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1. Introduction

For many governments, debt and fiscal policies are conditioned by the possibility of sover-

eign default. For emerging economies, default is a recurrent event, and is typically followed

by a long debt restructuring process, where the government and bond holders engage on a

renegotiation process that concludes with the government paying a fraction of the defaulted

debt.1

Emerging economies present lower levels of domestic government debt-to-output ratios and

higher volatility of the government revenue-to-output ratio than industrialized economies –

where, contrary to emerging economies, default is not observed in the dataset –.2 Also, the

interest rate spread is higher in emerging economies than in the industrialized economies,

in particular for high levels of domestic government debt-to-output ratios. Moreover, the

highest interest rate spreads are observed after default and during the debt restructuring

period.3

These empirical facts indicate that default does not only affect the government tax policy,

but also the price of government debt – before default and during the debt restructuring

period –. Therefore, the option to default will impact the welfare of the economy; indirectly

by affecting the tax policy and debt prices, but also directly by not servicing the debt holdings

of the residents of the economy during the default event.4

My main objective is to understand how the possibility of default and the actual default

event, impact the optimal tax policy, debt prices – before and during this event –, and

welfare of the economy. For this purpose, I analyze the optimal taxation problem of a

benevolent government in a closed economy under incomplete markets. The government

chooses distortionary labor taxes, non state-contingent debt, and whether to default, so as to

maximize the representative household’s life-time expected utility; subject to the equilibrium

restrictions imposed by the households’ optimal decisions, market clearing conditions and

feasibility. If the government defaults, it faces exogenous offers to pay a fraction of the

1See Pitchford and Wright (2008).
2Domestic debt is the debt issued under domestic law (see Panizza (2008)). I am using domestic and not
total government debt because my model will be a closed economy.
3Throughout this paper I will also refer to the restructuring period as the default period.
4For Argentina’s default in 2001, almost 50% of the face value of debt to be restructured (about 53% of the
total owed debt from 2001) is estimated to be in the hands of Argentinean residents; Local pension funds
alone held almost 20% of the total defaulted debt (see Sturzenegger and Zettelmeyer (2006)).
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defaulted debt. The government has the option to accept the offer – and thus exit financial

autarky – or to stay in financial autarky until a new offer comes.5 During financial autarky

the defaulted debt has positive value because it is going to be paid in the future with

positive probability. Hence, households can trade the defaulted debt in a secondary market

from which the government is excluded; the equilibrium price in this market is used to price

the debt during period of default.

The government can commit to a tax path. This is done to keep the model as simple as

possible. Hence, since households are forward looking in this model, I need to keep track of

the household’s past beliefs about government’s present actions to write the government’s

problem recursively. This recursive formulation renders the problem amenable to analytical

and numerical analysis.

The government faces a trade-off between levying distortionary taxes to finance the sto-

chastic process of expenditures and not defaulting, or issuing debt and thereby increasing

the exposure to default risk. The option to default introduces some degree of state contin-

gency on the payoff of the debt since the financial instrument available to the government

becomes an option, rather than a non state-contingent bond. This option, however, does

not come for free: infinitely lived households accurately predict the possibility of default,

and the equilibrium incorporates it in the pricing of the bond. This mechanism hinders the

ability of the government to smooth shocks using debt, renders tax policy more volatile, and

implies higher spreads. Hence the possibility of default introduces a trade-off between the

cost of the lack of commitment to repay the debt, reflected on the price of the debt, and

the flexibility that comes from the option to default and partial payments, reflected on the

pay-off of the debt.

In a benchmark case, with quasi-linear utility, i.i.d. process for the government expendi-

ture, I characterize, analytically, the determinants of the likelihood of default, and its effects

on the optimal taxes, debt and allocations. For this purpose, I impose financial autarky

forever after default. First, I show that default is more likely when the government’s expen-

diture or debt are higher. Second, I show how the law of motion of the optimal government

policy is affected, on the one hand, by the benefit from having “more state-contingency” on

5In this model, financial autarky is understood as the period during which the government is precluded of
issuing new debt/savings.
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the payoff of the bond; but, on the other hand, by the cost of having the option to default

– reflected on the price of the debt –. Finally, since the “cost” of exercising the option to

default is in term of allocations, I study how the option to default affect the allocations

available to the planner with respect to an economy without this option. In particular, I

show that none of the allocations available to the planner in a risk-free debt economy can

be implemented in mine, if initial debt is positive.

Finally, I calibrate a more complete model, with an auto-correlated process for the gov-

ernment expenditure and a exogenous process for the arrival of offers of partial payments;

the model is qualitatively consistent with the empirical facts observed for emerging and in-

dustrialized economies. In terms of welfare policy, the numerical simulations suggest that

increasing the probability of receiving offers for exiting autarky decreases welfare when this

probability is low/medium to begin with, but increases it when the probability is high.

The paper is organized as follows. I first present the related literature. Section 2 presents

some stylized facts. In section 3, the recursive equilibrium and Ramsey problem are solved.

ection 6 derives analytical results that characterize the government policy for a simple ex-

ample. Section 7 contains some numerical exercises, and finally section 8 briefly concludes.

All proofs are gathered in the appendices.

1.1. Related Literature. My paper builds and contributes on two main strands in the

literature: optimal taxation and endogenous default.

Regarding the first strand, I based my paper on Aiyagari et al. (2002), where in a closed

economy the benevolent infinitely lived government chooses distortionary labor taxes and

non state-contingent risk-free debt, taking into account restrictions from the competitive

equilibria, to maximize the households’ life-time expected utility. By imposing non state-

contingent debt, the authors reconciled the behavior of optimal taxes and debt observed

in the data with the theory developed by the seminal paper by Lucas and Stokey (1983),

in which the government had access to state-contingent debt. These papers assume full

commitment on taxes and debt; my paper relaxes this last assumption and endows the

government with a third policy instrument: the option to default on its debt.
4



Regarding the second strand, I model the strategic default decision of the government as in

Arellano (2008), which in turn is based on the seminal paper by Eaton and Gersovitz (1981).6

My model, however, differs from theirs in several ways. First, I consider distortionary taxa-

tion; Arellano (2008) and references therein implicitly assume lump-sum taxes. Second, my

economy is closed, i.e., “creditors” are the representative household; Arellano (2008) and

references therein, assumes open economy with foreign creditors. Note that under the closed

economy assumption, the default decision has a direct effect on the creditors wealth, and

thus welfare. Third, in my model the government must pay at least a positive fraction of

the defaulted debt to exit financial autarky; in Arellano (2008) and references therein the

government is exempt of paying the totality of the defaulted debt upon exit of autarky. Note

that in my economy, these payments of defaulted debt might not occur immediately; thus

households trade claims of defaulted debt during the period of default in a secondary market

from which the government is excluded. This yields an equilibrium price of the defaulted

debt and allows me to price the debt during default.7 I model this “debt restructuring” pro-

cess exogenously, indexing it by three parameters, because I am only interested in studying

the consequences that this process has on the optimal fiscal policy and welfare. As explained

below, these parameters are chosen to reflect the results in Yue (2005), and Pitchford and

Wright (2008): debt restructuring is time consuming but at the end a positive fraction of

the defaulted debt is paid.

Finally, in recent independent papers Doda (2007) and Cuadra and Sapriza (2008), study

the procyclicality of fiscal policy in developing countries by solving an optimal fiscal policy

problem. Their work differs from this paper in two main aspects. First, they assume an open

small economy (i.e., foreign lenders) and more crucially, no secondary markets. Second, in

their model the household’s problem is static in the sense that the household does not have

access to any savings technology.8

6See also Aguiar and Gopinath (2006).
7Fernandez and Ozler (1999) study secondary markets in a simpler framework, similar to the one in Arellano
(2008), where large banks and small banks make bids to trade the defaulted government’s debt.
8Aguiar et al. (2008) also allow for default in a small open economy with capital where households do not
have access neither to financial markets nor to capital and provide labor inelastically. The authors focus
more on the capital taxation and the debt “overhang” effect.
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2. Stylized Facts

In this section, I present stylized facts regarding the domestic government debt-to-output

ratio and central government revenue-to-output ratio of several countries for industrialized

economies (IND, henceforth), emerging economies (EME, henceforth) and a subset of these:

Latin American (LAC, henceforth).9

As shown below, my theory predicts that endogenous borrowing limits are more active for

high level of indebtedness. When this variable is higher, the probability of default is higher,

thus implying tighter borrowing limits, higher spreads and higher volatility of taxes. But

when this variable is lower, default is an unlikely event, thereby implying slacker borrowing

limits, lower spreads and lower volatility in the taxes. Hence, implications in the upper

tail of the domestic debt-to-output ratio distribution can be different from those in the

“central part” of it. Therefore, the mean or even the variance of the distribution are not too

informative as they are affected by the central part of the distribution; quantiles are better

suited for recovering the information in the tails of the distributions.10

Figure G.2 presents quantile-quantile plot (QQplot) of the domestic government debt-to-

output ratio and the real spread for three groups: IND (black diamond shape), EME (blue

box shape) and LAC (red triangle shape).1112 The X-axis plots the values of the time series

average domestic government debt-to-output ratio, and the Y-axis plots the values of the

real spread. For each group, the last point on the right correspond to the 95% quantile,

the second to last to the 90% quantile and so on; these are comparable between groups

as all of them represent a quantile of the corresponding distribution. EME and LAC have

lower domestic debt-to-output ratio upper bounds than IND, in fact the domestic debt-to-

output ratio value that amounts for the 95% quantile for EME and LAC, only amounts for

9For the latter ratios I used the data in Kaminsky et al. (2004), and for the first ratio I used the data in
Panizza (2008). See appendix C for a detailed description of the data.
10I refer the reader to Koenker (2005) for a thorough treatment of quantiles and quantile-based econometric
models.
11I constructed the spread using the EMBI+ real index for countries that is available and using the 3-7 year
real government bond yield for the rest.I also studied the domestic debt net of foreign reserves; the effects
present in figure G.2 are the same or are even enhanced.
12This type of graphs is not the conventional QQplot as the axis have the value of the random variable
which achieves a certain quantile and not the quantile itself. For my purposes, this representation is more
convenient.
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(approx.) 80% quantile for IND.13 Additionally, the graph, exhibits a ”cone pattern”; i.e.,

for lower/mid values of domestic debt-to-output ratio (e.g. 50% quantile and below) the

spread corresponding to EME and LAC is comparable to the one corresponding to IND, but

for higher level of domestic debt-to-output ratio EME and LAC present higher levels.

Figure G.2 shows that the interest rate spread for IND is low and almost constant for

different levels of debt-to-output ratios. Thus, throughout this paper, I assume that the

IND group has access to risk-free debt, and the EME and LAC groups have not.

Figure G.3 (top) compares the standard deviation of the central government revenue-to-

output ratio across different quantiles, between IND (black diamond shape), EME (blue box

shape) and LAC (red triangle shape); for all the quantiles, especially for the mid and upper

ones, the two latter present higher values than the former.14

Finally, figure G.3 (bottom) shows the interest rate spread (computed using the EMBI+)

for three defaulters during the period 1997-2006: Argentina (defaulted in 2001), Ecuador

(defaulted in 1999) and Russia (defaulted in 1998). We can see that the levels of spread

during the period of default (denoted by the darker portions of the lines) are much higher

than for the rest of the sample.

3. The Model

3.1. The Setting. Let time be indexed as t = 0, 1, . . .. The government expenditure process

(gt)t is an exogenous stochastic process such that gt ∈ G with G a compact and convex subset

of R. Let gt ≡ (g0, . . . , gt) ∈ G × . . . × G ≡ Gt+1 be the history of government expenditures

until time t. Let G ≡ F(g) be the σ-algebra generated by g, and similarly let Gt ≡ F(gt)

be the σ-algebra generated by gt. Let πt(gt+1|g
t) be the conditional probability of gt+1 ∈ G,

conditioned on gt ∈ Gt+1. Finally, let π0(g0) be the unconditional probability of g0; this

probability can be degenerate at a point.

At each time t, the government can levy distortionary labor taxes, τn
t , or allocate one

period, non state-contingent bonds to the households, denoted as BG
t ∈ B, to cover the

expenses gt. The set B is a compact interval on R. A quantity BG
t > 0 means that the

government has to pay to the households BG
t units of consumption at time t. The government,

13I obtain this by projecting the 95% quantile point of the EME and LAC onto the X-axis and comparing
with the 80-85% quantile point of IND.
14I looked also the inflation tax as a proxy for tax policy; results are similar.
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after observing the present government expenditure and the outstanding debt to be paid this

period, has the option to default on 100% of this debt, i.e., the government has the option

to refuse to pay the totality of the maturing debt.

As shown in figure D, in case the government opts to exercise the option to default on 100%

the debt (node (A) in figure D), nature plays and with probability 1−λ sends the government

to temporary financial autarky, where the government is precluded from issuing bonds that

period. With probability λ the government enters a stage in which nature draws a fraction

1 − δ (with δ ∼ π(δ)) of debt to be repaid and the government has the option to accept or

reject this offer. If the government accepts, it pays the new amount (the outstanding debt

times the fraction that nature choose), and it is able to issue new bonds for the following

period. If the government rejects, it goes to temporary financial autarky (bottom branch in

figure D).

