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Abstract

This paper deals with the econometrics of a class of dynamic games where players are ra-
tional, in the sense that they maximize expected payoffs given their beliefs about other players’
actions, but their beliefs may not be in equilibrium, i.e., they are not self-fulfilling. In this
econometric model, players’ beliefs are probability distributions defined over the space of other
players’ actions and conditional on common knowledge state variables. These distributions are
nonparametrically specified and they are treated as incidental parameters that, together with
the structural parameters of the game, determine the stochastic process followed by players’
actions. This general model contains as a particular case the model where beliefs are in equi-
librium. We study identification and estimation of structural parameters and beliefs. We show
that under level-2 rationality (i.e., players are rational and they know that the other players
are rational too), a exclusion restriction and a large-support condition on one of the exogenous
explanatory variables are sufficient for point-identification of both structural parameters and
players’ beliefs. We propose two estimation methods. The first estimator, that has similarities
with some matching estimators used in the treatment effect literature, imposes the restric-
tion of point-identification of the structural parameters in the sample. The main advantage
of this estimator is its relative computational simplicity, but it has several limitations. The
estimator relies critically on the large-support conditions on some explanatory variables and the
point-identification result follows an at-infinity argument. In finite samples, imposing point-
identification may induce significant biases. The second estimator deals with these issues and
recognizes the possibility of having only set identification, but not point identification, in the
sample or even in the population. We propose a method that provides a parameter set that min-
imizes a penalty function based on moment inequalities that summarize the restrictions of the
model. Using a representation of best response functions from Aguirregabiria and Mira (2007),
we show that the system of moment inequalities that describes the model restrictions can be
represented as a linear-in-parameters system. We estimate the identified set using an efficient
linear programming algorithm for the solution of linear systems of inequalities. We apply this
model and methods to actual data in a dynamic game of store location by retail chains.
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1 Introduction

The principle of revealed preference (Samuelson, 1938) is a cornerstone in the structural empirical

analysis of decision models, either static or dynamic, single-agent decision problems or games.

Under the principle of revealed preference, agents maximize expected payoffs, and this implies

that their actions reveal information on the structure of payoff functions. This simple but powerful

concept has allowed econometricians to use data on agents’ decisions to identify important structural

parameters for which there is very limited information from other sources. Agents’ degree of risk

aversion, intertemporal rates of substitution, market entry costs, adjustment costs and switching

costs, consumer willingness to pay, preference for a political party, or the cost of a merger, are just

some examples of the type of structural parameters that have been estimated under the principle

of revealed preference. In the context of empirical games of incomplete information, either static

or dynamic, expected payoffs depend on players’ beliefs on the behavior of other players. In

this literature, every empirical study has combined the principle of revealed preference with the

assumption that players’ beliefs are in equilibrium. There are several reasons why the assumption

of equilibrium beliefs is very useful in the estimation of games. First, equilibrium restrictions

have identification power. Imposing these restrictions contributes to improve asymptotic and finite

sample properties of estimators (Aguirregabiria and Mira, 2007, Kasahara and Shimotsu, 2008,

Aradillas-Lopez and Tamer, 2008). Second, in games with multiple equilibria, the assumption of

equilibrium beliefs is key to have point identification of structural parameters and beliefs, and for the

implementation of relatively simple methods of estimation. That is the case in games of incomplete

information under the assumption that, for a given value of the exogenous explanatory variables, all

the observations in the data come from the same equilibrium. Under this assumption, it is possible

to estimate players’ beliefs consistently using a nonparametric estimator of the distribution of

players’ actions. This nonparametric estimator of beliefs can be used to construct players’ expected

payoffs and to obtain an estimator of structural parameters that optimizes a sample criterion

function based on players’ best responses to the estimated beliefs from the data. This simple two-

step approach for identification and estimation cannot be applied when players beliefs are not in

equilibrium. Third, one of the most attractive features of structural models is that they can be

used to study the effects of counterfactual changes in structural parameters or in public policies.

Models where agents’ beliefs are endogenously determined in equilibrium are particularly attractive

because they take into account how these beliefs will change in the counterfactual scenario.

Despite these important and attractive implications of the assumption of equilibrium beliefs,

1



there are empirical applications of games where the assumption is not realistic and it is of interest

to relax it. The following are several examples.

EXAMPLE 1. Structural change or policy change within the sample period. Suppose that we

want to estimate a dynamic game of competition in an oligopoly industry. The set of decision

variables in the empirical game includes firms’ choice to adopt or not a new technology. There is a

cost of adopting the new technology, but once adopted the new technology implies lower marginal

costs of production. In this game, firms’ adoption decisions are strategic complements and the

game has multiple stable equilibria. In particular, there is an equilibrium where firms have a low

probability of adoption, and there is other equilibrium with high probabilities of adoption. We

have panel data of firms in this industry over several periods of time (and perhaps over several

local markets). Suppose that an important policy change occurred in the middle of the sample

period, e.g., a new government subsidy that tries to encourage the adoption of the new technology.

It seems realistic to consider that, after this policy change, it will take some time for firms to learn

about the new strategies of competitors. Learning about the new strategies of other players may

be particularly complicated in the case of multiple equilibria. Firms may wonder whether the new

policy has just increased firms’ probability of adoption but within the same equilibrium type (i.e.,

the low probability equilibrium type), or if the new policy has induced a change in beliefs and in the

equilibrium type (e.g., a jump from the low probability to the high probability equilibrium type).

Firms’ learning about the new equilibrium can take some time during which firms’ beliefs will be

out of equilibrium. Imposing the assumption of equilibrium beliefs during the periods just after the

policy change seems unreasonable. To deal with this issue, the researcher may choose to ignore the

observations during these periods of "transition}, or he might be willing to propose a structural

model that explicitly specifies the process of learning towards the new equilibrium. Alternatively,

the researcher might prefer to use a more robust approach that imposes minimum assumptions on

the evolution of players’ beliefs during the transition period but that uses these observations for

estimation. This latter approach is the one that we consider in this paper.

EXAMPLE 2: Heterogeneity in players’ beliefs on other players’ behavior. There is significant

empirical evidence from laboratory experiments showing that players in these experiments tend to

play heterogeneous strategies and that they also have very heterogenous beliefs on other players’

strategic behavior (Camerer, 2003). There is some but still very scarce non-experimental evidence

on this issue. An exception is the recent paper by Goldfarb and Xiao (2009) that studies entry

decisions in the US local telephone industry and finds significant heterogeneity in firms’ beliefs
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about other firms’ strategic behavior. Our paper provides an approach to identify and estimate

heterogeneity in players’ beliefs. It is important to emphasize that, in contrast to the theoretical and

empirical literature on behavioral game theory (e.g., Camerer, Ho and Chong, 2004, and Goldfarb

and Xiao, 2009), our approach does not replace the assumption of equilibrium or rational beliefs

by other type of assumption on beliefs. We do relax the assumption of rational beliefs. Our model

contains as a particular case the model where beliefs are in equilibrium, as well as many other

models for the determination of beliefs. To this respect, our approach is very different to the old

econometric literature on disequilibrium models (see Quandt, 1988) and to the recent empirical

literature on behavioral game theory.

In this paper we study identification, estimation, and inference in dynamic discrete games of

incomplete information when we relax the assumption of equilibrium beliefs. The paper contains

several contributions: identification results, an estimation method, a test of equilibrium beliefs,

and an empirical application that illustrates these methodological contributions.

In the class of econometric models that we consider, players’ beliefs are probability distributions

over the set of other players’ actions. These distributions are nonparametrically specified and they

are treated as incidental parameters that, together with the structural parameters of the game,

determine the stochastic process followed by players’ actions. When players’ beliefs are not in

equilibrium, they are different to the actual distribution of players’ actions in the population.

Therefore, beliefs cannot be identified and estimated by simply using a nonparametric estimator of

the distribution of players’ actions. However, we show that under level-2 rationality (i.e., players

are rational and they know that other players are also rational), an exclusion restriction and

a large-support condition on one of the exogenous explanatory variables are sufficient for point-

identification of structural parameters and players’ beliefs. The exclusion restriction is an exogenous

(or predetermined) observable variable that has a direct effect on the own player’s payoff but not

on the other players’ payoffs (though it has an indirect effect on other players’ payoffs through their

beliefs about the player’s expected behavior). For instance, in a dynamic game of firms’ capital

investment in an oligopoly industry, a firm’s current profit does not depend directly on other

firms’ capital stocks at the beginning of the period, but it depends indirectly through the current

investment decisions of other firms. The large-support condition establishes that the variables of

the exclusion restriction have unbounded support on the real line.

We propose two estimation methods. The first estimator has similarities with some matching

estimators used in the treatment effect literature (Abadie and Imbens, 2006). It imposes the restric-
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tion of point-identification of the structural parameters in the sample. The main advantage of this

estimator is its relative computational simplicity, but it has several limitations. The estimator relies

critically on the large-support conditions on some explanatory variables and the point-identification

result follows an at-infinity argument. In finite samples, imposing point-identification may induce

significant biases. The second estimator deals with these issues and recognizes the possibility of

having only set identification, but not point identification, in the sample or even in the population.

We propose a method that provides a parameter set that minimizes a penalty function based on

moment inequalities that summarize the restrictions of the model.

Our set-estimator of structural parameters minimizes a penalty function based on moment

inequalities that summarize the restrictions of the model. The optimization of criterion function

with respect to a set can be a computationally very demanding task, and this computational cost

may restrict importantly the class of models that we can estimate. In this respect, the paper presents

several results that simplify very significantly the estimation of this class of games. Based of those

results, the estimation method that propose has similar computational cost as the estimation of the

same model under the assumption of equilibrium beliefs. First, we show that under the assumption

of weak submodularity of payoff functions with respect to players’ actions, the model restrictions

on players’ choice probabilities can be derived using a simple sequential procedure. Second, we

use a representation of players’ best response functions based on Aguirregabiria and Mira (2007).

