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Abstract

We consider robust methods for estimation and unit root [UR] testing in autore-
gressions with infrequent innovational outliers whose number, size and location can be
random and unknown. We show that in this setting standard inference based on OLS
estimation of an augumented Dickey-Fuller [ADF] regression may not be reliable, since (i)
clusters of outliers may lead to inconsistent estimation of the autoregressive parameters,
and (ii) large outliers induce a jump component in the asymptotic null distribution of
UR test statistics. In the benchmark case of known outlier location, we discuss why the
augmentation of the ADF regression with appropriate dummy variables not only ensures
consistent parameter estimation, but also gives rise to UR tests with significant power
gains, growing with the number and the size of the outliers. In the case of unknown
outlier location, the dummy based approach is compared with a robust, mixed Gaussian,
Quasi Maximum Likelihood [QML] inference approach, novel in this context. It is proved
that, when the ordinary innovations are Gaussian, the QML and the dummy based ap-
proach are asymptotically equivalent, yielding UR tests with the same asymptotic size
and power. Moreover, the outlier dates can be consistently estimated as a by-product
of QML. When the innovations display tails fatter than Gaussian, the QML approach
seems to ensure further power gains over the dummy based method. A number of Monte
Carlo simulations show that the QML ADF-type t-test, in conjunction with standard
Dickey-Fuller critical values, yields the best combination of finite sample size and power.

1 Introduction

Over the past decade econometricians have seriously entertained the question of how to
improve the power of autoregressive [AR] unit root [UR] tests. A first major strand of this
literature draws on the seminal paper by Elliott et al. (1996), who show that massive power
improvement can be obtained by considering point-optimal tests against a fixed alternative.
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A second strand of this literature focuses on the distributional properties of the data, in
two respects. First, in the presence of non-Gaussian data — mainly, excess kurtosis — the
asymptotic power envelope generally differs from the Gaussian envelope. Important papers
in this area are Lucas (1995a,b), Rothenberg and Stock (1997), Hodgson (1998a,b), Abadir
and Lucas (2004), Boswijk (2005) and Jansson (2007). Second, econometric techniques based
on M estimation, including non-Gaussian quasi maximum likelihood [QML], may benefit from
substantial power gains over Gaussian QML inference methods; see Lucas (1995a,b), Franses
and Lucas (1998), Lucas (1997, 1998), Franses et al. (1999) and Boswijk and Lucas (2002).
An attempt to compare the two strands of the literature is made by Thompson (2004).

A prominent case of departure from the Gaussian framework arises when data are charac-
terized by innovational outliers [IO]. The effects of outlying events on UR and cointegration
testing have been extensively studied in the literature; see, inter alia, Perron (1989, 1990),
Perron and Vogelsang (1992), Franses and Haldrup (1994), Lucas (1997), Lanne et al. (2002)
and Bohn Nielsen (2004); see also Burridge and Taylor (2006) for a recent reference. Rothen-
berg and Stock (1997, p.282) implicitly consider an innovational outlier model and show that
Gaussian QML inference leads to UR tests with power below the power envelope. Also Lucas
(1995b) clearly shows that in the IO case there is room for power gains when UR tests are
based on the optimization of non-Gaussian criterion functions. In particular, the robust QML
methods proposed in Lucas (1997,1998), Franses and Lucas (1998) and Franses et al. (1999)
allow one to obtain important power gains in the presence of innovational outliers.

The good efficiency and power properties of robust QML techniques somewhat contrast
with the ‘common practice’ of accounting for IOs through the inclusion of impulse dummies
in the model; see, among many others, Box and Tiao (1975), Hendry and Juselius (2001)
and Bohn-Nielsen (2004). The dummy-variable approach can be viewed as an extreme case
of robust inference methods, where outlying observations — given that the outlier dates are
known to the econometrician — are implicitly eliminated by the inclusion of the dummies.
Nevertheless, as far as we are aware, no study has been undertaken in order to assess whether
a dummy-based approach to estimation and UR inference in the presence of outliers allows to
obtain power gains comparable with those of the robust procedures proposed in the literature.

A first aim of this paper is to answer the previous question. In particular, by using
both asymptotic arguments and Monte Carlo simulations, we aim at showing that, when
the ordinary shocks are Gaussian and the outliers infrequent, the dummy-based approach
is comparable to robust inference methods, both in terms of size and power. This result
suggests that the use of appropriate dummy variables may represent a compelling way to
increase the power of UR tests, in view of the further advantages that (i) no new critical
values are needed (see section 5), and (ii) it allows the practitioner to address the economic
interpretation of the outlying events.

Given that the inclusion of impulse dummies is in general unfeasible in practice (unless
the dates of the outlying events are known to the econometrician), we discuss a robust QML
estimator that allows one to construct UR tests with the same asymptotic size and power
properties as the UR tests obtained using the dummy variables approach. Hence, the new
robust QML tests benefit from the power gains associated to the latter (unfeasible) approach.
Moreover, the robust QML method (i) delivers estimators of the model parameters which are
asymptotically unaffected by outliers of relevant size, and (ii) implicitly performs consistent
estimation of the dates where outliers occur. In this respect, a further contribution of this
method is that it bridges the gap between the robust statistics approach, which, similarly
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to ours, requires no identification of the outlier dates and applies continuous weights to the
observations, and the (unfeasible) dummy variable approach.

A second aim of the paper is to shed some light on the mechanics behind the power gains
under local alternatives. To accomplish it, we compare the large sample representations of
standard UR test statistics and of statistics constructed using dummy variables. We argue
that power gains are due to the intuitive fact that impulse dummy variables account for
the effect of outliers on the first differences of the data, but not for the long run effect on
the levels. By asymptotic equivalence, the same conclusion applies to the QML estimator.
Furthermore, this result applies to robust estimators in general, as they tend to downweight
the observations corresponding to periods with large innovations, while remaining sensitive
to the long-run effect of such innovations, see Knight (1991, p.201).

Finally, we show that, in the (empirically relevant1) case where outliers cluster together,
the coefficients of the stable regressors of the reference AR model may not be estimated con-
sistently by OLS, with the unfortunate consequence that the usually employed AR estimators
of the long run variance are not necessarily consistent. The proposed robust QML approach
is also able to fix this problem, as it restores Gaussian asymptotic inference on the short-run
coefficients.

The outlier model we consider is quite different from those considered in the earlier lit-
erature, in several respects. Specifically, under this model, (i) outliers occur randomly over
time; (ii) the number of outliers is unknown, and only needs to be bounded in probability;
(iii) outliers need not occur independently over time and, in particular, may cluster together;
(iv) the sizes of the outliers are random and of larger magnitude order than the ordinary
shocks driving the AR dynamics.

Notice that (i)-(iv) above are rather general. No restrictions or a priori knowledge of
the number or the location of the outliers is assumed. Differently from a strand of the
literature where the number of outliers diverges with the sample size (cf. Balke and Fomby,
1991; Franses and Haldrup, 1994), here this number is kept bounded, hence allowing us to
distinguish between frequent, ordinary shocks and rare, outlying events. A further important
feature of our model is that outliers are large in size, when compared to the ordinary shocks.
This allows us to develop an asymptotic framework that renders the outliers asymptotically
influential, both under the UR null hypothesis and under the alternatives, cf. Leybourne and
Newbold (2000a,b) and Müller and Elliott (2003).

The structure of the paper is as follows. In section 2 we present the reference model
and its assumptions. In section 3 we discuss how outliers affect the asymptotic distributions
of the standard OLS estimator of the model parameters and of the associated standard
UR tests. In section 4 we turn to the analysis of the dummy-based approach under the
assumption that the outlier dates are known. Finite sample comparisons are reported in
section 5. The robust QML approach and the resulting UR tests are proposed and analyzed
in sections 6 (asymptotic properties) and 7 (finite sample simulation). Section 8 extends the
QML approach to linear time trends. Some concluding comments are collected in section
9. All proofs are placed in the Appendix. The following notation is used: ‘

w→’ denotes
weak convergence and ‘

P→’ convergence in P -probability, with OP (1) denoting boundedness
in P -probability; I(·) is the indicator function; Ik and 1k are the k × k identity matrix and
the k × 1 vector of ones. With ‘x := y’ (‘x =: y’) we indicate that x is defined by y (y

1Cf. Balke and Fomby (1994, section 4.2).
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is defined by x), and b·c signifies the largest integer not greater than its argument. With
D we denote the space of càdlàg functions on [0, 1], endowed with the Skorohod topology.
For a vector x ∈ Rn, kxk := (x0x)1/2 stands for its Euclidean norm, whereas for a matrix
A, kAk := [tr(A0A)]1/2, where tr(·) is the trace operator. For brevity, integrals such asR 1
0 X (s-) dY (s) and

R 1
0 X (s)Y (s) ds are written as

R
XdY and

R
XY , respectively.

2 The model

We consider parameter estimation and tests of the UR null hypothesis H0 : α = 1 against
local alternatives Hc : α = 1−c/T (c > 0) and fixed stable alternatives Hs : α = α∗ (|α∗| < 1),
in the model

yt = αyt−1 + ut, t = 1− k, ..., T,
ut =

Pk
i=1 γ̄iut−i + εt + δtθt, t = 1, ..., T,

(1)

where, for k ≥ 1, (u0, ..., u1−k, y−k)0 may be any random vector (for k = 0, y0 may be any
random scalar) whose distribution is fixed and independent of T . The model is completed
with AssumptionsM and S below.

AssumptionM. (a) The roots of Γ̄ (z) := 1−Pk
i=1 γ̄iz

i have modulus greater than 1; (b)
{εt}∞t=1 is IID(0,σ2ε), with σ2ε > 0.

Assumption M prevents yt from being I(2) or seasonally integrated, and ensures that the
so-called long-run variance of ut, hereafter σ

2 := σ2εΓ̄ (1)
−2, is well-defined. Moreover, the

invariance principle BT (·) := T−1/2σ−1ε
PbT ·c
t=1 εt

w→ B (·) holds, with B a standard Brownian
motion.

The term δtθt in (1) is the outlier component of the model. Specifically, δt is an unob-
servable binary random variable indicating the occurrence of an outlier at time t, with θt
being the associated (random) outlier size. The (random) number of outliers is given by
NT :=

PT
t=1 δt. The following condition is imposed {δt, θt}.

Assumption S. (a) NT is bounded in probability conditionally on NT ≥ 1; (b) θt = T 1/2ηt,
where {ηt}Tt=1 and {η−1t }Tt=1 are OP (1) sequences as T → ∞; (c) for all T , {δt}Tt=1 is
independent of {εt}Tt=1,{ηt}Tt=1, y−k and, if k ≥ 1, of (u0, ..., u1−k)0.

For illustrative purposes, we will sometimes strengthen Assumption S by requiring that
the following condition holds.

Assumption S 0. Assumption S holds and, as T → ∞, CT (·) := T−1/2
PbT ·c
t=1 θtδt

w→ C (·)
jointly with BT , where C is a piecewise constant process in D.

Remark 2.1. Assumption S generalizes the single outlier model in several directions. For
instance, the number of outliers NT , instead of being fixed, is only assumed to be bounded in
probability. Furthermore, we do not restrict the dependence structure of {δt}, hence allowing,
e.g., for outliers at consecutive dates.
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Remark 2.2. By Assumption S(b) the outliers have the same stochastic magnitude order as
the levels of yt under H0 or Hc. In particular, the effect of outliers does not become negligible
in large samples. A similar assumption has been advocated by Perron (1989, p.1372) and
employed by Leybourne and Newbold (2000a,b). The magnitude order T 1/2 has also been
used by Müller and Elliott (2003) to model the size of the initial observation of an AR process
with a root near to unity (notice that the initial observation can be thought of as a large
outlier occurring at the beginning of the sample).

Remark 2.3. Assumption S(c) rules out dependence between the outlier indicators {δt} and
{εt, ηt}. However, it should be stressed that this is not a strictly necessary assumption for the
results of the paper, and is made mainly for technical convenience. For instance, S(c) could
be replaced by the assumption that, conditionally on the occurrence of at least one outlier,
the quantities maxt:δt=1 |εt| := maxt≤T |δtεt|, maxt:δt=1 |ηt| and maxt:δt=1 |η−1t | are bounded
in probability.

Remark 2.4. Conditionally on the occurrence of at least one outlier, the smallest jump of
the outlier partial-sum process CT is bounded away from zero in probability; see Assumption
S(b). Thus, if the occurrence of at least one outlier has non-vanishing probability (the case
where our asymptotic analysis is non-trivial), the tightness condition in Billingsley (1968,
Theorem 15.2) implies that CT has a limit in D only if the time distance between outliers
diverges at the rate of T . Therefore, Assumption S 0 rules out, e.g., outliers occurring in
adjacent periods, at least in large samples. A simple setup where Assumption S 0 is satisfied
obtains when {δt} is an IID sequence of Bernoulli random variables with pT := P (δt = 1) =
λ/T , T > λ > 0, and {ηt} is an IID sequence as well. In this case the limiting process C is a
compound Poisson process with jump intensity λ; see Georgiev (2008).