The parameters (λ, π(δ)) define the option to exit financial autarky by paying a given

fraction of the defaulted debt. These parameters capture the fact that debt restructuring is

time consuming but, generally, at the end a positive fraction of the defaulted debt is honored

(see Yue (2005) and Pitchford and Wright (2008)).15

Finally, if the government is not in financial autarky – because it either chooses not to

default on 100% of debt, or it accepts the partial payment offer – then next period it will

have the option to default again, with new values of outstanding debt and government

expenditure. If the government is in temporary financial autarky, then the next period it

will face a new offer for partial payments with probability λ.

Remark 3.1. I also consider an alternative option for the government to exit financial

autarky. At the end of the period of financial autarky, with probability α, the government

receives the option to leave autarky by paying 100 % outstanding debt (this is depicted in the

bottom branch of figure D).16

15The exogenous probabilities α, πδ and λ are set to be constant but I can also allow for probabilities that

depend on the state. For instance I can have πδ ≡ πδ(bt, d̃t) denoting that possible partial payments depend
on the credit history and level of debt. See Reinhart et al. (2003); Reinhart and Rogoff (2008) and Yue (2005)
for an intuition behind this structure. Numerical simulations allowing for this structure are qualitatively the
same as those shown in this paper and are available upon request.
16In the numerical simulations I studied both option separately, and their consequences in optimal policies,
allocations and welfare.
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The parameter α conveys the idea that the government should be able to exit financial

autarky by paying 100% of the defaulted debt at any time, but there are transaction costs or

other type of financial frictions that only allow the government to exercise this option every

so often.17

Households are price takers and homogeneous; at each period t, given their initial financial

wealth zt, they decide how much to consume ct, how much to allocate to leisure lt = 1 − nt

(which yields an after tax labor income (1−τn
t )nt) and how much to save bG

t+1 (if the economy

is not in financial autarky) or how many shares, Lt, of defaulted debt to trade (if the economy

is in financial autarky).

Let dt ∈ D ∪ {1} ≡ {0} ∪ ∆ ∪ {1} be a state variable that, at each time t, indicates

whether the government paid 100%, a part or 0% of the debt. That is, dt = 0 means that

the government is not in default and fully honored its outstanding debt, dt = 1 means that the

government defaulted in the totally of the debt, and finally ∆ ≡ {δ1, . . . , δ∆} with δi ∈ (0, 1]

is a set of all possible fractions of debt that the government could (partially) default. For

instance dt ≡ δ implies that the government partially defaulted upon a fraction δ of the

outstanding debt. Finally, let X ≡ G × {D ∪ {1}}K , xt ≡ (gt, d̃t) ≡ (gt, dt−k, . . . , dt) ∈ X

where d̃t is the ”credit history” of the last K periods of the country.

Finally, throughout the paper I assume that gt is a Markov process, this is required to

write the problem recursively. That is,

Assumption 3.1. (Markov) πt(G|gt) = π(G|gt), ∀G ∈ G.

3.2. The Household Problem. The bellman equation of the household is

V (zt, Θt) = max
ct,nt,bt+1

{U(ct, 1 − nt) + βEt [V (zt+1, Θt+1)]}(1)

with Θt ≡ (xt, B
G
t ).(2)

Where zt is the initial financial wealth at the beginning of time t. The value function is also

a function of the perceived law of motion of the households for the government policy and

debt: (gt, d̃t, B
G
t )t.

17How to model this process of partial payments explicitly, is outside the scope of this paper. See Pitchford
and Wright (2008) and Yue (2005) for two alternative ways of modeling this process as renegotiation between
the government and the holders of the debt.
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I summarize some standard conditions for U(ct, 1 − nt) in the assumption below

Assumption 3.2. (i) U ∈ C2(R+ × [0, 1]); (ii) ∇cU > 0, ∇2
cU ≤ 0, ∇lU ≥ 0, ∇2

l U ≤ 0 and

limn→1 ∇lU = ∞.18

Due to the asymmetry between the financial assets described in section 3.1 I write the

constraints for the household problem for the cases d = 0 and d ∈ ∆, and d = 1 separately.

3.2.1. The case of no default or partial default: dt ∈ D. For this case the agents solves the

problem in equation 1 subject to

ct + pb
tb

G
t+1 − (1 − τn

t )nt ≤ zt(3)

zt+1(dt+1) = (1 − dt+1)b
G
t+1, ∀dt+1 ∈ D(4)

where pb
t is the price of the government bonds. If dt+1 = 1

zt+1(1) = qt+1b
G
t+1,

with zt+1(d) defined as the financial wealth of household at the beginning of t + 1 when

dt+1 = d. If dt+1 = δ then the household acknowledges that they receive only a part of their

asset and if dt+1 = 1 the initial financial wealth of the household at t + 1 is whatever value

the household can get out of their assets in the secondary market, i.e., qt+1b
G
t+1 where qt+1 is

the secondary market price of debt.19

3.2.2. The case of total default: dt = 1. Under this node, the government is in temporary

financial autarky, i.e., does not honor the outstanding debt today and is also precluded

from issuing new debt. Although the government is excluded from the financial markets the

households can trade the debt that the government owes them but is not honored today.

Even though the households are homogeneous and thus no trade takes place in equilibrium,

this secondary market yields an equilibrium price which reflects the fact that a fraction of

the defaulted debt is going to be paid with positive probability at some point in the future.

18The class C2(R+ × [0, 1]) denotes the class of twice continuously differentiable functions with domain
R+ × [0, 1] mapping onto R.
19The household also faces borrowing limits; but I assume that the exogenous borrowing limits for the
household are always less stringent than those for the government and thus in equilibrium the household
problem is always an interior solution regarding their choice of assets.
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If the probability of the government repaying the debt in the future is naught, then the value

of this secondary markets asset is also naught; in this case I can, without loss of generality,

close this market, e.g. Arellano (2008).

I assume that households cannot issue debt. Thus, since Lt denotes the shares of defaulted

debt the household can trade in the secondary markets, this implies

Lt ≤ 1.(5)

Therefore the budget constraint is given by

ct + qtB
G
t Lt − (1 − τn

t )nt ≤ zt,(6)

and

zt+1(dt+1) = (1 − dt+1)LtB
G
t , ∀dt+1 ∈ D,

zt+1(1) = qt+1LtB
G
t .

Note that, BG
t and not bG

t is in the budget constraint, because under dt = 1 the defaulted

debt is exogenous for the household, and the only variable the household controls is the

shares they trade.20

3.3. The Government Problem. The government finances his stream of expenditure (gt)t

by levying time-varying taxes on labor, τn
t and issuing government debt BG

t+1 in dt ∈ D such

that they satisfy its budget constraint for dt ∈ D

gt + Zt = τn
t nt + pb

tB
G
t+1, ∀dt ∈ D,(7)

and the budget constraint for dt = 1,

gt = τn
t nt.(8)

20The model could also encompass the case where, during financial autarky, the defaulted debt evolves
according to a function ψ : B → B, i.e., BG

t+1 = ψ(BG
t ). See Yue (2005) where ψ(·) = 1 + r with r being an

exogenous risk free rate.
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Where

Zt+1(dt+1) = (1 − dt+1)B
G
t+1, ∀dt+1 ∈ D(9)

Zt+1(1) = 0.(10)

Finally, as in Aiyagari et al. (2002), I assume that the government is subject to exogenous

borrowing constraints,21

MG
t ≤ BG

t+1 ≤ M
G

t , ∀t.(11)

4. The Recursive Competitive Equilibrium

The main goal of this section is to define a (recursive) equilibrium for this model. In order

to achieve this goal, some intermediate definitions are needed. First, let b0 = BG
0 = bG

0 the

initial debt of this economy.

Definition 4.1. A government policy is a pair of sequences (ht, B
G
t+1)t such that for each t

ht ≡ (gt, τ
n
t , dt), where τn

t : {b0} × Gt → [0, 1] is Gt-measurable; dt : {b0} × Gt → D ∪ {1} is

Gt-measurable; and BG
t+1 : {b0}×Gt → B ⊆ R is Gt-measurable with B a compact interval in

R. And finally {b0, (ht, B
G
t+1)t} satisfies the government budget constraint in equations 7-11

for each t.

A “credit history” of the government at time t is a sequence (dt−K , . . . , dt) for a finite

K ∈ N+.

Henceforth let H0 ≡ {b0} × G × [0, 1] × {D ∪ {1}}, Ht ≡ G × [0, 1] × {D ∪ {1}} and

Ht ≡
∏t

τ=0 Hτ .

Definition 4.2. A feasible allocation is a sequence vector (ct, nt, gt)t such that

ct + gt =
nt

1 + κ
,(12)

with ct : {b0} × Ht → R+ is Gt-measurable; nt : {b0} × Ht → [0, 1] is Gt-measurable.

21The upper bound in this model is not important, because – as shown below – the option to default generates
endogenous debt limits. The lower bound does not affect the results qualitatitevly insofar as is it above the
natural limit, otherwise combined with lump sum subsidies the economy could build a ”war chest” and
finance all future expenditures with that; see Aiyagari et al. (2002).
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The government policy only depends on the exogenous history of shocks and the initial

government debt; but, in the definition of feasible allocation I define household consumption

and labor as functions of the exogenous government policy. This asymmetry arises from the

assumption that, in my model, household’s behavior is non-strategic; their behavior does

not affect the aggregate quantities and prices. Therefore, is not necessary to keep track of

their actions. The government, however, is modelled as an agent that behaves strategically

and can affect prices through its decisions of default and debt; thus I need to keep track of

the past history of government actions.22 Finally, the parameter κ represents direct cost of

defaulting, e.g. κ ≥ 0 if the government decides to default and zero otherwise. For simplicity,

I take κ ≡ 0 and only consider a different scheme in the numerical simulations.

I now present the definition of recursive competitive equilibrium in this economy.

Definition 4.3. In this economy a (recursive) competitive equilibrium is: an initial b0; a set

of value functions V (·); a set of policy functions (c(·), n(·), bG
t+1(·), L(·)); government policies

(and the implied “credit history”); prices (pb(·), q(·)); a perceived law of motion and actual

law of motion for Θ = (g, d, BG); such that

a. Given the initial tuple, prices, government policies and perceived laws of motion; the

policy functions and value functions solve the household’s problem.

b. Prices are such that the allocation is feasible and

bG = BG ≡ b , for d ∈ D,(13)

L = 1, for d = 1.(14)

c. Given a. and b. the actual and perceived laws of motion coincide.

4.1. Equilibrium Taxes and Price of Government Debt. I can obtain expressions for

the equilibrium price of the government debt bG
t+1, the equilibrium price of one share of

defaulted debt (Lt) traded in the secondary market, and for the labor taxes by first solving

the household problem presented above and then substituting the equilibrium conditions in

definition 4.2 and the market clearing conditions in equation 13. I am going to impinge the

“correct” or actual law of motion for the Θt. In order to do this, I introduce two new objects

22See Phelan and Stacchetti (2001) for a detailed discussion.
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Dt[G] and Dt[∆]. The first one is the set of government expenditures at time t such that the

government does not pay the outstanding debt, i.e., {g ∈ G : dt(g
t−1, g) 6= 0}. The second

object can be described as set function that takes values (gt, dt, B
G
t ) and maps into a subset

of ∆ of rejected offers, i.e., if δ ∈ Dt[∆] the government rejects such offer.

The expression for the taxes directly comes from the ratio of the first order conditions for

ct and nt,

1 − τn
t =

∇lU(ct, 1 − nt)

∇cU(ct, 1 − nt)
.(15)

From the first order conditions of the household problem with respect to bG
t+1 it follows

0 =pb
tθt + βEt

[
{1 − I{Dt+1[G]}}∇zV (bG

t+1, Θt+1)

+
∑

δ∈∆

{I{Dt+1[G]}λ(1 − δ)(1 − I{Dt+1[∆]})πδ(δ)}∇zV ((1 − δ)bG
t+1, Θt+1)

+

{
I{Dt+1[G]}

(
(1 − λ) + λ

∑

δ∈∆

I{Dt+1[∆]}πδ(δ)

)
qt+1

}
∇zV (qt+1b

G
t+1, Θt+1)

]

where θt is the Lagrange multiplier of equation 3, and I{A} is an indicator function that

takes value one if the set A occurs.

By the envelope condition it follows that

∇zV (zt, Θt) = −θt.

This result, the first order condition with respect to ct, which implies that ∇cUt(ct, 1−nt) ≡

Uc,t = θt and imposing the aggregate equilibrium conditions imply that

pb
t ≡

Pt

Uc,t

=βEt

[
{1 − I{Dt+1[G]}}

Uc,t+1(0)

Uc,t

]
(16)

+ βEt

[
∑

δ∈∆

{(1 − δ)I{Dt+1[G]}λ(1 − I{Dt+1[∆]})πδ(δ)}
Uc,t+1(δ)

Uc,t

]
(17)

+ βEt

[{
I{Dt+1[G]}

(
(1 − λ) + λ

∑

δ∈∆

I{Dt+1[∆]}πδ(δ)

)
qt+1

}
Uc,t+1(1)

Uc,t

]
(18)
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where Pt ≡ P(Θt) and Uc,t+1(d) denotes the marginal utility of consumption at time t + 1

when dt+1 = d.

