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Motivation

� Pigou (1920): Optimal tax on goods that generate externalities should be equal
to the marginal external damage arising from consumption.
�> Straightforward implementation: Linear tax or trading of "pollution rights".

� Our starting point are the following two observations:

� Real-world policies are often more intricate
(e.g., non-linear grant schemes, linked to credit).

� High (tax) �nancial burdens on productive activities may require additional
outside �nance for �rms
�> What are e¢ ciency implications?

� We tie these two together in a model where raising �nance is (endogenously)
costly.
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Key Insights

� Taxing externalities imposes ine¢ ciencies arising from "�nancial frictions"

� With homogeneous agents, this arises only due to "costly external funds"

� With heterogeneous agents, the resulting redistribution exacerbates these
costs
(Heterogeneity: Arises from di¤erent adjustment/avoidance costs).
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Key Insights

� There are better instruments than a linear tax or a market-based solution ("pol-
lution rights")

� Characterization of optimal non-linear tax.

� Taxing externalities and subsidizing credit-�nanced avoidance.

� Both measures increase productive e¢ ciency, as they reduce redistribution gen-
erated by tax on externalities.
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Related Tax Literature

� "Pigou meets Mirrlees": Strand of literature that links avoidance of externalities
(or collective good provision) to taxes under private information.

� Standard case: Private information on own (labour) productivity. Utilitarian
government.

� Tax on externality leads to redistribution
�> But there redistribution can be fully compensated through wage tax
adjustment
�> Jakobs/de Moji 2010: "Standard Pigou result"
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Related Tax Literature

� Wider "dirt tax" literature:
�> Arguments why optimal tax above/below Pigou tax

� "Double dividend" in the presence of other distortive taxes that can then be
reduced for government funding? ("Tax recycling")

� But questioned in the literature: "Tax interaction" distortion.
(Bovenberg/de Mooji 1994)
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Government Intervention under Financial Frictions

� Public �nance literature on entrepreneurship, including venture capital �nance:
�> Typically focused on impact of various taxes on incentives.

� Literature on extended liability / judgement proofness (e.g., Tirole 2010)
�> Financial frictions = limited liability.
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The Economy

� Economy is populated by mass one of agents: i 2 [0; 1]. Originally endowed
with no resources, but with opportunity for production.

� Timing:

� t=0: Requires investment I0 +K(�) ("externality avoidance costs").

� t=1: Output (per agent) xi = 0 or x > 0. And generation of externalities
yi.
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Production

� Non-observable e¤ort e at cost c(e)
�> A¤ects likelihood of positive output: Pr[xi = x] = p(e).

� No discounting and separable utility function:
�> With �nal consumption wi:

ui = wi � c(ei)� �
Z
i2I

yidi

where � is constant marginal cost of externality on society.
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Avoiding Externalities

� Costs of avoiding externalities y � 0:

� Wlog express avoidance as: ai = y � y.

� Given agent-speci�c type �i, costs K(ai; �i).



11

Avoiding Externalities

� Properties: K(0; �) = 0 and K1 > 0. And "single-crossing" property

K12(a; �) =
dK(a; �)

dad�
< 0,

which implies also K2 < 0 when a > 0.

� Key: Type � is private information. It does not a¤ect "productive e¢ ciency".
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Interpretations

1. Externality y provides a su¢ cient statistics for a (negative) externality in pro-
duction, such as emission of CO2.
�> Straightforward to include stochastic element: E.g., avoidance a maps into
distribution G(y j a).

2. Avoidance a captures "technology choice", such as usage of energy-e¢ cient
building material.
�> As provides "su¢ cient statistics" for resulting externalities ey, policy can
condition directly on a.
�> Then K(a; �) captures agents�"true cost" of choice (taking into account
di¤erence in opportunity costs etc.)
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The Outside Financing Problem

� Each agent must raise capital Li
�> E.g., without additional policy/tax: Li = I0 +K(ai; �).