Remark 2.5. Our set-up is specifically designed for the case of outliers of the innovational
form. Nevertheless, since under Assumption S we allow for outliers at consecutive dates, also
cases of additive outliers are covered. Let k = 0 for the sake of simplicity and consider an
additive outlier of size θ∗ occurring at time, say, T ∗, whose effect dies out at time T ∗ + 1,
under the null α = 1 or under the (possibly local) alternative. This case falls within the
framework of model (1) by setting δt = 1 if t = T ∗ or T ∗ + 1 (0 otherwise), θT∗ = θ∗ and
θT ∗+1 = −αθ∗.
Remark 2.6. Since {δt}, {θt} and, under Hc, also α of (1) depend on T , we are formally
considering a triangular array format for YT,t, δT,t, θT,t. Unless differently specified, to keep
notation simple we drop the ‘T ’ subscript. ¤

In the analysis of model (1), the following alternative parameterization will be used. Let
γ := (γ1, ..., γk)

0 and Γ = (π, γ0)0, where, under H0 and Hc, π := 0 and γi := γ̄i (i = 1, ..., k)
whereas under Hs the new parameters are defined through the identity (1 − αz)Γ̄(z) =
1− (π + 1)z −Pk

i=1 γiz
i(1− z). Then ∆yt has the representation

∆yt = πyt−1 + γ0∇Yt−1 + et = Γ0Yt−1 + et, t = 1, ..., T, (2)

where ∇Yt−1 := (∆yt−1, ...,∆yt−k)0 and Yt−1 := (yt−1,∇Y0
t−1)0. Under H0 and Hs this is a

regression with error term et = εt + δtθt, whereas under Hc it is an approximate regression
whose error term differs from εt + δtθt infinitesimally (see section A.1 of the Appendix). In
view of AssumptionM, under H0 or Hc the components of ∇Yt−1 will be referred to as stable
regressors, whereas under Hs the components of Yt−1 will be referred to as such.
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3 ADF estimation and testing in the presence of outliers

In this section we discuss the effects of outlying events on the OLS estimator and on the
related UR tests in the AR model (1) under the assumptions introduced in the previous
section. Recall that ADF tests are based on OLS estimation of the regression equation,

∆yt = πyt−1 + γ0∇Yt−1 + errort, (3)

and build on the statistics ADFα := T π̂/|Γ̂ (1) | = T (α̂− 1) /|Γ̂ (1) | and ADFt := π̂/s (π̂),
where Γ̂ (1) := 1 −Pk

i=1 γ̂i (with γ̂ := (γ̂1, ..., γ̂k)
0 denoting the OLS estimator of γ), and

s (π̂) is the (OLS) standard error of π̂. Under AssumptionM and for α = 1− c/T (c ≥ 0),
it is well known (see e.g. Chang and Park, 2002, section 3) that in the standard case of no

outliers, π̂
P→ 0 and γ̂

P→ γ. Moreover, the ADF statistics admit the representation

ADFα = −c+
R
Bc,TdBTR
B2c,T

+ oP (1) , ADFt = −c(
R
B2c,T )

1/2 +

R
Bc,TdBT

(
R
B2c,T )

1/2
+ oP (1) , (4)

where Bc,T of (4) lies in D and is defined as

Bc,T (s) := T
−1/2σ−1ε

bTsc−1P
i=0

(1− c/T )i εbTsc−i, (5)

and BT = B0,T . Using Bc (s) :=
R s
0 e

−c(s−z)dB (z) to denote an Ornstein-Uhlenbeck process,
B being a standard Brownian motion, when T →∞ we have that (Phillips, 1987) Bc,T

w→ Bc,
and that

ADFα
w→ −c+

R
BcdBR
B2c

, ADFt
w→ −c(R B2c )1/2 + R

BcdB

(
R
B2c )

1/2
. (6)

Under the null hypothesis that c = 0, Bc = B and the distributions in (6) are the so-called
univariate Dickey-Fuller distributions.

We now turn to the analysis of the OLS approach in the presence of multiple outliers,
starting from the coefficients of the stable regressors in (3). Specifically, in the following
proposition we present some sufficient and necessary conditions for consistent estimation of
these coefficients.

Proposition 1 Let τT := min1≤i<j≤T {j − i : δiδj = 1} denote the smallest time distance
between two consecutive outliers, and ∞, if at most one outlier occurs. Then, under Assump-
tionsM and S, the following results hold as T →∞.

a. A sufficient condition for γ̂
P→ γ (and under Hs, for π̂

P→ π) is that either γ = 0 (and

under Hs, also π = 0), or τT
P→∞.

b. If γ 6= 0 (or under Hs, π 6= 0), then for γ̂
P→ γ (and under Hs, for π̂

P→ π) it is

necessary that τT
P→∞ conditionally on:

- the occurrence of exactly two outliers, if the probability of this event is bounded away
from zero;

- the occurrence of at least two outliers, if the probability of this event is bounded away
from zero, and the variables {ηt} are jointly independent and non-degenerately distributed.
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Remark 3.1. Due to the presence of large outliers at consecutive dates (or, more generally,
which are close to each other in the sense that τT of Proposition 1 does not diverge), in
the presence of short-run dynamics (i.e., γ 6= 0), the coefficients γ1, ..., γk (and π under
Hs) associated to the stable regressors ∆yt−1, ...,∆yt−k (and yt−1 under Hs) may not be
estimated consistently. This result has serious implications on the usual UR testing practice,
as it implies that most spectral AR estimators of the long run variance, see Perron and Ng
(1998) for a discussion, may be inconsistent.

Remark 3.2. A condition that ensures consistent estimation of the short run coefficients
γ1, ..., γk (and π under Hs), whatever the number and the size of the outliers are, is that
the distance between consecutive outliers diverges with the sample size; see part (a). The
condition is obviously satisfied in the case of a single outlier and, according to Remark 2.4, also
under Assumption S 0. Notice that many econometric techniques for dealing with multiple
structural breaks (see Bai and Perron, 1998; Perron, 2005) require the distance between
consecutive break dates to diverge with the sample size.

Remark 3.3. In the presence of short-run dynamics, the condition τT
P→∞ becomes neces-

sary for the consistency of γ̂ (and π̂ under Hs) under quite general circumstances, involving
the occurrence of multiple outliers. The two parts of point (b) are intended to illustrate
this claim. For instance the first part of (b) shows that in cases where two outliers occur,
consistent estimation of γ through a simple ADF regression is not possible if the distance
between the two outliers does not diverge with T .2 ¤

For the discussion of the asymptotic properties of the UR tests, it is useful to define the
following process in D:

Cc,T (s) := T
−1/2 bTsc−1P

i=0
(1− c/T )iδbTsc−iθbTsc−i,

and let HT,c := Bc,T + Cc,T/σε, with Bc,T as defined in (5) (C0,T and H0,T will be abbre-
viated as CT and HT , respectively). Should no outliers occur, Hc,T = Bc,T . Notice that

if Assumption S 0 holds, then Cc,T has a weak limit in D; specifically, Cc,T w→ Cc, with
Cc(s) :=

R s
0 e

−c(s−z)dC (z) (cf. Kurtz and Protter, 1991, Theorem 2.7). In the latter case,

Hc,T
w→ Hc, where Hc is the jump diffusion Hc := Bc + Cc/σε.

We may now obtain large-sample representations of the ADF statistics in the presence
of outliers, both under the null hypothesis and under local alternatives. The representations
are formulated in terms of the finite-sample process Hc,T , similarly to (4), because in general
the ADF statistics need not have weak limits under Assumption S.

Proposition 2 Let Assumptions M and S be satisfied. Then under H0 or Hc, c > 0, the
following results hold as T →∞.

2Still, it is possible to find particular configurations of multiple outliers where consistency obtains although
τT = 1 for all T . For example, if (i) k = 0, (ii) the autoregression is stable, (iii) δbT/3c = δbT/3c+1 = δbT/2c =
δbT/3c+1 = 1 (all other being equal to zero), and (iv) ηbT/3c = −ηbT/3c+1 = ηbT/2c = ηbT/3c+1 = 1 (all other
being irrelevant), then a necessary and sufficient condition for consistency (see eq. (A.11) in the Appendix) is
satisfied, due to the particular degenerate distribution of ηt.
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a. π̂ − π = OP
¡
T−1

¢
and the ADF statistics have the representation

ADFα =
Γ (1)

|Γ̂ (1) |
³
− c+

R
Hc,TdHT + κ0,TR

H2
c,T

´
+ oP (1),

ADFt =
1

κ1/21,T

³
− c(R H2

c,T )
1/2 +

R
Hc,TdHT + κ0,T
(
R
H2
c,T )

1/2

´
+ oP (1),

where the expressions for κ0,T and κ1,T are given in the Appendix, eqs. (A.9) and (A.12).
b. A necessary and sufficient condition for κ0,T = oP (1) is that γ̂

P→ γ; in this case

κ1,T = 1 + σ−2ε
PT
t=1 δtη

2
t , and

ADFα = −c+
R
Hc,TdHTR
H2
c,T

+ oP (1) , ADFt =
1

κ1/21,T

³
− c(R H2

c,T )
1/2 +

R
Hc,TdHT

(
R
H2
c,T )

1/2

´
+ oP (1).

Several remarks are due.

Remark 3.4. Differently from the standard case, see eq. (4), in the presence of outliers the
null and local-to-null representations of the ADF statistics involve the process Hc,T (i.e., both
the errors εt and the outliers θt) instead of Bc,T alone. Moreover, the contribution of θt is
asymptotically non-negligible, see also Remark 3.6 below. Unless γ is consistently estimated,
also the short-run dynamics has an asymptotically non-negligible effect on the ADF statistics.

Remark 3.5. In representations (a) and (b), the process Hc,T appears both as integrand and
as integrator in the term

R
Hc,TdHc,T . An intuitive explanation is that when the standard

ADF regression is employed to construct UR tests, then (i) outliers have a ‘long run’ effect,
as they affect (through cumulation) the levels of yt, hence implying that Hc,T appears as
integrand; (ii) outliers have a ‘short run’ effect, as they affect the errors of the ADF regression,
hence implying that Hc,T appears as integrator.

Remark 3.6. Under Assumption S 0 it holds that γ̂ P→ γ, see Remark 3.2. In this case, a
corollary of Proposition 2 is that

ADFα
w→ −c+

R
HcdHR
H2
c

, ADFt
w→ 1

(1 + σ−2ε [Cc])1/2

³
− c(R H2

c )
1/2 +

R
HcdH

(
R
H2
c )
1/2

´
, (7)

where [·] denotes quadratic variation at unity.3 These asymptotics generalize those obtained
in the standard case of no outliers, cf. Stock (1994) inter alia. Specifically, the distributions
in (7) have the same structure as the univariate Dickey-Fuller distributions, see (6), but
with Bc replaced by the jump-diffusion Hc. The asymptotic distribution of the t statistic
also depends on σ−2ε [Cc], which measures the relative importance of the outliers with respect
to the innovation variance. Notice also that the result (7) generalizes in several direction
Theorem 1 in Leybourne and Newbold (2000a), where the case of a single fixed outlier
occurring at a fixed (relative) date is considered under H0 and in the absence of short run
dynamics (k = 0 in eq. (1)).

3Convergence follows from the continuous mapping theorem, from Theorem 2.7 of Kurtz and Protter (1991)
and from the well-known result that

R
Bc,T dBc,T

w→ R
BcdBc.
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Remark 3.7. An obvious necessary condition for ADFα
P→ −∞ and ADFt

P→ −∞ under
fixed stable alternatives is that π̂ should be negative with probability approaching one. It
is possible to construct examples where clusters of outliers, especially if close to the end of
the sample, can create spurious explosiveness, leading to a violation of the condition. The
estimation methods discussed in the sections below are immune to this problem. ¤

In contrast to the common belief that innovational outliers do not affect inference in
autoregressions with a possible unit root (see e.g. Shin et al., 1996, and Bohn-Nielsen, 2004),
the results of this section suggest that innovational outliers of large size actually do affect the
asymptotic properties of autoregression estimation and UR testing. Notice that this result
is in line with previous findings for stationary time series: for instance, Tsay (1988) clearly
recognizes that ‘The effect of multiple IOs, (...), could be serious’.

A further, more important result, is that the presence of outliers, when properly accounted
for, may be exploited in order to boost the power of UR tests. This crucial issue is investigated
in the next section.

4 Dummy variables accounting for outliers

In this section we examine estimation and UR testing based on an ADF regression augmented
with the inclusion of one impulse dummy variable for each outlier. Unless in cases where the
outlier indicators δt are observable, see Lütkepohl et al. (2001) and Lanne et al. (2002)
for a discussion, the results of the section are mostly of theoretical interest, and serve as a
benchmark for the estimator we introduce in section 6. The key result we provide is that,
by properly accounting for the outliers, not only is it possible to ensure consistent parameter
estimation, but also to boost the power of UR tests beyond that attainable using standard
ADF tests.

