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Abstract

Since the seminal paper by Dickey and Fuller in 1979, unit-root tests have conditioned the standard ap-
proaches to analyzing time series with strong serial dependence in the mean behavior, the focus being placed
on the detection of eventual unit roots in an autoregressive model fitted to the series. In this paper we propose
a completely different method to test for the type of long-wave patterns observed not only in unit root time
series but also in series following more complex data generating mechanisms. To this end, our testing device
analyses the unit root persistence exhibited by the data while imposing very few constraints on the generating
mechanism. We call our device the Range Unit Root (RUR) test since it is constructed from the running
ranges of the series from which we derive its limit distribution. These nonparametric statistics endow the
test with a number of desirable properties, the invariance to monotonic transformations of the series and the
robustness to the presence of important parameter shifts. Moreover, the RUR test outperforms the power of
standard unit root tests on near-unit-root stationary time series; it is invariant with respect to the innovations
distribution and asymptotically immune to noise. An extension of the RUR test, called the Forward-Backward
Range Unit Root (FB-RUR) improves the check in the presence of additive outliers. Finally, we illustrate
the performances of both range tests and their discrepancies with the Dickey-Fuller (DF) unit root test on

exchange rate series.

Key Words: Unit Roots Tests, Structural Breaks, Nonlinearities, Additive Outliers, Running Ranges

and Exchange Rates.



1 Introduction

Many overwhelming low-frequency non-periodic components in time series are associated with the
presence of unit roots in their Data Generating Process (DGP). Such time series are said to be
integrated. The pioneering work of Nelson and Plosser (1982) led to the belief that many economic
time series were best described in this way. This prompted a large amount of research on unit root
time series, covering both theoretical and empirical aspects. The unit root paradigm has important
practical implications since it entails that shocks have a permanent effect on a variable, or equivalently

that the fluctuations they cause are not transitory.

The existence of unit roots in time series is investigated by means of unit root tests. The application
of standard unit root tests, such as the Dickey-Fuller (DF hereafter) test (Dickey and Fuller, 1979),
has been an important step in the construction of a useful parametric model for many economic time

series.

Unit root time series models impose, however, severe restrictions on the DGP’s of the data. Many
real world time series exhibit nonlinearities, outliers, and structural breaks either in the mean or in
the variance. All these features, which cannot be properly captured with random-walk like models,

fool standard unit root tests.

Many economic and financial time series such as inflation, unemployment rate, nominal and real
interest rates can be trend-stationary with a structural break in the unconditional mean which affects
the standard inferential procedures and often makes constant coefficient models to perform poorly in
practice (see for instance Perron, 1990, and Malliaropulos, 2000). The literature on testing for unit
roots in the presence of both known and unknown break points is large (see Maddala and Kim, 1998
for a review). Perron (1989), Vogelsang (1990) and Perron and Vogelsang (1992) reported evidence
that structural breaks can make an I(0) time series behave locally as I(1) and, as a result, these breaks
are able to fool standard unit root tests. The appropriate handling of such departures as parameter

shifts, trend breaks and nonlinearities calls for the development of robust unit root tests.

In practice, it is difficult and even sometimes impossible to know whether a time series exhibit-
ing unit-root like behavior is really I(1), or rather a monotonically nonlinear transformation of an
I(1) series. With standard unit-root tests, misspecification of the true time series model may affect
the rate of divergence of the test statistic, making it behave inconsistently. The invariance to such

nonlinearities, would be therefore, a desirable property of a unit-root test.

Granger and Hallman (1991) looked at the autocorrelation function of several nonlinear transfor-
mations of the original series and proposed a test invariant to monotonic transformations based on

ranks.



Ermini and Granger (1993) worked with the Hermite polynomial expansion of different nonlinear
transformations of random walks, possibly with drift, and showed that the autocorrelation function

is not always a reliable indicator of the degree of memory of nonlinear time series.

Outlying observations is another source of problems for the time series analysis. These may occur
for different reasons, ranging from measurement errors to recordings of unusual events such as wars,
disasters and dramatic policy changes. Some commonplace outlier-inducing events in economic time
series are union strikes, hoarding consumer behavior in response to a policy announcement, and
computer breakdown effects on unemployment or sales data collection and processing, to name a few.
Outliers can also appear as a result of misspecified estimated relationships or omitted variables (see

for instance Pena, 2001).

There is a sort of duality between the effects of AO’s and those of structural breaks on time
series. Indeed while 7(0) time series subject to level shifts could be misinterpreted as I(1), I(1) time
series corrupted by AO’s might look like 7(0) provided that the outliers are sufficiently frequent and
important in magnitude. In particular, it is known that the presence of AQO’s leads to a downward
bias of the OLS parameter estimates in a stationary AR(1) process (Bustos and Yohai, 1986; Martin
and Yohai, 1986) and thereby the DF test will have an actual size in excess of the nominal size, thus
rejecting the unit-root hypothesis too often. The size distortion of the DF test in the presence of AO’s
was quantified by Franses and Haldrup (1994).

In this paper, we introduce a nonparametric Range Unit Root (RUR hereafter) test whose supe-
riority with respect to the standard approaches is remarkable, see Aparicio, Escribano and Garcia
(2004a,b) . First, it is invariant to monotonic transformations and to the distribution of the model
errors. Second it is robust against many structural breaks, parameter shifts and certain additive out-
liers. Third, it does not depend on the variance of any stationary alternative and thereby outperforms
standard tests also in terms of power on near-unit-root stationary time series. Finally, a modified

RUR test (FB-RUR) is not affected by the presence of additive noise on the series.

The structure of the paper is as follows. In Section 2 we introduce the RUR test, we discuss its
small sample behavior under the null hypothesis of a single unit root, we derive the asymptotic null
distribution of the test. Section 3 studies its power performances and its consistency against both
stationary, integrated and trending alternatives. Section 4 analyses robustness of the test statistic
under different departures from the standard unit root tests’ assumptions. Section 5 presents a
modification of the former RUR test that improves both its small-sample power in the presence of
level shifts, and its size when additive outliers corrupts the series early. In Section 6 we analyse the
size distortion with serial correlation and heteroskedastic error. In Section 7 we apply our testing
methodology to a real time series and compare the results with those obtained by means of standard
unit root tests. After the concluding remarks of Section 8, an appendix is devoted to the proofs of

the main theoretical results.



2 Range unit root (RUR) test

Many time series not generated by unit-root models exhibit similar mean behavior to those which
are. The objective of this section is to investigate alternative procedures for assessing the presence of
unit-root like features, not necessarily caused by unit roots. We will begin by studying the behavior

of the sequence of running ranges in both stationary and random walk time series.

The range of a data sample is defined in terms of its extremes. Formally, for a given time series w;,
the statistics x1; = min {xq,--- ,2;} and z; ; = max{z1,--- ,2;} are called the i-th extremes. When
the sample comes from a time series x;, a monotonically increasing sequence of ranges can be obtained
as RZ@) =, —T1,, fori=1,2,3,--- ,n, where n denotes the sample size. The total number of “new
extremes” or records in a sample of size n is given by the quantity > ., I(AREI) > 0), where 1(.) is

the indicator function.