In the context of this paper, this representation has several useful implications. Given a player’s

beliefs, it provides a consistent approximation to a player’s best response to that beliefs, and it

does not require one to solve the player’s dynamic programming problem, or repeatedly solve this

problem for different trial values of the structural parameters. Furthermore, if the one-period payoff

function is linear in structural parameters, there is a representation of players’ value functions that

is also linear in structural parameters. This result implies that the model restrictions implied by

level-1 rationality can be represented using a linear system of inequalities. Our estimator of the

identified set exploits an efficient but very simple linear programming algorithm for the solution of

linear systems of inequalities: a version of the so called relaxation method or perceptron algorithm

(Agmon, 1954, Goffin, 1980, and Dunagan and Vempala, 2008). For levels of rationality greater

than 1, we propose a recursive method that maintains the linearity in the structural parameters.

We also propose different tests for the null hypothesis that players’ beliefs are in equilibrium.

We apply these inference methods to a dynamic game of store location by McDonalds (MD)

and Burger King (BK) using data for United Kingdom during the period 1991-1995. The dataset
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is a panel of 422 local markets (districts) and five years with information on the stock of stores and

the flow of new stores of MD and BK in each local market, as well as local market characteristics

such as population, density, age distribution, average rent, income per capita, local retail taxes,

and distance to the headquarters of the firm in UK. The main empirical question that we want to

analyze in this application is whether the beliefs of MD and BK about the strategic behavior of

other competitor are consistent with the actual behavior of the competitor.

This paper is related to different literatures on the econometrics of empirical games which have

received attention during recent years. It builds an extends the literature on estimation of dynamic

games of incomplete information, with recent methodological contributions by Aguirregabiria and

Mira (2007), Bajari, Benkard and Levin (2007), Pakes, Ostrovsky and Berry (2007), Pesendorfer

and Schmidt-Dengler (2008), or Kasahara and Shimotsu (2009), and empirical applications by

Ryan (2008), Collard-Wexler (2008), Sweeting (2007), Dunne, Roberts, and Xi (2009), Xu (2008),

or Aguirregabiria and Mira (2009), among others. All the papers in this literature have assumed

that the data come from a Markov Perfect Equilibrium. We relax that assumption. Our approach

is related to the one in Aradillas-Lopez and Tamer (2008). These authors study the identification

power of the assumption of equilibrium beliefs in the context of static discrete games of complete

and incomplete information. Our paper extends their analysis in different directions. We study

dynamic games. There are different aspects in which the assumption of equilibrium beliefs and

identification issues are substantially different in dynamic games than in static ones (Magnac and

Thesmar, 2002, Aguirregabiria, 2010). We study inference problems and propose estimators and

tests. Our paper is also related to recent studies on partially identified models and estimation using

moment inequalities, such as Chernozhukov, Hong, and Tamer (2007), Ciliberto and Tamer (2009),

Pakes, Porter, Ho, and Ishii (2007), Andrews, Berry, and Jia (2005), Galichon and Henry (2008),

Beresteanu, Molchanov, and Molinari (2008), and Aradillas-Lopez (2009).

The rest of the paper includes the following sections. Section 2 presents the model and basic

assumptions. In section 3, we derive the restrictions that rationality imposes on players’ best

response probabilities. Section 4 presents our identification results. Section 5 describes the set-

estimator based on moment inequalities. The empirical application is described in section 6. We

summarize and conclude in section 7.
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2 Model

This section presents a dynamic game of incomplete information where two players make binary

choices over an infinite horizon. The assumption of only two players and two choice alternatives is

made for notational simplicity, and we show how the main results in the paper extend to dynamic

games with more than two players or choice alternatives. We use the indexes i ∈ {1, 2} and j ∈ {1, 2}
to represent a player and his opponent, respectively. Time is discrete an indexed by t ∈ {1, 2, ...}.
Every period t, players choose simultaneously and non-cooperatively between alternatives 0 and

1. Let Yit ∈ {0, 1} represent the choice of player i at period t. Each player makes this decision

to maximize his expected and discounted payoff, Et(
P∞

s=0 δ
s
iΠi,t+s), where δi ∈ (0, 1) is player i’s

discount factor, and Πit is his payoff at period t. The one-period payoff function has the following

structure:1

Πit = z(Wi,Xit,Xjt, Yit, Yjt) θi − Yit εit (1)

θi is a column vector of structural parameters, and θ ≡ (θ1,θ2) is the vector with the parameters
of all players. z() is a vector-valued function that depends on players’ actions (Yit, Yjt), on players’

state variables (Xit,Xjt), and on a vector Wi of time-invariant exogenous characteristics of the

player. Structural parameters, the vector-valued function z(), players’ state variables (Xit,Xjt),

and the characteristics (Wi,Wj) are common knowledge to the two players. The variable εit

is private information of firm i at period t. A firm has uncertainty on the current value of his

opponent’s ε, and on future values of both his own and his opponent’s ε0s.

The state variable Xit is an endogenous ’stock’ variable for player i that evolves over time

according to a transition that can be either stochastic or deterministic. For instance,

Xit+1 = min{0 , Xit + Yit − ξi,t+1} (2)

ξi,t+1 ∈ {0, 1} is a Bernoulli random variable that captures exogenous depreciation in the stock, and
it is i.i.d. with parameter λ ≡ Pr(ξi,t+1 = 1). The set of possible values for these stock variables is
X ≡ {0, 1, 2, ..., K − 1} where K − 1 ≥ 1 is a natural number that represents the maximum level

of the stock. The variables ε1t and ε2t are independent of (W1,W2), independent of each other,

and independently and identically distributed over time. Their distribution functions, G1 and G2,

are absolutely continuous and strictly increasing with respect to the Lebesgue measure on R.

EXAMPLE 3 (Capacity Investment in an Oligopoly Industry). Consider a dynamic game of capacity

1The linearity of the payoff function in the structural parameters facilitates significantly the estimation of the
model.
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investment between two firms competing in an oligopoly industry of an homogeneous product.2 The

demand function is Qt = St(b0 − b1Pt), where b0 and b1 are parameters, Qt represents aggregate

demand, St is the exogenous market size, and Pt is the product price. There are two firms that

may operate in the industry. Every period t, these firms compete in quantities a la Cournot (static

game), and choose whether to invest to increase their capacity (dynamic game). Production costs

are linear in the quantity produced, i.e., Cit =MCit qit, where MCit is the marginal cost, and qit

represents output. Marginal cost declines with installed capacity, i.e., MCit = ci − d(Xit + Yit),

where ci > 0 and d > 0 are parameters, Xit is the installed capacity at the beginning of period t,

and Yit ∈ {0, 1} represents capacity investment, that is a binary choice. It is simple to show that
the Cournot equilibrium variable profit of firm i is:

V Pit = 1{Xit + Yit > 0} St
b1

µ
b0 +MCjt −MCit

3

¶2
(3)

where 1{.} is the indicator function. We can represent this variable profit function as linear function
of structural parameters:

V Pit = θV P0i St 1{Xit + Yit > 0}

+ θV P1i St 1{Xit + Yit > 0}(Xit + Yit −Xjt − Yjt)

+ θV P2i St 1{Xit + Yit > 0}(Xit + Yit −Xjt − Yjt)
2

(4)

θV P0i , θ
V P
1i , and θV P2i are structural parameters that are known functions of the ’deep’ parameters

b0, b1, ci, cj , and d, i.e., θV P0i ≡ (b0 + cj − ci)
2, θV P1i ≡ 2d(b0 + cj − ci), and θV P2i ≡ d2. Here

we concentrate on the identification and estimation of the parameters (θV P0i , θ
V P
1i , θ

V P
2i : i = 1, 2)

together with the parameters in fixed costs.3 The set of possible capacity levels is {0, 1, 2, ...,
K − 1} where K − 1 ≥ 1 is a natural number that represents the maximum level of capacity. A

firm’s capacity evolves over time according to the transition rule Xit+1 = Xit+Yit. The firm’s total

profit function is:

Πit = V Pit − θFC0i 1{Yit +Xit > 0}− θFC1i (Yit +Xit)− θFC2i (Yit +Xit)
2 − Yit εit (5)

where θFC0i , θ
FC
1i and θFC2i are parameters in the fixed cost function. θFC0i is a lump-sum cost

associated with having some positive capacity, and it can be interpreted as an entry cost. The

function θFC1i (Yit+Xit)+θFC2i (Yit+Xit)
2 takes into account that fixed operation may increase with

2See Besanko and Doraszelski (2004), or Ryan (2009) for related dynamic games of firm capacity.
3 It is simple to verify that given a value of the vector of parameters (θV P0i , θ

V P
1i , θ

V P
2i : i = 1, 2), we can over-identify

the ’deep’ structural parameters d, b0, and the cost differential cj − ci.
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capacity with a linear or quadratic form. The variable εit is a private information shock in the

firm’s investment cost, and it is normally distributed. In this example, the vector of structural

parameters for firm i is

θi ≡ (θV P0i , θV P1i , θV P2i , θFC0i , θ
FC
1i , θFC2i )

0 (6)

And the vector-valued function z() is:

zi(Xit,Xjt, Yit, Yjt) ≡ { St1{Xit + Yit > 0}, St1{Xit + Yit > 0}(Xit + Yit −Xjt − Yjt),

St1{Xit + Yit > 0}(Xit + Yit −Xjt − Yjt)
2

−1{Xit + Yit > 0}, − (Xit + Yit), − (Xit + Yit)
2
ª (7)

In our empirical application in section 6, we consider a version of this model to study the

industry of fast-food burger restaurants. The two companies are McDonalds and Burger King. A

local market is a district. A firm’s capacity, Xit, is the number of stores that the firm operates in

the local market. Yit is the decision to open a new store in the local market. The specification of

marginal costs, MCit = ci − d(Xit + Yit) with d > 0, tries to capture economies of scope in the

variable costs of running a number of stores. Alternatively, an estimate of d < 0 might be capturing

’cannibalization’ effects between stores of the same chain at the same retail market. During the

sample period of our analysis (1991-1995), these firms did not close any existing store. This is why

there is not an exit decision in the model. The model assumes that the decision to open a new

store is completely irreversible.