The ‘dummy augmented’ ADF regression has the form

∆yt = πyt−1 + γ0∇Yt−1 + ϕ0Dt + errort, (8)

where Dt := (D1,t, ...,DNT ,t)
0 is the vector of impulse dummies, one for each outlier. The

ADF tests are based on the statistics ADFDα := T π̃/|Γ̃ (1) | and ADFDt := π̃/s (π̃), where the
superscript ‘∼’ now indicates that estimates are computed upon the inclusion of the vector
of dummy indicators in the ADF regression.

As in (2), let Γ := (π, γ0)0 and Yt−1 := (yt−1,∇Y0
t−1)0. The dummy variable estimators

of Γ and σ2ε are given by

Γ̃ :=
³ TP
t=1
(1− δt)(Yt−1Y0

t−1)
´−1 TP

t=1
(1− δt)(Yt−1∆yt) (9)

σ̃2ε :=
³ TP
t=1
(1− δt)

´−1 TP
t=1
(1− δt)(∆yt − Γ̃0Yt−1)2

As
PT
t=1 δt = OP (1), the inverses in both lines are well-defined with probability approaching

one. The counterpart of Propositions 1 and 2 for the dummy ADF approach is given next.

Proposition 3 Let Assumptions M and S be satisfied. Then the following results hold as
T →∞.

9



a. γ̃
P→ γ, and under Hs, π̃

P→ π.
b. Under H0 or Hc, c > 0, π̃ − π = OP

¡
T−1

¢
and the ADF statistics have the following

representation:

ADFDα = −c+
R
Hc,TdBTR
H2
c,T

+ oP (1) , ADFDt = −c(R H2
c,T )

1/2 +

R
Hc,TdBT

(
R
H2
c,T )

1/2
+ oP (1) .

(10)

c. Under Hs, ADF
D
α

P→ −∞ and ADFDt
P→ −∞.

Remark 4.1. In contrast with Proposition 1, upon the inclusion of a set of impulse dummy
variables (one for each outlier) the estimator of the short-run parameters is consistent, even
in the case of clustering outliers. As a consequence, under H0 or Hc the ADF

D statistics are
asymptotically independent of the short-run dynamics (i.e., of γ1, ..., γk), while under Hs UR
tests based on these statistics are consistent.

Remark 4.2. Similarly to standard ADF tests, see Remark 3.5, also when impulse dum-
mies are included in the estimated regression, the large-sample representations of the ADF
statistics involve the process Hc,T instead of Bc,T alone. However, now Hc,T appears as an
integrand only, and not as an integrator. The reason is that the inclusion of the dummy
variables cancels the short run effect of the outliers, but not their long run effect on the levels
of yt.

Remark 4.3. Under assumption S 0, from Proposition 3 it follows that the dummy-based
ADFD statistics have asymptotic distributions

ADFDα
w→ −c+

R
HcdBR
H2
c

and ADFDt
w→ −c(R H2

c )
1/2 +

R
HcdB

(
R
H2
c )
1/2
.

under the null and local alternatives.

Remark 4.4. According to Proposition 3, the dummy based estimator of π vanishes at the
usual T rate under H0 and Hc, similarly to the OLS estimator π̂; see Proposition 2(a). This
result depends on the assumption that the number NT of outliers is bounded in probability.
For NT → ∞, faster consistency rates (and faster than the OLS estimator rate) may ob-
tain, unless the outliers are renormalized to match the magnitude order of the random walk
component of yt. ¤

A further important issue about UR testing in ADF regressions which incorporate impulse
dummies is related to the power of UR tests. Specifically, since the dummy approach is a
special case of the robust approach (where the effect of outlying observations is trimmed
down by adding impulse dummies to the estimated model), we expect it to benefit from the
power gains featured by the robust approaches to UR testing in the presence of non-Gaussian
data (Lucas, 1995b, 1997). To shed some more light on this intuition, we now carry out
an analytical experiment where the influence of outliers is taken to the extreme. A related
exercise is made by Lucas (1995b, p.156-7) for the case of a single outlier with fixed location.

Let Assumption S 0 hold, implying that the ADF statistics have limiting distributions.
These distributions were given in Remarks 3.5 and 4.3, and are now collected in the second
column of Table 1, the first column reporting the standard case where no outliers occur. In
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the limiting distributions we replace the process C by hC, and let h → ∞, conditioning on
the occurrence of at least one outlier. This is a simple way to make the process C dominant
in the limit. The obtained h-limits are collected in the third column of Table 1; details on
their derivation are provided in the Appendix.

[Table 1 about here]

The following points can be made about this analysis.

Remark 4.5. The most striking qualitative difference in the h-limits occurs under local al-
ternatives. Whatever the critical value is, under local alternatives the probability of rejecting
the UR null hypothesis converges to 1 as h → ∞ if the dummy-based ADFDt statistic is
used, and the same holds for the coefficient statistic ADFDα if −c is smaller than the critical
value. This is in contrast with the standard OLS-based statistics ADFα, ADFt, whose corre-
sponding rejection probabilities are bounded away from 1. It suggests that, in the presence of
outliers, the dummy-based tests can have an advantage in terms of power over the standard
tests, with power gains increasing with the size (and possibly with the number) of outliers.

Remark 4.6. The power gains of the ADFDt test are formally due to the fact that outliers,
through the long-run effect process Cc, make

R
H2
c large, which upon the inclusion of dummy

variables is not offset by an analogous effect on the estimator of the residual variance. A
similar phenomenon occurs with the ADFDα test. This means that, in terms of power, we have
no interest in eliminating the long-run effect of outliers from the asymptotic distributions.
For instance, estimation with step dummy variables, which do cancel the long-run effect of
outliers, may cause a power loss (as is well known from the UR literature under trend breaks,
cf. Perron, 2005).

Remark 4.7. In terms of size, if standard Dickey-Fuller asymptotic critical values are used,
the ADFDt test can be expected to behave better than the ADFDα test, which may be
undersized. This is because in the h-limit ADFDt approaches aN (0, 1) distribution (assuming
independence of B(·) and C(·)), whereas the coefficient statistic ADFDα tends to 0. Regarding
the size of standardADF tests, their size distortions are expected to decrease as the number of
outliers increases, since the terms (

R
C2)−1/2

R
CdC and (

R
C2)−1

R
CdC equal 0 for a single

outlier (implying 0 size as h → ∞), and have distribution approaching the Dickey-Fuller
counterparts (

R
B2)−1/2

R
BdB and (

R
B2)−1

R
BdB when the number of outliers grows. ¤

5 Finite sample comparisons

In this section we present a Monte Carlo study of standard and dummy-based ADF tests
under a variety of innovation outlier models. Specifically, we want to assess whether (i)
the power gains predicted in the previous section for the dummy-based tests are of relevant
magnitude in finite samples, and (ii) size distortions for inference based on DF asymptotic
critical values are substantial.

The employed DGPs are as follows. Data are generated for sample sizes of T = 100, 200, 400
observations according to model (1) with k = 1, γ̄ := γ̄1 ∈ {−0.5, 0, 0.5}, y0 = 0 and u0 drawn
from the stationary distribution induced by the equation υt = γ̄υt−1 + εt. We consider the
UR case, α = 1 in (1), and the sequence of local alternatives α = 1− c/T with c := 7.
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In addition to the case of no outliers — denoted with S0 in the following — we consider
four models for the outlier component:

• S2 (two fixed outliers): two outliers occurring at fixed sample fractions ti, i = 1, 2,
with t1 := b0.2T c and t2 := b0.6Tc, and with size magnitudes θt1 := −0.4T 1/2 and
θt2 := 0.35T

1/2;

• S4 (four fixed outliers): four outliers occurring at fixed sample fractions ti, i = 1, ..., 4,
with t1,t2 as in S2 above, t3 := b0.4Tc and t4 := b0.8T c; the corresponding size magni-
tudes are θt1 , θt2 as in S2 above, θt3 := −0.35T 1/2 and θt4 := −0.4T 1/2.

• Sr (random outliers): the number of outliers is NT ∼ 3 +B(7/T, T ), (B (·, ·) denoting
a Binomial distribution), i.e. at least 3 and 10 on average, and their positions are
independent uniformly distributed on {1, ..., T}; the outlier magnitudes θt are indepen-
dent and distributed as a Gaussian r.v. with mean 0 and variance 0.09T (outliers are
superimposed on one another if the same outlier location is drawn more than once).

• Sc (cluster of three outliers): three consecutive outliers at positions t1 := bT/2c, t2 =
t1 + 1, t3 = t1 + 2, all of magnitude −0.35T 1/2.

For our selection of T , models S2, S4 and Sc generate outliers of size between 4 and 8
standard deviations of the ordinary shocks. For model Sr, the random size of the outliers
has standard deviation between 3 and 6 times the standard deviation of the ordinary shocks.
These outlier magnitudes, although large, are not unrealistic; see the discussion in Vogelsang
and Perron (1998, p.1090).

The innovations are zero-mean, unit-variance IID r.v. following either a N (0, 1) distri-
bution or a standardized t (5) distribution.

We consider both standard ADF tests (ADFα,ADFt) and the dummy-augmented tests
(ADFDα ,ADF

D
t ), the latter being based on the assumption that the outlier locations are

known. All tests are performed with respect to the 5% quantiles of the Dickey-Fuller dis-
tributions (Fuller, 1976, Tables 10.A.1 and 10.A.2); the consequences of using these critical
values are discussed below. Computations are based on 10, 000 Monte Carlo replications and
are carried out in Ox v. 3.40, Doornik (2001). Results are reported in Table 2 (Gaussian
errors) and in Table 3 (Student t errors).

[Tables 2—3 about here]

The following facts are worth noting.

(i) For outlier models S2, S4 and Sr, under which the representations in Proposition 2(b) hold,
the use of Dickey-Fuller critical values does not seem to give rise to tangible size distortions
of standard ADF tests. This is in line with, e.g., the findings of Lucas (1995, Table 1). On
the other hand, for model Sc, under which outliers cluster together, the size of ADF tests
appears to be bounded away from the nominal 5% level. The tests tend to be undersized
(resp. oversized) for negative (resp. positive) values of γ. This dependence on the short run
dynamics agrees with the representations in Proposition 2(a).
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(ii) The size of the dummy-based ADFDt test, even when outliers cluster together, does not
differ substantially from 5%. Thus, for the considered outlier models, the Dickey-Fuller crit-
ical value seems to provide a good approximation to the relevant quantile of the distribution
of ADFDt implied by (10). In contrast, outliers do distort the size of the ADFDα test, which
appears to be undersized. This finding is in line with the predictions based on the h-limits
of the previous section.

(iii) The local (size-adjusted) power of ADF tests is slightly affected by the outliers, especially
in small samples. For models S2, S4 and Sr power is generally below the approximate
50% power characterizing the tests in the absence of outliers. Interestingly, when outliers
cluster together (model Sc), ADF tests display power slightly above 50%. This is of little
practical importance, however (given the size distortions of ADF tests, the empirical rejection
frequencies drop to as low as 25% for γ = −0.5). In general, there are no significant differences
between the ADFα and the ADFt tests.

(iv) The use of impulse dummies substantially increases the local power, again as predicted
previously. The power gains increase with the number of outliers. For instance, under model
S2 the addition of the dummy variables increases the local power of ADF tests from about
50% (no outliers) to above 60%. Under S4, power increases to above 75%. In general, the
ADFDt test performs slightly better than the ADFDα test in terms of local power. Differences
between ADFDt and ADFDα tests, however, becomes substantial when the empirical rejection
frequencies are considered, mainly because the ADFDα test is undersized. These results show
that the ADFDt test is largely preferable over the ADFDα test in practice.

(v) The dummy-based tests perform very well under model Sc (a cluster of outliers), again as
predicted in section 4. Although the ADFDα test has slightly higher power than the ADFDt
test, in terms of the empirical rejection frequencies the latter test is clearly more appealing.

(vi) Results for the case of t innovations do not substantially differ from those obtained in
the Gaussian case.

In summary, our Monte Carlo experiment confirms that the inclusion of dummy variables
which account for the short run effects of outliers is an important device for boosting the power
of unit root tests. For the considered models, the ADFDt statistic used in conjunction with
standard critical values gives rise to a test with good size properties and with considerably
higher power than the standard ADF tests. As far as we are aware, these power gains have
not been discussed extensively in the literature.

An obvious drawback of the dummy-based approach is that it is unfeasible in practice,
except in cases where the outlier dates are known. In the next section we will obtain feasible
tests based on a robust QML procedure, and will discuss an important connection between
this robust method and the dummy based approach.