It can be shown that the long-run frequency of new records, n=* Y"1, 1(ARZ(-I) > 0), vanishes faster
for stationary time series than for series containing a unit root; these latter series are often referred
to as integrated “of order 17, or briefly as I(1). In particular, for i.i.d. sequences of random variables

we have (see for instance Embrechts, Kliippelberg and Mikosch, 1999):

1
logn

i 1(AR™ > 0) = 0(1)

This result still holds for stationary series satisfying the “Berman condition”, which requires the
covariance sequence of the series {¢; = Cov(2;244:)};~, to decrease faster than (logi)~!, that is
cilogi — 0 as i — oo (see Lindgren and H. Rootzén, 1987)!. As will be shown later in this pa-

per, the frequency of new records for I(1) time series decreases at the slower rate:

# S 1(ARY) > 0) = 0(1)
=1

On the other hand if x; is a random walk with drift, then the frequency of new records decreases
at an even slow speed, in this case:
N (@ < gy —
> (AR > 0)=0(1)
[t
We remark that for the random walk, the sequence of running ranges escalates indefinitely, whereas
it does not in the stationary cases, see Aparicio, Escribano and Garcia (2005). However, having

thick-tailed error distributions or mere infinite variance does not imply the divergence of the running

ranges. Such a divergence is caused by strong first order serial or stationary frequency dependence.

I Any time series with exponentially decaying covariances satisfies the “Berman condition”.



In what follows we introduce the RUR test statistic upon which the proposed unit root testing
methodology is based. Then we provide some asymptotic results, and analyse its small-sample behavior
under the null hypothesis of a single unit root. Finally, we study its small-sample power performances

against AR(1) stationary alternatives.

2.1 The test statistic

In the sequel we will consider the statistic Jé") defined below for testing the null hypothesis of a

random walk z; = ;1 + € where the errors {¢;} ;>1 are a sequence of ¢.i.d. random variables having
2

€

Root (RUR hereafter) test.

zero mean and variance oZ. The corresponding testing device will be referred to as the Range Unit

RUR=J" =n~ Y23 1(AR" > 0). (1)
t=1

Notice that n=1/ 2Jén) represents the proportion of these prediction errors in a sample of size n,

while nl/ QJén) is the number of new records of the time series x; up to time n.

Given the non-ergodic nature of x; under the null hypothesis, the normalized number of records
in the sample, Jé"), does not converge to zero but to a non-degenerate random variable, as will be
shown later. On the contrary, when x; ~ I(0), Jén) converges in probability to zero. Therefore, we
can consider the left tail of the distribution of Jén) to discriminate between (1) and I(0) series. This
means that when z; ~ I(0), R,Eai)l is a more efficient predictor of Rﬁx) than when z; contains a unit
root. Consequently, the RUR test statistic Jé") will be expected to take comparatively large values
for I(1) time series while small for 7(0) time series. We will show also that the RUR test is robust to

a number of departures from the null hypothesis (no size distortions).

2.2 Small-sample behavior under the null

Table 1 shows estimates of the critical values of Jén) obtained from 10,000 replications of the null
model, and for eight different sample sizes and six significance levels (o = 0.01,0.025,0.05,0.10, 0.90, 0.95)

where the model errors follows e; ~ Nid(0, 1).



a|n 100 250 500 1000 2000 3000 4000 5000
0.01 09 0.9391 1.0119 1.0435 1.1180 1.1137 1.1420 1.1455
0.025 1.0 1.0752 1.1180 1.1700 1.2075 1.2232 1.2301 1.2304
0.06 1.1 1.2017 1.2075 1.2649 1.2746 1.3145 1.3123 1.3152
0.10 1.3 1.3282 1.3864 1.4230 1.4530 1.4534 1.4606 1.4506
0.90 2.8 29725 3.04 3.06 3.08  3.1038  3.108 3.11
0.95 3.1 3.2888 3.3541 3.3520 3.4435 3.4324 3.44 3.47

Table 1. Critical values of the unit root test

Figure 1 shows the corresponding empirical density of Jén) estimated by kernel smoothing, using

the Epanechnikov kernel.
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Figure 1. Plot of the empirical density of Jén) , for different sample sizes, under the null hypothesis

of a random walk with Nid(0,1) errors.

2.3 Asymptotic distribution

A basic result regarding the behavior of the records of a random walk is that the sample size increasing
the frequency of these records is equal to zero. Proposition 1 formally establishes this result, which is

proved in the Appendix and will be used subsequently.

Proposition 1 Let vy = x4 1 +¢; where {e,g}t21 satisfies the mixing-condition of Phillips and Perron

(1988) and let x;y = max{z1,...,x¢} and x1, = min{xzq,...,2,}. Then we have



lim P(x; =2 4) = tlirglo P(zy =x14)=0. (2)

t—o0
Proof. In Appendix Al. m

The appropriate scaling is needed for the sequence of partial sums 2?21 l(ARgx) > 0) to converge
to a non-degenerate random variable under the null hypothesis Hy. Our main result of Theorem 3
establishes that under Hy the normalized sequence of partial sums Jén) =n"2%0 1(AR§1) > 0)
converges weakly to a random variable. Under the alternative hypothesis of stationary, and under mild
conditions on the degree of serial dependence of x, the sequence of partial sums >, ; l(ARgx) > 0)

diverges at a much lower rate, thus leading to Jén) — 0 asn — oo.

From Revuz and Yor (1991) we have the following definition of local time processes:

Definition 2 (Local Time of a Brownian Motion Process) (Lévy, 1948) Let B(.) represent a

Brownian motion process in R, and let lp(x,t) be defined as

1 t
zB(x,t):%Q—é/o1[x—5§B(s)§x+a}ds 3)
Ip(x,t) is a continuous increasing process in x called the local time of B at x. It measures the amount
of time the Brownian motion spends in the neighborhood of x. It can also be interpreted as the “spatial

density” of the occupation time fg 1z —d < B(s) <z +d]ds.

Theorem 3 Let zy = 22:1 €; where {ei}izlare continuous i.i.d. random variables with bounded pdf,
zero mean and finite variance 0. Suppose that xo has also a bounded pdf and finite variance. And
let ™ = J + 5 with J™ = n 2 A(zy = 24y) and J =n~V2S" 1wy = 21,). Then

we have

1.

E

7 = 20 (4)
n E

I = @13(071) (5)

9 h 2
P eny e [ [ — | ©
27T(E{|el|}) 0 Q(E{a‘-fl‘})
h >0, i=1,2 which depends on a = Edlald (7)

Oe



2. The limiting distribution of the RUR test statistic is given by,

. 2 3 .2
RUR = J" = |5 —e%?]
a ™

2 2~ 1(e+n)?
\/;(EJH?) e 2

independent of a = %ﬁel‘} where & — |B(1)] and n — 15(0,1)

3. If x; is a stationary Gaussian series with covariance sequence {¢; = Cov(xy,x444)}; satisfying

cilogi — 0 as n — oo (Berman condition). Then we have
I 2o, (8)

and thus the RUR test is consistent against this stationary alternatives.
Proof. In Appendix A2. m

In Figure 2 we plot the asymptotic distribution and the empirical distribution for a sample size of
1,000. It is clear that the critical values from both tails of the two distribution are similar as was

shown in Table 1.
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Figure 2. Plot of the empirical density of Jén) for » = 1000 under the null hypothesis
Hy: xt = 241 + €, where ¢, ~ Nid(0,1) and the Asymptotic distribution.

To ensure the consistency of the RUR test statistic against general stationary alternatives we impose
certain restrictions on the serial dependence of the process. The following condition is similar in spirit
(although weaker) to the strong-mixing condition and allows us to use the results from the asymptotic

theory of records for i.i.d. processes.