The recent literature on estimation of dynamic discrete games typically assumes that the data

comes from a Markov Perfect Equilibrium (MPE). This equilibrium concept incorporates three

main assumptions.

ASSUMPTION 1 (’Payoff Relevant State Variables’): Players’ strategy functions depend only on

payoff relevant state variables.

ASSUMPTION 2 (’Rational Beliefs on Own Future Behavior’): Players are forward looking, max-

imize expected intertemporal payoffs, and have rational expectations on their own behavior in the

future.

ASSUMPTION 3 (’Rational or Equilibrium Beliefs on other Players’ actions): Strategy functions

are common knowledge, and players’ have rational expectations on the current and future behavior

of other players. That is, players beliefs about other players’ behavior are equilibrium (self-fulfilling)

beliefs.
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For the moment, consider that we impose only Assumption 1. Let Xt be the vector with the

payoff-relevant, common knowledge state variables, i.e., Xt ≡ (X1t,X2t).4 At period t, players

observe Xt and choose their respective actions Yit. The payoff-relevant information set of player i

is {Xt, εit}. Let σi(Xt, εit) be a strategy function for player i. This is a function from the support

of (Xt, εit) into the binary set {0, 1}, i.e., σi : X × R → {0, 1}, where X = {0, 1, ...,K − 1} ×
{0, 1, ...,K−1}. Given any strategy function σi, we can define a choice probability function Pi(Xt)

that represents the probability of Yit = 1 conditional on Xt given that player i follows strategy σi.

That is,

Pi(Xt) ≡
Z
1 {σi (Xt, εit) = 1} dGi (εit) (8)

where 1{.} is the indicator function. It is convenient to represent players’ behavior and beliefs using
these Conditional Choice Probability (CCP) functions. Note that, given that the variables in Xt

have a discrete support, we can represent the CCP function Pi(.) using a finite dimension vector

Pi ≡ {Pi(Xt) : Xt ∈ X}. Throughout the paper, we use either the function Pi(.) or the vector Pi

to represent the actual behavior of player i.

Without imposing Assumption 3 (’Equilibrium Beliefs’), a player’s beliefs about other players’

behavior do not represent necessarily the actual behavior of other players. Therefore, we need a

function other than Pj(.) to represent players i’ beliefs about the behavior of player j. We use the

function Bi(Xt) to represent player i’s beliefs about the probability that player j chooses Yjt = 1

when the current state is Xt. Again, we can represent the function Bi(.) using a finite-dimensional

vector Bi ≡ {Bi(Xt) : Xt ∈ X}. Note that players’ beliefs are consistent with our Markovian
assumptions. That is, the beliefs function Bi(.) incorporates the assumption that player i beliefs

that player j will behave now and in the future following the same dynamic decision rule. It is

important to note that this assumption does not mean that we impose the restriction that players

beliefs do not change over time. Our approach allows players’ beliefs to vary over time. However,

we assume that, every period, players belief that other players’ behavior is Markovian.

Now, suppose that we impose both Assumptions 1 and 2, but not Assumption 3. Our next step

is to characterize the rational behavior or optimal response of a player. We say that a strategy

function σi(.) (and the associated CCP function Pi()) is rational if for every possible value of

(Xt, εit) the action σi(Xt, εit) maximizes player i’s expected and discounted value given his beliefs

on the opponents’ strategies. A player’s best response is the optimal decision rule of a Markov

dynamic programming (DP) problem. Given beliefs Bi, define the expected one-period payoff

4For notational simplicity, we omit the time-invariant variablesW1 andW2 from the vector Xt. These variables
are implicitly in this vector or in the primitives of the model.

9



function:

ΠBi (Yit,Xt) = (1−Bi(Xt)) zit(Yit, 0) θi +Bi(Xt) zit(Yit, 1) θi (9)

where, for notational simplicity, we use zit(Yit, Yjt) to represent z(Wi,Xit,Xjt, Yit, Yjt). And define

player i’s beliefs on the conditional choice transition probability of Xt:5

fBi (Xt+1|Yit,Xt) = 1{Xit+1 = Xit + Yit} Bi(Xt)
1{Xjt+1=Xjt+1} (1−Bi (Xt))

1{Xjt+1=Xjt} (10)

Let V Bi (Xt) be the integrated value function for player i’s DP problem.6 By Bellman’s principle,

the value function V Bi is the unique fixed point of the Bellman equation V = ΓBi (V ), where Γ
B
i is

the integrated Bellman operator :

ΓBi (V )(X) =

Z
max

Yi∈{0,1}

(
ΠBi (Yi,X)− Yi εi + δi

X
X0

fBi (X
0|Yi,X) V (X0)

)
dGi(εi) (11)

The form of this integrated Bellman operator depends on the distribution of the private information

shock εit. For instance, if εit has a extreme value distribution (i.e., DP logit model), we have that:

ΓBi (V )(Xt) = log

Ã
1P

Yi=0
exp

(
ΠBi (Yi,X) + δi

X
X0

fBi (X
0|Yi,X) V (X0)

)!
(12)

If εit has a standard normal distribution (i.e., DP probit model), we have:

ΓBi (V )(Xt) = ΠBi (0,X) + δi
X
X0

fBi (X
0|0,X) V (X0)

+ Φ

Ã
Π̃Bi (X) + δi

X
X0

f̃Bi (X
0|X)V (X0)

!Ã
Π̃Bi (X) + δi

X
X0

f̃Bi (X
0|X)V (X0)

!

+ φ

Ã
Π̃Bi (X) + δi

X
X0

f̃Bi (X
0|X)V (X0)

!
(13)

where Π̃Bi (X) ≡ ΠBi (1,X) − ΠBi (0,X); f̃Bi (X0|X) ≡ fBi (X
0|1,X) − fBi (X

0|0,X); and φ and Φ are

the PDF and the CDF of the standard normal, respectively.

The optimal response function of player i with beliefs Bi is the optimal decision rule of the

previous DP problem. That is, the optimal response function, in the action space, is:

{Yit = 1} iff

⎧⎨⎩εit ≤ Π̃Bi (Xt) + δi
X
Xt+1

f̃Bi (Xt+1|Xt) V
B
i (Xt+1)

⎫⎬⎭ (14)

5Again, for notational simplicity, we consider the deterministic transition rule Xit+1 = Xit + Yit instead of the
stochastic transition Xit+1 = min{0 , Xit + Yit − ξi,t+1}. It is simple to verify that all the results extend to the
stochastic transition.

6As defined in Rust (1994), this integrated value function is the integral of the original value function JBi (Xt, εit)
over the distribution of εit: i.e., V B

i (Xt) ≡ JBi (Xt, εit)dGi(εit). It is convenient to use V B
i instead of JBi to describe

the solution of the DP problem because its lower dimension. In particular, for discrete Xt and continuous εit, JBi
lives in an infinite-dimension space while V B

i lives in a finite-dimension Euclidean space.
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And the optimal response probability function is Gi(Π̃
P
i (Xt) + δi

P
Xt+1

f̃Pi (Xt+1|Xt) V
P
i (Xt+1)).

Therefore, under Assumptions 1 and 2 and given beliefs Bi, the actual behavior of player i, as

represented by the CCP Pi(.), is:

Pi(Xt) = Gi

⎛⎝Π̃Bi (Xt) + δi
X
Xt+1

f̃Bi (Xt+1|Xt) V
B
i (Xt+1)

⎞⎠ (15)

where V Bi is implicitly defined by the Bellman equation V Bi = ΓBi (V
B
i ). These equations summarize

all the restrictions that Assumptions 1 and 2 impose on players’ choice probabilities.

The concept of Markov Perfect Equilibrium (MPE) is completed with Assumption 3 (’Equilib-

rium Beliefs’). Under this assumption, players’ beliefs are in equilibrium such that Bi(.) = Pj(.)

for every i and j. A MPE can be described as a set of CCP functions, one for each player,

such that each player function is the best response to the other players’ functions: i.e., Pi(Xt) =

Gi(Π̃
P
i (Xt)+ δi

P
Xt+1

f̃Pi (Xt+1|Xt) V
P
i (Xt+1)), where Π̃Pi , f̃

P
i , and V Pi are constructed using the

actual CCPs of other players. To represent a MPE of the model in a compact form, we use Ψ(P)

to represent the mapping with best response probabilities for every player and every value of the

state variables:

Ψ(P) ≡
(
Gi(Π̃

P
i (Xt) + δi

P
Xt+1

f̃Pi (Xt+1|Xt)V
P
i (Xt+1)) : i = 1, 2; Xt ∈ X

)
(16)

Therefore, a MPE is a vector of CCPs P such that P = Ψ(P).

3 Bounds on Choice Probabilities

For the rest of the paper, we maintain Assumptions 1 and 2 but we relax Assumption 3 on ’Equi-

librium Beliefs’. Our approach is agnostic about the formation of players’ beliefs. We replace the

assumption of ’Equilibrium Beliefs’ by the following much weaker assumption.

ASSUMPTION 4 (’Level 2 Rationality’): Players are rational in the sense that their strategies

maximize expected and discounted payoffs given their beliefs on other players’ behavior. Further-

more, players know that their opponents are also rational. Therefore, players’ beliefs are consistent

with other players’ having rational strategies.