� Veri�able output: Contract with outside investor speci�es wlog repayment R if
xi = x.
�> Uniquely optimal e¤ort:

p0(e�)(x�R)� c0(e�) = 0:

�> Break-even requirement

p(e�)R = L:
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Productive Ine¢ ciency

� Denote total expected surplus ("net of funding requirement L")

! = p(e�)(x�R)� c(e�):

�> For all L > 0 we have

!(L) < !(0)� L:

� In fact, with di¤erentiability

d!(L)

dL
< �1:
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Properties of Surplus Function

� Extension: Stochastic contracts �> Investor and agent specify lottery.

� Over di¤erent expected (!) repayments Ln so that E[Ln] = L.

� Corresponds for agent to a randomization over !(Ln).

� Denote

b!(L) = maxE[!(Ln)]:
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Properties of Surplus Function

� Extension: Stochastic contracts �> Investor and agent specify lottery.

� Over di¤erent expected (!) repayments Ln so that E[Ln] = L.

� Corresponds for agent to a randomization over !(Ln).

� Denote

b!(L) = maxE[!(Ln)]:
� Claim: b!(L) is strictly concave
�> Argument: If not at L, then contradict by using "better lottery" over
(L1; L2) with

L = L1�1 + L2�2 and b!(L1)�1 + b!(L2)�2 > b!(L):
� Simpli�cation: Original surplus function !(L) already strictly concave.
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Benchmark 1: Controlling Avoidance

� Suppose utilitarian government could observe �i and control yi. Maximizes

E[ui] =
Z
[!(Li)� �yi] di:

� Thus pointwise maximization of

si = !(Li)� �yi
with

Li = I0 +K(y � y; �i):
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Benchmark 1: Controlling Avoidance

� Denote ySB(�) and aSB(�) = y � ySB(�):

� First-order condition:

�K1(aSB(�); �) � !0 (I0 +K(aSB(�); �)) = �:

�> Marginal cost of avoidance still strictly lower than �.
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Benchmark 1: Controlling Avoidance

� Side observation: While always

daSB(�)

d�
> 0;

total expenditures and thus need to raise �nance behave as follows:

dK(aSB(�); �)

d�
> 0 if K2K11 > K1K12 (Case 1)

dK(aSB(�); �)

d�
< 0 if K2K11 < K1K12: (Case 2)
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Benchmark 1: Controlling Avoidance
� Side observation: While always

daSB(�)

d�
> 0;

total expenditures and thus need to raise �nance behave as follows:

dK(aSB(�); �)

d�
> 0 if K2K11 > K1K12 (Case 1)

dK(aSB(�); �)

d�
< 0 if K2K11 < K1K12: (Case 2)

� Example: Increasing (Case 1) if

K(a; �) =
1

2�

a2

�
:
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Benchmark 2: With Redistribution

� Government observes �i and controls ai and can redistribute resources
�> Levy an ex-ante tax Ti so that

Li = K(ai; �i) + Ti

and Z
Tidi = 0:

� Lagrange problem:

L =E[ui] + �
Z
Tidi:
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Benchmark 2: With Redistribution

� Solution:

� Choice aRD(�) satis�es

�K1(aRD(�); �) = � with � > 1.

� Choice TRD(�) ensures that Li = LRD(�) = LRD
�> Equalization of !0(Li) = !0(LRD):
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Benchmark 2: With Redistribution

� Solution:

� Choice aRD(�) satis�es

�K1(aRD(�); �) = � with � > 1.

� Choice TRD(�) ensures that Li = LRD(�) = LRD
�> Equalization of !0(Li) = !0(LRD):

� Intuition: By concavity of !(L), aggregate productivity is highest when need
to raise �nance is made equal at all agents!

� Implied redistribution can go to either high- or low-type agents
�> To whoever has higher expenditure under aRD(�) ("Case 1 or 2").
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Linear Tax

� Tax rule:

�(y) = �0 + �y;

which must satisfy

�0 + �
Z
yidi = 0:

� Resulting need to raise �nance for type � and choice y:

L(y; �) = I0 +K(y � y; �) + �(y);

using a = y � y.
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Outcome with Linear Tax

� Given tax, clearly optimal choice a�(�):

K1(a
�(�); �) = �:

�> Implies that

dL(�)

d�
= K2(a

�(�); �) < 0 when a�(�) < 0.
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Outcome with Linear Tax
� Given tax, clearly optimal choice a�(�):

K1(a
�(�); �) = �:

�> Implies that

dL(�)

d�
= K2(a

�(�); �) < 0 when a�(�) < 0.