Condition 4 D(uy): Let {z+},5, be a stationary sequence of random variables with
Fil,‘..,in (uh 7’U,n) = ]D{.’L‘l1 S uy, ...7.’L‘in S un}

representing its finite-dimensional distribution function. Write F;, _; (u) = Fiy . (u,...,u) for

economy of notation and define

oy =max {|Fy, iy gyge (W) = Fiy oy (W) Fyy o, (w)] }

with1 <y < ... <ip < J1 < ... < Jg <m, j1—1p > 1. The sequence {z:},~, is said to satisfy condition

D(uy,) if there exists a sequence of numbers I, = o(n) such that o, — 0.

Among the processes that satisfy condition D(u,,) are the Gaussian processes satisfying the so-called
“Berman condition”. If x; is one such process then the joint distribution of any fixed set of extreme
statistics converges to the same limit as if the variables were i.i.d. (Lindgren and Rootzén, 1987).
As a consequence, we must expect nl/QJén) ~ O(logn), or equivalently, Jén) ~ O(n="?log(n)) — 0
as n — oo, and the consistency against this class of alternatives is proved.Note that the Berman
condition is not very demanding, since it is satisfied by any process with exponentially decaying
covariance function, among which are all the stationary Gaussian ARMA processes. The Gaussian
condition seems to be too restrictive; however, as we will see in the next section, the size and power
of the RUR test statistic do not vary significantly under stationary alternatives and under different

error distributions (such as Cauchy’s and the t-Student).

3 Size, power and consistency of RUR test

In this section we investigate the power performances of the RUR test and its consistency against
stationary, trending and integrated alternatives. First of all, it is easy to show that the test is
consistent against stationary alternatives (Hy : I(1) against Hy : I(0)). To show it, recall from
Section 2 that for such alternatives we can expect the sequence of ranges to behave similarly as if x;

was an ¢.i.d. sequence, that is:
n~1/2 Z l(ARZ(-I) > 0)=0(n"2logn)
i=1
Jé”) = O(n Y?logn)

Therefore the test is consistent since n=/2logn — 0 as n — oo, while P(J(®) = 0|Hp) = 0. A
similar behavior applies on I(—k) time series with k& > 0 since the degree of mean reversion is even
more pronounced in this case. The following simple device will allow us to discriminate between the
stationary and the integrated case. Let B denote the lag operator and let 5§0) 2 x¢. Note that if

@y ~ I(0) then the time series defined by 7" 2 >ieo Blwy—j is I(1). Similarly, if z; ~ I(—k) with



k > 0 then k + 1 will be the smallest positive integer such that %ﬁ’“*l) ~ I(1), or equivalently, such

that Jé") does not vanish asymptotically. By mere inversion of the argument, if &k is the smallest

nonnegative integer such that the null hypothesis is not rejected on 5§’“) then x; will very likely be

I(—k).

The small-sample power of the test against stationary AR(1) alternatives is shown in Table 2 below
using the estimated critical values at the 5% significance level, and from 10,000 replications of the

alternative model x; = b x1_1 + €, with e, ~ Nid(0, 1), the DF test shown in parenthesis.

n|b 05 0.8 0.9 0.95 0.99 1

100 0.8 (1) 0.6(0.99) 05 (0.5 0.4 (0.18) 0.12 (0.0375) 0.051 (0.04)
250 1 (1) 1(1) 1(1)  08(0.7) 047 (0.0760) 0.049 (0.05)
500 1 (1) 1 (1) 1 (1) 1(0.99)  0.72 (0.39)  0.05 (0.05)

Table 2. Empirical size and power of RUR test from 10, 000 replications for different sample sizes n and for

different values of b. (DF in parenthesis)

These results show that the DF test outperforms the RUR test in only two cases: (i) when the
sample size is comparatively small (n = 100), and (ii) when the autoregression parameter b is far
from the nonstationary values of (b). For near-unit root stationary time series, however, the RUR test
outperforms the DF test. Therefore as compared to the DF test, the RUR test establishes a sharper
distinction between the null hypothesis of unit root and the stationary AR(1) alternatives. This can be
explained by the invariance of the RUR test statistic J(g") with respect to the finite constant variance

o2 of the stationary alternative, which follows from the fact that

1(ARY™ > 0) = 1(o; ' AR™ > 0).

On trending alternatives, the RUR test is also consistent if we use the right tail of the distribution
of Jén) under Hy. To see this, we invoke a classical result by Feller (1971) which states that on
random walks with nonzero drift, that is when p, = FE(e;) # 0, the renewal counting process of
records N(n) =Y 1" | 1(AR1@ > 0) satisfies:

lim n ' N(n) = O(1).

n—oo

As a consequence, Jén) = 0O(n'/?) — 0o as n — oo under such alternatives.

A similar divergent behavior of the RUR test statistic occurs when x; ~ I(k) with integration order
k > 1, or when z; is a stationary time series fluctuating around a deterministic trend. To distinguish

between these two cases consider the following time series models:

a) xy=m_1+€ with E(e) = p, # 0.

b) m =y + put where y, ~ I(0).

10



Notice that under model a) Az; ~ I(0), while under model b) Az; ~ I(—1). So discrimination

between model a) and b) is reduced to determine the order of integration, as discussed before.

4 Departures from the standard conditions under H,

Another important property of the RUR test is its robustness to departures from the standard assump-
tions. In this paper, we consider three types of departures: a) stationary alternatives with different
error distributions, b) when a stationary time series undergoes structural breaks; c¢) when I(1) time
series are corrupted by additive outliers and I(1) time series are nonlinear transformed. In the sequel
we study the small sample behavior of the RUR test in the presence of each of the above-mentioned

departures from the standard unit-root tests assumptions.

4.1 Robustness of RUR test statistic against alternative error distributions

Consider J(gn) in the following form:

I =023 1(ARS > 0)
=1

n n
=n~Y/2 Z 1(x; — w3 =0) + n=t/? Z L(z; — 215 =0)
i=1 i=1

and then realizing that each term in this sum is the normalized number of visits to the origin of

the two I(1) processes with asymptotically i.i.d. innovations:

Yt = Tt — Tt 9)

Yy =Ty — T1g (10)

The I(1) nature of y; and y; allows the application of a result by Burridge and Guerre (1996) for
the asymptotic distribution of the normalized number of level crossings of a random walk, and which
leads straightforwardly to ours. The asymptotic distribution of Ji(") depends on the innovations’
distribution (in particular of their variance, 02). This dependence comes from the scaling factor
a = E{|e|}/o. which varies from one error distribution to another. For example, if the innovations
€; are Gaussian then a = \/2/_71', and thereby even the asymptotic distribution of the normalized
number of upper (or lower) records, J\"™ (JS™), is unaffected by errors’ variance, o2. However, this
case is rather exceptional since for all other common distribution the value of a is sensitive to its
shape, or equivalently to the tails. This is shown below for some typical error distributions with shape

parameter denoted by v.