6 Robust QML estimation and UR testing

In this section we discuss a robust inference technique, based on QML, for autoregression
estimation and UR testing. QML can be used when there is no a priori information on either
the location or the number of outliers, mainly because QML implicitly involves consistent
estimation of the outlier dates. In addition, it attains the same asymptotic power gains as
the (unfeasible) dummy-based estimators discussed earlier.
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Our method is based on a quasi likelihood which places more probability mass in the
tails of the error distribution. As is standard in outlier robust statistics, each observation is
implicitly ‘reweighted’ on the basis of how likely it fits the postulated model (cf. Lucas, 1996,
Ch.1): the less an observation fits the model, the less weight is assigned to that particular
observation. In this respect, our QML is close to the robust techniques advocated in Lucas
(1997), Franses and Lucas (1998), Lucas (1998) and Franses et al. (1999). On the other hand,
our approach differs in several directions. First, the quasi distribution of the innovations is a
mixture distribution, where the two mixing components have different orders of magnitude.
This allows us to study robustification with respect to outliers of relevant size. Second, we
provide a full asymptotic analysis of both parameter estimators and the corresponding UR
test statistics. Finally, we are able to establish the relation between our robust inference
method and the dummy variable approach.

In the next subsection the estimator is defined; its asymptotic analysis is reported in
subsection 6.2. The finite sample properties are analyzed in section 7.

6.1 Definition

Our robust QML method builds on the observation that the innovation term of the reference
model, see eq. (1), has a mixture distribution, with mixing variable δt and mixture compo-
nents εt (when δt = 0) and εt + θt (when δt = 1). Although in Assumption S no parametric
hypothesis on the joint process {εt, θt} is made, it is possible to jointly estimate the outlier
indicators and the parameters of interest in a QML framework.

Specifically, consider a QML estimator based on the following ‘quasi distribution‘: (i) the
innovations εt are normally distributed; (ii) the outlier indicators δt are Bernoulli random
variables with P (δt = 1) = λ/T , T > λ > 0; (iii) the outlier magnitudes ηt are Gaussian with
mean 0 and finite variance σ2η; (iv) {εt}, {δt} and {ηt} are IID and mutually independent.
Notice that (i)-(iv) do not necessarily hold in general under Assumption S.

Let θ := (Γ0,σ2ε,σ2η,λ)0. Under (i)—(iv) and conditional on the initial values, the quasi
likelihood function is, up to an additive constant, given by

Λ(θ) :=
TX
t=1

ln
³λ
T
lt(θ, 1) +

¡
1− λ

T

¢
lt(θ, 0)

´
, (11)

where

lt(θ, i) :=
1

(σ2ε + Tiσ
2
η)
1/2
exp

³
− (∆yt − Γ

0Yt−1)2

2(σ2ε + Tiσ
2
η)

´
, i = 0, 1.

In the following we will make use of the weights

dt(θ) :=
λlt(θ, 1)

λlt(θ, 1) + (T − λ)lt(θ, 0)
, (12)

which under (i)—(iv) correspond to the expectation of δt (i.e., to the probability of occurrence
of an outlier at time t) conditional on the data.

By equating to zero the derivatives of Λ(θ) and rearranging terms we find the normal
equations

θ = Φ (θ) (13)

14



where Φ := (ΦΓ,Φε,Φη,Φλ)0 : Rk+4 → Rk+4 is the random map with components

ΦΓ(θ) :=
TP
t=1
wt(θ)(∆ytY

0
t−1)

h TP
t=1
wt(θ)(Yt−1Y0

t−1)
i−1
, Φλ(θ) :=

TP
t=1
dt(θ)

Φε(θ) :=

PT
t=1(1− dt(θ))(∆yt − Γ0Yt−1)2PT

t=1(1− dt(θ))
, Φη :=

PT
t=1 dt(θ)(∆yt − Γ0Yt−1)2

T
PT
t=1 dt(θ)

− σ2ε
T

and wt(θ) := dt(θ)/(σ
2
ε + Tσ

2
η) + (1− dt(θ))/σ2ε.

A QML estimate θ̌ could be computed, e.g., by iterating the map Φ in (13). Subsequently,
the ADF statistics obtain as ADFQα := T π̌/|Γ̌(1)| and ADFQt := π̌/s(π̌), where s(π̌) :=

{[PT
t=1wt(θ̌)(Yt−1Y

0
t−1)]−1}1/211 .

Remark 6.1. If θ̌ is a stationary point of Λ such that {dt(θ̌)} are sufficiently close to {δt},
then θ̌ could be expected to be close to the dummy-variables estimator θ̃ := (Γ̃0, σ̃2ε, σ̃2η, λ̃)0,
with Γ̃ and σ̃2ε defined in (9), σ̃

2
η :=

PT
t=1 δt(∆yt−Γ̃0Yt−1)2/(TNT ) (conditionally on NT ≥ 1)

and λ̃ := NT . Since {δt} is unobservable, θ̃ is empirically unfeasible; however, its relationship
with θ̌ is useful in the asymptotic analysis of θ̌, see the next section. ¤

6.2 Asymptotic analysis

In this section we discuss various asymptotic results for the QML approach. Asymptotics are
derived under the assumption that the errors εt are normally distributed. Furthermore, we
condition on the occurrence of at least one outlier, since the asymptotic analysis in the case
of no outliers is non-standard due to the loss of identifiability and would require separate
investigations. Deviations from normality and the case of no outliers are analysed by Monte
Carlo simulation in the next section.

First, we discuss the properties of the QML estimator θ̌ of the parameter θ, and its
relation to the dummy-based OLS estimator discussed in section 4. In addition, we discuss
an important by-product of the QML approach; that is, an associated estimator of the outlier
indicators based on the weights dt(θ̌).

The main results are presented in the following theorem, where with a subscript ‘0’ we
denote the true parameter values.

Theorem 1 Let Assumptions M and S be satisfied, with {εt} being normally distributed.
Let P denote the induced probability measure conditional on the occurrence of at least one
outlier. Introduce also DT := diag(T−1/2, 1, ..., 1) under H0 or Hc, and DT := Ik+1 under
stable alternatives, Hs. Then there exists a random (k+4)×1-vector sequence θ̌T (abbreviated
to θ̌) with the following properties as T →∞.

a. θ̌ is a local maximizer of Λ(θ) with P -probability approaching one.
b.
PT
t=1 |dt(θ̌)− δt| = OP (T ρ−1/2) for all ρ > 0.

c. T 1/2D−1T (Γ̌− Γ0) = T 1/2D−1T (Γ̃− Γ0) + oP (1).
d. (λ̌, σ̌2ε, σ̌

2
η) = (NT ,σ

2
ε0, QT ) + oP (1), where QT := N

−1
T

PT
t=1 δtη

2
t .

Some remarks are in order.

Remark 6.2. By part (a), we refer to θ̌ as a QML estimator. As is also the case with other
robust approaches, see e.g. Lucas (1995b), the quasi likelihood function may have multiple
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local maximizers, and parts (b) to (d) refer to one which is sufficiently close to the true
value. Differently from Lucas (1995b), we prove the existence of such a maximizer instead
of assuming it; notice, however, that we use more specific assumptions than Lucas (1995b).
Possible multiplicity of maximizers created no difficulties in the simulations of section 7.

Remark 6.3. According to part (b) of Theorem 1, the sequence {dt(θ̌)} is a consistent
estimator of the outlier indicators {δt}. This estimator is not binary, rather, dt(θ̌) can be
interpreted as measuring how likely it is an outlier to have occurred in period t, given the
data. A binary estimator can be constructed by setting ďt := I(dt(θ̌) > κ) for some κ ∈ (0, 1),
or for a sequence κT such that 1−κT = OP (T ρ−1/2) for some ρ ∈ (0, 1/2). By inverting dt(·),
this estimator can be written in the form ďt := I(|∆yt − Γ̌0Yt−1| > φ(θ̌)) for some threshold
φ(θ̌), which is the traditional form of a residual-based outlier detection rule (see e.g. Tsay,
1988, and Chang et al., 1998). Theorem 1(b) implies that ďt are consistent for δt in the
sense that, with probability approaching one, ďt = δt for all t = 1, ..., T . Although this is an
interesting by-product of our QML approach, it is worth stressing that the QML approach
itself does not require the choice of any threshold for its implementation.

Remark 6.4. The main result is given in part (c) of the theorem, where it is asserted that
D−1T (Γ̌ − Γ̃) = oP (T

−1/2), Γ̃ being the (consistent) dummy-based estimator of the autore-
gressive parameter Γ, see eq. (2). This means that the QML estimator Γ̌ is asymptotically
equivalent to Γ̃. In particular, Γ̌ is also consistent for Γ, and asymptotic inference on Γ is the
same in the QML and the dummy-based approach. This statement is made more precise in
Corollary 1 below.

Remark 6.5. For NT = OP (1), due to the asymptotic equivalence between the QML and
the dummy-based approach, the QML estimator of π vanishes at the usual T rate under H0
and Hc (c > 0). Similarly to the dummy-based estimator, for NT → ∞ faster convergence
rates may obtain; cf. Remark 4.4.

Remark 6.6. Part (d) of the theorem states that the estimators λ̌, σ̌2ε and σ̌
2
η are consistent

respectively for the number of outliers NT , for the variance of the ordinary shocks σ
2
ε0, and

for the sample second moment of the outlier sequence, N−1T
PT
t=1 δtη

2
t . ¤

We are now ready to formulate the inferential implications of Theorem 1.

Corollary 1 Under the conditions of Theorem 1 and under the measure P introduced there:
a. ADFQα = ADFDα + oP (1) and ADF

Q
t = ADF

D
t + oP (1).

b. γ̌
P→ γ and, if {εt}Tt=1 is independent of {δtηt}Tt=1, then γ̌ is asymptotically Gaussian.

Under Hs, the same result holds for π̌
P→ π.

Remark 6.7. According to Corollary 1, in the presence of outliers of the very general form
defined through Assumption S, the QML approach delivers ADF UR tests with the same
asymptotic properties as obtained by using the unfeasible dummy-augmented ADF regression.
In particular, UR tests based on the QML estimates enjoy the same asymptotic power gains
as the corresponding dummy-based tests. A further advantage of the QML approach is that
asymptotic normality of the estimators of the ‘short term’ parameters γ allows one to use
standard econometric techniques for lag order determination.

Remark 6.8. It is important to keep in mind that the asymptotic equivalence between
QML UR tests and dummy-based UR tests is proved in Theorem 1 and Corollary 1 under
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the assumption of Gaussian innovations. This result may not hold in general: for instance, if
the innovations are not normally distributed, the two approached may not deliver the same
asymptotic power function. The Monte Carlo simulations reported in the next section provide
some support to this statement.

Remark 6.9. Given the asymptotic equivalence of the QML-based and the unfeasible
dummy-based UR statistics, under the null hypothesis the ADFQ statistics do not have
Dickey-Fuller asymptotic distributions. However, since the size distortions experienced by
the dummy-based t-test were found to be negligible for a variety of models (see section 5), we
advise — in line with what suggested by Lucas (1995b) — to use the QML t-test in conjunction
with standard Dickey-Fuller critical values.4 This choice is supported by the finite sample
results that will be presented in the next section. ¤

7 Finite sample properties of QML

In this section we analyze the finite sample properties of the robust QML UR tests of the
previous section. In addition, the QML tests are compared with the robust ‘M ’ t test proposed
by Lucas (1995b), ADFLt hereafter. Although Lucas (1995b) does not discuss a coefficient
version of this test, we introduce it for comparison with the ADFQα test, and denote it by
ADFLα . The same Monte Carlo design as in section 5 is used. QML estimates are computed
by iterating the map Φ, see eq. (13), until convergence, starting from OLS initial values. For
the ADFQ tests, we use the standard Dickey-Fuller critical values as reported in Fuller (1976,
Tables 10.A.1 and 10.A.2), for the ADFL tests the asymptotic critical values are simulated
along the lines suggested in Lucas (1995b, p.163). The nominal level is 5%. Results are
reported in Table 4 (Gaussian innovations) and in Table 5 (Student t innovations).

[Tables 4—5 about here]

The following points are worth noting; in (i)—(v) we compare the size and power properties
of the robust ADFQ tests with those obtained for the dummy-based ADFD tests (as well as
for the standard ADF tests), while in (vi) we compare ADFQ and the ADFL tests.

(i) Under the null hypothesis, for samples of T = 100 observations the QML-based tests
are only marginally more liberal than the dummy ADF tests. In the case of the coefficient
test ADFQα , this partially offsets the size distortion of the dummy-based ADFDα test. For
samples of T = 200, 400 observations, the size of the ADFQ tests gets close to that of the
corresponding ADFD tests, and in particular, the ADFQt test has very good size properties.

(ii) As noticed for the ADFD tests in sections 4 and 5, in the presence of outliers the ADFQ

tests exhibit (size-adjusted) power gains over standard ADF tests. Under Gaussian errors, in
terms of empirical rejection frequencies there is essentially no difference between the ADFD

tests and the ADFQ tests.

4An alternative approach for asymptotic critical value determination is to use Monte Carlo methods based
on the QML residuals and on the estimated quasi expectations, dt(θ̌), of the outlier indicators δt. However, for
a wide range of economically plausible models, we have found no significant size improvement over standard
asymptotic critical values when Monte Carlo methods are implemented.
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(iii) There are no substantial differences in terms of (size-adjusted) power between the ADFQα
and the ADFQt tests. However, since the former test tends to be undersized, the latter one
is largely preferable, see the empirical rejection frequencies.