� Optimal tax rate:

�

�
�
Z
�
!0(L(�))dF (�)

�
= �

�
R
� !

0(L(�))
�
y�(�)�

R
� y

�(�0)dF (�0)
�
dF (�)R

�
dy�(�)
d� dF (�)

where the last term is strictly positive.
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Outcome with Linear Tax

� Short-hand: Optimal tax rate

�

�
�
Z
�
!0(L(�))dF (�)

�
= ��D with D > 0.

� Thus two reasons for why � < �:

� LHS-multiplier >1: "Average costs of outside �nancing".

� RHS "subtraction": Loss of productive e¢ ciency due to "redistribution".
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Outcome with Linear Tax

� Short-hand: Optimal tax rate

�

�
�
Z
�
!0(L(�))dF (�)

�
= ��D with D > 0.

� Thus two reasons for why � < �:

� LHS-multiplier >1: "Average costs of outside �nancing"

� RHS "subtraction": Loss of productive e¢ ciency due to "redistribution".

� Redistribution

� always to high-type agents;

� and thus always to agents who have less expenditures K(�) and thus less
additional need for outside funding L(�).
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Alternative Implementation

� Pollution capacity Y allocated uniformly over agents (Yi = Y ).
�> Generates uniform trading price

K1(a
�(�); �) = �

together with Z
a�(�)dF (�) = y � Y:

� For each � we have thus additional �nancing needs

�(y�(�)� Y ):
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Comparison to Second-Best Benchmark

� There, no redistribution but direct control of aSB(�).

� If total expenditures are increasing with type under second-best benchmark, then

� high types have strictly higher levels of avoidance under (redistributive) linear
tax;

� low types have strictly lower levels.

� Opposite prediction when K(aSB(�); �) is decreasing.
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Nonlinear Taxes

� General �(y).
�> Can then no longer be implemented by allocating and trading "pollution
rights".



32

Nonlinear Taxes
� General �(y).
�> Can then no longer be implemented by allocating and trading "pollution
rights".

� Mechanism design approach: Specify y(�) and T (�).
�> Stipulate wlog that loan size L(�) exactly equal to required funds
� On-equilibrium ("truthtelling"):

L(y(�); T (�); �) = I0 +K(y � y(�); �) + T (�):

� O¤-equilibrium:

L(y(b�); T (b�); �) = I0 +K(y � y(b�); �) + T (b�):
� Restriction to continuous di¤erentiable solutions
�> Apply optimal control techniques.
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Incentive Compatibility

� Local truthtelling condition:

d!
�
L(y(b�); �)�
db�

������b�=� = T
0(�)� y0(�)K1(y � y(�); �) = 0:

� With u(�) = ! (L(y(�); T (�); �)), likewise

du(�)

d�
=

@!
�
L(y(b�); T (b�); �)�

@�

������b�=�
= !0(�)K2(y � y(�); �) > 0 when y(�) > 0.
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Incentive Compatibility

� "First-order approach": Assume that local incentive compatibility already implies
global incentive compatibility
�> Requires that y(�) is nondecreasing.
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Control Problem

� Take as state variable

L(�) = I0 +K(y � y(�); �) + T (�):

�> From incentive compatibility and with u(�) = !(L(�)) must satisfy

du(�)

d�
=

@u(�)

@�
= !0(�)K2(y � y(�); �) and

du(�)

d�
= !0(�)dL(�)

d�

so that
dL(�)

d�
= K2(y � y(�); �) < 0:
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Control Problem

� Substitute pointwise for

T (�) = L(�)� [I0 +K(y � y(�); �)]

�> Single control variable y(�).
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Control Problem

� The objective is thus to maximizeZ
�
[!(L(�))� �y(�)] dF (�)

subject to the "law of motion" dL(�)d� = K2(y�y(�); �) and the budget balance
condition Z