Assumptions 1, 2, and 4 impose restrictions on players’ vectors of actual CCPs, Pi. In this

section, we show that under these assumptions, we have that the vector Pi lies in a compact set

that is strictly contained within the hypercube [0, 1]|X |.7 That is, Pi ∈ C
(2)
i ⊂ [0, 1]|X | where

7Note that the support of Xt is X = {0, 1, ...,K − 1} × {0, 1, ...,K − 1}. Therefore, the dimension of the vector
Pi is |X | = K2.
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C
(2)
i is the set of best response probability vectors that are consistent with level-2 rationality. To

abbreviate, we call it level-2 best response set. This set can be calculated given the parameters of

the model. Similarly, for any level of rationality R ≥ 1, we use C(R)i to represent the best response

set under level-R rationality. In this section, we describe the derivation of these best response sets.

We start with a definition of these sets in terms of primitives of the model. Then, we prove that

the restrictions imposed by the assumption of rationality level-1 and level-2 are informative in the

sense that the sets of possible best responses is smaller than [0, 1]|X |. Finally, we propose a simple

recursive method for the computation of these sets.

Define the threshold value function:

vBi (Xt) ≡ Π̃Bi (Xt) + δi
X
Xt+1

f̃Bi (Xt+1|Xt) V
B
i (Xt+1) (17)

We call it threshold value function because it represents the threshold value of εit that makes

player i indifferent between the choice of alternative 1 and the choice of 0. A player’s best response

function can be represented as Pi(Xt) = Gi(v
B
i (Xt)). Define the best response mapping of player

i, Ψi(Bi), from [0, 1]K
2
into [0, 1]K

2
:

Ψi(Bi) ≡

⎡⎢⎢⎣
Gi(v

B
i (X

(1))

Gi(v
B
i (X

(2))

Gi(v
B
i (X

(|X |))

⎤⎥⎥⎦ (18)

where X(1), X(2), ..., X(|X |) are the different values of Xt in its support X . Let image(Ψi on D)

represent the image set of the mapping Ψi when the domain is D, e.g., image(Ψi on [0, 1]|X |) ≡
{Ψi(Bi) : Bi∈[0, 1]|X |}. By definition, the set of possible best responses of a player that is level-1
rational is just the image set Ψi when the domain is [0, 1]|X |:

C
(1)
i = image(Ψi on [0, 1]|X |) (19)

And the set of possible best responses of a player that is level-2 rational is the image set Ψi when

the domain is C(1)j :

C
(2)
i = image(Ψi on domain C

(1)
j ) (20)

In general, for level-R rationality, we have that C(R)i = image(Ψi on domain C
(R−1)
j ). Since Ψi is

a continuous mapping and the domain [0, 1]|X | is closed, it is clear that image(Ψi on [0, 1]|X |) is a

closed set (i.e., continuous functions map closed sets into closed sets). Furthermore, image(Ψi on

[0, 1]|X |) is compact because it is bounded. Therefore, the set C(1)i is equal to its compact closure.

Similarly, using a recursive argument, it is straightforward to show that C(R)i is also a compact set.

12



The assumption of rationality (or of level-R rationality) implies informative bounds on players’

behavior only if the effect of beliefs Bi on the threshold value function vBi (Xt) is bounded with

probability one. Otherwise, the best response probability of an arbitrarily pessimistic (optimistic)

rational player would be zero (one) with probability one. Proposition 1 establishes that the as-

sumption of rationality imposes informative restrictions, and the higher the level of rationality, the

stronger the restrictions.

PROPOSITION 1: For any finite vector of the structural parameters θ, and discount factors strictly

smaller than 1, the best response sets are such that C(R)i ⊂ C
(R−1)
i ⊂ ... C(2)i ⊂ C

(1)
i ⊂ [0, 1]|X |.

Without further restrictions, the derivation of the best response sets C(R)i can be a very com-

plicated task. *** EXPLAIN WHY. IMPORTANT ***** The following condition plays a key role

in our approach to calculate best response sets C(R)i using a simple sequential method.

ASSUMPTION 5 (Weak Submodularity): The set of possible values of the structural parameters,

Θ, is such that the one-period profit function Πi(Yi, Yj ,Xi,Xj) ( i.e., z(Xit,Xjt, Yit, Yjt)θi) is sub-

modular in (Yi, Yj) and submodular in (Xi,Xj). That is, for any value of (Xi,Xj),

Πi(1, 1,Xi,Xj)−Πi(0, 1,Xi,Xj) ≤ Πi(1, 0,Xi,Xj)−Πi(0, 0,Xi,Xj) (21)

And for any value of (Yi, Yj ,Xi,Xj):

Πi(Yi, Yj ,Xi + 1,Xj + 1)−Πi(Yi, Yj ,Xi,Xj + 1) ≤ Πi(Yi, Yj ,Xi + 1,Xj)−Πi(Yi, Yj ,Xi,Xj)

(22)

The model of capacity investment in the Example of section 2.1 satisfies this assumption of weak

submodularity for any value of the structural parameters. Under Assumption 5, the threshold

value function vBi (Xt) is decreasing with respect to any probability in the vector of beliefs Bi.

Proposition 2 establishes this property and shows that it facilitates very significantly the derivation

of best response sets.

PROPOSITION 2: Under Assumption 5, our dynamic game is such that best response probability

functions are strictly decreasing in the vector of beliefs Bi. For any two values of the vector of

state variables, say XA and XB, we have that
∂Ψi(XA,Bi)

∂Bi (XB)
≤ 0. This property implies the

following (sharp) bounds on best response probabilities. Let L
(R)
i (X) and U

(R)
i (X) be the lower

and upper bounds of the best response probability Ψi(X,Bi) under level-R rationality, such that

L
(R)
i (X) ≤ Ψi(X,Bi) ≤ U

(R)
i (X) for any (X,Bi). And let L

(R)
i and U(R)

i be the corresponding

13



vectors with the bounds for every value of X. These bounds can be obtained using the following

recursive formulas. For R ≥ 1,
L
(R)
i = Ψi(U

(R−1)
j )

U
(R)
i = Ψi(L

(R−1)
j )

(23)

with U(0)
j = 1 and L(0)j = 0.

Proposition 2 shows that the best response sets C(R)i are hyper-rectangles within the hyper-cube

[0, 1]|X |. That is, C(R)i =
D
L
(R)
i ,U

(R)
i

E
. Furthermore, the vertices of these hyper-rectangles can

be obtained recursively by solving single-agent DP problems. For instance, L(1)i is the vector of

optimal CCPs in a DP model where player i beliefs that his opponent will always choose alternative

Yjt = 1 at any possible state and with probability one. Similarly, U(1)
i is the vector of optimal

CCPs in a DP model where player i beliefs that his opponent will always choose Yjt = 0. In the

next section, we show that, for the estimation of the model, the derivation of the vectors of bounds

L
(R)
i and U(R)

i is in fact much simpler. It is possible to use a value function representation in

Aguirregabiria and Mira (2007) to obtain these bounds without having to solve the DP problems.

4 Identification

Suppose that the researcher has a random sample of many (infinite) independent realizations of the

game, e.g., many local markets. We use the subindex m to represent markets. For every market m

in the sample, we observe a realization of the variables {Yimt,Ximt,Wim : i = 1, 2; t = 1, 2, ..., T}.
The number of sample periods T is small, and in fact it can be as small as T = 2. The unobservable

variables {εimt} are assumed to be independently and identically distributed across markets and
over time. We want to use this sample to estimate the vector of structural parameters θ.8

Let {P0imt : i = 1, 2} be the vectors in [0, 1]|X | with the true (population) conditional probability
functions Pr(Yimt = 1|Xmt) in market m at period t. Let {B0imt : i = 1, 2} be the vectors with
players’ beliefs in market m at period t. And let θ0 be the true value of θ in the population under

study. Assumption 6 summarizes our conditions on the Data Generating Process (DGP).

ASSUMPTION 6: (A) For every player i, P0imt is the best response of player i given his beliefs

B0imt and the vector of structural parameters θ
0, i.e., P0imt = Ψi(B

0
imt,θ

0). (B) Players’ beliefs

may change over time (in an unrestricted way) but they are constant across markets, i.e., for every

8This framework can be extended to incorporate unobservable state variables for the econometrician which are
common knowledge to players and have a distribution with finite support (see Kasahara and Shimotsu, 2008b).
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market m, B0imt = B
0
it.
9

Assumption 6 implies that choice probabilities describing players’ actual behavior (CCPs) do

not vary across markets: i.e., for any market m, P0imt = Ψi(B
0
it,θ

0) = P0it. It also implies that we

can identify these probabilities nonparametrically from the data. For any player i, any period t,

and any value of X ∈X , we have that P 0it(X) = E(Yimt|Xmt = X), and this conditional expectation

can be estimated consistently using data on Yimt and Xmt for a random sample of markets. For

instance, given that Xmt is a vector of discrete random variables, the frequency or ’cell’ estimatorPM
m=1 Yimt1{Xmt = X}/PM

m=1 1{Xmt = X} is a consistent estimator of P 0it(X). For notational
simplicity, we omit the time subindex for the rest of this section, but it should be implicit that the

identification results allow beliefs to vary over time in an unrestricted way.

Under level-R rationality, the restrictions of the model can be summarized by the expression

L
(R)
i (θ0) ≤ P0i ≤ U(R)

i (θ0). More specifically, for level-1 rationality, we have the following restric-

tions:

Gi(v
B=1
i (Xt,θ

0)) ≤ P 0i (Xt) ≤ Gi(v
B=0
i (Xt,θ

0)) (24)

where vB=1i (Xt,θ) is the threshold value function when player i beliefs that player j will choose

Yj = 1 at any state with probability 1, and vB=0i (Xt,θ) is the threshold value function when player

i beliefs that player j will choose Yj = 0 at any state with probability 1. Similarly, for level-2

rationality, we have the following restrictions:

Gi(v
B=U

(1)
j

i (Xt,θ
0)) ≤ P 0i (Xt) ≤ Gi(v

B=L
(1)
j

i (Xt,θ
0)) (25)

where L(1)j (X,θ0) = Gj(v
B=1
j (X,θ0)) and U

(1)
j (X,θ0) = Gj(v

B=0
j (X,θ0)).