(iv) Some interesting properties can be noticed in the case of no outliers, which is not covered
by the asymptotic theory of the previous section. Under Gaussian errors, the size and power
of QML tests are roughly the same as those of standard ADF tests. That is, the use of
robust QML tests instead of standard ADF tests does not imply deteriorated finite sample
properties. Under t errors, the size of ADFQ tests is quite close to the nominal level, with
the ADFQα test slightly undersized. However, under t errors the ADFQ tests (in particular,
the ADFQt test) dominate the standard ADF tests in terms of power. This evidence suggests
that the proposed QML approach can exhibit power gains when the innovations are fat-tailed,
even if there are no outliers in the sense of Assumption S.
(v) An important finding, related to what was noticed in point (iv) above, concerns the
relation between the power of dummy-based and robust QML tests. In the Gaussian case, it
was proved in section 6 (and confirmed by the finite sample results in tables 2 and 4) that the
dummy-based ADFD tests attain the same asymptotic power as the ADFQ tests. That is,
the use of dummy variables, given that the econometrician is able to identify the outlier dates
correctly, allows to obtain the same power as if the robust inference method was employed.
This result — which favors the ‘common practice’ of using dummy variables to account for
outlying observations — seems not to hold when the errors are not Gaussian. Specifically, by
comparing the results in tables 3 and 5, it can be seen that QML tests (in particular, the
ADFQt test) are more powerful than their ADFD counterparts when the innovations are t
distributed. This evidence holds for all the model considered in our Monte Carlo exercise.

(vi) In terms of size-adjusted power, the behavior of the coefficient version of the robust M
tests of Lucas (1995b) — ADFLα in Tables 4 and 5 — is quite close to that of the ADFQ

tests, while the t-version of the test, as originally proposed in Lucas (1995b), tends to be less
powerful. In terms of size, for the models considered here both the coefficient version and
the t version of Lucas’ tests tend to be undersized, in particular as the number of outliers
grows. While for the t version of the test this drawback can be ameliorated by using the
critical values in Hansen (1995), the ADFLα test remains undersized in most cases even using
Hansen’s approach. As a consequence, a UR test based on the ADFQt statistic in conjunction
with standard critical values seems to constitute the best compromise in terms of size and
(size adjusted and raw) power among all tests considered.

8 Robust QML under linear time trends

Thus far we have assumed that the process of interest has no deterministic components.
However, it is possible to generalize the robust QML approach to the case where the data are
generated according to y∗t := dt + yt, where yt is as previously defined in (1), and dt := ψ0zt,
zt being a vector of deterministic components. As in Ng and Perron (2001), we now consider
the linear trend case, zt = (1, t)

0.
In order to improve power against local alternatives, instead of augmenting the ADF

regression with the deterministic terms, we suggest a sequential procedure where initially,
along the lines suggested, e.g., in Ng and Perron (2001), y∗t is replaced by its detrended
counterpart, say ŷt, and subsequently the robust QML approach is applied to the detrended
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series ŷt. In details, and restricting our attention to GLS detrending (Elliott et al., 1996),
our suggested procedure is as follows:

1. a new series ŷt is constructed by GLS-detrending y
∗
t using standard methods

5 (i.e.,
ignoring the presence of the outliers);

2. robust QML estimation is carried out using ŷt instead of y
∗
t ;

3. the robust ADF statistics, ADFQα and ADFQt are computed accordingly to the esti-
mates of step 2.

We do not report a formal asymptotic analysis of the model. However, in finite samples
results do not substantially differ from those reported in section 7 for the case of no determin-
istics, as it can be noticed from Table 6. In the table we evaluate the properties of the tests
using pseudo-GLS detrending at ᾱ := 1 − c̄/T , with c̄ = 13.5; size adjusted power and raw
power are computed under c = 13.5. For samples of size T = 100 and T = 200 critical values
are taken respectively from tables 3 (T = 100) and 7 (T = 200) in Xiao and Phillips (1998);
for samples of size T = 400, asymptotic critical values as reported in Ng and Perron (2001),
Table I, are used. For space constraints, results are reported for models S0 (no outliers) and
S4 (four outliers, see section 5) only.

[Table 6 about here]

For T = 200 and T = 400, the behavior of the ADFQ tests is quite close to the behavior
of its unfeasible dummy-based counterpart, ADFD. The size of the test is largely acceptable
and the tests allow to obtain sensible power gains with respect to standard ADF UR tests.
Again, the ADFQt test is preferable over the ADFQα test in terms of size and empirical

rejection frequencies. For T = 100 the ADFQt test is slightly oversized, while under local
alternatives its size-adjusted power is slightly inferior to the power of the unfeasible dummy
tests, ADFD.

Finally, we notice that the size distortions of the standard ADF tests decrease as the num-
ber of outliers increases, as predicted in the theoretical discussion based on the assumption
of no deterministic components.

9 Concluding remarks

In this paper we have discussed the effect of (random) outliers on autoregression estimation
and UR testing. In a rather general framework which allows for large, infrequent outliers at
unknown dates and possibly clustering together, we have been able to show three important
results. First, that in the presence of outliers the null and local-to-null asymptotic distri-
butions (when they exist) of ADF-type statistics are expressed as functionals of a Wiener
process and a jump process. Second, that clusters of outliers (e.g., outliers at consecutive

5Given a time series xt, t = 0, 1, ..., T , the pseudo-GLS detrended series at α := 1− c/T (c ≥ 0) is defined
as x̃αt := xαt − ϕ̂α0zαt , where (x

α
0 , x

α
t ) := (x0, (1− αL)xt), (z

α
0 , z

α
t ) := (z0, (1− αL) zt) and ϕ̂α minimizes

S(ϕ̂α) :=
P

t(x
α
t − ϕ̂α0zαt )

2.
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dates) in general lead to inconsistent OLS estimation of the coefficients of stable regressors.
Third, the addition of impulse dummies to the ADF regression allows one not only to estimate
consistently the coefficients of the stable regressors, but also to obtain UR tests with higher
power. Given that the dummy-based approach is unfeasible in practice (unless the outliers
dates are known or, at least, detected correctly), we have proposed a feasible, robust QML
approach which permits to obtain (asymptotically) the same consistency and power gains as
with the dummy approach but without requiring the knowledge of either the number of out-
liers or the outlier dates. Two further advantages of the QML approach are that it performs
well in conjunction with standard Dickey-Fuller critical values, and it allows the practitioner
to focus on the economic interpretation of the outlying events, since a by-product of QML is
the consistent estimation of the outlier dates. The QML approach seems to work quite well
in finite samples as well.

Throughout the paper, we have assumed that the lag order of the reference autoregressive
process is known. This assumption should not be viewed as too restrictive. Specifically, since
the autoregressive parameters are estimated consistently by QML when the employed lag
order is not lower than the actual order, standard general-to-specific modeling strategies
such as the sequential Wald test discussed in Ng and Perron (1995) may be used. Simulation
results6 confirm this claim.

An important point which has not been discussed in details is the behaviour of QML when
the innovations are heavy tailed with possibly infinite variance. A leading case, extensively
discussed by Phillips (1990), obtains when the innovations are stable with parameter a (0 <
a < 2), which lead to frequent extreme observations. In this case it is known that under a
UR, robust estimators of π, see eq. (2), may outperform OLS in terms of consistency rate.
For instance, Knight (1991) provides sufficient conditions for the rate of an M -estimator of
π to be T 1/2+1/a, with the usual OLS estimator being of order T . Based on extensive Monte
Carlo simulations, we notice that the consistency rate of our QML is well approximated by
T 1+(2−a)/3, which is faster than the OLS rate and even faster than the rate of theM -estimator
when a lies in the region (3/2, 2).

Finally, we believe that the interest of the results obtained for the robust QML approach
goes beyond its ability of delivering UR tests with good size and improved power. Specifically,
in the econometric and statistical literature on modeling outlying events there is often an op-
position between dummy methods and robust methods. The results obtained here show that,
in some circumstances, this opposition is actually inexistent, as the robust QML approach and
the dummy-based approach are asymptotically equivalent. Similarly, while dummy methods
are often considered handy and ad hoc methods without deep roots in statistical theory, here
we show that a dummy-based approach has solid foundations as it arises naturally as the
limit of a (Q)ML approach.
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A Appendix

A.1 Preliminaries

First, we note the following direct consequence of the assumption that NT = OP (1).

Lemma A.1 For any sequence of random variables {zt} which is bounded in P -probability, also
maxt≤T {δt|zt|} = OP (1) as T →∞.

Next, we introduce the companion form version of representation (2). Denote by Zt−1 the stable
regressors in (2), i.e., Zt−1 := (∆yt−1, ...,∆yt−k)0 under Hc (c ≥ 0), and Zt−1 := Yt−1 under Hs.
Then

Zt = ΠZt−1 + iet, t = 1, ..., T, (A.1)

where, with 0 :=0(k−1)×1, we have defined Π := (γ, (Ik−1: 0)0)0, i := (1: 00)0 and et := εt + δtθt −
(c/T )Γ̄(L)yt−1 under Hc (c ≥ 0), and Π := ((α, γ0)0,Γ, (0 : Ik−1: 0)0)0, i := (1, 1,00)0 and et := εt+δtθt
under Hs. The different meaning of some symbols under Hc (c ≥ 0) and Hs should cause no confusion
in what follows.

A.2 Standard OLS approach

Lemma A.2 Let AssumptionsM and S be satisfied. Then, as T →∞, the following representations
hold under Hc (c ≥ 0) and Hs, unconditionally and conditionally on the occurrence of at least one
outlier:

a. Szz := T
−1PT−1

t=0 ZtZ
0
t = FT + oP (1), where λmin(FT ) is bounded away from 0 in probability

and FT := σ2ε
P∞

i=0Π
ii(Πii)0 +

PT−1
t=1 (

Pt−1
i=0 Π

iiδt−iηt−i)(
Pt−1
i=0 Π

iiδt−iηt−i)0.
b. Sze := T

−1PT
t=1 Zt−1et = GT + oP (1), where GT :=

PT
t=1(

Pt−1
i=1 Π

i−1iδt−iηt−i)(δtηt).
Further, the following representations hold under Hc (c ≥ 0):
c. Syy := T

−2PT
t=1 y

2
t−1 = σ2

R
H2
c,T + oP (1).

d. Szy := T
−1PT−1

t=0 Ztyt = 1kσ
2
R
Hc,TdHc,T − FT (I−Π0)−1γ + JT + oP (1), where JT = OP (1)

is defined before eq. (A.8).

e. Sye := T
−1PT

t=1 yt−1et = σ2Γ̄(1)
R
Hc,TdHc,T − γ0(I−Π)−1GT + oP (1).

f. See := T
−1PT

t=1 e
2
t = σ2ε + VT + oP (1), where VT :=

PT
t=1 δtη

2
t .

Proof. We present the derivations under Hc (c ≥ 0); those under Hs are analogous. For convenience
initial values are set to zero in this proof.

Let Ut := (ut, ..., ut−k+1)0 and ι(L) := (L, ..., Lk)0. Under Hc, the following decompositions are
implied by the model equations (1)-(2):

Ut =
t−1P
i=0
Πii(εt−i + δt−iθt−i) = (Γ̄(1))−11k(εt + δtθt)−Π(I−Π)−1∆Ut, (A.2)

where it has been used that |eig(Π)| < 1 under AssumptionM(a), and (I−Π)−1i =(Γ̄(1))−11k;

yt =
t−1P
i=0
(1− c/T )i10kUt−i = σT 1/2Hc,T (t/T )− g0Ut + (c/T )υt, (A.3)

where g0 := γ̄0(I − Π)−1 and υt :=
Pt−1
i=0(1 − c/T )ig0Ut−1−i. Introduce Uε

t :=
Pt−1
i=0 Π

iiεt−i and
Uθ
t :=

Pt−1
i=0 Π

iiδt−iθt−i, so that Ut = U
ε
t +U

θ
t , and observe that for a scalar sequence at,

kT−1/2
TP
t=1
Uθ
tatk ≤ (max

t≤T
|at|)k

TP
t=0

t−1P
i=0
kΠikδt−i|ηt−i| ≤ (max

t≤T
|at|)( max

t:δt=1
|ηt|)NT (

∞P
i=0
kΠik)

= OP (max
t≤T

|at|) (A.4)
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by Lemma A.1 and Assumption S(b). The following magnitude orders hold too: maxt≤T kUε
tk =

oP (T
1/2) by, e.g., (B.17) of Johansen (1996), maxt≤T kUθ

tk = OP (T
1/2) by (A.4), maxt≤T |υt| =

OP (T
1/2) by the weak convergence of maxt≤T kT−1/2

Pt−1
i=0(1 − c/T )iUε

t−1−ik and by (A.4) for
maxt≤T k

Pt−1
i=0(1 − c/T )iUθ

t−1−ik. Similarly, maxs∈[0,1] |Hc,T (s)| = OP (1), and by combining the

previous conclusions with (A.3), maxt≤T |yt| = OP (T 1/2).
As Zt = Ut−(c/T )ι(L)yt, item (a) follows from the relations T−1

PT
t=1U

ε
t (U

ε
t )
0 P→ σ2ε

P∞
i=0Π

ii(Πii)0 =
V ar(Uε

t ) (with the latter matrix strictly positive definite), T
−1PT

t=1U
θ
t (U

θ
t )
0 = FT − V ar(Uε

t ),

T−1
PT
t=1U

θ
t (U

ε
t )
0 = oP (1) and T

−2PUθ
t [ι(L)yt]

0 = oP (1) (both by (A.4), since maxt≤T |yt| =
OP (T

1/2) and maxt≤T kUε
tk = oP (T

1/2)), T−3
P
[ι(L)yt][ι(L)yt]

0 = oP (1) and T
−2PUε

t [ι(L)yt]
0 =

oP (1) (by the same uniform evaluations of yt and U
ε
t ).