11



Probability Distribution of Model Errors {¢:},., a= Ege‘}
iy l Elli
Student—t with v degrees of freedom v/ ”;2 w
2
Log-Normal —L1
Vexp(r?)—1
G I'(c+1)
amma NGYO)
. r(<)
Weibull \/ﬁ

Therefore, in general, the asymptotic distribution of the statistics Jl(") and JQ(n) has different support
depending on the shape of the model error distribution, which acts as a nuisance parameter. However,
the asymptotic distribution of the RUR test statistic Jén) is free of nuisance parameters This is in

contrast with the unit root testing device suggested by Burridge and Guerre (1996), based on the
E{lel}

Oe¢

number of crossings, which in fact, depends on these nuisance parameters, a =

The empirical size and power of the RUR test against stationary AR(1) alternatives is shown in
Table 3 below. We consider the estimated 5% critical values from 10,000 replications of the model
2t = b w1 + €, with the following distributions: €; ~ Nid(0,1) when e; has a Student-¢ distribution
with 5 degrees of freedom, when ¢; has a Mixture of N(—4,9.766) and U(—1,9) (notice that this
distribution has a mean and median equal to zero but it is asymmetric) and finally the same AR(1)
model but with € following a Cauchy distribution. The autoregressive parameter b was allowed to
take different stationary values (power of the test) and a nonstationary value (size of the test) for

different sample sizes n. The DF performances appear in parenthesis.

n|b 0.5 0.8 0.9 0.95 0.99 1
Cauhy
100 0.8 (1) 0.6 (0.99) 0.49 (0.4) 0.4 (0.09) 0.12 (0.03) 0.052 (0.051)
250 1(1) 1(1) 1(1) 0.81 (0.6) 0.5 (0.07) 0.05 (0.05)
500 1(1) 1(1) 1(1) (0.9) 0.7 (0.1) 0.05 (0.05)
t-student
100 0.8 (1) 0.6 (0.99) 0.5 (0.4) 0.39 (0.09) 0.1 (0.02) 0.05 (0.04)
250 1(1) 1(1) 1 (0.99) 0.8 (0.65)  0.45 (0.06) 0.05 (0.05)
500 1(1) 1(1) 1(1) 1 (0.97) 0.7 (0.08) 0.05 (0.05)
Asymmetric
100 0.8 (0.99) 0.6 (0.98) 0.5 (0.4) 0.4 (0.08) 0.1 (0.02) 0.05 (0.04)
250 1(1) 1(1) 1(1) 0.82 (0.7) 0.5 (0.06) 0.05 (0.05)
500 1(1) 1(1) 1(1) 1(1) 0.7 (0.1)  0.05 (0.05)

Table 3. Empirical size and power of RUR test from 10, 000 replications for different sample sizes n, values

of b and error distributions

12



The size of the RUR test is included in the last column of Table 3. It is clear that there is no size
distortion for different error distributions even if the distributions are asymmetric. As expected, the
power of the DF test is higher than the power of the RUR test for stationary alternatives that are
far from 1 (say 0.5 and 0.8). However, in contrast with the RUR test, the power of the DF decreases

dramatically for autoregressive values near the unit root (0.95, 0.99).

4.2 Power of the test against stationary alternatives with level shifts

We will consider the case of a single structural break in the series in the middle of the sample. The
break is modeled as a dummy variable defined by D; = 0 for t < n/2 and D, = 1 for t > n/2.
Specifically, we consider the alternative model is xy = 0.5 ;1 + s Dy + ¢;. Table 4 provides power
estimates at the 5% significance level from 10,000 replications for different values of the sample size

n and of the local break size s. The power performances of the DF test appear in parenthesis.

nls 4 8 12
100 0.2 (0.00) 0.08 (0.00) 0.07 (0.00)
250 0.7 (0.00) 0.6 (0.00) 0.6 (0.00)
500 1(0.86)  1(0.00) 1 (0.00)

Table 4. Empirical power against the alternative x; = 0.5 x;_1 + s D; + ¢, for different values of the

sample size n and of the local break size s

We remark that except for the case of s = 4 and n = 500, the Dickey-Fuller (DF) test has no power.
The RUR test is more powerful for sample sizes larger 250 and therefore are less prone to misinterpret
structural breaks as are permanent stochastic disturbances. In a scenario allowing for multiple breaks,
we should expect a larger decrease in power for both the RUR and the DF tests. In order to assess
these power losses, we performed another experiment which included two breaks at different locations
in time. The alternative model was now z; = 0.5 x4—1 + s1 Dy 1 + s2Dy o + € with Dy ; (i = 1,2)
representing dummy variables defined by D, ; = 0 for ¢t < in/4 and D, ; = 1 for in/4 <t <in/2. Table
5 shows the power results at the 5% significance level obtained from 10,000 replications of this model,
for both the RUR and the DF tests shown in brackets. Here s12 = (s1, s2)". The power estimates are
given for different values of the sample size n (100,250,500), and of the break magnitudes s; and so (
s1=2,4,8, and sy = 4,8, 12,respectively). Once again, the RUR test outperforms the DF results in

all cases, and is powerful for the sample size n = 500, as long as the break size is not too large.
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n |s1.0 (2,4) (4,8) (8,12)
100 0.07 (0.000) 0.005 (0.000) 0.000 (0.000)
250 0.5 (0.000)  0.200 (0.000)  0.05 (0.000)
500 1(0.453) 0.7 (0.000) 0.6 (0.000)

Table 5. Empirical power of the RUR test against the alternative &y = 0.5 41 + 51 Dy 1 + 52Dy 2 + €, for

different values of the sample size n and of the local break size s

To explain this robustness of the RUR test theoretically, consider the following AR(1) models,

where we allow for the possibility of a single break through innovations dynamics:

a) m=ari1+§&, laf <1 with E(§,) =0,

b) m =axi—1+e€, |a] <1 with E(e) = s1(t = to).

Let Jén) , Je(n) be the RUR test statistics associated with the processes in models a) and b), respec-
tively. Now if |a] > 0 and ¢y > 0 we will have

Rt() =a-+ Rt0—17

since on I(0) processes P(AR; > 0) = O(t~!) ~ 0 for ¢ large enough, that is AR;, = a with probability
close to one. As a result, J\" ~ Jén) +n~1/2 for both n and to large enough. But then J\ — Jén) 20
as n — oo, which means that the consistency of the test is not affected by the presence of a level

break, whatever the size of such break.

When several level breaks are involved, say m breaks, we can write E(e;) = Y ;v si1(t = ¢;).
Now suppose t* 2 ming<;<,,{t;} > 0 and 0 < s* 2 ming<;<m,m{s;} < oo, such that P(AR;+ > 0) =
O(t*~1) ~ 0 and thereby J{™ ~ Jf(n) +n~Y/23" s, for large enough n. Therefore Jm - Jén) 2

as n — oo, for finite m. What is more, the number of level breaks, m, can even grow indefinitely as

o(n'/?) without affecting the consistency of the test.

4.3 Size of the RUR test against level shifts, nonlinearities and additive

outliers

We want to show that the asymptotic size of the RUR test is unaltered by the presence of as much as
m = o(n'/?) level shifts superimposed on a I(1) time series. For that we consider the following two

AR(1) models:
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with E(¢,) = 0,
Zsz (t=t)

with * > 0 and 0 < s* < oo, such that P(AR;- > 0) = O(t*~Y/2) ~ 0 and thereby J™ ~
J(n +n~/23" s Then as far as m = o(n'/?) we will get Jim JE(")

asymptotic size will be the same as in model a).

a)  wp=x4-1 + &,

b) Ty = Tp—1 + €t, with E Gt

£>Oasn—>oo,andthe

Notice that if, on the contrary, m is allowed to be O(n1/2+7) with v > 0, Je(n) will behave as if
had a trend, that is, Je(") — o0 as n — 00. Level breaks will then shift indefinitely the null distribution

to the left leading to the rejection of the null hypothesis of an (1) time series.

Next we analyze the small sample behavior of the RUR test in the face of several nonlinear trans-
formations of random walks, and show that it is invariant to monotonic transformations even in small
samples. Table 6 shows the size estimated at the 5% significance level from 10,000 replications of the

different models and for n = 100, 250, and 500 and the DF results are in parenthesis.