To study identification, as well as for the implementation of our estimation methods, we use the

representation of best response functions and threshold value functions proposed by Aguirregabiria

and Mira (2002 and 2007). This representation has the following form:

vBi (Xt,θ) = eZP,Bit θi − ẽP,Bit (26)

where eZP,Bit ≡ ZP,Bit (1) − ZP,Bit (0), and ZP,Bit (Yit) is the expected and discounted sum of current

and future vectors {zit+s(Yit+s, Yjt+s) : s = 0, 1, 2, ...} which may occur along all possible histories
originating from the choice of Yit in state Xt when player i behaves in the future according to the

choice probabilities in Pi and the other player behaves now and in the future according to the

9Our sampling design with largeM and small T is the standard case in applications of empirical games in Industrial
Organization. Alternatively, if the sampling design is such that the number of periods T is large and the number of
markets M is small, then we can allow beliefs to vary over markets but being constant over time.
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choice probabilities in Bi. Similarly, ẽ
P,B
it ≡ eP,Bit (1) − eP,Bit (0), and eP,Bit (Yit) is the expected and

discounted sum of realizations of {εit+sYit+s : s = 0, 1, 2, ...} originating from the choice of Yit in

state Xt, when player i behaves in the future according to the choice probabilities in Pi and the

other player behaves now and in the future according to the choice probabilities in Bi. Given the

vectors Pi and Bi, it is possible to obtain Z
P,B
it (Yit) and eP,Bit (Yit) by solving a system of linear

equations with dimension |X |. We describe the details of this derivation in Appendix B. Using
this representation of best response probability functions, we can present the model restrictions as

follows. Under level-R rationality,

eZP0,U(R−1)
j

it θ0i − ẽ
P0,U

(R−1)
j

it ≤ G−1i
¡
P 0i (Xt)

¢ ≤ eZP0,L(R−1)j

it θ0i − ẽ
P0,L

(R−1)
j

it
(27)

where G−1i (.) is the inverse function of the CDF Gi.

Suppose that we knew the true players beliefs B0i . Then, it is straightforward to show that θ
0
i

is point-identified.

PROPOSITION 3: Consider that Assumption 6 holds and the moment matrices E(Zit(0, 0)Zit(0, 0)0),

E(Zit(1, 0)Zit(1, 0)
0), E(Zit(0, 1)Zit(0, 1)0), and E(Zit(1, 1)Zit(1, 1)

0) have full-column rank. If the

researcher knows the true values of players’ beliefs, B0i , then the vector of structural parame-

ters θ0i is point identified under level-1 rationality (or under any level R > 0). In particular,

θ0i = E(eZP0,B00it
eZP0,B0it )−1E(eZP0,B00it [G−1i (P

0
i (Xt)) + ẽP

0,B0

it ]).

Of course, the assumption that the researcher knows, ex ante, players’ beliefs is very unrealistic.

Now, consider the more relevant case where the researcher does not know players beliefs. Let Θ(R)

be the identified set of parameters for level-R rational players. By definition:

Θ
(R)
I =

⎧⎪⎨⎪⎩
θ ∈ Θ : for any (i,Xt)

eZP0,U(R−1)
j

it θi − ẽ
P0,U

(R−1)
j

it ≤ G−1i
¡
P 0i (Xt)

¢ ≤ eZP0,L(R−1)j

it θi − ẽ
P0,L

(R−1)
j

it

⎫⎪⎬⎪⎭ (28)

It is possible to show that for any level of rationality R, Θ(R) ⊂ Θ(R−1). However, without further
assumptions, it is not possible to show that level-R rationality provides point identification.

Proposition 4 below shows that under standard exclusion restrictions and large support con-

ditions, the vector of structural parameters θ0i and the discount factor δi are point-identified. To

prove point identification one should establish that for any vector θ 6= θ0 there are values of Xt

with positive probability mass such that one of the inequalities in expression (27) does not hold.

PROPOSITION 4: Suppose that one of the components of the vector zit(Yit, Yjt) is equal to YitWi,

where Wi is a observable exogenous variable that has sample variation over players and over mar-

kets. Let αi ⊂ θi be the structural parameter associated with the term YitWi. Suppose that α0i 6= 0
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and the random variable Wi conditional on Wj has unbounded support. Then, under level-1 ra-

tionality α0i is point-identified, and under level-2 rationality the whole vector θ0i and the discount

factor δi are point-identified.

The point-identification result in Proposition 4 is based on an exclusion restriction and a large-

support condition on one of the exogenous explanatory variables, Wi. The exclusion restriction is

an exogenous (or predetermined) observable variable that has a direct effect on the own player’s

payoff but not the other players’ payoffs. Exclusion restrictions may appear naturally in many

dynamic games. For instance, in a dynamic game of firms’ capital investment in an oligopoly

industry, a firm’s current profit does not depend directly on other firms’ capital at previous period,

but it depends indirectly through the current investment decisions of other firms. The large-support

condition establishes that the variables of the exclusion restriction have unbounded support on the

real line. The formal proof of Proposition 4 is in the Appendix. We show that for any vector

θ 6= θ0 there are values of (W,Xt) with positive probability mass such that one of the inequalities

in expression (27) does not hold. The following example provides a more informal discussion and

some intuition for the identification result in Proposition 4.

EXAMPLE 4. Consider a model where the best response probability mapping has the following

form: Pi(Xmt) = Gi(θi0+θi1Wim+θi2Ximt+θi3Bi(Xmt)), where θi0, θi1, θi2, and θi3 are structural

parameters. Under level-2 rationality, we have that:

Pi(Xmt) = Gi (θi0 + θi1Wim + θi2Ximt + θi3Gj (θj0 + θj1Wjm + θj2Xjmt + θi3Bj(Xmt))) (29)

Suppose that conditional on Wim the state variable Wjm has unbounded support on the real line,

and the same property applies to Wjm conditional on Wim. Without loss of generality suppose

that θi1 > 0 and θj1 > 0. Let WL
j be a value of Wjm small enough such that for any Wjm < WL

j ,

the probability Gj(θj0 + θj1Wjm + θj2Xjmt + θi3Bj(Xmt)) is arbitrarily close to zero. Therefore,

conditional on {Wjm < WL
j }, we have that G−1i (P 0i (Xmt)) = θ0i0+θ0i1Wim+θ0i2Ximt, and it is clear

that θ0i0, θ
0
i1, and θ

0
i2 are point identified. Now, letW

U
j be a value ofWjm large enough such that for

anyWjm > WU
j , the probability Gj(θj0+θj1Wjm+θj2Xjmt+θi3Bj(Xmt)) is arbitrarily close to one.

Therefore, conditional on {Wjm > WU
j }, we have that G−1i (P 0i (Xt)) = θ0i0+θ0i1Wim+θ0i2Ximt+θ0i3,

and this implies that θ0i3 is also point identified. We can apply the same argument to identify

the structural parameters for player j. We can use also this example to illustrate how relaxing

the large support condition implies that structural parameters are only set identified. Suppose

that for Wjm < WL
j , the probability Gj(θj0 + θj1Wjm + θj2Xjmt + θi3Bj(Xmt)) is not arbitrarily
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close to zero but to a function λL(Xmt) that is strictly greater than zero. Therefore, conditional

on {Wjm < WL
j }, we have that G−1i (P 0i (Xt)) = θ0i0 + θ0i1Wim + θ0i2Ximt + θ0i3λL(Xmt). Similarly,

conditional on {Wjm > WU
j }, we have that G−1i (P 0i (Xt)) = θ0i0 + θ0i1Wim + θ0i2Ximt + θ0i3λU (Xmt),

where λU (Xmt) is a function greater than λL(Xmt) but strictly smaller than 1. In this case, without

further restrictions, we cannot point identify the structural parameters.

5 Estimation and Inference

5.1 Estimation

We propose two estimation methods. The first estimator has similarities with some matching esti-

mators used in the treatment effect literature (Abadie and Imbens, 2006). It imposes the restriction

of point-identification of the structural parameters in the sample. The main advantage of this es-

timator is its relative computational simplicity, but it has several limitations. The estimator relies

critically on the large-support conditions on some explanatory variables and the point-identification

result follows an at-infinity argument. In finite samples, imposing point-identification may induce

significant biases. The second estimator deals with these issues and recognizes the possibility of

having only set identification, but not point identification, in the sample or even in the population.

We propose a method that provides a parameter set that minimizes a penalty function based on

moment inequalities that summarize the restrictions of the model.

5.1.1 Estimator based on extreme values of explanatory variables

We start describing this estimator in the context of the simple static game in Example 4. Under

level-2 rationality, the best response probability function is described by equation (29). For q ∈
(0, 1), let W (q)

j be the q-quantile in the population distribution of Wjm, i.e., Pr(Wjm ≤W
(q)
j ) = q.

The best response probability of player j given W
(q)
j goes to 0 as q goes to zero. Therefore, given

W
(q)
j and q → 0, the best response of player i goes to Gi(θi0 + θi1Wim + θi2Ximt). Similarly, given

W
(q)
j and q going to one, the best response of player i goes to Gi(θi0 + θi1Wim + θi2Ximt + θi3).