We write Sze asGT+κε+κθ−κy, where (i)GT = T−1
PT

t=1U
θ
t−1δtθt; (ii) κε := T−1(

PT
t=1U

ε
t−1εt+PT

t=1U
ε
t−1δtθt − (c/T )

PT−1
t=0 U

ε
t Γ̄(L)yt) = oP (1) respectively by an LLN, by Lemma A.1, and since

maxt≤T kUε
tk = oP (T 1/2) and maxt≤T |yt| = OP (T 1/2); (iii) κθ := T−1(

PT
t=1U

θ
t−1εt−(c/T )

PT−1
t=0 U

θ
t Γ̄(L)yt) =

oP (1) by (A.4); (iv) κy := κyε + κyθ, κyε := (c/T 2)
PT
t=1 ι(L)yt(εt − (c/T )Γ̄(L)yt−1) = oP (1) since

maxt≤T |εt| = oP (T 1/2) and maxt≤T |yt| = OP (T 1/2), whereas κyθ := (c/T 2)
PT
t=1 ι(L)ytδtθt = oP (1)

by Lemma A.1. Thus, Sze = GT + oP (1) as asserted in (b).
Further, from (A.3) it follows that

Syy − σ2
R
H2
c,T = T−2|

T−1P
t=0

g0Ut(g
0Ut − 2σT 1/2Hc,T (t/T ))|+ oP (1)

= T−3/2(2σ)|g0
T−1P
t=0

Uθ
tHc,T (t/T ))|+ oP (1) = oP (1),

the first equality since maxt≤T kUtk, maxt≤T |υt| and maxs∈[0,1] |T 1/2Hc,T (s)| are OP (T 1/2), the sec-
ond one since

PT−1
t=0 UtU

0
t = OP (T ) by the proof of part (a) and maxt≤T kUε

tk = oP (T 1/2), and the
last one from (A.4). This proves (c).

Next, as
PT
t=1 υt−1εt = oP (T

2) and
PT
t=1 υt−1δtθt = OP (T ), the former one since maxt≤T |υt| =

OP (T
1/2) and maxt≤T |εt| = oP (T

1/2), and the latter one by Lemma A.1, it holds that, up to an
oP (1) term,

Sye = T−1
TP
t=1

¡
T 1/2σHc,T ((t− 1)/T )− g0Ut−1

¢
(εt + δtθt)− (c/T 2)

T−1P
t=0

ytΓ̄(L)yt

= Γ̄(1)[σ2
R
Hc,TdHT − cSyy]− g0GT +OP (T−1Szy) + oP (1) (A.5)

by an LLN for T−1
PT
t=1U

ε
t−1εt, by Lemma A.1 for T−1

PT
t=1U

ε
t−1δtθt, by evaluation (A.4) for

T−1
PT
t=1U

θ
t−1εt, and since T

−1PT−1
t=0 yt(Γ̄(L)− Γ̄(1))yt is a linear transformation of Szy.

Still further, we find using (A.3) that

Szy = T−1
T−1P
t=0

Zt(T
1/2σHc,T (t/T )− g0Zt − (c/T )g0ι(L)yt + (c/T )υt)

= T−1/2σ
T−1P
t=0
(Ut − (c/T )ι(L)yt)Hc,T (t/T )− Szzg +OP (T−1Szy) + oP (1) (A.6)

since T−1
PT−1
t=0 Ztg

0ι(L)yt is a linear transformation of Szz = OP (1) and Szy, and the terms involving
υt can be evaluated as previously. In (A.6),

T−3/2
T−1P
t=0

ι(L)ytHc,T (t/T ) = 1kσ
R
H2
c,T + oP (1) (A.7)
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similarly to Syy, and

T−1/2
T−1P
t=0

UtHc,T (t/T ) = T
−1/2 T−1P

t=0
(Ut+1 −∆Ut+1)Hc,T (t/T )

= T−1/2
¡ T−1P
t=0
((Γ̄(1))−11k(εt+1 + δt+1θt+1)− (Π(I−Π)−1 + I)∆Ut+1)Hc,T (t/T )

¢
= 1kσ

R
Hc,TdHT − T−1/2(I−Π)−1

T−1P
t=0
∆Ut+1Hc,T (t/T ),

the first equality by (A.2). The term T−1/2
PT−1
t=0 ∆Ut+1Hc,T (t/T ) equals

T−1/2UTHc,T (1)− T−1σ−1ε
TP
t=1
Ut(εt + δtθt) + cT

−3/2 TP
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UtHc,T ((t− 1)/T )

= T−1/2Uθ
THc,T (1)− σεi− T−1/2σ−1ε

TP
t=1
Uθ
t δtηt + oP (1)

since Uε
T = oP (T

1/2), T−1
PT
t=1U

ε
tεt

P→ σ2εi by an LLN, T
−1PT

t=1U
ε
tδtθt = oP (1) by Lemma

A.1, T−1
PT

t=1U
θ
t εt = oP (1) by (A.4), T

−3/2PT
t=1U

ε
tHc,T ((t − 1)/T ) = oP (1) by evaluating the

summands uniformly, T−3/2
PT
t=1U

θ
tHc,T ((t − 1)/T ) = oP (1) by (A.4). Introducing JT := σ21k −

(I−Π)−1σT−1/2[Uθ
THc,T (1)− σ−1ε

PT
t=1U

θ
t δtηt], we find that

T−1/2
T−1P
t=0

UtHc,T (t/T ) = 1kσ
R
Hc,TdHT + σ−1JT + oP (1), (A.8)

which in conjunction with (A.6) and (A.7) gives representation (d). In particular, Szy = OP (1), and
returning to (A.5) we obtain also (e).

Finally, See − T−1
PT
t=1 ε

2
t − VT equals

T−1/22
TP
t=1
(εt − (c/T )Γ̄(L)yt−1)δtθt − (c/T 2)

TP
t=1
(2εt − (c/T )Γ̄(L)yt−1)Γ̄(L)yt−1,

which is oP (1) by Lemma A.1 and by the relations maxt≤T |εt| = oP (T
1/2) and maxt≤T |yt| =

OP (T
1/2). ¥

Proof of Proposition 1. We start by deriving a large sample representation of T π̂ under the hy-
pothesis Hc (c ≥ 0); it will be useful also in the proof of Proposition 2. Then we discuss, simultaneously
under Hc and Hs, how the coefficients to the stable regressors are estimated.

Under Hc (c ≥ 0), we defined Zt = (∆yt, ...,∆yt−k+1)0, so that π̂ =M1,T /M2,T , with

T−1M1,T := Sye − S0zyS−1zz Sze and T−2M2,T := Syy − T−1S0zyS−1zz Szy = Syy + oP (1),

the magnitude order by Lemma A.2(a,d). Introduce

κ0,T := −Γ̄(1)−1[1k
R
Hc,TdHc,T + σ−2JT ]0F−1T GT . (A.9)

Inserting the expressions for M1,T and M2,T into π̂ = M1,T /M2,T , and applying Lemma A.2 to the
terms of these expressions, we get

T π̂ = Γ̄(1)[(
R
Hc,TdHT + κ0,T )(

R
H2
c,T )

−1 − c] + oP (1), (A.10)

since Syy is bounded away from zero in probability. The last expression is OP (1), and hence, π̂ =
OP (T

−1).
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Let Ξ := γ under Hc (c ≥ 0) and Ξ := Γ under Hs collect the coefficients to the stable regressor
Zt−1 in (3). We have under both hypotheses that

(Ξ̂− Ξ)0 = S−1zz (Sze − T−1
PT
t=1 Zt−1rt),

where Ξ̂ is the OLS estimator of Ξ from the regression of ∆yt on Yt−1 (with Yt = (yt,Z
0
t)
0 and

rt := (π̂ + c/T )yt−1 under Hc, c ≥ 0, and Yt = Zt and rt := 0 under Hs). From T−1
PT
t=1 Zt−1rt =

oP (1) (Lemma A.2(d) and π̂ = oP (1) under Hc) and from Lemma A.2(a,b) it follows that (Ξ̂−Ξ)0 =
F−1T GT + oP (1). As FT is bounded and bounded away from zero in probability, Ξ̂−Ξ = oP (1) if and
only if

GT =
TP
t=1
(
t−1P
i=τ
Πi−1iδt−iηt−i)(δtηt) = oP (1), (A.11)

where the subscript T of τ is subsumed. If Ξ = 0, then Πi = 0, GT = 0, and consistency of Ξ̂ for Ξ is

trivial. On the other hand, if τ
P→∞, then

kGT k ≤ ( max
t:δt=1

ηt)
2
TP
t=1

t−1P
i=τ

kΠi−1kδt−iδt ≤ ( max
t:δt=1

ηt)
2NT

∞P
i=τ

kΠi−1k P→ 0

since maxt:δt=1 ηt = OP (1), NT = OP (1) and
P∞
i=0 kΠik < ∞. This proves the sufficiency part of

the proposition.
We argue next that if Ξ 6= 0 and if the probability for exactly two outliers to occur (event E2, say)

is bounded away from zero, then the divergence τ
P→∞ conditional on E2 is necessary for GT = oP (1),

and hence, for consistency of Ξ̂. Indeed, conditionally on E2,

kGTk = kΠτ−1i
TP
t=1

δt−τδtηtηt−τk ≥ kΠτ−1ik( min
t:δt=1

ηt)
2.

IfGT = oP (1) (also conditionally onE2, sinceE2 has non-vanishing probability), then, as (mint:δt=1 ηt)
2

is bounded away from zero in probability (again also conditionally on E2), it follows that kΠτ−1ik P→ 0

conditionally on E2, and further, that τ
P→ ∞ still conditionally. The latter because (possibly upon

substitution of Π by one of its leading submatrices, and of i by the matching leading subvector) we

have kΠτ−1ik P→ 0 jointly with λmin(Π
0Π) > 0 (otherwise Ξ = 0), and then, if Π = X−1JX is the

Jordan decomposition of Π,

i0(Πτ−1)0Πτ−1i ≥ (i0i)λmin((Πτ−1)0Πτ−1) ≥ cτ [λmin(Π0Π)]τ−1,

where c := λmin (X
0X)λ−1max (X 0X) > 0.

Alternatively, let us condition on the occurrence of at least two outliers (event E+). Let t̄ :=
min{t ∈ {2, ..., T} : δtδt−τ = 1}. Then GT = GT,1ηt̄ + GT,2, where GT,1 and GT,2 depend only
on {(δt, ηt) : t 6= t̄}. We argue first that if GT = oP (1), then also GT,1 = oP (1), both conditionally
on E+. Indeed, since the distribution of η1 is non-degenerate by hypothesis, there exist disjoint
closed sets F1,F2 ⊂ R such that 0 < P (η1 ∈ Fi) = P (ηt̄ ∈ Fi|E+), i = 1, 2, the last equality
using Assumption S(c). Let U be an open set such that F1 ⊂ U ⊂ R \ F2. If GT,1 is bounded
away from zero along a subsequence of sample sizes, we would have that ηt̄ + GT,2/GT,1 = oP (1),
both conditionally on E+, along that subsequence (we write as if it is the entire sequence). Then it
would hold that P (−GT,2/GT,1 ∈ U|E+, ηt̄ ∈ F1) → 1 and P (−GT,2/GT,1 ∈ U1|E+, ηt̄ ∈ F2) → 0.
However, under joint independence of {ηt} and Assumption S(c), both probabilities are seen to equal
P (−GT,2/GT,1 ∈ U1|E+), and cannot have different limits. Therefore, GT,1 = oP (1) conditionally

on E+. But GT,1 = Π
τ−1iηt̄−τ + (

Pt̄−1
i=τ+1Π

i−1iδt̄−iηt̄−i +
PT−t̄
i=τ Π

i−1iδt̄+iηt̄+i), and by a similar
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independence argument, Πτ−1i = oP (1) and τT → ∞ conditionally on E+, as argued previously for
E2. ¥
Proof of Proposition 2. The expression for ADFα in (a) follows from (A.10). Note that κ0,T =
oP (1) if and only if GT = oP (1), which in the proof of Proposition 1 was shown to be necessary and
sufficient for the consistent OLS estimation of γ (= Ξ under Hc, c ≥ 0).