A few noteworthy remarks are in order. First, each term in the equation above corresponds

to a “branch” of the tree depicted in figure D. The first line represents the value of one unit

of debt in the case the planner chooses to honor the totality of the debt. The second line

represents the value of the debt if the planner decides not to pay the debt, but ends up

in partial defaults. The third line captures the value of the debt when the planner default

in 100 % of the debt but the households can sell it in the secondary markets. Second, if

λ = 0 = α = 0 and Uc,t = 1 then the last two terms vanish and the price is analogous to the

one obtained in Arellano (2008).

I now compute the expression for qt. The first order condition and envelope conditions

are basically the same as before, the difference lies in the law of motion for dt+1. Following

the same steps as before but replacing for the “correct” law of motion for dt+1 and using a

different law of motion for dt+1, it follows that the secondary market price is

qt ≡
Qt

Uc,t

=βEt

[
{α(1 − I{Dt+1[G]})}

Uc,t+1(0)

Uc,t

]

+ βEt

[
∑

δ∈∆

{(1 − δ)(1 − α + αI{Dt+1[G]})λ(1 − I{Dt+1[∆]})πδ(δ)}
Uc,t+1(δ)

Uc,t

]

+ βEt

[{
(1 − α + αI{Dt+1[G]})

(
(1 − λ) + λ

∑

δ∈∆

I{Dt+1[∆]}πδ(δ)

)
qt+1

}
Uc,t+1(1)

Uc,t

]
.

where Qt ≡ Q(Θt). If autarky is an absorbing state, i.e., λ = α = 0 it follows that

qt = βEt

[
qt+1

Uc,t+1(1)

Uc,t

]
.

Which by substituting forward and standard transversality conditions it yields qt = 0.

5. The Ramsey Problem

I define the Ramsey problem as

Definition 5.1. Given an initial bG
0 = BG

0 ≡ b0 the Ramsey problem is to choose the

(recursive) competitive equilibrium with the highest: V (b0, g0, d0, b0) with d0 = 0.
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5.1. Primal Approach. As pointed out by Kydland and Prescott (1980) in order to write

the Ramsey problem recursively, the addition of a new (co)state variable is needed. The au-

thors noted that the policy functions in the Ramsey problem are not continuous on the “usual

state” because the households current decision are based upon beliefs of government future

actions, and the government has to validate these beliefs. Hence the new (co)state variable

must convey this information. By inspecting the first order conditions of the households,

it is sufficient to set the (co)state variable, µt, to be the marginal utility of consumption of

the household at time t. That is, at time t I need to keep track of the “promised” marginal

utility of consumption by the equilibrium at time t+1; I, however, only have to do this when

the forward looking constraints of the households, embedded in the pricing equations, are at

play, i.e., µt does not change when the government is in autarky.23

Denote U(b, g, µ, d̃) as the value function of the economy (i.e., the planner who is solving

the primal approach) with financial wealth b, government expenditure g, a (co)state variable

µ (which is defined below) and regime d̃ (i.e., either no default, partial default or autarky).

In the case dt = 1 then the government’s budget constraint is given by gt = τn
t nt; from

this equation, equation 15 and the feasibility constraint it follows

Uc(nt − gt, 1 − nt)(nt − gt) − Ul(nt − gt, 1 − nt)nt = 0,(19)

where Ul ≡ ∇lU . I can solve for nt, and then plug this solution in the household’s value

function, thereby obtaining

U(bt, gt, µt, (d̃t−1, 1)) = U(ct, 1 − nt) + αEt

[
Uo(bt, gt+1, µt, d̃t)

]
+ (1 − α)Et

[
UB(bt, gt+1, µt, d̃t)

]

where

UB(b, g, µ, d̃) = λ
∑

δ∈∆

max
{
U((1 − δ)b, g, µ, (d̃, δ)),U(b, g, µ, (d̃, 1))

}
πδ(δ) + (1 − λ)U(b, g, µ, (d̃, 1)),

and Uo(b, g, µ, d̃) = max
{
U(b, g, µ, (d̃, 0)),UB(b, g, µ, d̃)

}
.

The function UB(b, g, µ, d̃) is the value function of the planner before nature plays and

send him to autarky with probability 1 − λ or to the offer of partial payment (node(B) in

23See also, Werning (2001), Phelan and Stacchetti (2001), and Farhi (2007), amongst others. An alternative
approach is by using the recursive contract approach in Marcet and Marimon (1998) and Aiyagari et al.
(2002).
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figure D) with expenditure g, outstanding debt b, (co)state variable µ, and “credit history”

d̃. The function Uo(b, g, µ, d̃) is the value function of the planner which has the option to

default (node (A) in figure D) with expenditure g, outstanding debt b, (co)state variable µ,

and “credit history” d̃.

In the above equations, the government default decisions are constructed using the ”max”

operator. The intuition behind this construction stems from the assumption that the gov-

ernment is benevolent; it only opts to pay the debt inasmuch as it is in the best interest of

the representative household.24 So, the sets Dt[G] and Dt[∆], which characterize the default

decisions, are constructed as follows

Dt[G] ≡ D(bt, µt, d̃t−1)[G] =
{
g ∈ G : U(bt, g, µt, (d̃t−1, 0)) < UB(bt, g, µt, d̃t−1)

}
,

(20)

Dt[∆] ≡ D(gt, bt, µt, d̃t−1)[∆] =
{
δ ∈ ∆ : U((1 − δ)bt, gt, µt, (d̃t−1, δ)) < U(bt, gt, µt, (d̃t−1, 1))

}
.

(21)

It now remains to construct U(bt, gt, µt, dt), dt ∈ D. From the first order conditions of

the household with respect to consumption and labor (equation 15), the expression for the

prices derived in section 4.1, the government budget constraint and feasibility constraint the

implementability condition at time t is

Uc,t(nt − gt) − Uc,tbt = Ul,tnt − Ptbt+1;(22)

note that under equilibrium the beliefs embedded in Pt must be exactly those coming from

the exogenous laws, π, πδ, λ, α, and the endogenous government policies.

The value function U(bt, gt, µt, (d̃t−1, dt)) for dt ∈ D is thus given by

U(bt, gt, µt, (d̃t−1, 0)) = max
{nt,bt+1,µt+1}

{
U(nt − gt, 1 − nt) + βEt

[
Uo(bt+1, gt+1, µt+1, d̃t)

]}
,

24This functional form is analogous to Eaton and Gersovitz (1981), Arellano (2008) and references therein.
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subject to {nt, bt+1, µt+1} ∈ Sg and the exogenous debt limits 11. Where the set Sg is defined

as a fixed point, of the operator S:

S(Q) = {(nt, bt, µt) ∈ [0, 1] × B × R+ :∃(nt, bt+1, µt+1) ∈ Q such that eqn. (22) holds

with µt = Uc,t}

and has to be computed recursively.25

6. Analytical Results

In this section I define a set of assumptions that constitutes the benchmark case; I char-

acterize analytically the default sets, policy and pricing implications of the model, and

implementable allocations. Henceforth, let k = 0.

Let the following hold

Assumption 6.1. (i) λ = 0; (ii) Uc,t ≡ 1.

Part (i) states that offers of partial payments do not occur. Part (ii) implies that prices do

not depend on marginal utilities. Aiyagari et al. (2002) argue that by setting Uc,t ≡ 1 they are

impinging a competitive behavior on the planner as it is unable to control the (implied) prices;

thereby drawing an analogy between this problem and the standard incomplete markets

consumption-smoothing problem.26 In my case, the planner is still able to affect prices

through the probability of default, thus the analogy to the (competitive) representative

agent in the consumption-smoothing problem does not hold anymore.

6.1. Benchmark Case: Characterization of Default Sets. The results obtained in

this section show that the decision to default follows a debt-dependent threshold rule; these

results are similar to the one obtained in Chatterjee et al. (2007) and Arellano (2008) without

distortionary taxes.

Assumption 6.2. (i) τn
t ∈ [0, 1].

Proposition 6.1. Under assumptions 3.2-6.1(ii) and 6.2(i), if D[G](bt) 6= ∅ then there does

not exists bt+1 : bt − P(bt+1)bt+1 ≤ 0.

25See Kydland and Prescott (1980), Chang (1998), Werning (2001) and Phelan and Stacchetti (2001).
26It is clear that the planner’s problem prices do not show up, but they are implicit on budget constraint.
These “implied prices” are the ones I am referring to here.
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The proposition above implies that if default occurs (with positive probability) then it

must be true that the government is unable to roll over the debt, otherwise it would simply

keep the option to default this period, and default tomorrow on a higher debt; thus default

never occurs today.

The next proposition states that under additional assumptions the decision of default is

equivalent to a threshold rule that, i.e., the government defaults if g is above some g(b) given

a level of debt b

Assumption 6.3. (i) α = 0; (ii) gt ∼ i.i.d.; (iii) Ull(1 − nt) − Ulll(1 − nt)nt ≤ 0.

Proposition 6.2. Under assumptions 3.2 - 6.2 and 6.3, it follows that: if g1 ∈ Dt[G] then

for g1 ≤ g2, g2 ∈ Dt[G].

Remark 6.1. Under assumption 3.2 a sufficient condition for assumption 6.3(iii) is Ulll ≥ 0.

Assumption 6.3(ii) is also imposed by Arellano (2008) and Yue (2005). This assumption

is crucial for characterizing the default sets. If gt is positively correlated with gt+1 then low

expenditure today implies (probably) low expenditure tomorrow and in the future, therefore

autarky looks better now. In fact, intuitively, the impact of a low expenditure today has a

relatively larger effect under autarky than under the no-default regime because in the latter

regime you have debt/savings to smooth them; thus, the government might have incentives

to default when gt is low, contradicting the aforementioned results.

Proposition 6.2 implies that if Dt[G] 6= {∅} then dt = I {g ∈ G : g > g(bt)}, where g(bt) :

U(bt, g(bt), 0) = U(g(bt), 1).

The next proposition establishes that default sets are increasing in the debt level, or given

my previous proposition, that g(·) is a decreasing function.

Proposition 6.3. Under assumptions 6.1, 6.2 and 6.3(i) it follows that if b1,t ≤ b2,t then

D[G](b1,t) ⊆ D[G](b2,t).
27

Remark 6.2. In appendix A.1 I discuss the consequences of relaxing the aforementioned

assumptions on the characterization of the default sets. I already noted that propositions 6.1

and 6.3 do not depend on the assumption of i.i.d. expenditure process, thus I focus on the

27Note that I do not impose gt ∼ i.i.d. or any other restriction over gt other than the Markovian one.
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latter two assumptions: marginal utility of consumption equal to unity and taking autarky as

an absorbing state.

6.2. Benchmark Case: Policy Implications. By the results in sections 4.1 and 6.1 it

follows that

P(bt+1) = βE [I{g ≤ g(bt+1)}] = βΠ(g(bt+1)), and qt = 0

where Π(G) ≡
∫

g≤G
π(dg).

The debt value such that ∇b[P(b∗t )b
∗
t ] = 0 is given by

b∗t = −
Π(g(b∗t ))

π(g(b∗t ))∇bg(b∗t )
.

Defining b∗ ≡ arg sup{b ∈ B : Π(g(b)) = 1}, i.e., the maximum debt level such that default

never occurs, it follows that the region [b∗, b
∗], which can be empty, is the region where risky

borrowing takes place.28

I can now give a sharp characterization for the law of motion of γt, by exploiting the

results in the preceding section. First, note that γt = −∇bU(bt, gt, 0), i.e., γt is the marginal

cost of debt in terms present value utility. Thus, by studying the law of motion of γt, I can

study the law of motion of the optimal debt by inverting the previous equation. Moreover

as the first order condition with respect to nt is given by

(1 − Ul,t)(1 + γt) = −γtUll,tnt;

the tax, τn
t , is also a nonlinear increasing function of γt. Therefore, by studying the law of

motion of γt, I can also study the law of motion of the optimal taxes.

Under assumptions 6.1 and 6.3, Dt+1[G] is characterized by all the g ∈ G such that

g ≥ gt+1 thus, assuming natural debt limits (i.e., interior solution and thus νi,t = 0), the

28See Arellano (2008) for sufficient conditions that ensure this region is not empty. In this section I assume
that [b∗, b

∗] 6= ∅
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first order condition with respect to bt+1 is given by29

γt (∇b[P(bt+1)]bt+1 + P(bt+1)) + βE [(1 − I{Dt+1[G]})∇bU(bt+1, gt+1, 0)]

= βE [∇bI{Dt+1[G]}(U(gt+1, 1) − U(bt+1, gt+1, 0))] .

