not clear how
to model the strategy of a player who is not in the market. Given all that, it is
scarcely surprising that, as we mentioned in the introduction, results in this area
are restricted to the study of the effect of a change in an exogenous parameter on
the equilibrium strategies. Further results in this direction are likely to be greatly
welcomed.
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