Besides M1,T andM2,T introduced earlier, let T
−1M3,T := See−S0zeS−1zz Sze = See−G0TF−1T GT +

oP (1), the last equality by Lemma A.2(a,b). As M1,T /T = OP (1) was shown to hold, and M3,T /T is
bounded away from 0 in probability (by A.2(f) and the inequality QT −G0TF−1T GT ≥ 0), we find that

ADFt = M1,T /T (M2,TM3,T/T
3 −M2

1,T /T
3)−1/2 = T π̂(M2,T /T

2)1/2(M3,T/T )
−1/2 + oP (1)

= (
R
Hc,TdHc,T + κ0,T )(κ1,T

R
H2
c,T )

−1/2 + oP (1)

as asserted in (a), with

κ1,T := 1 + σ−2ε (QT −G0TF−1T GT ). (A.12)

The expressions in (b) obtain by inserting GT = oP (1) and γ̂ = γ + oP (1) into those of (a). ¥

A.3 Dummy-based approach

We start from the counterpart of Lemma A.2. A key difference is item (b), where convergence to zero
ensures consistent estimation of the coefficients to the stable regressors.

Lemma A.3 Let AssumptionsM and S be satisfied. Then, as T →∞, the following representations
hold under Hc (c ≥ 0) and Hs, unconditionally and conditionally on the occurrence of at least one
outlier:

a. S1−δzz := T−1
PT
t=1(1− δt)Zt−1Z0t−1 = F

1−δ
T + oP (1), where λmin(F

1−δ
T ) is bounded away from

0 in probability and F 1−δT := FT −
PT−1
t=1 δt(

Pt−1
i=0 Π

iiδt−iηt−i)(
Pt−1
i=0 Π

iiδt−iηt−i)0.
b. S1−δze := T−1

PT
t=1(1− δt)Zt−1et = oP (1).

Further, the following representations hold under Hc (c ≥ 0):
c. S1−δyy := T−2

PT
t=1(1− δt)y

2
t−1 = σ2

R
H2
c,T + oP (1).

d. S1−δzy := T−1
PT
t=1(1− δt)Zt−1yt−1 = OP (1).

e. S1−δye := T−1
PT
t=1(1− δt)yt−1et = σ2Γ̄(1)[

R
HT,cdBT − c

R
H2
T,c] + oP (1).

f. S1−δee := T−1
PT

t=1(1− δt)e
2
t = σ2ε + oP (1).

Proof. The proof is similar to that of Lemma A.2 and we omit the details. We only note that
T−1

PT
t=1 δtZt−1et = GT + oP (1), T

−1PT
t=1 δte

2
t = VT + oP (1) and T

−1PT
t=1 δtyt−1(εt + θt) =

σ
R
Hc,TdCT − γ0(I − Π)−1GT + oP (1), which together with Lemma A.2(b,f) and (A.5) gives items

(b), (f) and the relation T−1
PT
t=1(1− δt)yt−1εt = σ2Γ̄(1)

R
Hc,TdBT + oP (1). Thus,

TP
t=1
(1− δt)yt−1et =

TP
t=1
(1− δt)yt−1εt − (c/T )Γ̄(1)

TP
t=1
(1− δt)y

2
t−1 + oP (T )

= Tσ2Γ̄(1)[
R
HT,cdBT − c

R
H2
T,c] + oP (T ),

as asserted in (e). ¥
Proof of Proposition 3. We follow the steps from the proofs of Propositions 1 and 2. Under Hc
(c ≥ 0), we have π̃ = M̃1,T/M̃2,T , with

T−1M̃1,T := S
1−δ
ye − (S1−δzy )0(S1−δzz )−1S1−δze and T−2M̃2,T := S

1−δ
yy − (S1−δzy )0(S1−δzz )−1S1−δzy ,
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and by Lemma A.3,

T−1M̃1,T = σ2Γ̄(1)[
R
HT,cdBT − c

R
H2
T,c] + oP (1) and T−2M̃2,T = σ2

R
H2
c,T + oP (1).

Inserting the above expressions for M̃1,T and M̃2,T into that for π̃, we conclude that

T π̃ = Γ̄(1)[(
R
Hc,TdBT )(

R
H2
c,T )

−1 − c] + oP (1), (A.13)

since T−2
PT
t=1 y

2
t−1 is bounded away from zero in probability. Hence, π̃ = OP (T

−1).
Let Ξ̃ denote the dummy-based estimator of Ξ (the coefficient vector associated to Zt−1) from the

regression of ∆yt on Yt−1 (Yt = Zt under Hs and Yt = (yt,Z
0
t)
0 under Hc). With r̃t = 0 under Hs

and rt = (π̃ + c/T )yt−1 under Hc, we have that

(Ξ̃− Ξ)0 = (S1−δzz )−1(S1−δze − T−1
PT
t=1(1− δt)Zt−1r̃t).

As T−1
PT
t=1(1− δt)Zt−1r̃t = oP (T−1/2) (Lemma A.3(d) and π̃ = OP (T

−1) under Hc), from Lemma

A.3(a,b) we obtain that Ξ̃− Ξ = oP (1). Furthermore, note for later reference that

T 1/2(Ξ̃− Ξ)0 = (S1−δzz )−1T−1/2
TP
t=1
(1− δt)Zt−1εt + oP (1). (A.14)

The expression for ADFDα in (b) follows from (A.13) and the fact that Γ̄(1) is estimated con-
sistently. Further, let T−1M̃3,T := S1−δee − (S1−δze )0(S1−δzz )−1S1−δze . Since M̃1,T /T = OP (1) and

M̃3,T/T
P→ σ2ε by Lemma A.3(a,b,f), as for the ADFt statistic, we find that

ADFDt = T π̃(M̃2,T /T
2)1/2(M̃3,T /T )

−1/2 + oP (1)

= (
R
Hc,TdBT )(

R
H2
c,T )

−1/2 − c(R H2
c,T )

1/2 + oP (1)

as asserted in (b).
From the conclusion that π̃ (as a component of Ξ̃) is consistent for π < 1 under Hs, it follows that

T (π̃−1) P→ −∞. Further, |Γ̃(1)| = OP (1) since γ̃ P→ γ, while s(π̃) = OP (1) since (i) the (1, 1) element
of (S1−δzz )−1 is OP (1) by Lemma A.3(a), and (ii) σ̃2ε = OP (1) by its consistency for σ

2
ε, implied by the

discussion of the coefficient estimators. ¥
Next, we present the derivations underlying the third column of Table 1. Upon substitution of C

by hC, we findR
H2
c = h2

R
C2c + 2h

R
CcBc +

R
B2c = h

2
R
C2c +OP (h) ,R

HcdH = h2
R
CcdC + h(

R
CcdB +

R
BcdC) +

R
BcdB = h

2
R
CcdC +OP (h),R

HcdB = h
R
CcdB +

R
BcdB = h

R
CcdB +OP (1) .

Substituting also [C] by [hC] = h2 [C], accounting for the fact that [C] > 0 a.s. conditionally on the
occurrence of at least one jump, and letting h → ∞ gives directly the limit in the OLS case. In the
dummy-variable case, for c = 0 the limit of ADFDt is (

R
C2)−1/2

R
CdB, which by the independence

of C and B is standard Gaussian. For c > 0, its limit is (−c)∞ + (
R
C2c )

−1/2 R CcdB = −∞. The
limits of the coefficient statistic follow similarly.

A.4 QML approach

Let ρ ∈ (0, 1/4) be arbitrary, but fixed in the sequel. Let AT := AΓT ×AεT ×AηT ×AλT , with AΓT := {Γ ∈
Rk+1 : kT 1/2D−1T (Γ−Γ0)k ≤ (lnT )1/4}, AεT := [(1+ ρ

2 )
−1σ2ε0, 2σ2ε0], A

η
T := [1/2, 2] and AλT := [−1/2, 2].

Define on AT the random function ω by

ω(Γ0,σ2ε, x
η, xλ) := (Γ0,σ2ε, x

ηQT , x
λ +NT )

0.
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Note that ω is a.s. invertible conditionally on the occurrence of at least one outlier.
To streamline the exposition, the proofs in this section are presented under the hypotheses H0 and

Hs. The extension to Hc (c > 0) requires to incorporate the term −(c/T )Γ̄(L)yt−1 into the error et,
see (A.1), which poses no conceptual difficulties.

We start from the following crucial Lemma, where supAT f(ω) := supx∈AT f(ω(x)) for any match-
ing f .

Lemma A.4 Let AssumptionsM and S hold. If P denotes probability conditional on the occurrence
of at least one outlier, the following relations hold as T →∞.

a. supAT
PT
t=1 |dt(ω)−δt| = OP (T ρ−1/2) and supAT

PT
t=1 δt|dt(ω)−1| P→ 0 faster-than-polynomially.

b. supAT k(ΦΓ(ω)− Γ̃0)D−1T T 1/2k = oP (1).
c. supAT k(Φε(ω)− σ2ε0,Φ

η(ω)−QT ,Φλ(ω)−NT )k = oP (1).

Proof. We write ωη and ωλ for xηQT and x
λ+NT . Let

PT
t=1 |dt(ω)− δt| = ∆1−δT (ω)+∆δ

T (ω), with

∆1−δT (ω) :=
PT
t=1(1− δt)dt(ω) and ∆

δ
T (ω) :=

PT
t=1 δt(1− dt(ω)). It holds that

∆1−δT (ω) ≤ ωλ

T − ωλ

TP
t=1
(1− δt)

lt(1,ω)

lt(0,ω)

=
ωλ

T − ωλ
σε

(σ2ε + Tω
η)1/2

TP
t=1
(1− δt) exp(

(∆yt − Γ0Yt−1)2

2
(
1

σ2ε
− 1

σ2ε + Tω
η
))

<
NT + 2

T −NT
σε0

(TQT /2)1/2

TP
t=1
(1− δt) exp(

(∆yt − Γ0Yt−1)2

2σ2ε
)

at every point in AT . AsNT = OP (1) andQT is bounded away from 0 in P -probability, the term before
the last summation is OP (T

−3/2). Further, as (1− δt)(∆yt−Γ0Yt−1) = (1− δt)(εt+ (Γ0−Γ)0Yt−1),
on AT the summation itself does not exceed

TP
t=1
exp(

(εt + (Γ0 − Γ)0Yt−1)2

2σ2ε
) ≤ exp( aT

2σ2ε
(1 +

ρ

2
))

TP
t=1
exp(

ε2t
2σ2ε0

(1 +
ρ

2
)),

where (i) aT is defined in the first line below:

sup
AT
kD−1T (Γ− Γ0)k2max

t≤T
kDTYt−1k2 + 2 sup

AT
kD−1T (Γ− Γ0)kmax

t≤T
kDTYt−1kmax

t≤T
|εt|

≤ (T−1 lnT )OP (T ) + (T−1 lnT )1/2OP (T 1/2)OP ((lnT )1/2) = OP (T ρ/4),

and (ii)
PT
t=1 exp(ε

2
t (1+ρ/2)/(2σ2ε0)) = OP (T

1+3ρ/4), both using the Gaussianity of εt, and (ii) using
also Lemma A.2(a) in Georgiev (2007). Thus,

sup
AT
∆1−δT (ω) ≤ OP (T−3/2)OP (T ρ/4)OP (T 1+3ρ/4) = OP (T ρ−1/2). (A.15)

As 1− dt(ω) ≤ [(T − ωλ)/ωλ]lt(0,ω)/lt(1,ω), we find that

∆δ
T (ω) = (1 + T

ωη

σ2ε
)1/2

T − ωλ

ωλ

TP
t=1

δt exp(
(∆yt − Γ0Yt−1)2

2
(

1

σ2ε + Tω
η
− 1

σ2ε
))

≤ OP (T
3/2) exp(

maxt≤T (∆yt − Γ0Yt−1)2

2(σ2ε + Tω
η)

) exp(−mint:δt=1(∆yt − Γ
0Yt−1)2

2σ2ε
)

uniformly on AT , since supAT ω
η and NT are OP (1), whereas infAT ω

λ and infAT σ
2
ε are bounded away

from 0 in P -probability. Further, as ∆yt − Γ0Yt−1 = T 1/2δtηt + εt + (Γ0 − Γ)0Yt−1,

max
t≤T

(∆yt − Γ0Yt−1)2 ≤ 3T max
t:δt=1

η2t + 3max
t≤T

ε2t + 3 sup
AT
kΓ− Γ0k2max

t≤T
kYtk2

= OP (T ) +OP (lnT ) +OP (lnT ) = OP (T ) (A.16)
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uniformly on AT , so that

sup
AT
exp(

maxt≤T (∆yt − Γ0Yt−1)2

2(σ2ε + Tω
η)

) ≤ exp(OP (T )
TQT

) = exp(OP (1)) = OP (1),

since QT is bounded away from zero in P -probability. Finally,

min
t:δt=1

(∆yt − Γ0Yt−1)2 ≥ T min
t:δt=1

η2t − 2T 1/2 max
t:δt=1

|ηt|(max
t≤T

|εt|+ sup
AT
kΓ− Γ0kmax

t≤T
kYtk)

= T min
t:δt=1

η2t + oP (T
3/4).