The first expectation equals −E [(1 − I{Dt+1[G]})γt+1] by the envelope condition. The de-

rivative in the second expression is taken in the weak sense; the expression is basically

U(gt+1, 1) − U(bt+1, gt+1, 0)) evaluated at gt+1 ∈ ∂Dt+1[G] (i.e., the boundary of Dt+1[G])

which consists of a singleton such that U(gt+1, 1) − U(bt+1, gt+1, 0)) = 0. Thus I obtain

γt (∇b[P(bt+1)]bt+1 + P(bt+1)) = E [(1 − I{Dt+1[G]})γt+1] .

Finally note that ∇bP(bt+1) = β∇b[E
[
I{g : g ≤ gt+1}

]
] ≡ ∇b[Π(gt+1)] = βπ(gt+1)∇bt+1

[g(bt+1)],

where the last term is well defined by a direct application of implicit derivative theorem,

insofar the value function is differentiable. Therefore

γt =
Π(gt+1)

π(gt+1)∇bt+1
g(bt+1)bt+1 + Π(gt+1)

E [γt+1] ,(23)

with E being the expectation with respect to the default-adjusted measure
I{g:g≤gt+1}

Π(gt+1)
π(dg);

i.e., the possibility of default inserts a wedge that slants the probability measure π(dg).

Henceforth, I denote the first term in the right hand side as M(bt+1) ≡ 1
1−ζ(bt+1)

, with

ζ(bt+1) ≡ −∇bP(bt+1)
bt+1

P(bt+1)
.30

The lagrange multiplier associated to the implementability condition is constant in Lucas

and Stokey (1983), and thus trivially a martingale. In Aiyagari et al. (2002) the lagrange

multiplier associated to the implementability condition is a martingale with respect to the

probability measure π (see also Farhi (2007)).31 Equation 23 implies that the law of motion of

the lagrange multiplier differs in two important aspects. First, the expectation is computed

under the default-adjusted measure; this stems from the fact that the option to default

29Differentiability of Pt with respect to bt+1 follows from applying the implicit function theorem. I am
assuming though that U(b, g, 0) is differentiable. This is neither necessary for my general analysis nor
for computing the solution in the numerical analysis; but provides better intuition for understanding the
problem.
30Proposition A.1 in the Appendix summarizes some properties of M.
31This martingale property changes if we allow for ad-hoc borrowing limits (see Aiyagari et al. (2002)). The
proposition below shows how the results in Aiyagari et al. (2002) – with exogenous debt limits –, relate to
the results in my model – with only the option to default –.
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adds ”some” degree of state-contingency to the payoff of the government debt. Second,

the aforementioned expectation is multiplied by M(bt+1) which can be interpreted as the

“markup” that the planner has to pay for having this option to default. Of course this only

holds when the government is taking debt (in the case of savings the price of equals β).

The proposition below, first provides conditions to establish which of these opposite terms

dominates, and second it explores how the law of motion for the lagrange multiplier γt relates

to the one presented in Aiyagari et al. (2002) and their exogenous borrowing limits. I also

provide sufficient conditions such that, conditional on not defaulting, (γt)t converges with

positive probability.

Proposition 6.4. Under assumptions 6.1 - 6.2 and 6.3,

(1) if

∇g∇bU(b, g, 0) ≥ 0,(24)

then γt > E[γt+1] a.s., conditional on no defaulting. Moreover if Π(g(bt)) ≥ exp{−C/t2}

then γt → γ∞ w.p.p.

(2) if

∇g∇bU(b, g, 0) ≤ 0,(25)

then:

γt =E[γt+1] + {E[γt+1] (M(bt+1) − 1)} −

{
Cov (I{g ≥ g(bt+1)}, γt+1)

Π(g(bt+1))(1 − ζ(bt+1))

}
(26)

with E[γt+1] (M(bt+1) − 1) ≥ 0 and 1
Π(g(bt+1))

Cov (I{g ≥ g(bt+1)}, γt+1) ≥ 0.

(a) If ∇2
bU(b, g, 0) ≤ 0 and ∇bt+1

[
log
(
−∇bt+1

[log(Π(g(bt+1)))]
)]

+ 1
bt+1

≥ 0, then:

E[γt+1] (M(bt+1) − 1) is increasing in bt+1.

(b) If ∇3
bU(b, g, 0) ≥ 0, then: Cov(I{g≥g(bt+1)},γt+1)

Π(g(bt+1))(1−ζ(bt+1))
is decreasing in bt+1.

The first part of the above proposition implies that the marginal cost of the debt (in terms

of present value utility) behaves like a submartingale (provided that default does not occur);

this result is analogous to the one in Aiyagari et al. (2002) but with exogenous borrowing

limits. This result hinges on the marginal cost of the debt (in terms of present value utility)
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being a decreasing function of g; which in turn implies that γt+1 is decreasing in gt+1. Since

the default adjusted measure weighs relatively more low values of g, the expectation term

on equation 23 is lower than the expectation under the probability π; this effect is reinforced

by the term M(bt+1).

Since the submartingale result in the proposition can only be used for paths such that this

economy does not default, I need to ensure that the probability of no default is positive; the

inequality Π(g(bt)) ≥ exp{−C/t2} provides a sufficient condition for this to hold.

Equation 24 implies that the cost of the debt is less severe as the government expenditure

increases. This is counterintuitive as one would expect that having a certain level of debt

becomes more costly as the government expenditure is higher due to concavity of the utility

of the agents.

The second part of the proposition handles the case where the marginal cost of debt is

increasing on g, i.e., ∇bU(b, g, 0) is decreasing in g. Under more regularity conditions over

the behavior of the curvature of U(b, g, 0) and Π(g(b)), the first term in the curly brackets

of equation 26 is increasing in bt+1. Hence this term can be seen as a ”continuous” lagrange

multiplier of a debt limit; i.e., is positive (with a negative sign in front), and increases

continuously in bt+1; a lagrange multiplier would be zero and then jump to positive values

when the bound is active. The second term is decreasing, and thus acts as a ”continuous”

lagrange multiplier of a ”savings” limit, provided the assumption about the third derivative

of the value function is added.

Although, equations 24 and 25, and some of the rest of the assumptions, are somewhat

unsatisfactory because they impose ad-hoc restrictions upon an endogenous object, they can

easily be checked in numerical simulations and have a clear economic interpretation.

6.2.1. Restrictions over the allocations. The recursive competitive equilibrium defines a set

of implementable sequence of allocations from which the government or planner selects the

optimal one, given some initial conditions.32

The option to default allows the government to evade paying debt once, provided it pays

a ”cost” in terms of allocations: autarky forever. In an economy like Aiyagari et al. (2002)

32Implementable allocations are those which satisfy the competitive equilibrium restrictions. For a precise
definition see the proof of proposition 6.5. See also Lucas and Stokey (1983) and Aiyagari et al. (2002) for
a thorough discussion of this solution approach.
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this technology is not available because debt has to be risk-free. The proposition below sheds

light on how the possibility of default affects the implementable allocations.

I already showed that the default rule is given by dt = I{g : g > g(bt)} which is a random

variable measurable with respect to Gt. I can define T ∗ ≡ inf{t : dt = 1} ∈ Gt such that for

all t ≥ T ∗ my economy is in autarky and for all t < T ∗ it is not.33

Proposition 6.5. If b0 > 0, pr∞{T ∗ < ∞} > 0, and ∀t ≤ T ∗ : Π(gt) > 0, then the sets of

implementable (ct, nt, gt)
∞
t=0 under my economy and Aiyagari et al. (2002) are disjoint.

Remark 6.3. The condition: b0 > 0 rules out autarky for all t = 0, . . .. The condition:

pr∞{T ∗ < ∞} > 0 assumes that default occurs with positive probability, otherwise the prob-

lem is trivial. The condition: ∀t ≤ T ∗ : Π(gt) > 0 states that default never occurs almost

surely; studying optimal allocations this assumption is innocuous as Π(gt) = 0 never occurs

because is not optimal to choose bt such that Π(gt)bt = 0.

The intuition of this result is as follows. In Aiyagari et al. (2002), if the government

has to run a balance budget for some histories for a time T onwards, then this allocation

must imply a non-positive debt; otherwise the government has to run a Ponzi scheme. In

my economy, however, this type of allocation can allow for positive debt; this is the case

of default. Therefore, since debt is non-state contingent, at time T debt is non-positive in

Aiyagari et al. (2002), but positive in my economy.

On the other hand, if T is the first time default has positive probability, then the price of

debt in both economies is exactly the same for all t < T because default occurs with zero

probability in this spell of time. Hence, if both economies share the same allocations, the

sign of the debt at T must coincide as well. This contradicts the conclusion in the previous

paragraph, and hinges on the assumption that there exists an allocation shared by both

economies.

33The probability measure pr is the one induced by π, i.e., prt{gt : gt ≤ Gt} ≡
∏t

j=0 Π(Gt), ∀t.
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7. Numerical Simulations

Given the complexity of the model is difficult to characterize the Ramsey policy ana-

lytically when I include options to exit autarky, hence in this section I present a series of

numerical simulations that account for these features.34

Throughout this section I compare my findings with an economy in which the option to

default is not present; this is precisely the model considered in Aiyagari et al. (2002). I am

going to denote the variables associated with this model with a (sub)superscript “AMSS”;

variables associated to my economy are denoted with a (sub)superscript “ED” (short for

Economy with Default).

The utility function is given by

U(c, 1 − n) =
c1−σc

1 − σc

+ C1
(1 − n)1−σ

1 − σ
,

and (gt)t follows a linear AR(1) process

gt+1 = µg(1 − ρ1) + ρ1gt + σg

√
1 − ρ2

1εt+1, εt+1 ∼ N(0, 1).

I define g and g as the lower and upper bound for gt; b and b are defined analogous for the

debt.

7.1. The i.i.d. Shocks case. Table 1 presents the parameter values for the benchmark

model. The goal of this section is, first, to verify the analytical results obtained in the

previous sections, and second, to compare the debt policy functions for the ED and the

AMSS economies.

Under this specification, the household has quasi-linear utility and in order to facilitate

the comparison with Aiyagari et al. (2002) I choose the parameters associated to the utility

function and discount factor equal to theirs.35 Since, I am only interested on the dynamics

when the government can default, the exogenous bounds on debt are such that the govern-

ment is precluded from saving. Finally, under this parametrization autarky is assumed to

be an absorbing state (α = λ = 0).36

34See Appendix B for the details of the numerical algorithm I use to compute the model.
35In their paper C1 = 1, but they assume that n ∈ [0, 100] as opposed to my case: n ∈ [0, 1] hence their
constant C1 should be re-scaled to 1001−σ = 0.01.
36I refer to Aiyagari et al. (2002) the implications when ”natural” savings limits are imposed.
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Parameter Value Parameter Value

(Discount Factor) β 0.97 (Persistency of gov. process) ρ1 0
(Utility of leisure) C1 0.01 (Mean of gov. process) µg 0.20
(Utility of leisure) σ 2 (Vol. of gov. process) σg 0.05

(Utility of consumption) σc 0 (Range of gov. process) (g, g) (0, 0.325)
(Prob. of offer for partial payment) λ 0 (Range of gov. debt) (b, b) (0, 0.3)

(Prob. of escaping autarky) α 0

Table 1. Parameter values for the benchmark model

Figure G.5 presents the policy function b(b, g) for the ED model (black dots), and for

the Aiyagari et al. (2002) model (red dots); default region is represented by yellow bars.

Obviously, the debt policy function when the government is in default, is redundant. The

first row shows the policy function as a function of the government expenditure for low level

of debt (first panel), mid level of debt (second panel) and high level of debt (third panel).37

The second row shows the policy function as a function of the current debt level for low

government expenditure (first panel), mid level government expenditure (second panel) and

high level government expenditure (third panel). This last row also presents the 45 degree

line (solid) for better comparison.

Although in all cases, higher level of current debt or higher level of current government

expenditure imply higher level of debt tomorrow; in the ED economy the option to default

generates endogenous debt limits that produce lower levels of debt. In particular, for the

case of high level of debt the government decides to default at almost any value of g (first

row, third panel).

Figure G.6 shows the equilibrium default set (bottom panel) and the price as a function

of (b, g) (top panel). The area in blue (or lighter area) are the pairs of (g, b) for which the

government opts to default. As predicted in the theoretical section the set increases as the

government expenditure increases and as the debt level increases and is convex across g (i.e.,

for a given level of debt I look at the projection over g which is characterized by an interval).

Finally figure G.7 presents the value functions for the AMSS economy and for ED economy

(continuation and autarky). For high values of (g, b) the value function of autarky in ED

economy is over the value function for the AMSS economy; these are the values where the

37Throughout this section when describing the figures the numbering of the panels increases from left to
right and the numbering of the rows does it from top to bottom.
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planner opts to exercise the option to default. For low (g, b) (in particular low g) either

the value functions are close to each other (the cost of having the option to default is not

too high) or the value functions for the AMSS economy is higher than the ones for the ED

economy (bottom left panel), reflecting the cost of having the option to default.