Based on this result, we can construct a consistent estimator of the structural parameters. Let

qM ∈ (0, 1) be such that qM goes to zero and MqM goes to infinite as the sample size M goes to

infinite. And let Ŵ (qM )
j be the qM -quantile in the sample distribution of Wjm. Then, we construct

the following regression-like equation: for any observation (m, t) such that {Wjm ≤ Ŵ
(qM )
j OR

Wjm ≥ Ŵ
(1−qM )
j },

G−1i (P
0
i (Xmt)) = θi0 + θi1Wim + θi2Ximt + θi3 1{Wjm ≥ Ŵ

(1−qM )
j } (30)
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where 1{.} is the indicator function. Based on this expression, we can implement a simple two-step
estimator. In the first step, we estimation nonparametrically the CCP function P 0i (.), and the

quantiles W (qM )
j and W

(1−qM )
j . In the second step, we run the linear regression in equation (30)

using the subsample of observations with {Wjm ≤ Ŵ
(qM )
j OR Wjm ≥ Ŵ

(1−qM )
j } and replacing P 0i

by the estimator P̂ 0i . This estimator is root-M consistent and asymptotically normal.

Now, we extend this estimator to the dynamic game model. Under level-2 rationality, the best

response probability function is:

Pi(Xmt) = Gi

³eZPi,Gj(Bj)

imt θi − ẽ
Pi,Gj(Bj)

imt

´
where Gj(Bj) is a compact form to represent the best response probabilities of player j given

his beliefs Bj . Given W
(q)
j and q going to zero, the best response probability of player j goes to

Gj(Bj) = 0, and therefore the best response of player i goes to Gi(eZPi,0imt θi − ẽPi,0imt ). Similarly,

given W
(q)
j and q going to one, the best response of player i goes to Gi(eZPi,1imt θi − ẽPi,1imt ). As in the

static game, we can write the following regression-like equation: for any observation (m, t) such

that {Wjm ≤ Ŵ
(qM )
j OR Wjm ≥ Ŵ

(1−qM )
j },

G−1i (P
0
i (Xmt)) + 1{Wjm ≤ Ŵ

(qM )
j }ẽP0i ,0imt + 1{Wjm ≥ Ŵ

(1−qM )
j }ẽP0i ,1imt

=
h
1{Wjm ≤ Ŵ

(qM )
j }eZP0i ,0imt + 1{Wjm ≥ Ŵ

(1−qM )
j }eZP0i ,1imt

i
θi

(31)

Based on this expression, we can implement a root-M consistent two-step estimator of θi as de-

scribed for the static game.

5.1.2 Estimator based on moment inequalities

This section is based on the inference methods for models with moment inequalities in Cher-

nozhukov, Hong, and Tamer (CHT) (2007). We present an estimator of the set of identified para-

meters ΘI , and an estimator of a confidence region for that set. The estimated confidence region

applies both to the case when θ0 is point-identified and when it is only set-identified.

Our model is defined in terms of the moment restrictions:

eZP0,Uj

imt θ0i − ẽ
P0,Uj

imt ≤ G−1i
¡
P 0i (Xmt)

¢ ≤ eZP0,Ljimt θ0i − ẽ
P0,Lj
imt

(32)

where, for notational simplicity, we have omitted the super-index for the level of rationality (R).
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Our inference methods are based on the following population criterion function:

Q0(θ) =
P

Xmt∈X

2P
i=1
max

½eZP0,Uj

imt θi − ẽ
P0,Uj

imt −G−1i
¡
P 0i (Xmt)

¢
; 0

¾2
Pr(Xmt)

+
P

Xmt∈X

2P
i=1
min

½eZP0,Ljimt θi − ẽ
P0,Lj
imt −G−1i

¡
P 0i (Xmt)

¢
; 0

¾2
Pr(Xmt)

(33)

Given this criterion function, we can define the identified set ΘI as:

ΘI = {θ ∈ Θ : Q0(θ) = 0} (34)

To estimate this identified set, we consider the following set-estimator:

Θ̂I =

½
θ ∈ Θ : QM(θ) ≤ bM

M

¾
(35)

bM is such that bM →∞ and bM/M → 0 as the sample size M goes to infinite. The function QM

is the sample counterpart of the population criterion Q0:

QM(θ) =
1

2MT

MP
m=1

TP
t=1

2P
i=1
max

½eZP̂0,Uj

imt θi − ẽ
P̂0,Uj

imt −G−1i
³
P̂ 0i (Xmt)

´
; 0

¾2

+
1

2MT

MP
m=1

TP
t=1

2P
i=1
min

½eZP̂0,Ljimt θi − ẽ
P̂0,Lj
imt −G−1i

³
P̂ 0i (Xmt)

´
; 0

¾2 (36)

where P̂0 is a nonparametric estimator of the population CCP function P0, e.g., a frequency

estimator.

Under the assumptions of the model, it is possible to show that sup |QM(θ) − Q0(θ)| =
Op(1/

√
M) and QM(θ) = Op(1/M) for every θ ∈ΘI . Therefore, we can apply Theorem 3.1 in

CHT to show that Θ̂I is a consistent estimator of ΘI : i.e., dH(Θ̂I ,ΘI) = op(1), where dH(A,B)

represents the Haussdorff distance between sets A and B.10

To compute the set estimator Θ̂I we use a linear programming algorithm. Consider first the case

for level-1 rationality, and where the scalar bM is zero. In this case, Θ̂I is the set of values θ that

satisfy the restriction QM(θ) = 0. This set is equivalent to the set of values θ that solve the linear

system of inequalities eZP̂0,1imt θi−ẽP̂
0,1

imt −G−1i (P̂ 0i (Xmt)) ≤ 0 and G−1i (P̂ 0i (Xmt))−eZP̂0,0imt θi−ẽP̂
0,0

imt ≤ 0
for every observation (i,m, t) in the sample. We can represent this system of inequalities in a

compact form as:

A θ + b ≤ 0 (37)

10The Hausdorff distance is defined as dH(A,B) ≡ max sup
a∈A

infb∈B ka− bk , sup
b∈B

infa∈A ka− bk , where k.k is the
Euclidean distance.
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where A and b are a matrix and a vector, respectively, with a number rows equal to 4min{MT, |X |}.
To solve this system of inequalities we use a recent version of a well-known algorithm in linear

programming called relaxation method or perceptron algorithm (see Agmon, 1954, Goffin, 1980,

and Dunagan and Vempala, 2008). The relaxation method is an algorithm to obtain values of θ

that satisfy this system of linear restrictions. It was introduced by Augman (1954) and it is one

of most commonly applied algorithms to solve this class of problems. Its main advantages are its

simplicity, that each iteration is very fast, and that it always converges to a solution. Though in

the worst-case scenario it is an exponential time algorithm (i.e., in the worst-case type of problems,

CPU time increases exponentially with the number of inequalities in the system), it is well-known

that this is over-pessimistic and that in an average-case scenario it is a polynomial time algorithm

(Goffin, 1980). Furthermore, recent extensions on this algorithm, such as the randomized version

proposed by Dunagan and Vempala (2008), are polynomial time in a worst-case scenario.

Our estimated set Θ̂I is based on the conditionQM(θ) ≤ bM/M , with bM > 0. This is equivalent

to find the set of solutions of the linear system of inequalities A θ + b − cM1 ≤ 0, where cM > 0

is a scalar constant, and 1 is a vector of ones. The scalar cM should be such that the implicit bM

implied by cM should satisfy the conditions bM → ∞ and bM/M → 0. These conditions hold if

cM → 0 and McM →∞.
For levels of rationality greater than R = 1, we have that probability bounds Uj and Lj , and

therefore eZP̂0,Uimt , eZP̂0,Limt , ẽ
P̂0,U
imt , and ẽP̂

0,L
imt , depend on structural parameters. This implies that

the system of inequalities is no longer linear in the structural parameters. Linearity in θ is very

convenient for the estimation of Θ̂I . To maintain linearity we implement the following recursive

method. First, we start estimating Θ̂I under the assumption of level-1 rationality, i.e., Θ̂
(1)
I . Given

this set we obtain the infimum of the probability bound Lj(θ) within Θ̂
(1)
I , and the supremum of

the probability bound Uj(θ) within Θ̂
(1)
I :

inf L
(1)
j = inf

∈Θ̂(1)I

L
(1)
j (θ)

supU
(1)
j = sup

∈Θ̂(1)I

U
(1)
j (θ)

(38)

Then, we use inf L(1)j and supU(1)
j to calculate eZP̂0,Uimt , eZP̂0,Limt , ẽ

P̂0,U
imt , and ẽP̂

0,L
imt . These bounds are

not as sharp as the true ones, L(1)j (θ
0) and U(1)

j (θ
0), but they are much sharper than the bounds

under level-1 rationality, i.e., L(0)j = 0 and U(0)
j = 1. The main advantage of this approach is that

we can compute the estimator Θ̂(2)I using efficient but simple algorithms for the solution of linear

systems of inequalities.
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5.2 Tests of Equilibrium Beliefs

In this subsection, we present four different approaches to test for the null hypothesis of equilibrium

beliefs. The first test is a standard Lagrange Multiplier (LM) or Score test based on the constrained

maximum likelihood estimation (MLE) of structural parameters and beliefs. The second test is a

Likelihood Ratio test that takes into account that the unconstrained estimator may only partially

identify structural parameters and beliefs.

This test is standard but of very limited applicability given the computational problems to

estimate by maximum likelihood dynamic games with multiple equilibria.

The second test is also an LM test but it is less standard because it is based on the (constrained)

Nested Pseudo Likelihood (NPL) estimator proposed in Aguirregabiria and Mira (2007). This

estimator also imposes the equilibrium restrictions but it is much simpler to compute than the

constrained MLE. Finally, the third test is in the spirit of a likelihood ratio (LR) test but it takes

into account that the unconstrained estimator may only partially identify structural parameters

and beliefs.