Transformations 100 250 500
Monotonic
1) 2, with z; > 0, Vt 0.03 (0.397) 0.059 (0.406) 0.048 (0.420)
2) =3 0.038 (0.456)  0.057 (0.532) 0.049 (0.533)
3) exp(xy) 0.03 (0.92) 0.05 (1) 0.0469 (1)
4) xp( ) 0.054 (0.271)  0.0526 (0.271)  0.05 (0.301)
5) log(z+ 4 100) 0.043 (0.275)  0.064 (0.331) 0.051 (0.354)
6) log(2t2Y/T ff\/_), % €(0,1) 0.072 (0.347) 0.054 (0.349)  0.051 (0.354)
Non monotonic
7) sin(a) 0.8828 (1) 0.9986 (1) 1(1)
8) ZL'% 0.079 (0.397)  0.170 (0.406) 0.178 (0.420)

Table 6. Empirical size of the RUR test against different forms of nonlinearity applied to a random walk

Ty =Ti1 + €

It can be observed that the size of the RUR test tends towards its correct 5% value in all the cases
except when the transformation is non-monotonic (case 8). In case 7, the transformation makes the
series stationary and therefore the table reports the power not the size. To study more precisely the
effect of the logarithmic nonlinearities, in case 6), we forced the variable to take most of its values in
the interval (0,1). This was done by transforming linearly the series prior to applying the logarithmic
transformation. Since in this interval the function is not so well approximated by a straight line,

one would expect a more noticeable size distortion, at least for the smaller sample size of n = 100.
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Overall, however, all the empirical sizes for the purely monotonic transformations seem to converge
to the nominal size of 0.05 as the sample size grows. The invariance of Jén) to monotonic nonlinear

transformations g(.) applied to the series z; follows immediately from the relations:

1(g(xe) > g(@p—14-1)) = L@ > 4—1,0-1)

1(g(ze) < g(@1p-1)) = Uwp < 21-0)-

Notice that such invariance holds not only under the null hypothesis but also under any alternative.
This result is in fact related to the invariance of the number of level crossings in a series (in this case,

the first differences of the sequence of running ranges) to monotonic transformations.

The results in Table 7 show that the size distortions caused by the presence of additive outliers (AO)
in the middle of the series and beyond are significantly smaller for the RUR test than for the DF test
(shown in parenthesis). Our alternative hypothesis was now represented by the model v, = x; + s0¢ -
where xy = x1_1 +€;, T denotes an integer no larger than the sample size, and ¢ ; is a dummy variable
defined by 6; . = 1 if ¢t = 7 and zero elsewhere. The sizes were estimated at the 5% significance level,
for different values of both 7 (7 = n/25,n/10,n/5) and the sample size n (100,250,500). It can be
seen that when the AO appears near the end of the series the RUR test has even lower than nominal

sizes.

n|lrT (n/2) (n/2)+1 (n/2) +2

100 0.0826 (0.2978)  0.0830 (0.2964)  0.0812 (0.2958)
250 0.0800 (0.1682) 0.0800 (0.1688) 0.0798 (0.1670)
500 0.0644 (0.1130)  0.0640 (0.1102)  0.0642 (0.1096)
n|7T n—(n/20) n — (n/10) n—(n/b)

100 0.0212 (0.2964)  0.0244 (0.2990)  0.0352 (0.2980)
250 0.0392 (0.1704)  0.0422 (0.1660)  0.0484 (0.1656)
500 0.0446 (0.1106) 0.0472 (0.1104) 0.0510 (0.1118)
nir n/25 n/10 n/5

100 0.3778 (0.2956)  0.3192 (0.2964) 0.2432 (0.3002)
250 0.2746 (0.1672)  0.2230 (0.1668)  0.1700 (0.1676)
500 0.1930 (0.1114)  0.1588 (0.1112)  0.1188 (0.1110)

Table 7. Empirical size of RUR test against the model y; = o + s6¢» where 2y = 41 + € and different
locations of the AO

Unfortunately, an early AO will produce a jump in the sequence of ranges which may prevent other

jumps from being counted by the RUR test statistic, thus biasing our test towards the rejection of
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the null hypothesis of unit root. The bias will be larger the sooner the outlier appears in the series.
In order to grasp this problem, we performed another Monte Carlo experiment in which a single AO

is introduced near the origin.

The results show that when the AO appears within the first quarter of the sample, the RUR test
seems to offer no real improvement over the DF test. To give a flavor of what is going on in this
case, suppose we have an AO early in the series at time ¢ = ¢y, and suppose that its magnitude, s, is
such that ARgff) > maxi<¢<n ARgx). Such a large outlier will prevent new records from occurring at

t > tg, and therefore ARL@ =0 for t > tg. It follows that

to
Jén) =n1/2 Z 1(AR§-x) >0) %0 asn— oo,
i=1
and the test will then be likely to reject the null hypothesis. Notice that the previous result still holds

when the AO location is allowed to increase with the sample size as fast as O(n'~7) with v > 0.

Obviously, when more than one early AO appears the record count will be determined by the largest

AO’s location, but the real size of the test will grow to one, in the same way, as n — oco.

The relatively large size distortion of the RUR test in the presence of early AO’s can be solved,
however, by slightly modifying the test statistic so as to also count the records appearing when the

series is observed in reverse order. This is the purpose of the next section.

5 The forward-backward range unit root (FB-RUR) test

Unless we know the outlier locations, the amount of size distortion or bias of the RUR test, based on
the statistic Jén)7 when confounded to time series with AO’s will be uncertain. By means of a simple
resampling technique, we obtain an extension of the RUR test, called the Forward-Backward RUR
(FB-RUR) Test, based on the statistic here noted as J,g"), which reduces the size distortion when the
additive outlier (AO) occurs at the beginning of the sample, and which turns out to be smaller than

with the DF test. The FB-RUR test also improves the power performances of the former RUR test.

This extension consists of running the RUR test first forwards (from the beginning to the end of
the sample) and then backwards (from the end to the beginning). The total jump count corresponds
therefore to a sample size twice the original one, thus leading to improved size and power performances,

in general. The FB-RUR test statistic J,En) can be formulated as follows:

oy ; . { (AR; )+ AR, )} (11)

where @}, = 2,41, t = 1,2,..., T, denotes the time-reversed series.
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The asymptotic null distribution of the FB-RUR test statistic J{™ can be obtained from the

asymptotic null distribution of Jé"). Indeed we can write:

1

T = —
V2n

(I + )

where we have set

On the other hand, since

n
/I
Ly = Tp — €y

1=t+1

t/
Ty = To + E €,
i=1

we obtain for t/ < ¢:

E{z,xy} = E{zoxr} = E(2?).

Now suppose xq is fixed and the ¢; are Gaussian Cov(xg,x,) = 0. These assumptions entail that
x} and xy are statistically independent as long as ¢’ < ¢. Thus let k, = n'~7 for some v such that

0 <+ <min(1,In2/Inn). We can write:

T = \/LQ_H(J;”*’W I A M}
where
Jr—kntln) — % t_n{{‘knﬂ I(AREI) > 0),
Jiethn) = % t_niwl 1ARE) > 0).