7.2. Impulse Response Functions. Before looking at the Monte Carlo results, it is useful

to look at the dynamics of one particular realization of (gt)t. I solve the model (see table 4

for the parameter values), then I draw a particular path for gt given by

gt =






g if t = T, T + 1

g/2 if t = T + 2

g if t = T + 3, T + 4

(27)

This choice is completely arbitrary, chosen to showcase all the features of the model. I also

choose α = 0.30, and λ = 0; this choice is solely done to allow for default and secondary

markets, which are novel features of this model, while keeping the model as simple as possible.

Figure G.4 presents the results. The dotted line in all the panels is the path dt. For the first

half of the sample the economy is not in default, immediately after the second government

shock (upper right panel) the economy enters autarky, and then exists autarky until the

end of the sample. The upper left panel depicts the spread, which should be taken as the

envelope of 1/pb
t −β−1 (solid) and 1/qt −β−1 (dashed); the high level of 1/qt −β−1 observed

during financial autarky is qualitatively consistent with the spreads we see in the data (

figure G.3). The middle left panel shows the debt (bt) for both economies; the endogenous

borrowing limits present in the ED economy render lower level of debt during ”bad times”.

During autarky, since we keep track of the defaulted debt, hence we have a plateau in bED
t ;

then the economy exists default by paying the outstanding debt, and thus bED
t plummets to

zero. The right middle panel shows the τn
t path for both economies; for the ED economy the

path is more volatile and has an additional ”spike” to cover for the payment of defaulted

debt. Finally the last row presents the path for ct and lt respectively.

In brief, the aforementioned figures show a summary of the dynamics generated by this

model: endogenous debt limits, higher volatility of taxes, and higher spreads due to default

risk, in particular, during default period. Additionally, figure G.4 shows that consumption
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allocations of both economies are closed to each other; this is consistent with the findings in

Ramsey theory under incomplete and complete markets.38

7.3. Monte Carlo Simulations.

7.3.1. Linear utility on consumption case. In this subsection, I run a battery of Monte Carlo

(MC) simulation exercises, allowing government expenditure to be auto-correlated, and also

allowing either α or λ to be nonzero. I, however, still maintain the linear utility on con-

sumption assumption.39

I perform 1000 MC iterations each of them consisting of sample paths of 1000 observations

for which the first 900 observations were taken out in order to eliminate the effect of the initial

values. Government expenditures are assumed to be AR(1) with moments (ρ1, µg, σg) chosen

to match the autocorrelation, mean and volatility of the general government expenditure-

to-output ratio for Argentina during the period 1993-2003. These values are (approx.) 0.30,

0.20 and 0.05, respectively.

Parameter Value Parameter Value

(Discount Factor) β 0.9875 (Persistency of gov. process) ρ1 0.30
(Utility of leisure) C1 0.01 (Mean of gov. process) µg 0.20
(Utility of leisure) σ 2 (Vol. of gov. process) σg 0.05

(Utility of consumption) σc 0 (Range of gov. process) (g, g) (0, 0.325)
(Prob. of offer for partial payment) λ 0.08 (Range of gov. debt) (b, b) (0, 0.3)

(Prob. of escaping autarky) α 0.0 (Range of recovered debt) (δ, δ) (0, 0.95)
(Direct cost of default) κ 0.021

Table 2. Parameter values for the case with λ = 0.08.

Table 2 presents the parametrization for the case in which offers for partial payments are

allowed, i.e., λ > 0, and α = 0. I constructed a grid of 3 elements for (δ, δ), with equal

probability weights. I choose β, λ and δ to match: a probability of default with range [3, 4]

percent, “autarky spell” in a range of [5, 15] periods, and a default recovery rate of 45%.40

The parameter κ is the direct cost of default, which yields an output of 1
1+κ

nt the first period

38See Aiyagari et al. (2002) and Farhi (2007).
39Experiments with σc = 0.5 present the same thresholds than in the quasi-linear case but with lower
probability of default; they are available upon request.
40The default recovery rate is taken from Yue (2005) where 30% is the recovery rate for Argentina and 60%
is the recovery rate for Ecuador. So I took the average of both.
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in which the government decides to default, and is chosen to yield a reduction in output of

1-4% with respect to the mean.41

In figure G.11 we can verify the results obtained in the theory, which predicted that the

acceptance region has the shape of {δ ∈ ∆ : δ ≥ δ(g, b)}.

Averages across MC simulations of some statistics for: the whole sample, the “no default”

sample, and the “autarky or default” sample are presented in table 3. I constructed these

latter subsamples by separating, for each MC iterations, the periods where the ED economy

was in autarky from those where the economy was not.

Sample All No Default Default
AMSS ED AMSS ED AMSS ED

E(bt/nt) (%) 12.65 1.870 12.43 1.196 22.70 17.19
std(bt/nt) (%) 9.290 3.420 8.600 1.410 5.611 0.580

E(τt) 0.218 0.218 0.219 0.218 0.218 0.235
std(τt) 0.030 0.051 0.027 0.049 0.019 0.053
E(τtnt) 0.194 0.193 0.193 0.194 0.194 0.200
std(τtnt) 0.026 0.045 0.023 0.043 0.016 0.046

E(spread) (%) 5.660 0.820 119.3
E(Default Spell) 11.12

E(Recovery Rate) (%) 46.50
Pr(Default) (%) 4.120

Table 3. MC results for the case λ = 0.08. In the table E and std denote
the mean and standard deviation across time, respectively. All quantities are
averaged across MC simulations.

The average debt-to-output ratio (row 1) for the whole sample is around 12 % for the

AMSS economy; in the ED economy, however, is around 2% because of the presence of

the endogenous borrowing limits arising from the possibility of default. This level is low

compared to what is observed in the data: a ratio of approximately 23% for Argentina

(1990-2005).42 For the default sub-sample, however, the average debt-to-output ratio in the

ED economy is only 4 % lower than in the AMSS economy. Since in this part of the sample the

average debt-to-output ratio is actually the defaulted debt-to-output ratio; higher quantities

41Pitchford and Wright (2008) report that, on average, for their dataset default began when output was
(approx.) 1.5% below trend; Reinhart and Rogoff (2008) report a decline in output of (approx.) 4% (with
respect to past levels) at the time of default.
42For the default period (2001-2005) this ratio was (approx.) 45%.
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of debt-to-output ratios denote higher likelihood of default; this provides additional evidence

of endogenous borrowing limits being “active” in higher levels of debt.

The volatility (as standard deviations) of the debt-to-output ratio is higher in the AMSS

economy for all three samples (row 2).

Although the average tax rate (row 3) is similar in both economies across all three samples,

the volatility of the tax rate (row 4) is higher in the ED economy; especially in the default

sub-sample. This is a consequence of the endogenous borrowing limits which imply that the

debt is not as good of an instrument to smooth shocks as it is in the AMSS economy. In

particular, when the ED economy is in autarky, the planner is precluded from issuing debt

rendering taxes more volatile than in the other sub-samples.

The spread (row 8) is around 7% for the whole sample, and around 1% for the ”no default”

sample. This is below the 5% (approx.) registered for Argentina (1997 - 2000 and 2005-

2006) using the EMBI+. I can also compute the spread of the debt under default, i.e.,

100(1/qt − 1/β), which is around 120%.43

Figures G.12 and G.13 present the box-plots, which allow me to conclude whether the MC

average present statistically significant differences; for all quantities except average taxes

this is the case.

Parameter Value Parameter Value

(Discount Factor) β 0.9825 (Persistency of gov. process) ρ1 0.30
(Utility of leisure) C1 0.01 (Mean of gov. process) µg 0.20
(Utility of leisure) σ 2 (Vol. of gov. process) σg 0.05

(Utility of consumption) σc 0 (Range of gov. process) (g, g) (0, 0.325)
(Prob. of offer for partial payment) λ 0 (Range of gov. debt) (b, b) (0, 0.3)

(Prob. of escaping autarky) α 0.30
(Direct cost of default) κ 0.021

Table 4. Parameter values for the case with α = 0.30

Table 5 presents the case where I only have the possibility of exiting autarky by paying

100% of the debt, i.e., λ = 0 and α > 0; table 4 contains the parameter values. I choose β

and α to match: a probability of default with range [3, 4] percent, “autarky spell” in a range

of [5, 15] periods.

43For Argentina during the default period (2001-2005) the spread using the EMBI+ was of about 55%.
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Sample All No Default Default
AMSS ED AMSS ED AMSS ED

E(bt/nt) (%) 12.64 5.820 12.41 5.520 29.70 18.20
std(bt/nt) (%) 9.290 5.100 8.490 4.590 0.033 0.001

E(τt) 0.219 0.218 0.219 0.218 0.264 0.247
std(τt) 0.030 0.040 0.027 0.038 0.023 0.049
E(τtnt) 0.194 0.193 0.194 0.193 0.233 0.218
std(τtnt) 0.027 0.035 0.023 0.032 0.020 0.042

E(spread) (%) 0.410 0.13 10.30
E(Default Spell) 5.694

E(Recovery Rate) (%) -
Pr(Default) (%) 3.300

Table 5. MC results for the case α = 0.30. In the table E and std denote
the mean and standard deviation across time, respectively. All quantities are
averaged across MC simulations.

The MC mean of average debt-output ratio is higher in AMSS than in my default economy

(row 1). The ratio in the former economy is approximately 13%, whereas in my economy

this ratio is about 6%. For the default sample, however, the average debt-to-output ratio in

the ED economy is much higher, around 18 %.

The flip side of the endogenous borrowing limits, a higher volatility in the taxes, can be

seen in rows 3-4 (tax) and 5-6 (tax revenue) across all three subsamples.

In the ED economy the average spread is defined as the spread associated to pb
t in times

of “no default” and to qt in “default”; the value of this quantity (row 8) is 0.4%. For the

default sample, however, the spread is around 11%; although still low, it is much higher than

for the “no default” sample.

Figures G.9 to G.10 present box-plots of the statistics presented in the table for the whole

sample case. In each panel, the first box-plot belongs to the AMSS economy; the second one

belongs to the ED economy. From the first figure we can see that all the differences between

both economies are significant (except for the average tax). From the second figure we can

infer that this model can generate spreads as high as 5% (for the whole sample), and average

default spells as long as 25 periods.

We observe that the results in the (α > 0, λ = 0) and (α = 0, λ > 0) experiments are

qualitatively similar. Both cases have lower debt-to-output ratio, and more volatile taxes (or
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revenues). In both cases the defaulted debt-to-output ratio is higher than the ratio for “no

default” samples, and the spread is also higher in this period. These similarities notwith-

standing, there are some notable differences. First, debt-to-output ratio in the economy

with α > 0 and λ = 0 is higher on average than in the economy with α = 0 and λ > 0.

Second, the autarky spell is higher in the (α = 0, λ > 0) experiment and also the probability

of default presents higher ”outliers” (figure G.13 left-top panel). Finally, the spread for all

three sub-samples is higher in the (α = 0, λ > 0) experiment, moreover the spread can be as

high as 120 % (figure G.13 left-bottom panel).

The last fact is driven by two effects. First, the probability of default is slightly higher in

the (α = 0, λ > 0); also this experiment exhibits higher ”outliers”. Second, the autarky spell

is lower in the economy with α > 0 and λ = 0. Given that pb conveys information regarding

“distant” defaults and autarky spells through the price q; a lower autarky spell translates

into a higher probability of getting paid at some point in the future.

7.3.2. Welfare Comparison. In order to assess the welfare implications of my model, let Ω

be the increment of consumption in the initial period, i.e., cΩ
0 ≡ (1 + Ω)n0 − g, such that

∫

B×G×∆∪{1}

UAMSS(b, g)Πbgδ(db, dg, dδ) =

∫

B×G×∆∪{1}

UΩ(b, g, δ)Πbgδ(db, dg, dδ)

where UAMSS(b, g) is the present value expected utility in the AMSS economy and UΩ is the

value function with cΩ instead of c, for the initial period. Doing Taylor approximation of U

and doing some algebra it follows

Ω ≈

∫
B×G×∆∪{1}

UAMSS(b, g) − U(b, g, δ)Πbgδ(db, dg, dδ)
∫

B×G×∆∪{1}
Uc(n∗(b, g, δ) − g)n∗(b, g, δ)Πbgδ(db, dg, dδ)

,

where n∗ is the policy function. The measure Πbgδ is computed as the frequency across 1000

Monte Carlo repetitions at time T = 1000 so as to avoid any dependence on the initial

values.44

I study the welfare implications for (α = 0, λ > 0) and (α > 0, λ = 0) separately; figures

G.15 and G.14 present the results. For λ ∈ (0, 1) and α = 0, as λ increases the option value of

44Another measure is given by

W (α, λ) ≡

∫

B×G×∆∪{1}

(
UAMSS(b, g) − U(b, g, δ)

)
Πbgδ(db, dg, dδ)

but as it gives qualitatively the same results I do not report it.
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defaulting increases, prompting the Ramsey planner to default more; the planner, however,

receives the repayment offer more often and thus the likelihood of repayment increases. For

low values of λ the former effect dominates and the likelihood of being in autarky is high

(dashed line in figure G.15). For high values of λ the latter effect dominates and the likelihood

of being in autarky is low (dashed line in figure G.15). The solid line in this figure shows Ω for

λ ∈ (0, 1) and α = 0. For λ = 0 default does not exist. As λ increases, default becomes more

probable; activating the cost of having the option, buried in the pricing functions. There is

another effect, however, for which autarky becomes more attractive; this effect dominates

when λ is high.