LM test based on constrained MLE. Define the log-likelihood function:

l(θ,P) ≡
MX

m=1

TX
t=1

2X
i=1

logΨi(Xmt,θ,P) (39)

where Ψi(Xmt,θ,P) is the best response function Gi(eZPi,Pjimt θi − ẽ
Pi,Pj
imt ). The constrained MLE is

defined as a vector (θ̂MLE, P̂MLE) such that:

(θ̂MLE , P̂MLE) = argmax
( ,P)

l(θ,P)

subject to: P = Ψ(θ,P)
(40)

We want to test the null hypothesis P = Ψ(θ,P), that consists of 2|X | constrains on (θ,P). The
standard LM statistic for testing this null hypothesis is:

LM(MLE) =
∂l(θ̂MLE , P̂MLE)

∂(θ,P)0

"
∂2l(θ̂MLE, P̂MLE)

∂(θ,P)∂(θ,P)0

#−1
∂l(θ̂MLE, P̂MLE)

∂(θ,P)
(41)

Under the null hypothesis, this statistic is distributed as a chi-square with 2|X | degrees of freedom.

LM test based on NPL estimator. The NPL estimator is a vector (θ̂NPL, P̂NPL) that satisfies the

conditions:
θ̂NPL = argmax l(θ, P̂NPL)

and
P̂NPL = Ψ(θ̂NPL, P̂NPL)

(42)
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In the case that there are multiple vectors of (θ,P) satisfying these conditions, the NPL estimator

is defined as the vector that provides the maximum value of the likelihood l(θ,P). Under the

assumption that players beliefs are in equilibrium, this estimator is consistent, asymptotically

normal, but not asymptotically efficient. However, it is more efficient and it has better finite

sample properties than two-step estimators that do not impose equilibrium restrictions in the

sample. In contrast to the constrained MLE, the NPL estimator is such that the component of the

score associated with θ is zero by construction, i.e., ∂l(θ̂NPL, P̂NPL)/∂θ = 0. In general, the other

component of the score, ∂l(θ̂NPL, P̂NPL)/∂P, is not zero. As in MLE estimation, it is possible

to show that, under the null hypothesis, the score vector ∂l(θ̂NPL, P̂NPL)/∂P is asymptotically

normal with variance E[−∂2l(θ0,P0)/∂P∂P0]. Therefore, the LM statistic for this second test is:

LM(NPL) =
∂l(θ̂NPL, P̂NPL)

∂P0

"
∂2l(θ̂NPL, P̂NPL)

∂P∂P0

#−1
∂l(θ̂NPL, P̂NPL)

∂P
(43)

Under the null hypothesis, this statistic is distributed as a chi-square with 2|X | degrees of freedom.

Likelihood Ratio test with partial identification of the unconstrained model. Consider first the case

that we use ML estimation. The LR test is not affected by the set identification of the unrestricted

model, i.e., the LR statistic is 2(lU−lR) where lR and lU are the maximum values of the log-likelihood
function for the restricted and the unrestricted models, respectively. However, as mentioned above,

ML estimation of the restricted model is very costly computationally. Furthermore, set estimation

of the unrestricted model is also very challenging and it cannot be represented in terms of a system

of linear inequalities. Therefore, we consider a modified LR test: LR = 2(l̂U − l(θ̂NPL, P̂NPL)),

where the unrestricted log-likelihood l̂U is defined as

l̂U ≡ max
( ,P)

n
l(θ,P) subject to: (θ,P) ∈ Θ̂I × Π̂I

o
where Θ̂I are Π̂I estimated sets of structural parameters and beliefs, respectively, based on the

estimation procedure described in the previous sub-section.

6 Empirical Application

To illustrate the application of our model and method, we estimate a dynamic game of store

location by McDonalds (MD) and Burger King (BK) using data for United Kingdom during the

period 1991-1995. The main empirical question that we want to analyze in this application is

whether the beliefs of MD and BK about the strategic behavior of other competitor are consistent

with the actual behavior of the competitor.
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The dataset comes from the paper Toivanen and Waterson (2005).11 It is a panel of 422 local

markets (districts) and five years with information on the stock of stores and the flow of new stores

of MD and BK in each local market, as well as local market characteristics such as population,

density, age distribution, average rent, income per capita, local retail taxes, and distance to the

headquarters of the firm in UK.

Table 1 presents descriptive statistics on the evolution of the number of stores for the two

firms. In 1990, MD had more than three times the number of stores of BK, and it was active in

more than twice local markets than BK. Conditional on being active in a local market, MD had

significantly more stores per market than BK. These differences between MD and BK have not

declined significantly over the sample period 1991-1995. While BK have entered in more new local

markets than MD (69 new markets for BK and 48 new markets for MD), MD has open more stores

(143 new stores for BK and 166 new stores for MD).

Table 2 presents estimates of reduced form Probit models for the decision to open a new store.

We obtain separate estimates for MD and BK. The set of explanatory variables includes the indica-

tor of own presence in the market at previous year, the number of own stores and previous year, the

indicator of the competitor presence in the market at previous year, the number of the competitor

stores at previous year, and local market characteristics such as population, population between

ages 15 and, population density, average rent, and distance to the own headquarters. To deal with

(permanent) unobserved market heterogeneity, we include county-dummies12 and a variable that

captures the initial conditions of the firm in the local market at year 1990. This variable is the ratio

between the number of stores the firm has in the local market (in 1990) and the population between

ages 15 and 29. A high value of this variable represents a "good match" between the firm and the

local market unobserved characteristics. For each explanatory variable we report the estimated

parameter and the estimated marginal effect calculated at the mean values of all the explanatory

variables. We do not report estimates for time dummies and county dummies but both are jointly

significant. All the statistically significant effects have the expected signs. The own presence in

the market and the own number of stores have significant negative effects on entry. One additional

store reduces the probability of entry between 1 and 2 percentage points (the probability of entry at

the average is 2.3% for BK and 5.5% for MD). Population between ages 15 and 29 has a strong and

significant effect on entry: doubling the size of this population increases the probability of entry

between 15 and 16 percentage points for both firms. The variable that captures initial conditional

11We would like to thank Otto Toivanen and Michael Waterson for generously sharing their data with us.
12 In our sample, there are 422 districts and 62 counties.
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or unobserved firm-market characteristics has also a significant and positive effect.

The most surprising and puzzling result in the probit estimates of Table 2 is that the effect of

the competitor presence, or the competitor number of stores, is positive, though not statistically

significant in most of the cases. This result is fully consistent with the ones reported by Toivanen and

Waterson (2005). Despite that the products sold by the two firms are clearly substitutes, it seems

"as if", the firms’ entry decisions were ignoring these substitution or competitive effects. There are

different possible interpretations of this puzzling finding. Perhaps, the simplest interpretation is

that the estimated coefficients for these variables are upward biased due to permanent unobserved

market heterogeneity. This seems to be a factor. Controlling for county fixed effects and for initial

conditions reduced significantly the value of these estimates. However, if we include district fixed

effects the competitive effect is still not significant in this reduced form Probit models. Toivanen and

Waterson argue that this empirical evidence is consistent with firms’ incomplete information about

some market characteristics and with a model where firms can learn about these characteristics

from the entry decisions of the opponent. Here we explore two other explanations. First, firms

forward looking behavior may explain this apparent absence of competitive effects. Once we take

into account forward looking behavior in a dynamic game of entry, the estimated competitive effects

may appear statistically significant. The second hypothesis that we explore is that firms beliefs

about the behavior of the opponent are not in equilibrium, i.e., do not represent the actual behavior

of the competing firm.

The specification of the model is the one that we have presented above in Example 3. Ximt

represents the number of installed stores of firm i in market m at the beginning of the year. The

maximum value of Ximt in the sample is 13, and we consider that the set of possible values of

Ximt is {0, 1, ..., 15}. Therefore, the state space X is {0, 1, ..., 15} × {0, 1, ..., 15} that has 256 grid
points. Yimt is the binary indicator of the event "firm i opens a new store in market m at year t".

We consider that market characteristics are constant over time. The measure of market size Sm is

total population in the district. For some specifications, we allow the cost of investment to depend

on market characteristics such as average rent, retail taxes, population density, or average income.

Therefore, each market has its own vector of players’ CCPs. The dimension of the vectors Pi in

this model is equal to 108, 032, i.e., 422 markets times 256 states X.

Tables 3 and present estimates of the structural model both under the assumption that firms

are myopic, β = 0, and under the assumption that firms are forward looking, β = 0.95. We

report two different sets of point estimates: estimates using a simple two-step method Pseudo
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Maximum Likelihood method where the estimator of (equilibrium) players’ beliefs in the first step

is a nonparametric frequency estimator; and estimates using the Nested Pseudo Likelihood (NPL)

method proposed in Aguirregabiria and Mira (2007). The NPL method imposes the equilibrium

restrictions in the sample (i.e., the estimated beliefs should be equal to the estimated best response

probabilities), while the two-step method only satisfies the equilibrium restrictions asymptotically.

The NPL estimator has smaller asymptotic variance and finite sample bias than the two-step

method. The parameters that represent time discount factors have been estimated using a discrete-

grid method. There are very substantial differences between two models, very particularly in the

estimates of the parameters that capture cannibalization and competition effects. While these

effects have the ’wrong’ sign in the myopic model, the signs are the expected ones in the forward

looking model. All the parameter estimates in the forward looking model have the expected signs

and have reasonable magnitudes. Therefore, it seems that forward looking behavior explains part

of the puzzle in the reduced form estimates. [MORE ON THIS]

Table 5 presents our estimates of parameter confidence intervals using the estimator described

in section 5. For the sake of comparison, we also include in this table a column with the NPL

estimates.

*********

26



APPENDIX A: PROOFS OF PROPOSITIONS

TBW

APPENDIX B.