�
[L(�)�K(y � y(�); �)� I0] dF (�) = 0:
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Control Problem
� The objective is thus to maximizeZ

�
[!(L(�))� �y(�)] dF (�)

subject to the "law of motion" dL(�)d� = K2(y�y(�); �) and the budget balance
condition Z

�
[L(�)�K(y � y(�); �)� I0] dF (�) = 0:

� Hamiltonian

H = [!(L(�))� �y(�)] f(�)
+� [L(�)�K(y � y(�); �)� I0] f(�)
+�(�)K2(y � y(�); �):
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Characterization

� First-order condition for y(�)

f(�) [��+ �K1(y � y(�); �)]� �(�)K12(y � y(�); �) = 0:

� Costate
@H

@L
= ��0(�), f(�)

h
!0(L(�)) + �

i
= ��0(�):

� Implication: As L(�) is decreasing and !(�) concave
�> !0(L(�)) + � < 0 for low and !0(L(�)) + � > 0 for high types.
�> �0(�) �rst positive, then negative
�> �(�) is hump-shaped.
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Characterization

� With transversality conditions given by

lim
�!�

�(�) = 0;

lim
�!�

�(�) = 0:

�> Substitute to obtain "marginal social cost of spending more"

� = �
Z �
�
!0(L(#))dF (#) > 1:

� And thus �(�) is hump-shaped, with zero at the boundaries.
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Characterization

� Rearrange �rst-order condition for y(�)

�K1(y � y(�); �) = �+
�(�)

f(�)
K12(y � y(�); �)

< �:

� As with linear tax, two reasons for why < � !
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Characterization

� First-order condition for y(�)

�K1(y � y(�); �) = �+
�(�)

f(�)
K12(y � y(�); �)

� Reason 1: � > 1
�> Average marginal costs of higher avoidance, arising from �nancial imperfec-
tion.
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Characterization
� First-order condition for y(�)

�K1(y � y(�); �) = �+
�(�)

f(�)
K12(y � y(�); �)

� Reason 1: � > 1
�> Average marginal costs of higher avoidance, arising from �nancial imperfec-
tion.

� Reason 2: �(�) > 0 �> Reduced average productive ine¢ ciency due to redis-
tribution.

� �(�) is marginal increase in welfare resulting from a marginal shift of required
�nancing from types below � to types above �
�> Dampens redistribution!

� No one bene�tting from redistribution at �, no one contributing at �
�> Thus �(�) = �(�) = 0.
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Optimal Nonlinear Tax �(y)

� Note

T 0(�) = y0(�)K1(�) � 0:

�> Still transfer to high-type agents!
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Optimal Nonlinear Tax �(y)

� Now with �(y) = T (�(y)): Marginal tax on externality

� 0(y) = T 0(�)
d�

dy
=
T 0(�)
y0(�)

= K1(y � y; �)

=
1

�

"
�+

�(�)

f(�)
K12(y � y; �)

#

where we use � = �(y) = y�1(y(�)).
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Optimal Nonlinear Tax �(y)

� This yields

�� 00(y) = ��(�)
f(�)

K112 +
d�

dy

"
�(�)

f(�)
K122 +K12

d

d�

"
�(�)

f(�)

##
:
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"Non-linearity"

� Take

yl = y(�) < yh = y(�):

� Evaluated at lowest and highest generated externality:

�� 00(yl) =
d�

dy
K12

�0(�)
f(�)

< 0 I.e., marginal tax decreases for very low y.

�� 00(yh) =
d�

dy
K12

�0(�)
f(�)

> 0 I.e., marginal tax increases for very high y.

� I.e., the marginal tax is highest at the very low and the very high end
�> "First units" and "last units" of avoidance are rewarded most.
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Discussion: Taxes on Output?

� E.g., tax on positive outcome z(�) < x. Gives then rise to expected probability
of success p(�) and expected output tax Z(�) = z(�)p(�)
�> Modi�ed resource constraintZ

[T (�) + Z(�)] dF (�) = 0:
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Discussion: Taxes on Output?