For the case of α ∈ (0, 1) and λ = 0, if α increase the value option of defaulting also

increases but the government always has to spend at least one period under autarky; this

non-vanishing cost implies that even for α = 1, the probability of autarky is not zero (dashed

line in figure G.14). The solid line in figure G.14 show Ω for α ∈ (0, 1) and λ = 0; its behavior

is similar to the one in the previous case.

Although these results are small in magnitude (at most the agent is willing to give/receive

1% of consumption at the initial period), depend on the particular partial payments pro-

tocol – which is exogenous – and on implicit underlying assumptions (e.g. homogeneity of

households), they offer a good guideline for policy. For low/medium probabilities of receiving

the offers, the cost of default – paying higher returns – dominates; for high probabilities,

however, the benefit of default – allowing for contingent payoffs in the ”efficient directions”

(see Zame (1993)) – dominates.45

8. Conclusion

First, this paper provides a plausible explanation for the lower debt-to-output ratios and

more volatile tax policies observed in emerging economies, vis-à-vis industrialized economies.

This stems from the fact that the benevolent government not only chooses distortionary labor

45I minor remark is that given the design of the timing there might be ex-post inefficiencies as the “third
player” in this economy, nature, is not optimizing. That is, it might be the case that the government chooses
to declare default and thus goes to the node where he awaits for nature to play (node (B) in figure D)
but once there, when λ and δ are realized the government would find optimal not to default. In the case
λ and δ were endogenous, these inefficiencies might not arise as these quantities will not be chosen by a
non-optimizing player but will be functions of the state of the economy, which arise as outcomes of some
decision problem involving the government and the households.
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taxes and one period non state-contingent debt, but it also has the option to default on its

debt. This option to default does not come for free: the households in this economy – who

are the holders of government debt – forecast the possibility of default, imposing endogenous

debt limits. These limits restrict the ability of the government to smooth shocks using debt,

thus rendering taxes more volatile.

Second, this paper proposes a device to price the debt during temporary financial autarky.

If the government defaults, it can only exit financial autarky by paying at least a positive

fraction of the defaulted debt; the possibility of payments arrive at an exogenous rate and

may not arrive immediately. Therefore, during temporary financial autarky the defaulted

debt has positive value and households trade its shares in a secondary market. I can compute

interest rate spreads during the default period, using the equilibrium price in this market.

Numerical simulations show that the spread during the default period is higher than for the

rest of the sample; this characteristic is consistent with data for defaulters, e.g. Argentina,

Ecuador and Russia.

Third and last, the numerical simulations suggest that increasing the probability of re-

ceiving offers for exiting autarky decreases welfare when this probability is low/medium to

begin with, but increases it when the probability is high. This non-monotonicity arises from

the interaction of two dichotomous effects; on the one hand the positive effect of having

more state-contingency on the debt, and on the other the negative effect of endogenous debt

limits.

Although this model does a good job in explaining qualitatively the effects observed in the

data, it does not do very well in matching the data quantitatively. A line of future research

is to delve further into the production side of this economy and its driving shocks.46 Another

line of research that I am pursuing is to study how (a) household’s heterogeneity and (b)

endogenous debt renegotiation schemes, affect the trade volume in the secondary markets

and consequently the welfare. Finally, this model, as well as Arellano (2008) and references

therein, produces ”nonstandard” pricing kernels; I am currently working on estimating these

pricing kernels using nonparametric methods.47

46See Aguiar and Gopinath (2006) and Mendoza and Yue (2008).
47This project is joint with Xiaohong Chen, and it’s based on our previous work (Chen and Pouzo (2008)).
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contingent debt. Journal of Political Economy 110, 1220–1254.

Arellano, C. (2008, June). Default risk and income fluctuations in emerging economies. American
Economic Review 98 (3), 690–713.

Billingsley, P. (1995). Probability and Measure (3rd ed.). Probability and mathematical statistics.
New York: Willey.

Chang, R. (1998). Credible monetary policy in a infinite horizon model: Recursive approaches.
Journal of Economic Theory (81), 431–461.

Chatterjee, S., D. Corbae, M. Nakajima, and J. V. R. Rull (2007). A quantitative theory of
unsecured consumer credit with risk of default. Econometrica 75 (6), 1525 – 1589.

Chen, X. and D. Pouzo (2008). Estimation of nonparametric conditional moment models with
possibly nonsmooth moments. Technical Report 1650, Cowles Foundation Discussion Paper.

Cuadra, G. and H. Sapriza (2008). Sovereign default, interest rates and political uncertainty in
emerging markets. Bank of Mexico Working Paper .

Doda, L. (2007). Optimal fiscal policy with sovereign default. Mimeo, Dept of Economics, Univ.
of Toronto.

Eaton, J. and M. Gersovitz (1981). Debt with potential repudiation: Theoretical and empirical
analysis. Review of Economic Studies 48 (2), 289–309.

Farhi, E. (2007). Capital taxation and ownership when markets are incomplete. Mimeo, dept. of
Economics, MIT .

Fernandez, R. and S. Ozler (1999). Debt concentration and secondary market prices. International
Economic Review 40, 333–355.

Kaminsky, G., C. Reinhart, and C. Vegh (2004, September). When it rains, it pours: Procyclical
capital flows and macroeconomic policies. NBER Working Papers 10780, National Bureau of
Economic Research, Inc.

Koenker, R. (2005). Quantile Regression. Econometric Society Monograph Series. Cambridge
University Press.

Kydland, F. and E. Prescott (1980). Dynamic optimal taxation, rational expectations and optimal
control. Journal of Economic Dynamics and Control 2, 79–91.

Lizarazo, S. (2007). Default risk and risk averse international investors. Mimeo, dept. of Economics,
ITAM .

Lucas, R. and N. L. Stokey (1983). Optimal fiscal and monetary policy in an economy without
capital. Journal of Monetary Economics 12 (1), 55–93.

Marcet, A. and R. Marimon (1998). Recursive contracts. Mimeo, dept. of Economics, Pompeu
Fabra.

Mendoza, E. and V. Yue (2008). Solving the country risk-business cycle disconnect: Endogenous
output dynamics in a model of sovereign default. Mimeo, dept. of Economics, Univ. of Maryland
and NYU .

Panizza, U. (2008, March). Domestic and external public debt in developing countries. Technical
Report 188, United Nations conference on trade and development.

Phelan, C. and E. Stacchetti (2001, November). Sequential equilibria in a ramsey tax model.
Econometrica 69 (6), 1491–1518.

35



Pitchford, R. and M. Wright (2008). Restructuring the sovereign debt restructuring mechanism.
Mimeo, dept. of Economics, Univ. of Sidney and UCLA.

Reinhart, C. and K. Rogoff (2008, April). The forgotten history of domestic debt. Working Paper
13946, National Bureau of Economic Research.

Reinhart, C., K. Rogoff, and M. Savastano (2003, August). Debt intolerance. Working Paper 9908,
National Bureau of Economic Research.

Sturzenegger, F. and J. Zettelmeyer (2006). Debt Defaults and Lessons from a Decade of Crises.
The MIT press.

Tauchen, G. (1986). Finite state markov-chain approximations to univariate and vector autoregres-
sions. Economics Letters 20, 177–181.

Werning, I. (2001). Repeated moral-hazard with unomonitored wealth: A recursive first order
approach. Mimeo, dept. of Economics, MIT .

Yue, V. (2005). Sovereign default and debt renegotiation. Mimeo, dept of Economics, NYU .
Zame, W. (1993, December). Efficiency and the role of default when security markets are incom-

plete. American Economic Review 83 (5), 1142–1164.

36



Appendix A. Proofs

Proof of proposition 6.1. First I need to show that (1 − Ul(1 − nt))nt is decreasing, for optimally
chosen nt. Under assumption 3.2 the government optimal tax revenue is given by A(n) ≡ (1 −
Ul(1 − nt))nt; which A(0) = 0 and A(1) = −∞ (by assumption 3.2). Moreover it follows that

∇n[A(n∗)] = 0 ⇐⇒ (1 − Ul(1 − n∗)) = −Ull(1 − n∗)n∗

thereby implying A(n∗) = −Ull(1 − n∗)(n∗)2 > 0 by assumption 3.2. So by continuity A(n) has
to decrease for a nontrivial interval included in [n∗, 1). Since under assumption 3.2 the utility:
nt − gt + U(1 − nt) is increasing over nt, it is optimal for the government to choose nt on the
decreasing part of the tax revenue; otherwise the government achieves the same tax revenue but
for a low level nt yielding lower utility. Hence (1−Ul(1−nt))nt is decreasing, for optimally chosen
nt.

I show the result by contradiction. Assume that there exists a bt+1 such that bt−P(bt+1)bt+1 ≤ 0
then it follows from the implementability conditions and assumption 6.1(ii)

(1 − Ul(1 − nt))nt − gt = bt − P(bt+1)bt+1 ≤ 0;

hence denoting nC
t as the optimal choice under dt = 0 and nA

t as the optimal choice under dt = 1
it follows that

(1 − Ul(1 − nC
t ))nC

t ≤ (1 − Ul(1 − nA
t ))nA

t .

Since (1 − Ul(1 − n))n is decreasing, nC
t ≥ nA

t , thus it follows that the immediate utility under
dt = 0 is higher than under autarky (dt = 1). This result, plus the fact that the continuation utility
is always higher under dt = 0 (the planner has the option to go to autarky) yields that no default
is always preferred to autarky; thus D[G](bt) = {∅}, a contradiction. �

Proof of proposition 6.2. Define BL(nt; gt) ≡ −Ul(1 − nt)nt + nt − gt. Notice that

∇nBL(nt; gt) = 1 − Ul(1 − nt) + Ull(1 − nt)nt,

Moreover notice that, for g1,t ≤ g2,t
48

BL(nC
1,t; g2,t) ≤ BL(nC

1,t; g1,t) = bt − P(bC1,t+1)b
C
1,t+1

and

BL(nC
2,t; g1,t) ≥ BL(nC

2,t; g2,t) = bt − P(bC2,t+1)b
C
2,t+1

with bCi,t+1 and nC
i,t being the optimal policy function under gi,t. It thus follows that there exists a

n2,t such that

BL(n2,t; g1,t) = BL(nC
2,t; g2,t),

i.e., (c2,t, n2,t, b
C
2,t+1) is feasible under g1,t. Given that at g1,t the government defaults, it must

be true that the immediate utility under default exceeds the immediate utility of the bundle
(c2,t, n2,t, b

C
2,t+1), i.e.,

U(cA1,t, 1 − nA
1,t) ≥ U(c2,t, 1 − n2,t).(28)

Moreover it follows that

U(cC1,t, 1 − nC
1,t) + βE

[
Uo(g, bC1,t+1)

]
≥ U(c2,t, 1 − n2,t) + βE

[
Uo(g, bC2,t+1)

]
.(29)

48Throughout this proof I implicitly use a key implication of assumption gt ∼ i.i.d.: prices do not depend
on current gt directly.
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To show that the government chooses to default under g2,t I need to verify that 49

U(cA2,t, 1 − nA
2,t) + βE [U(g, 1)] ≥ U(cC2,t, 1 − nC

2,t) + βE
[
Uo(g, bC2,t+1)

]
.

Invoking equations 29, and that the government defaults under g1,t; it suffices to show that

U(cA1,t, 1 − nA
1,t) − U(cA2,t, 1 − nA

2,t) < U(c2,t, 1 − n2,t) − U(cC2,t, 1 − nC
2,t).(30)

Thus I need to show that the difference on the right is “less negative”, than the one on the left.
I already showed in the proof of proposition 6.1 that BL(n; g) is decreasing in n; thus since

g1,t ≤ g2,t it follows that nA
1,t ≥ nA

2,t, and by the same argument nC
2,t ≤ n2,t. By proposition 6.1 I

know that bt − P(bt+1)bt+1 ≥ 0 thus gi,t + bt − P(bt+1)bt+1 ≥ gi,t implying

BL(n2,t; g1,t) ≥ BL(nA
1,t; g1,t), and BL(nC

2,t; g2,t) ≥ BL(nA
2,t; g2,t)

so n2,t ≤ nA
1,t and nC

2,t ≤ nA
2,t.

I need to analyze two cases. First case, let nC
2,t ≤ nA

2,t ≤ n2,t ≤ nA
1,t and define V(n) = BL(n; g)+g

then

V(nC
2,t) − V(nA

2,t) = bt − P(bC2,t+1)b
C
2,t+1 = V(n2,t) − V(nA

1,t).

Since I am under the case nC
2,t ≤ nA

2,t ≤ n2,t ≤ nA
1,t and V(nt) is decreasing and concave (assumption

6.3), the difference nA
2,t − nC

2,t is greater than nA
1,t − n2,t.