Notice that k, > n/2, and thereby the random variables Jénfk”) and Jifkk") are independent.
Secondly, the term J{" Fn T 4 Ji’f—knﬂ’n) is asymptotically negligible with respect to the term
Jm("_k") + Jl(ﬁ_k"). finally, both J;,(Un_k”) and Jl(f_k”) converge weakly to the same limiting variable

J(goo), by virtue of the duality theorem (Feller, 1971, vol. 2, p. 443)?. Therefore J,En) = ﬁ]é“%

2This theorem establishes that for a symmetric random walk z; the joint probability distributions of the random

variables {zo,...,z7} and {xé,,x’T} are identical. Since the distribution of JéTik) and Jg(fik) depend on the

(T'—k) (T—k)

joint distributions of {zg,...,z7_x} and {mé,..,,m’zﬂik}, respectively, both J, and J must have the same

=/

distribution when the model errors ¢; have a symmetric pdf.
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where

[y (w)

where u

2 1 2
2 /2,35
w2

§+m

independent of a where £ — |B(1)| and n — 15(0,1).

The power of the FB-RUR test against the alternative of a stationary AR(1) time series with
Nid(0,1) model errors is shown in Table 8. Notice the improvements in power performances, especially
for the smaller sample sizes, where now DF (in parenthesis) is outperformed, in all the cases except

when the value of the autoregression parameter b is far from the unit root, (b=0.5 and 0.8).

n |b 0.5 0.8 0.9 0.95 0.99 1

100 1.00 (1.00) 0.80 (0.99) 0.60 (0.5) 0.5 (0.18) 0.2 (0.0375)  0.05 (0.05)
250  1.00 (1.00) 1.00 (1.00) 1.00 (1) 0.9 (0.7) 0.52 (0.0760) 0.05 (0.05)
500 1.00 (1.00) 1.00 (1.00) 1.00 (1) 1 (0.99) 0.8 (0.39)  0.05 (0.05)

Table 8. Empirical size and power from 10000 replications for different sample sizes n and for different

values of b

5.1 Behavior of the FB-RUR test under Departures from the Standard

Assumptions

5.1.1 Robustness against outliers, structural breaks and monotonic nonlinearities

In order to quantify in finite samples the size distortion of the FB-RUR test in the presence of additive
outliers, we used the same experimental framework as for the original RUR test. Table 9 shows the
Monte Carlo results, depending on whether the single outlier’s location is at the beginning, in the
middle, or at the end of the sample. For comparison, we let the DF test results appear in brackets.

See also Franses and Haldrup (1994).
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nir n/25 n/10 n/5

100 0.1206 (0.2056)  0.0880 (0.2964)  0.0550 (0.3002)
250  0.1156 (0.1672)  0.0950 (0.1668) 0.0678 (0.1676)
500 0.0918 (0.1114) 0.0726 (0.1112)  0.0638 (0.1110)
n|r n/2 n/2+1 n/2+2

100 0.04 (0.2978)  0.0630 (0.2964) 0.0512 (0.2958)
250 0.0500 (0.1682) 0.0500 (0.1688) 0.0598 (0.1670)
500 0.0544 (0.1130)  0.0540 (0.1102)  0.042 (0.1096)
n|t  n—n/20 n—n/10 n—n/b

100 0.0212 (0.2064)  0.0244 (0.2990)  0.0552 (0.2980)
250 0.0692 (0.1704)  0.0522 (0.1660)  0.0584 (0.1656)
500 0.0546 (0.1106) 0.0572 (0.1104) 0.0510 (0.1118)

Table 9. Empirical size against the model y; = x4 4 85,5’7 and different locations of the AO

On the one hand, notice that even in cases where the outlying observations appear at the beginning
of the data sample, the FB-RUR test is more robust than the DF test, Dickey and Fuller (1979).
Indeed, since in this case the last jump occurs at the largest outlier’s location, Jon) tends to be very
small (and, asymptotically, zero), whereas Jin) will only be approximately reduced by a factor of
1/ V/2 with respect to the case of no outliers. Notice also that we should not expect any improvement
in performances of the FB-RUR test over the RUR test when the AO’s occur in the middle of the
sample. Finally, this competitive edge of the FB-RUR test disappears when outliers occur at both

the beginning and the end of the sample. However, this situation is more unlikely.

To have a closer look at this property of the FB-RUR test suppose we have an I(1) time series
corrupted by an isolated AO of size a at time ¢t = ¢y. That is, let

xe =y +al(t =tp)
with Yt = Yt—1 + €

where the #id random variables {¢;},., are supposed to be zero mean and finite variance as well as a

symmetric pdf. The worst case corresponds to when a is large enough so that

AR =a+ AR
AR =0, Vt>to,

implying for the RUR test statistic
Jm = Jto)

and thereby Jén) 2. 0. We obtain the same result when the AO’s location t, increases with 7" as long

(to)

t
as to = o(n). In this case J'*) ~ (=2)}/2 = 0, as n — oo. The real size of the RUR test in the presence
n

of such an AO will tend to its maximum distortion asymptotically.
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Things are quite different as far as the FB-RUR test statistic J{") = \/%(Jén) +JY is concerned.

Indeed, when Jin) is used instead of Jén) we get J:SL) = Jy*t‘)), and therefore

m__L (n—to)
Ji —E(JZSO)JrJy, °))
L e d 1 e (12)

Von Y Von Y

by virtue of the aforementioned duality theorem (Feller, 1971). Once again, this result still holds
when £ is allowed to increase more slowly than n. As a consequence, an early outlier only affects the
asymptotic distribution of Ji") by a factor of % Correspondingly, the real size of the FB-RUR test

in the presence of this type of outliers will be only slightly increased.

When considering the alternative of a stationary AR(1) time series about a single structural break,
we obtain a remarkable improvement in power performance over the former RUR test. As expected,
the results deteriorate when two breaks are present in the DGP of the time series, and thereby a larger
sample size (n = 500) is required in order to notice these improvements. See Arranz and Escribano

(2000).

Finally, as regards the robustness of the FB-RUR test to monotonic nonlinearities, no significant
differences are obtained with respect to the former RUR test. It is also straightforward to show that

the FB-RUR test, based on Jin), has the same invariance properties and asymptotic as the one based

on Jén) .

6 Further analysis of size distortions with serial correlation

and heteroskedastic in the errors

It is well known that parametric unit root tests run into serious problems if the errors are generated
by an MA process with a root close to one (Schwert 1989, Agiakloglou and Newbold 1992). The

Phillips-Perron test has been shown to suffer important size distortions in this case.
We consider the DGP

Ty = bxy_1+e, withb=1,0.8 (13)
€ = up— Pup—1 with ug ~ Nid(0, 1)

Table 13 presents the rejection frequencies of the ADF where the lags are selected according to Ng
and Perron (2001) using MAIC criteria. The rejection frequencies are based on 5,000 replications of
model (13), sample size n = 100 and the nominal significance level is 0.05, for b = 1 (i.e. the actual

size) and b = 0.8 (i.e. the empirical power).
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B ADFjyare RUR - FB-RUR

b=1 (size)
-0.5 0.04 0.004  0.006
0 0.05 0.039 0.04
0.2 0.04 0.05 0.05
0.4 0.043 0.1 0.07
0.6 0.044 0.2 0.09
0.8 0.03 0.6 0.1
b=0.8 (power) ADFpya;c RUR FB-RUR
-0.5 0.3 0.3 0.3
0 0.5 0.5 0.53
0.2 0.7 0.7 0.8
0.4 0.9 0.9 0.95
0.6 1 1 1
0.8 1 1 1

Table 13. Empirical size and Empirical power

For stationary cases with b = 0.8, the power of the three unit root tests considered is similar.
For nonstationary cases the size of the ADF test with the MAIC criteria of Ng and Perron (2001)

outperforme the rest of the tests.