� E.g., tax on positive outcome z(�) < x. Gives then rise to expected probability
of success p(�) and expected output tax Z(�) = z(�)p(�)
�> Modi�ed resource constraintZ

[T (�) + Z(�)] dF (�) = 0:

� Alternative implementation:
�> Suppose that instead up-front redistribution according to

eT (�) = T (�) + Z(�):
� Requires to raise �nance by Z(�):

� Leads to same p(�).
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Loan-Based Grants

� Idea: Tax externality y and provide grant when, together with avoidance a, a
�rm raises credit L.
�> Tax �(y) together with loan-based grant g(L).

� But still relevance of private information: Raise L to obtain grant even though
not needed
�> Bene�t: Additional grant / subsidy.
�> Cost: Higher-than-necessary ine¢ ciency from outside �nancing!

� Question: Can loan-based grants be used as an additional instrument? Implica-
tions for optimal policy?
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Linear Tax with Subsidized Loan

� Incentives to reduce externalities given by linear tax �
�> Leads to choice y�(�).

� In addition, to counteract the implied redistribution, government speci�es a tax
t(�)

�> Without additional "instrument", t(�) = �0, so that again

T (�) = y�(�)� + �0:

� Then, recall that using K1(�) = � :

du(�)

d�
= !0(L(�))

dL(�)

d�
= !0(L(�))K2(a

�(�); �):
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Linear Tax with Subsidized Loan

� Additional instrument: Minimum loan size is observable.
�> Stipulate L(�) together with t(�) ("grant", will be decreasing).
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Linear Tax with Subsidized Loan

� As L(�) will be strictly increasing, need to consider (only) downward deviations
�> I.e., mimic b� � � and derive utility
u(�; b�) = !(L(b�)) + h

L(b�)� I0 �K(y � y�(�); �)� �y�(�)� t(b�)i :
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Linear Tax with Subsidized Loan

� As L(�) will be strictly increasing, need to consider (only) downward deviations
�> I.e., mimic b� � � and derive utility
u(�; b�) = !(L(b�)) + h

L(b�)� I0 �K(y � y�(�); �)� �y�(�)� t(b�)i :
� When t(�) with t0(�) < 0 shall be made as steep as possible, then we have

du(�)

d�
=
@u(�)

@�
= �K2(a�(�); �)

and

t0(�) = �K2(a�(�); �)
1� !0(L(�))
!0(L(�))

< 0:

� Intuition: Costly to pretend to need a higher loan!
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Nonlinear Tax Plus Loan-based Grant

� Again mechanism-design approach: Next to y(�) and T (�) specify a minimum
loan size L(�).

� Agents could secretly raise higher outside �nance, but will not arise in equilibrium.

� Key constraint: As L(�) will be strictly increasing, need to consider (only) down-
ward deviations
�> I.e., mimic b� � � and derive utility

u(�; b�) = ! �L(b�)�+K(y � y(b�); b�)�K(y � y(b�); �):
�> Thus marginal bene�ts from deviating are again given by K2(�)!
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Nonlinear Tax Plus Loan-based Grant

� In summary: Change to nonlinear tax without loan-based grant is "law-of-
motion" for state variable L(�) (Recall u(�) = ! (L(�)) !)

L0(�) = �K2(y � y(�); �)
!0(L(�))

:

� And �rst-order condition for y(�)

�K1(y � y(�); �) = �+ �(�)
K12(y � y(�); �)

!0(L(�))
:
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Concluding Remarks

� Objective: Analyze optimal policy towards externalities in light of two constraints

� Need to raise outside �nance to avoid externalities, which is "costly" due to
�nancial imperfections (agency problem);

� Marginal avoidance costs are private information (vis-á-vis policymaker).

� Interaction of the two problems: Tax on externality leads to redistribution of
resources, which leads to reduced aggregate e¢ ciency.
�> Utilitarian government would want to redistribute.
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Concluding Remarks

� Finding 1: Optimal linear tax strictly smaller than "�rst-best" Pigou tax.
�> Two reasons!

� Finding 2: Higher e¢ ciency with nonlinear tax.

� Finding 3: Higher e¢ ciency with tax on externalities plus loan-based grants.
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