50

By my assumptions U is increasing and concave, thus it follows that

U(nA
2,t − gt, 1 − nA

2,t) − U(nC
2,t − gt, 1 − nC

2,t)

nA
2,t − nC

2,t

≥
U(nA

1,t − gt, 1 − nA
1,t) − U(n2,t − gt, 1 − n2,t)

nA
1,t − n2,t

.

which implies that U(nA
2,t − gt, 1−n

A
2,t)−U(nC

2,t − gt, 1−n
C
2,t) is greater than U(nA

1,t − gt, 1−n
A
1,t)−

U(n2,t − gt, 1 − n2,t) and doing some algebra it is easy to verify that this implies equation 30.
In the case nC

2 ≤ n2,t ≤ nA
2,t ≤ nA

1,t I can show the desired result using an analogous argument
and is not be repeated here. �

Proof of proposition 6.3. Take gt ∈ D[G](b1,t) then it must be true that

U(cC1,t, 1 − nC
1,t) + βE

[
Uo(bC1,t+1, g)|gt

]
< U(cAt , 1 − nA

t ) + βE [U(g, 1)|gt]

where ni
1,t, c

i
1,t, b

i
1,t+1 with i ∈ {C,A} denotes the policy functions given (b1,t, gt) for ”continuation”

and ”autarky”, respectively. First note that the right hand side is constant as a function of bt.
Second note that, as b1,t ≤ b2,t, then (using the notation in the proof of proposition 6.2)

BL(nC
1,t; gt) + P(bt+1)bt+1 = b1,t ≤ b2,t = BL(nC

2,t; gt) + P(bt+1)bt+1, ∀bt+1 ∈ B.

Given that BL(n; gt) is decreasing as a function of n by proof of proposition 6.1, then it must follow
that nC

1,t ≥ nC
2,t. Given that U(n− gt, 1 − n) is increasing it must follow that

U(nC
1,t − gt, 1 − nC

1,t) + βE [Uo(bt+1, g)|gt] ≥ U(nC
2,t − gt, 1 − nC

2,t) + βE [Uo(bt+1, g)|gt] .

Given that U(cAt , 1− nA
t ) + βE [U(g, 1)|gt] is constant as a function of the debt it must follow that

U(cAt , 1 − nA
t ) + βE [U(g, 1)|gt] > U(nC

2,t − gt, 1 − nC
2,t) + βE [Uo(bt+1, g)|gt]

and thus gt ∈ D[G](b2,t). �

Proposition A.1. M(bt+1) ≡
1

1−ζ(bt+1)
is such that:

49Abusing notation I excluded b from the value function of the planner under autarky as it is not needed
anymore and I denote it as U(g(bt), 1).
50For concave and decreasing function f(x) with a < b < c < d, it follows f(a)−f(b)

a−b
≥ f(c)−f(d)

c−d
. So, if

f(a) − f(b) = f(c) − f(d) it must hold that b− a ≥ d− c.
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(1) M(bt+1) ≥ 1 for all bt+1 ∈ [b∗, b
∗] and M(0) = 1.

(2) M(bt+1) is increasing (decreasing) iff ζ(bt+1) is increasing (decreasing).
(3) ζ(bt+1) is increasing (decreasing) iff ∇bt+1

[
log
(
−∇bt+1

[log(Π(g(bt+1)))]
)]

+ 1
bt+1

≥ (≤)0

Proof of Proposition A.1. (1) It suffices to show that ζ(bt+1) ∈ [0, 1]. By definition

ζ(b) = −
π(g(b))∇bg(b)b

Π(g(b))

and I already showed that ∇bg(b) is decreasing, thus ζ(b) ≥ 0. Also note that ζ(b) ≤ 1 if and only
if

0 ≤ Π(g(b)) + π(g(b))∇bg(b)b

which has the same sign as the derivative of P(b)b with respect to b ∈ [b∗, b
∗]. The latter expression

is non-negative by optimality of the choice of b, otherwise the planner could perceive higher debt
income by lowering the debt, and that contradicts optimality of the debt.

(2) It is easy to see that

∇bM(b) =
∇bζ(b)

(1 − ζ(b))2

and thus the desired result follows.
(3) I show this for the increasing part, the decreasing is analogous.51 Note that

∇b[ζ(b)] = −
∇b[∇b[Π(b)]b]

Π(b)
+

(
∇b[Π(b)]

Π(b)

)2

b

= −
∇2

b [Π(b)]

Π(b)
b−

∇b[Π(b)]

Π(b)
+

(
∇b[Π(b)]

Π(b)

)2

b

=
∇b[Π(b)]

Π(b)

[
−
∇2

b [Π(b)]

∇b[Π(b)]
b− 1 +

∇b[Π(b)]

Π(b)
b

]
.

Given that ∇b[Π(b)]
Π(b) ≤ 0, then ∇b[ζ(b)] ≤ 0 iff

∇b[Π(b)]

Π(b)
−

∇2
b [Π(b)]

∇b[Π(b)]
≥

1

b

⇐⇒ ∇b[log(Π(b))] −∇b[log(−∇b[Π(b)])] ≥
1

b

⇐⇒ ∇b

[
log

(
−
∇b[Π(b)]

Π(b)

)]
≤ −

1

b

⇐⇒ ∇b [log (−∇b[log(Π(b))])] ≤ −
1

b
.

�

The expression in part (3) imposes restrictions on Π(·) and g(·). For instance, if Π(g) =
g−g

g−g
and

g(b) = C1 exp{−C2b
2} then ∇bt+1

[
log
(
−∇bt+1

[log(Π(g(bt+1)))]
)]

+ 1
bt+1

= 0.52

Proof of Proposition 6.4. (1) First note that under equation 24 and the envelope condition γ is a

decreasing function of g. Second, note that the default adjusted measure,

∫
g≤g1

I{g:g≤gt+1}

Π(gt+1)
π(dg) is

51I omit the t + 1 subscript and denote F (b) ≡ F (g(b)) for generic function F , for the sake of keeping the
notational burden low.
52Where the constants Ci, i = 1, 2 are derived from integrating the PDE ∇b [log (−∇b[log(Π(b))])] + 1

b
= 0.
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first order dominated by
∫
g≤g1

π(dg). Thus putting both results together it follows that E[γt+1] ≥

E[γt+1].
The expression for γt can be written as

E[γt+1]M(bt+1) − E[γt+1].

As M(bt+1) ≥ 1 it follows that is bounded from below by

E[γt+1] − E[γt+1]

which by my previous result I know it is positive; hence γt > E[γt+1]. This implies that γt

converges almost surely to some limit, γ∞ (see Billingsley (1995)) for all the histories g∞ such that
the planner does not default. Therefore in order to prove that γt → γ∞ w.p.p. it suffices to show
that Pr (No default) ≥ c > 0. It is easy to see that

Pr (No default until t) = Pr (No default at t) Pr (No default until t− 1) ,

and by my previous results Pr (No default at t) = Π(g(bt)). Therefore iterating, it follows

log(Pr (No default)) =
∑

t

− log(1/Π(g(bt))).

So a sufficient condition for Pr (No default) ≥ c > 0 is that − log(1/Π(g(bt))) decays faster than
C/t2. The condition in the proposition ensures that this holds.

(2) First note that 1
Π(g(bt+1))(1−ζ(bt+1)) = M(bt+1)

Π(g(bt+1))
≥ 0, and

1

Π(g(bt+1))
Cov (I{g ≥ g(bt+1)}, γt+1) =

1

Π(g(bt+1))
Cov (I{g ≥ g(bt+1)} − 1, γt+1)

=
1

Π(g(bt+1))
Cov (−I{g ≤ g(bt+1)}, γt+1)

=
1

Π(g(bt+1))
E [(Π(g(bt+1)) − I{g ≤ g(bt+1)}) γt+1]

= (E [γt+1] − E [γt+1])

Where the first equality holds because the covariance of random variable and a constant is zero,
and the second equality follows from 1 = I{g ≤ g(bt+1)} + I{g ≥ g(bt+1)}. The third equality
is true because, for generic random variables (X,Y ), Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] =
E[(X − E[X])Y ]. By equation 25 and the envelope condition γ is a increasing function of g, thus
the last term is positive. The term E[γt+1](M(bt+1)− 1) is positive by the properties presented in
proposition A.1.

(a) ∇bt+1
E[γt+1(M(bt+1) − 1)] is given by

∇bt+1
[M(bt+1)]E[γt+1] + ∇bt+1

[E[γt+1]](M(bt+1) − 1).

By proposition A.1(3) and my assumptions the first term is positive. Invoking the envelope condi-
tions, the second terms is given by

{∫
∇bγ(bt+1, g)Π(dg)

}
(M(bt+1) − 1).

By assumption ∇bγ(bt+1, g) = −∇2
bU(bt+1, g, 0) ≥ 0, and thus the first term is positive; implying

that ∇bt+1
E[γt+1] ≥ 0.
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(b) Defining πbt+1
(dg) as the “default-adjusted” pdf, it follows

∇bt+1
[E [γt+1] − E [γt+1]] = ∇bt+1

[∫

G

γ(bt+1, g)Π(dg)

]
−∇bt+1

[∫
γ(bt+1, g)Πbt+1

(dg)

]

=

∫
∇bt+1

γ(bt+1, g)(π(g) − πbt+1
(g))dg − γ(bt+1, g(bt+1))

π(g(bt+1))

Π(g(bt+1))

−

∫

{g:g≤g(bt+1)}
γ(bt+1, g)

{
−

π(g(bt+1))

(Π(g(bt+1)))2
∇bt+1

g(bt+1)

}
π(g)dg

Since γ(bt+1, g) is positive, and ∇bt+1
g(bt+1) ≤ 0 it follows that third term is positive. Similarly,

the second term is also positive. I already showed that the default probability measure is first
order dominated by Π(g). Moreover, ∇2

bt+1
γ(bt+1, g) = −∇3

bt+1
U(bt+1, g, 0), and by assumption is

negative. Therefore ∇bt+1
γ(bt+1, g) is a decreasing function of g, which implies that the first term of

the equation above is also negative. Therefore ∇bt+1
[E [γt+1] − E [γt+1]] is negative; automatically

implying that Cov(I{g≥g(bt+1)},γt+1)
Π(g(bt+1))(1−ζ(bt+1)) is decreasing. �

Proof of Proposition 6.5. First, I define {b0, (nt, gt)
∞
t=0} as being implementable in the Aiyagari

et al. (2002) (AMSS, hereafter) economy if

{b0, (nt, gt)
∞
t=0} ∈ AMSS ≡

{
{b0, (nt, gt)

∞
t=0} : s0 +

∑

t<T

∫

gt

βtstprt(dg
t) +

∫

gT
βT bT prT (dgT ) = b0,∀T ;

and si +

∞∑

t=i

∫

gt

βtstprt(dg
t) = bi ∈ Gi−1

}
,

where st = (nt −Ul(1− nt))− gt. Similarly, I define {b0, (nt, gt)
∞
t=0} as being implementable in the

economy with default (ED, hereafter) if

{b0, (nt, gt)
∞
t=0} ∈ ED ≡

{
{b0, (nt, gt)

∞
t=0} : s0 +

∑

t<T

∫

gt

βtΛtstprt(dg
t) +

∫

gT
βT ΛT bT prT (dgT ) = b0,∀T ;

st = 0 ∀{t : dt = 1} and si +

∞∑

t=i

∫

gt

βtΛtstprt(dg
t) = bi ∈ Gi−1

}
,

where Λt ≡
∏t

j=0(1 − dj). That is, a sequence (nt, gt)
∞
t=0 and an initial debt b0 are implementable

in ED if they satisfy the measurability constraints of Aiyagari et al. (2002), the Lucas and Stokey
(1983) implementability condition, and the fact that in default the debt is not honored and after
that st = 0.53

Second, I define T such that T = inf{t > 0 : dt = 1, w.p.p.}; the assumption pr∞{T ∗ <∞} > 0
implies that I consider only the sequences (gt)t such that T <∞ because otherwise T = ∞ ⇒ dt =
0, a.s.− G∞ ⇒ pr∞{T ∗ <∞} = 0

I show the proposition by contradiction; I take any {b0, (n
ED
t , gt)t} ∈ ED and assume that

sAMSS
t = sED

t , i.e., {b0, (n
ED
t , gt)t} ∈ AMSS, and then I arrive to a contradiction.54

It follows that (sED
t )t≥T = 0 for all (gt)t such that gT : {dT = 1}. If sAMSS

t = sED
t it must be

true that bAMSS
T ≤ 0 because (a) {sAMSS

t = 0, ∀(gt)t≥T : gT − gT > 0}, and (b) the government

cannot roll over debt forever, i.e., bAMSS
T ≤ 0 for gT : gT − gT > 0, but as bAMSS

T ∈ GT −1 it must

53For simplicity, I leave the exogenous debt limits implicit; all the results follow by adding the corresponding
restrictions.
54For a generic variable xt, x

ED
t and xAMSS

t denote the value of such variable in the ED and AMSS economies,
respectively.
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hold bAMSS
T ≤ 0 for all gT (not only the ones the government defaults); thus, by definition of the

set AMSS, it must hold that

0 ≥ b0 − sAMSS
0 −

∑

t<T

∫

gt

βtsAMSS
t prt(dg

t) =b0 − sED
0 −

∑

t<T

[∫

gt

βtsED
t prt(dg

t)

]

0 ≥b0 − sED
0 −

∑

t<T

[∫

gt

βtΛts
ED
t prt(dg

t)

]

0 ≥

∫

gT
βT ΛT b

ED
T prT (dgT ),

where the first inequality follows from sAMSS
t = sED

t ; the second equality follows from the fact that
Λt = 1 because, since T is defined as the first time that dt > 0 with positive probability, it must be
true that dt = 0, a.s., for all gt, t < T ; the last inequality follows from the restrictions over ED.
Moreover, it follows

0 ≥

∫

gT
βT ΛT b

ED
T prT (dgT ) =

∫

gT −1

βT
{∫

gT
(1 − dT )prT (dgT )

}
ΛT −1b

ED
T prT −1(dg

T −1)

0 ≥

∫

gT −1

βT {Π(gT )} bED
T prT −1(dg

T −1) > 0,

where the first equality follows from the fact that bt ∈ Gt−1 for all t; the last inequality follows
from Π(gT ) > 0 and bED

T > 0. This last equation yields a contradiction thereby implying that
ED ∩ AMSS = {∅}. �

A.1. Default Sets Characterization: Extensions. If I allow for Uc(c) 6= 1, then a version of
proposition 3.2 still holds,

Proposition A.2. Under assumption 6.1(ii) and

Assumption A.1. (i) Uc(nt − gt)(nt − gt) − Ul(1 − nt)nt is decreasing,

if D[G](bt) 6= ∅ then there does not exists bt+1 : Uc(nt − gt)bt − P(bt+1)bt+1 ≤ 0 for all bt+1.