Finally we will also consider the size of the RUR and FB-RUR in two cases of heteroskedastic-
ity: nonstationary autoregressive AR(1) processes with heteroskedastic errors, following Politis et al.
(1997), and a nonstationary autoregressive AR(1) processes with GARCH (1,1) errors. The empirical
size of the test converges to the nominal size for sample sizes of 1000 observations. The convergence
is faster for FB-RUR which converges to the nominal size for sizes of 500 observations. The Tables

with the simulation results are available upon request.

7 Empirical application

In this section we illustrate the performances of our robust unit root testing methodology on real time
series. Our example studies the anual US/Finland real exchange rates series from 1900 to 1987, which

is contaminated with both additive and innovation outliers.
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7.1 Analysis of the annual US/Finland real exchange rates: 1900-1987

In this section, the RUR and FB-RUR tests were applied to the annual series of US/Finland real
exchange rates, whose logarithm is plotted in Figure 3. This series, which contains a total of n = 88
observations (from 1900 to 1987), was constructed using the Gross Domestic Product (GDP) deflator.
Previous analyses on this series done by Vogelsang (1990), Franses and Haldrup (1994), Perron and
Vogelsang (1992), and Perron and Rodriguez (2000), point to the presence of an AO in 1918 together
with I0’s that produce temporary changes in 1917, 1932, 1949 and 1957.

0.6

05 -

04 |

03 -

02 -

0.1

Figure 3. Logarithm of the US/Finland real exchange rates deflated annual series from 1900 to 1987.

Using Mackinnon’s critical values for the ADF test (Mackinnon, 1994 [31]), the null hypothesis of
a unit root is rejected at the 5% significance level (the ADF test statistic took the value -3.732041
while the 5% critical values was -3.4614).

Alternatively, with a value of Jy = 1.4924 obtained for the RUR test statistic, and the corresponding
estimated critical value of 1.1726 at the 5% significance level and for n = 88, the null is not rejected.
Similarly, for the FB-RUR test we obtained a value for its test statistic of Jy . = 2.11, which is also

larger than the corresponding estimated critical value, that is 1.7337.

8 Concluding remarks

Standard unit root tests suffer from a number of drawbacks when the usual assumptions are no longer
justified. Apart from having low power on stationary near-unit root time series, they are also seriously
affected by other aspects of real data such as parameter shifts, outliers and neglected nonlinearities.
In 1996 Burridge and Guerre proposed a nonparametric unit root testing device based on the number
of crossings. This test was sensitive to the tails of the error distribution. We have presented an

nonparametric testing device, called the Range Unit Root (RUR) Test, which is robust to important
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structural breaks either in the mean or in the variance, as well as to the presence of non-early additive
outliers. The new method is also invariant to monotonic nonlinearities in the DGP and outperforms
the DF test in terms of power on stationary near-unit root alternatives. Finally, it is asymptotically
immune to the presence of additive noise superimposed on an unobserved variable. A drawback of the
test comes from its sensitivity to early additive outliers, which may lead to a size distortion comparable
to DF’s. However, by simply running the test forwards and backwards it is possible to circumvent
this problem and improve other aspects of previous test performances. A few real time series were
selected to illustrate our tests and compare their results to those of the DF test. In spite of the small
sample size considered, we found discrepancies in all cases between both types of tests, which question

the validity of the standard test’s outcome.

9 Appendix

In this section we provide the proofs for the theoretical results presented in previous sections. For this

we need to invoke the following lemmas.

AQ. Preliminary lemmas

Lemma 5 (Herrndorf’s Invariance Principle). Let {e:},_, ., be a random sequence satisfying

the mizing-condition of Phillips and Perron (1988), then defining

[nr]
Tp(r) = o tn1/? Z er = B(r)

t=1

where B(.) is a Brownian motion process on the interval [0,1], o represents the long-run, and “= "

denotes convergence in distribution as n — oo.

Proof. See Herrndorf (1984) m

Lemma 6 (Continuous Mapping Theorem). Let T be continuous function (except possibly on a
set with Lebesgue measure equal to zero) such that: T : C[0,1] — C0,1], where C[0,1] denotes the

space of cadlag functions on the interval [0,1]. Let x,,(r) defined as in Lemma 5. Then

T (zn(r)) = T (B(r)).

Proof. See Billingsley (1968). m
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Lemma 7 Let Sy = supyejo 1) {B(s)}, It = infsepo.1) {B(s)} and x,,(r) defined as in Lemma 5. Under
the mizing-condition of Phillips and Perron (1988) we have:

T (1) — Srg[%ﬁ]{zn(s)} =T (wn(r)) = B(r) — S

(1) = min {w(s)} = T (wa(r)) = B(r) ~ I

Proof. The proof follows from the CMT (Lemma 6) and the continuity of the functions 77 and 5. m

Lemma 8 (Lévy, 1948). Let {B(r)},¢ (1) represent a Brownian motion process on the interval [0,1],

and let 51(7“) = B(r) — S; and EQ(T) = B(r) — I;. The processes {|B(r)\}7,e[0 1> {El(r)} 0] and
’ rel0,1

{EQ(T)} o have the same probability distribution.
re|0,
Proof. See Karatzas and Shreve (1988). m

Lemma 9 The dimensional processes (S; — B(r),Sy), (|Bi|,15(0,7)) and (|B(r)|, 315 (0,7)) have

the same law.
Proof. See Revuz and Yor (1998) page 240 and 244. m

Lemma 10 The joint law of (Sy — B(r),St) has density

f(a,b) = \/%(Wrb)exp (— (a+b)2/2t)

fora,b>0.
Proof. See Revuz and Yor (1998) page 245. =

Lemma 11 Let x; = x4_1 + ¢; where {et}t>1 are i.i.d. random variables with zero mean and finite

variance o2, and let

€9

T80y =023 [ (wier < by 2 b) 41 (wm1 > byay < b))
t=1

denote the normalized number of crossings of level b. If xq and €1 have bounded pdf’s with finite

variance then we must have:
E
J[gn)(b) 7 {|61|}| |a

€

where Z is a standard Normal random wvariable.
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Proof. See Theorem 1 in Burridge and Guerre (1996). m

Lemma 12 (Lévy, 1948) Let Z be a standard Normal random variable and let
1 t
= lim — —0 < <
15(0,1) = lim 5/0 1[-6 < B(s) < o] ds,

where {B(r)},¢(o,1) is @ Brownian motion process on [0,1]. Then

121 L 15(0,1).

Proof. See Theorem 2.3 in Revuz and Yor (1991). m

Lemma 13 Let {x},-, be a stationary Gaussian sequence with covariances {c;};~, satisfying the
“Berman condition”: c¢;logi — 0 as n — oo. Then all extreme statistics have the same asymptotic

distributions as an i.i.d. Gaussian sequence.
Proof. Theorem 2.5.2 in Leadbetter and Rootzén (1988). m

Lemma 14 If {xt}t21 s a sequence of i.i.d. random variables then for large n

E {nl/QJén)} = O(logn)

Var {nl/QJén)} = O(logn).