Define the value vectorWP,B
Zi (Xt) ≡ (1−Pi(Xt))Z

P,B
it (0)+Pi(Xt)Z

P,B
it (1), and the scalar value

WP,B
ei (Xt) ≡ (1 − Pi(Xt))e

P,B
it (0) + Pi(Xt)e

P,B
it (1). By definition of the present values ZP,Bit (Yit)

andWP,B
Zi (Xt), it is simple to show that:

ZP,Bit (Yit) = (1−Bi(Xt)) Zit(Yit, 0) +Bi(Xt) Zit(Yit, 1) + β
P
Xt+1

fBi (Xt+1|Yit,Xt)W
P,B
Zi (Xt+1)

(B.1)

Similarly,

eP,Bit (Yit) = β
P
Xt+1

fBi (Xt+1|Yit,Xt) W
P,B
ei (Xt+1) (B.2)

Define the matrix of values WP,B
Zi ≡ {WP,B

Zi (X) : X ∈X} and the vector of values WP,B
ei ≡

{WP,B
ei (X) : X ∈X}. By definition, the matrix WP,B

Zi is the solution to the following systems of

linear equations with dimension |X |:

WP,B
Zi = βFP,BX WP,B

Zi + (1−Pi) ∗ (1−Bi) ∗ zi(0, 0) + (1−Pi) ∗Bi ∗ zi(0, 1)

+ Pi ∗ (1−Bi) ∗ zi(1, 0) +Pi ∗Bi ∗ zi(1, 1)
(B.3)

where Pi is a |X | × 1 vector with the stacked CCPs of player i for every possible value of Xt;

zi(Yi, Yj) is a matrix with |X | rows and the same number of columns as zit(Yi, Yj) such that a row
of zi(Yi, Yj) is equal to the vector zit(Yi, Yj) associated with a given value of Xt; ∗ represents the
Hadamard or element-by-element product; and FP,BX is the transition matrix of {Xt} induced by the
vector of CCPs Pi and Bi such that the elements of this matrix are (1−Pi(Xt))f

B
i (Xt+1|0,Xt) +

Pi(Xt))f
B
i (Xt+1|1,Xt). It is clear that this system of equations has the following closed-form

analytical expression: WP,B
Zi = (I−βFP,BX )−1 [(1−Pi) ∗ (1−Bi) ∗ zi(0, 0) +(1−Pi) ∗Bi ∗ zi(0, 1)

+Pi ∗ (1 − Bi) ∗ zi(1, 0) +Pi ∗ Bi ∗ zi(1, 1)]. Similarly, the vector WP,B
ei is the solution to the

following systems of linear equations with dimension |X |:

WP,B
ei = βFP,BX WP,B

ei + ePi (B.4)

where ePi is a vector that contains the expected values E(εitYit|Xt, Yit is optimal) for every value

of Xt. These conditional expectations only depend on the probability distribution of εit and on

the choice probability Pi(Xt). For the logit and probit models we have the following closed ex-

pressions. When εit is extreme value distributed (logit): E (εitYit|Xt, Yit optimal) = Euler −
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(1− Pi(Xt)) ln (1− Pi(Xt)) −Pi(Xt) ln (Pi(Xt)), where Euler represents Euler’s constant. When

εit has a standard normal distribution (probit): E (εitYit|Xt, Yit optimal) = φ(Φ−1(Pi(Xt))), where

φ (.) and Φ−1 (.) are the PDF and the inverse-CDF of the standard normal.
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Table 1
Descriptive Statistics for the Evolution of the Number of Stores

Data: 422 markets, 2 firms, 5 years = 4,220 observations

Burger King McDonalds
1990 1991 1992 1993 1994 1995 1990 1991 1992 1993 1994 1995

# Markets with stores 71 98 104 118 131 150 206 213 220 237 248 254

Change in # markets with stores 17 6 14 13 19 7 7 17 11 6

# of stores 79 115 128 153 181 222 281 316 344 382 421 447

Change in # of stores 36 13 25 28 41 35 28 38 39 26

Mean # stores per market 1.11 1.17 1.23 1.30 1.38 1.48 1.36 1.49 1.56 1.61 1.70 1.76
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Table 2
Reduced Form Probits for Decision to Open a Store

Data: 422 markets, 5 years = 2,110 observations per firm

Burger King McDonalds
Explanatory Variable Estimate (s.e.) Marg. Effect (s.e.) Estimate (s.e.) Marg. Effect (s.e.)

1{own stores[t-1] >0} -1.106 (0.249)∗ -0.042 (0.010)∗ -0.499 (0.254)∗ -0.059 (0.032)∗

# own stores[t-1] -0.197 (0.101)∗ -0.011 (0.005)∗ -0.178 (0.062)∗ -0.019 (0.006)∗

1{other stores[t-1] >0} 0.317 (0.190) 0.017 (0.010) 0.460 (0.291) 0.061 (0.040)

# other stores[t-1] 0.091 (0.062) 0.005 (0.004) -0.188 (0.099)∗ -0.021 (0.011)∗

log Population -1.695 (0.815)∗ -0.092 (0.046)∗ -0.149 (0.673) -0.016 (0.075)

log Population 15-29 2.962 (0.795)∗ 0.162 (0.047)∗ 1.310 (0.663)∗ 0.146 (0.074)∗

log Population Density 0.203 (0.078)∗ 0.011 (0.004)∗ 0.108 (0.069) 0.012 (0.008)

log Distance Headquarters 0.238 (0.293) 0.013 (0.016) -0.187 (0.345) -0.021 (0.038)

(#own stores/Pop) in 1990 0.295 (0.071)∗ 0.016 (0.004)∗ 0.118 (0.049)∗ 0.013 (0.005)∗

Prob. entry at mean x 0.023 0.055

Time dummies (4) YES YES

County dummies (61) YES YES

log likelihood -332.22 -455.23

Pseudo R-square 0.270 0.150
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Table 3
Myopic Game of Entry for McDonalds and Burger King

Under the Assumption that Players’ Beliefs are in Equilibrium
Data: 422 markets, 2 firms, 5 years = 4,220 observations

β = 0.00 (not estimated)
Two Step Estimates NPL Estimates

Burger King McDonalds Burger King McDonalds

Variable Profits:
θV P0 4.904 (1.070)∗ 7.909 (2.289)∗ 4.864 (1.081)∗ 7.898 (2.287)∗

θV P1 cannibalization 2.005 (0.869)∗ 3.510 (0.659)∗ 2.035 (0.831)∗ 3.466 (0.647)∗

θV P2 competition 0.014 (0.046) 0.032 (0.051) 0.016 (0.044) 0.037 (0.053)

Fixed Costs:
θFC0 fixed 0.378 (0.212)∗ 0.806 (0.248)∗ 0.374 (0.212)∗ 0.808 (0.247)∗

θFC1 linear 3.099 (0.436)∗ 2.662 (0.405)∗ 3.103 (0.436)∗ 2.659 (0.405)∗

θFC2 quadratic -0.054 (0.064) 0.085 (0.041) -0.052 (0.063) 0.087 (0.041)

Pseudo R-square 0.154 0.154

Log-Likelihood -895.5 -895.4

Distance ||PK−PK−|| 0.00

# NPL iterations 1 5
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Table 4
Dynamic Game of Entry for McDonalds and Burger King

Under the Assumption that Players’ Beliefs are in Equilibrium
Data: 422 markets, 2 firms, 5 years = 4,220 observations

β = 0.95 (not estimated)
Two Step Estimates NPL Estimates

Burger King McDonalds Burger King McDonalds

Variable Profits:
θV P0 0.5849 (0.1077)∗ 0.8303 (0.2968)∗ 1.098 (0.2169)∗ 0.9737 (0.3091)∗

θV P1 cannibalization -0.2096 (0.0552)∗ -0.0024 (0.0392) -0.0765 (0.0725) 0.2874 (0.0986)∗

θV P2 competition -0.0110 (0.0029)∗ 0.0008 (0.0027) -0.0129 (0.0065)∗ -0.0074 (0.0073)

Fixed Costs:
θFC0 fixed 0.0784 (0.0213)∗ 0.0822 (0.0332)∗ 0.0788 (0.0307)∗ 0.0773 (0.0261)∗

θFC1 linear 0.0790 (0.0420)∗ 0.1076 (0.0400)∗ 0.1509 (0.0282)∗ 0.1302 (0.0185)∗

θFC2 quadratic -0.0078 (0.0059) -0.0034 (0.0023) -0.0054 (0.0026)∗ 0.0001 (0.016)

Pseudo R-square 0.323 0.146

Log-Likelihood -655.7 -893.4

Distance ||PK−PK−|| 4831.26 0.00

# NPL iterations 1 31
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Table 5
Dynamic Game of Entry for McDonalds and Burger King

Under Assumption of Level-2 Rational Players
Data: 422 markets, 2 firms, 5 years = 4,220 observations

β = 0.95 (not estimated)
95% Confidence Intervals NPL Estimates
Burger King McDonalds Burger King McDonalds

Variable Profits:
θV P0 [0.3228 , 0.7980] [0.7296 , 1.0274] 1.098 (OUT) 0.9737 (IN)

θV P1 cannibalization [-0.2381 , -0.0688] [0.0648 , 0.2360] -0.0765 (IN) 0.2874 (OUT)

θV P2 competition [-0.0276 , 0.0070] [-0.0115 , 0.0062] -0.0129 (IN) -0.0074 (IN)

Fixed Costs:
θFC0 fixed [0.0723 , 0.0846] [0.0698 , 0.0799] 0.0788 (IN) 0.0773 (IN)

θFC1 linear [0.0763 , 0.1271] [0.1009 , 0.1461] 0.1509 (OUT) 0.1302 (IN)

θFC2 quadratic [-0.0037 , 0.0002] [-0.0010 , 0.0007] -0.0054 (IN) 0.0001 (IN)
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