Proof of Proposition A.2. I show the result by contradiction, as I did for proposition 6.1. Assume
that there exits bt+1 such that Uc(nt − gt)bt − P(bt+1)bt+1 ≤ 0. This implies that

(Uc(n
C
t − gt) − Ul(1 − nC

t ))nC
t − Uc(nt − gt)gt = Uc(n

C
t − gt)bt − P(bt+1)bt+1 ≤ 0,

which, by assumption A.2, this implies that nC
t ≥ nA

t .
The current utility under dt = 0 is given by U(nC

t − gt, 1 − nC
t ), with derivative Uc(n

C
t − gt) −

Ul(1 − nC
t ). This last expression is positive (as it has the same sign as (1 − τn

t ) which is positive),
therefore the current utility under dt = 0 is higher than the one under dt = 1. The continuation
value of the former case is always higher than in the latter case as the option to default has not
been exercised. This implies that default is never chosen, and thus I arrived to a contradiction. �

Remark A.1. If Uc(c) = c−σc and Ul(1−n) = (1−n)−σ then a sufficient condition for assumption
A.1 to hold is σc > 1.

The result in proposition A.2 is in some sense related to the results in Lizarazo (2007). In
that paper the author allows for risk averse investors and extends the results in Arellano (2008),
conditional on the investors level of wealth. In my paper, investors are the households and the
planner has to incorporate the consumption level, or rather the marginal utility of consumption,
in the pricing of the debt. Unfortunately I was unable to characterize the default sets any further
because, as opposed to the results in Lizarazo (2007), lenders marginal utility of consumption is
endogenous for the planner.
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Now I study the case that autarky is not absorbing, i.e., I allow for future repayments of the
defaulted debt. First lets take, α > 0, which implies that the secondary market price, qt is not
zero. The characterization of the default sets also changes. The intuition behind proposition 6.1
was that if the government had the option to roll over the debt then it simply keeps the option to
default this period, default tomorrow on a higher debt, and thus default never occurs today. This
results holds because the value function for autarky (or default) remains unchanged with the level
of debt; fact that does not necessarily hold anymore. I can see this by decomposing the difference
U(bt, gt, 1) − U(bt, gt, 0) as55

{
U(nA

t − gt, 1 − nA
t ) − U(nC

t − gt, 1 − nC
t )
}

{
E
[
U(bt, g, 1) − U(bCt+1, g, 1)

]}
+
{
(1 − α)βE

[
U(bCt+1, g, 1) − Uo(bCt+1, g)

]}
,(31)

in which the superscripts “A” and “C” denote the optimal policy functions under autarky and
no-default, respectively.

Tax income is decreasing on bt+1 (the more debt the government takes, the less tax income he
needs to cover expenses), which given my assumptions over (1−Ul(1−n))n implies that the policy
function nC

t is increasing on bt+1. This result, monotonicity of U(n − g, 1 − n) on n, and that
U(nA

t − gt, 1 − nA
t ) is constant (as a function of bt and bt+1) imply that the first term inside the

curly brackets is decreasing on bt+1, and it is naught if P(bt+1)bt+1 = bt.
The second term in curly brackets, which was not present when α = 0 and is basically the term

that prevents me to extrapolate the previous results to this case, is increasing on bt+1 because
U(b, g, 1) is decreasing in b and is naught if bt+1 = bt.

The third term in curly brackets is always negative, and intuitively as bt+1 increases is going to
be eventually zero as default will be optimal.

Consequently, for levels of debt such that P(bt+1)bt+1 = bt + ǫ for a small ǫ > 0 the nega-
tive effect of U(nA

t − gt, 1 − nA
t ) − U(nC

t − gt, 1 − nC
t ) might be offset by the positive effect of

E
[
U(bt, g, 1) − U(bCt+1, g, 1)

]
and moreover if (1 − α)βE

[
U(bCt+1, g, 1) − Uo(bCt+1, g)

]
is negligible,

U(bt, gt, 1) − U(bt, gt, 0) can be positive for levels of debt such that P(bt+1)bt+1 > bt.
Finally, for the case with λ > 0 and α = 0 the government can receive offers for partial defaults

and has to decide whether to accept such offers. The following proposition is stated without proof
(the proof is completely analogous to the proof of proposition 6.3) and characterizes the decision
of rejecting/accepting the offer for partial defaults.

Proposition A.3. Under assumptions 6.1(ii), 6.2 and 6.3(i) it follows that if for δ1: U((1 −
δ1)b, g, δ1) < U(b, g, 1), then for all δ2 ≥ δ1 it U((1 − δ2)b, g, δ2) < U(b, g, 1), given (b, g) ∈ B × G.

Appendix B. Numerical Simulations: Description of the algorithm

I construct a grid for the government expenditure, G ≡ {g1, . . . , g#G}; and for the bonds, B ≡
{b1, . . . , b#B}. I set #G = #B = 35. Finally I construct the transition matrix Πij ≡ π(gt+1 =
gi|gt = gj) using an AR(1) specification gt+1 = ρ0+ρ1gt +εt+1, εt+1 ∼ N(0,Σ) and Tauchen (1986)
discretization technique.

With this at hand I solve the model as follows

(1) Propose an initial guess for (pb)(0) and q(0). Both prices are #G × #B matrices. Define

also U (0)(·, ·, i) ∈ G × B for i = 0, 1.

55This result follows from: U(b1, g, 1) − U(b2, g, 1) = αβE [Uo(b1, g) − Uo(b2, g)] + (1 −
α)βE [U(b1, g, 1) − U(b2, g, 1)], and by taking expectations I can solve for the difference of Uo in
terms of the difference of U(·, 1).
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(2) Given the initial guesses in 1. solve the autarky problem for each element (b, g) ∈ G × B.
The maximization problem is casted as a finite dimensional optimization problem on the
grids G × B.

(3) Given the initial guesses in 1. and 2. solve the “continuation” problem for each element
(b, g) ∈ G × B. The maximization problem is casted as a finite dimensional optimization
problem on the grids G × B.

(4) Iterate over 2-3 and solve for the fixed point for the value functions, denote this as U (1)(·, ·, i) ∈
G × B for i = 0, 1.

(5) Given U (1)(·, ·, i) ∈ G × B for i = 0, 1 obtained in 4. Compute the new prices, (pb)(1) and

q(1).
(6) If max{|(pb)(0) − (pb)(1)|, |(q)(0) − (q)(1)|} ≤ δTOL then stop. If not set (pb)(0) = (pb)(1) and

q(0) = q(1) and U (0)(·, ·, i) = U (1)(·, ·, i) for i = 0, 1.

So as to initialize the iteration I set (pb)(0) = β and q(0) = 0 and U (0)(·, ·, i) = 0. I also set δTOL as
1e−7 and || · ||E as maxG×B | · |.56

In order to compute q (given all the other things) I need to solve a fix point problem in itself as
q appears on both sides of the pricing equation. Once I solve this problem I compute pb.

Appendix C. Quantitative Part

C.1. Description of the Data. In this section I describe how I constructed the figures presented
in section 2.

The industrialized economies group consists of AUSTRALIA (1990-1999), AUSTRIA (1990-
1999), BELGIUM (1990-2001), CANADA (1990-2003), DENMARK (1990-2003), FINLAND (1994-
1998), FRANCE (1990-2003), GERMANY (1990-1998), GREECE (1990-2001), IRELAND (1995-
2003), ITALY (1990-2003), JAPAN (1990-1993), NETHERLANDS (1990-2001), NEW ZEALAND
(1990-2003), NORWAY (1990-2003), PORTUGAL (1990-2001), SPAIN (1990-2003), SWEDEN
(1990-2003), SWITZERLAND (1990-2003), UNITED KINGDOM (1990-2003) and UNITED STATES
(1990-2003).

The emerging economies group consists of ARGENTINA1 (1998-2003), BOLIVIA1 (2001-2003),
BRAZIL1 (1997-2003), CHILE1 (1993-2003), COLOMBIA1 (1999-2003), ECUADOR1 (1998-2003),
EL SALVADOR1 (2000-2003), HONDURAS1 (1990-2003), JAMAICA1 (1990-2003), MEXICO1

(1990-2003), PANAMA1 (1997-2003), PERU1 (1998-2003), VENEZUELA1 (1997-2003), ALBA-
NIA (1995-2003), BULGARIA (1991-2003), CYPRUS (1990-2003), CZECH REPUBLIC (1993-
2003), HUNGARY (1991-2003), LATVIA (1990-2003), POLAND (1990-2003), RUSSIA (1993-
2003), TURKEY (1998-2003), ALGERIA (1990-2003), CHINA (1997-2003), EGYPT (1993-2003),
JORDAN (1990-2003), KOREA (1990-2003), MALAYSIA (1990-2003), MAURITIUS (1990-2003),
MOROCCO (1997-2003), PAKISTAN (1990-2003), PHILIPPINES (1997-2003), SOUTH AFRICA
(1990-2003), THAILAND (1999-2003) and TUNISIA (1994-2003). The LAC group is comformed
by the countries with “1”.

For section 2 I constructed the data as follows. First, for each country, I computed time average,
or time standard deviations or any quantity of interest (in parenthesis is the number of observations
use to construct these). Second, once I computed these averages, I group the countries in IND, EME
and LAC. I do this procedure for (a) central government domestic debt (as % of output) ; (b) central
government expenditure (as % of output) ; (c) central government revenue (as % of output) , and (d)
Real Risk Measure. The data for (a) is taken from Panizza (2008) ; the data for (b-c) is taken from

56I perform sensitivity analysis on δTOL and result remained unchanged.
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Kaminsky et al. (2004) ; finally the data for (d) is taken from www.globalfinancialdata.com.57
58 59

Appendix D. Figures
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Figure G.1. Timing of the Model. gt: government expenditure; bt: govern-
ment equilibrium debt; λ: Prob. of receiving an offer; δ ∈ ∆: Fraction of
defaulted government debt; α: Prob. of having the option to leave autarky.

57For Greece and Portugal I use central government public debt because central government domestic debt
was not available. For Sweden, Ecuador and Thailand I use general government expenditure because central
government expenditure was not available. For Albania, Bulgaria, Cyprus, Czech Rep., Hungary, Latvia,
Poland and Russia no measure of government expenditure was available and thus were excluded from the
sample for the calculations of this variable. The same caveats apply to the central government revenue
sample.
58I gratefully acknowledge that Kaminsky et al. (2004) and Panizza (2008) kindly shared the dataset used
in their respective papers (see references).
59For Argentina, Brazil, Colombia, Ecuador, Egypt, Mexico, Morocco, Panama, Peru, Phillipines, Poland,
Russia, Turkey and Venezuela I used the real EMBI+ as a measure of real risk. For the rest of the countries
I used government note yields of 1-5 years maturity, depending on availability.
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Figure G.2. QQplot of avg. debt-to-output ratio and Real Spread.
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Figure G.3. (Top Panel) Quantiles of stdev. Ctral. gov. revenue-to-output
ratio; (Bottom Panel) Spread for three defaulters (Argentina, Russia and
Ecuador) during the period 1997-2006.
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Figure G.4. Impulse Response functions.
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Figure G.5. Policy function of debt for ED Economy (black dot), AMSS
(red dot) and default region (yellow area).
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Figure G.9. Box-plots of government policy for the whole sample.
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