Proof. See for instance Port (1994). m

Lemma 15 Let {{;};5, a sequence of random variables such that lim; ... E(§;) = p, and lim;—.cVar(§;) =

0. Then
& = K

Proof. See for instance Arnold (1990). m
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Lemma 16 Letx; = x;_1+€; where {€;},~, are continuous i.i.d. random variables with finite variance
o2 and symmetric pdf around a zero mean. Ift' is the random time of occurrence of the mazimum of

{xi}lsigt then for any u € [0,1] :

2 u
P{t'/t<u} = —/ arcsin v/vdv
T Jo

Proof. See levy (1948). m

A1l. Proof of Proposition 1

Let ; = 241 + €; where & satisfy mixing-condition of Phillips and Perron (1988), and let

) = 1Y 1R > 0) =02
t=1

n

= ’n,_l Z 1(]375 = -Tt,t) + ’I’L_l Z 1(.’Et = $17t)
t=1

t=1

Note that ¥(™ is the frequency of upper and lower records in the sample{x,....x, }, and that we could

also split this frequency into the sum of the frequencies of upper and lower records as:

n —-1/2 —1/2 1
\Ilgn)221[n Ty n $t7t:0:| {E_t ]

P o o n n
n ~1/2 ~1/2 -
n n Ty n T1 t t—1
\Ilg)—ZI[ o o _}{E n]

t=1

Now defining r = t/n, where t = 1,2, ...,n, and letting n — oo we obtain from direct application of

1
\I/ﬁ”):>/ 1
0

\Ilé”) = /01 1 {B(r) - seiﬁ)f;l] {B(s)} = 0} dr

lemmas 5, 6 and 7:

B(r) — sup {B(s)} = 01 dr

s€1[0,1]

finally, it follows from lemma 8 and from the definition of local time that

1
\IJE"):/
0

1

-

=0

1(|B(r)|=0]dr, i=1,2
1

[B(r) = 0] dr
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lim P(xy =x44) =0

t—o0

lim P(xy =x14) = 0.

t—o0

A2. Proof of Theorem 3

1. Consider a time series process x; = » ., €¢; where {¢; },~, are continuous ¢.i.d. random variables
with zero mean and variance o2. Let y; = x4 — x4 and y; = x4 — 1,4 and split the RUR test
, ;

statistic as
n) _ 1(n) (n)
Jo = J 0+

with

I =023 1y = 0)
t=1

n

Lye1 <0,y =0)+n 2 Y 1(yro1 > 0,40 = 0)

t=1

— 12

NE

o~
I
—

— 12

NE

l(yt—l < 07yt - O)a

“
Il
A

1(y; = 0)

NE

J2(n) — 12

o~
Il
_

S A > 0= 0) £ S <04 =0

t=1

NIE

t

Il
-

=n"2Y 1yl > 0,47 =0), since P (y;_; <0,y; =0) =0,

NE

t

1

where we have used the fact that

Ay 1 >0y, =0)=0 (Z L(y—1 <0,y = 0))

Il
-

t

1(y;_y > 0,4, =0)

NE

Il
—

t

Notice that the number of lower records of z; in any given time interval is the same as the number
of upper records of —x; in that same interval. Therefore the asymptotic distribution of Jl(n) and JQ(n)
must be identical. To obtain this distribution we will proceed by first showing that the time series

processes defined as y; and y, are asymptotically random walks. By symmetry, the behavior of y;
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must be statistically equal to that of y; It is therefore enough to study the properties of the process
{yt}t21 :

The conditional variance of y; given that z;;, = 2y (¢ € [1,n] N Z) is

t
var(ye|zy = xe ) = var ( Z ei> =(t— t’)af

i=t'+1

From lemma 16, the random variable '/t has an arcsine distribution with pdf:
FE/) = ————. tJte o
/1 — (t'/t)2 T

from which we obtain the following expression for the unconditional variance:

202 (1 t—t o?
=— ——d(t'/t) = t—=.
var(y:) T DL (t'/t) 9

As a consequence, y; cannot be an I(0) time series process. In fact, if we write y; = y;—1 +1, where

7, is I(0) and force the equality between this representation and the definition, we get
M =€ — ATy
= €t — ($t,t - $t71,t71)
=6, ifoy <myp141

=¢ — (Tt —xp—1,0-1), fx¢ > T—1 41

Now, from Proposition 1, we know that the long-run frequency of records is equal to zero, and thus
limy_oo P(zy > x4—14—1) = 0. It follows that 7, = ¢, with probability p, = P(z; < x—14-1) — 1. In
particular:

E(n,) =0
var(n,| vy = x44) = 02 with probability p; — 1
var(n|vy = x44) = (t —t' — 1)0? with probability 1 — p; — 0,

from where the unconditional variance of nt is obtained:

202 =t -1 v —1

var(n) = == d(t' /1)
(' /t)*

) 1 . .

=o.|t— 5 with probability 1 — p; — 0.
2

var(n,) = 22 d(t' /t)

(t /t

= 06 with probability p; — 1.
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Since in practice it can be assumed that the process x; was generated at t = —oo, we conclude that
n, is 1(0).

It can also be shown that for ¢ small enough the process y; has a stochastic unit root. The heuristic
reasoning is as follows. Writing y; = a:yr—1 + €; and assuming y;—; # 0 (event whose long-run

frequency equals one) we obtain the expected value of the process a; given the past of y;:

— €
Eaglye—) = 1+ =L,
Yt—1

Thus there is a possibly non-observable period of time during which 7, can be less than ¢;, implying
a transitory short-memory behavior for y;. Notice however that as ¢ — oo we get E(a¢|yi—1) — 1,

and thus y; becomes an I(1) process.

Given that y; is an I(1), and noting that for this process a zero “crossing” amounts to a visit to

the origin (crossing over the zero level is impossible), it follows from lemma 13 that

E
s Bllalk g

where Z is a standard Normal random variable. From lemma 11 the distribution of |Z| is the same

as the local time at zero of a Brownian motion in [0,1], say {5(0, 1). Therefore we can write

w _ Eflal,
o

Jl = B(O,l).

By the same token we have:
n E
I = MIB(O,I).
O¢

Since the pdf of the absolute value of a standard Normal random variable Z is given by
2 u?
fiz|(u) = \/;GXP (—7) , u>0,

we can easily obtain for the pdf of Jz-(oo) (i = 1,2) the following expression:

2 h?
freo(W) = ————exp | ————— |, h>0, i=1,2.

2 ju—
o (E(|:1| )2 2(E{(\Ti1\}>

2. From the lemmas 9 and 10 we know that joint law of (|B(1)],1(0,1)) has density

f (€)= @@ +m)exp (= (€+m)°/2)

for £,m > 0.
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Jén) — a[§+n] where £ — |B(1)] and n — [(0,1). Let w = a({ + n) then we consider the

transformation

(€+m)
T=7
o ==
n=rt

and therefore the marginal density of w = a(§ + 7)), is what we need, and is given by

) = [y 2 e | an (14)
%]:\/7(5+n)26é(5+n>2

3. To prove the consistency of the test against stationary alternatives satisfying the Berman condi-

tion we invoke lemmas 13 and 14, following which {Jé”)} ~ Var{J(g")} ~ O %logn) — 0

| g

[\

lol»—-

e

Ny

as n — oo. finally, we apply lemma 15 to obtain: Jén) 20

A3. Proof of Proposition 6

Letting x; = w; + s, the proof is a straight consequence of the fact that

- P
1/23t—>0, as n — 00

n
Now since

()
Rt = Tt,t — Tt

< Wi+ Spp — W1 — S,
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we obtain

(R > 0) = 1(o.'n V2R > 0)
= 1(0;1n_1/2R§w) + a;ln—1/2R§S) > 0).

Thus

) S o ) 5 bR
t=1

n
~ L2 Z 1(g;1n*1/2R§w) > () for large enough n
t—1

since for 0 <t <mn Rf) < Rﬁf) = o(n*1/2).
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