It follows that infAT mint:δt=1(∆yt − Γ0Yt−1)2
P→ ∞ at a linear rate, since mint:δt=1 η

2
t is bounded

away from 0 in P -probability, and hence,

sup
AT
exp(−mint:δt=1(∆yt − Γ

0Yt−1)2

2σ2ε
) ≤ exp(− infAT mint:δt=1(∆yt − Γ

0Yt−1)2

4σ2ε0
)
P→ 0

faster-than-polynomially. By combining the above magnitude orders, we can conclude that supAT ∆
δ
T (ω)

P→
0 faster-than-polynomially, which is the second relation in (a). Combining it with (A.15) yields the
first relation there.

We proceed with part (b). Let wδt (ω) := (1− δt)/σ
2
ε, so that wt(ω) − wδt = K1(ω)(dt(ω)− δt) +

K2(ω)δt, withµ
sup
AT
|K1(ω)|, sup

AT
|K2(ω)|

¶
=

µ
sup
AT
| 1
σ2ε
− 1

σ2ε + Tω
η
|, sup
AT

1

σ2ε + Tω
η

¶
=
¡
OP (1), OP (T

−1)
¢
.

We show that if wt(ω) are replaced by w
δ
t in the expression for Φ

Γ, the effect is asymptotically
negligible. Specifically,

(ΦΓ(ω)− Γ00)D−1T =
TP
t=1
wt(ω)(εt + δtθt)(DTYt−1)0

h TP
t=1
wt(ω)DTYt−1(DTYt−1)0

i−1
, (A.17)

where, first, kPT
t=1(wt(ω)− wδt )(εt + δtθt)DTYt−1k is bounded by

k
TP
t=1

δt [K1(ω)(dt(ω)− 1) +K2(ω)] (εt + θt)DTYt−1k+ |K1(ω)|k
TP
t=1
(1− δt)dt(ω)εtDTYt−1k.

The two norms are evaluated separately. The first one does not exceed

(max
t≤T

|εt|+ T 1/2 max
t:δt=1

|ηt|)max
t≤T

kDTYt−1k
h
sup
AT
|K1(ω)| sup

AT
∆δ
T (ω) +NT sup

AT
|K2(ω)|

i
,

which is OP (T
1/2)OP (T

1/2)OP (T
−1) = OP (1) by the results so far. The second norm is bounded by

∆1−δT (ω)maxt≤T |εt|maxt≤T kDTYt−1k = OP (T 2ρ) uniformly on AT , by (A.15) and the Gaussianity
of εt. We can conclude that, also uniformly,

TP
t=1
wt(ω)(εt + δtθt)(DTYt−1)0 =

1

σ2ε

TP
t=1
(1− δt)(εt + δtθt)(DTYt−1)0 +OP (T 2ρ). (A.18)

Further, similarly, kPT
t=1(wt(ω)− wδ

t )(DTYt−1)(DTYt−1)0k is bounded by

max
t≤T

kDTYt−1k2
¡|K1(ω)|{∆1−δT (ω) +∆δ

T (ω)}+ |K2(ω)|NT
¢
= OP (T

ρ+1/2)
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uniformly on AT ; recall part (a). Hence, also uniformly,

TP
t=1
wt(ω)(DTYt−1)(DTYt−1)0 =

1

σ2ε

TP
t=1
(1− δt)(DTYt−1)(DTYt−1)0 +OP (T ρ+1/2). (A.19)

Inserting this and (A.18) into (A.17), we see that (ΦΓ(ω)− Γ0)D−1T T 1/2 equals

T−1/2
TP
t=1
(1− δt)(εt + δtθt)(DTYt−1)0

h
T−1

TP
t=1
(1− δt)DTYt−1(DTYt−1)0

i−1
+ oP (1)

uniformly on AT , since the matrix in brackets converges to a positive definite limit, see Lemma A.3.
The main term in the above display is (Γ̃− Γ0)0D−1T T 1/2, which proves (b).

Consider next part (c). We have supAT |Φλ(ω) −NT | ≤ supAT
PT
t=1 |dt(ω) − δt| = oP (1) by (a).

From here and (A.16) it follows that αT = oP (max{1, T−1 supAT Φε(ω)}), where

αT := sup
AT
k(Φε(ω),Φη(ω))− T−1

TP
t=1
(1− dt(ω), N−1T dt(ω))(∆yt − Γ0Yt−1)2k

= sup
AT
k(Φε(ω),Φη(ω) + σ2ε/T ) diag{Φλ(ω)/T, (NT − Φλ(ω))/NT }− (0,σ2ε/T )k.

Next, from the triangle inequality,

sup
AT
k(Φε(ω),Φη(ω))− T−1

TP
t=1
(1− δt, N

−1
T δt)(εt + δtθt)

2k ≤ αT + βT + γT , (A.20)

with αT defined and evaluated above, and with

βT := T
−1 sup

AT
k
TP
t=1
[(1− dt(ω), N−1T dt(ω))− (1− δt, N

−1
T δt)](∆yt − Γ0Yt−1)2k

≤ T−1(1 +N−2T )1/2max
t≤T

(∆yt − Γ0Yt−1)2k
TP
t=1
|δt − dt(ω)| = OP (T ρ−1/2)

using (A.16) and part (a), and

γT := T
−1 sup

AT
k
TP
t=1
(1− δt,N

−1
T δt)(∆yt − Γ0Yt−1)2 −

TP
t=1
(1− δt,N

−1
T δt)(εt + δtθt)

2k.

As ∆yt − Γ0Yt−1 = εt + δtθt + (Γ− Γ0)0Yt−1, we have for v ∈ {δ, 1− δ} that

T−1
TP
t=1
vt((∆yt − Γ0Yt−1)2 − (εt + δtθt)

2) = (Γ− Γ0)0D−1T Sv11D
−1
T (Γ− Γ0) + 2(Γ− Γ0)0D−1T Sv10

with supAT kD−1T (Γ− Γ0)k = o(1) and

(Sv11, S
v
10) := T

−1
µ

TP
t=1
vt(DTYt−1)(DTYt−1)0,

TP
t=1
vt(DTYt−1)(εt + δtθt)

¶
= OP (1)

as a consequence of Lemmas A.2 and A.3. Hence, γT = oP (1), and αT+βT+γT = oP (max{1, T−1 supAT Φε(ω)}).
As T−1

PT
t=1(1− δt, N

−1
T δt)(εt + δtθt)

2 = (T−1
PT
t=1 ε

2
t , QT ) +OP (T

−1/2), from (A.20) we complete
the proof. ¥

We are now ready to prove Theorem 1.
Proof of Theorem 1. We define θ̌, whose existence is asserted in (a), as ω(ζ̌), where ζ̌ =

(Γ̌0, σ̌2, ζ̌
η
, ζ̌

λ
)0 is a measurable global maximizer of Λ ◦ ω on AT . The existence of ζ̌ follows, e.g.,
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from Property 24.1 in Gourieroux and Monfort (1995). To show that θ̌ is a local maximizer of Λ
w.p.a.1, we check that ζ̌ is interior for AT w.p.a.1. Specifically, we give the details for interiority of Γ̌
for AΓT and omit the rest, which is similar.

Since the function kT 1/2D−1T ((·)− Γ0)k is differentiable at all points different from Γ0, and Γ0 is
interior for AΓT , it follows that Γ̌ satisfies the first-order condition

(∂(Λ ◦ ω)/∂Γ0)|ζ̌ − μT 1/2(lnT )−1/4D−1T (Γ̌− Γ0) = 0, (A.21)

where μ ≥ 0 is a Lagrange multiplier such that μ(kT 1/2D−1T (Γ̌− Γ0)k− (lnT )1/4) = 0. Inserting the
expression for the derivative yields

TP
t=1
wt(θ̌)Yt−1(∆yt −Y0

t−1Γ̌) = μT 1/2(lnT )−1/4D−1T (Γ̌− Γ0),

and further, since ∆yt = Y
0
t−1Γ0 + εt + δtθt,

TP
t=1
wt(θ̌)DTYt−1(εt + δtθt + (DTYt−1)0D−1T (Γ0 − Γ̌)) = μT 1/2(lnT )−1/4(Γ̌− Γ0).

Using (A.18) and introducing S1−δ11 (θ̌) := T−1
PT

t=1wt(θ̌)DTYt−1(DTYt−1)0, we find that

TS1−δ10 + TS1−δ11 (θ̌)D−1T (Γ0 − Γ̌) +OP (T 1/2) = μσ̌2T 1/2(lnT )−1/4(Γ̌− Γ0),
where S1−δ10 = T−1

PT
t=1(1− δt)DTYt−1εt = OP (T−1/2). Premultiplication by (Γ̌− Γ0)0D−1T gives

(Γ̌− Γ0)0D−1T [TS1−δ11 (θ̌)]D−1T (Γ0 − Γ̌) + (Γ̌− Γ0)0D−1T OP (T
1/2) = μσ̌2

(Γ̌− Γ0)0D−1T (Γ̌− Γ0)
T−1/2(lnT )1/4

.

Finally, by majorizing the left side, for outcomes such that μ > 0 (and hence, Γ̌ 6= Γ0), it follows that
−kT 1/2D−1T (Γ̌− Γ0)k2λmin(S1−δ11 (θ̌)) + (Γ̌− Γ0)0D−1T OP (T

1/2) > 0.

However, for such outcomes the defining constraint of AΓT constraint is binding, so that

−(lnT )1/2λmin(S1−δ11 (θ̌)) +OP ((lnT )
1/4) > 0.

As λmin(S
1−δ
11 (θ̌)) = σ−2ε λmin(S

1−δ
11 ) + oP (1) by (A.19), and λmin(S

1−δ
11 ) is bounded away from zero in

P -probability by Lemma A.3, the inequality in the above display can only hold with P -probability
approaching zero. Consequently, P ({μ > 0}) → 0, meaning that Γ̌ w.p.a.1 satisfies the first-order
condition (A.21) in the form (∂(Λ ◦ ω)/∂Γ0)|ζ̌ = 0, or equivalently, Γ̌0 = ΦΓ(θ̌). From Lemma A.4(b)

and the fact that T 1/2D−1T (Γ̃− Γ0) = OP (1) it follows that T 1/2D−1T (Γ̌− Γ0) = OP (1), and from the
definition of AΓT , Γ̌ is interior for AΓT w.p.a.1. A similar argument for the other components of ζ̌ allows
us to conclude that θ̌ is a local maximizer of Λ (θ) w.p.a.1.

The remaining asserted properties of θ̌ are direct from ζ̌ ∈ AT and Lemma A.4. ¥
Proof of Corollary 1. Consistency in part (b) and the statement about ADFQα follow from

Theorem 1(c) and Proposition 3(a), whereas the statement about ADFQt follows from Theorem 1(c)
and (A.19), with wt evaluated at θ̌. For asymptotic normality, note that by Theorem 1(c) it is
enough to establish it for the dummy variables estimator. From (A.14) and the representation Zt =
Ut − (c/T )ι(L)yt (see the proof of Lemma A.2 for notation), we have that T 1/2(Ξ̃− Ξ)0 equals¡

V ar(Uε
t ) + T

−1 T−1P
t=1
(1− δt)U

θ
t (U

θ
t )
0¢−1T−1/2 TP

t=1
(1− δt)(U

ε
t−1 +U

θ
t−1)εt + oP (1).

By the assumed independence of {Uε
t} and {Uθ

t}, the main term above converges weakly to N (0, 1)
conditionally on {Uθ

t}, and hence, also unconditionally. ¥
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Table 6: Empirical size, size adjusted power and empirical rejection frequencies of
standard (ADF), dummy-based (ADFD) and robust QML (ADFQ) ADF tests. Gaussian
errors, trended data.

Size Model S0 Model S4
T γ ADFα ADFt ADFQα ADFQt ADFα ADFt ADFDα ADFDt ADFQα ADFQt

100 −0.5 4.5 4.5 4.5 4.6 6.2 6.4 1.6 4.3 3.8 6.8
0 4.4 4.4 4.4 4.6 6.6 6.6 1.9 4.5 4.2 7.2

0.5 4.6 4.4 4.6 4.5 6.6 6.4 2.1 4.3 4.3 7.0

200 −0.5 5.5 5.6 5.4 5.7 7.8 8.0 2.1 5.3 2.5 6.0
0 5.0 5.1 5.0 5.3 7.3 7.6 2.0 4.6 2.3 5.3

0.5 5.4 5.4 5.4 5.5 7.4 7.6 2.4 5.1 2.7 5.7

400 −0.5 4.9 5.2 4.9 5.3 7.1 7.5 2.0 4.6 2.1 4.8
0 5.0 5.1 4.9 5.2 6.9 7.2 1.8 4.5 1.9 4.7

0.5 4.9 5.0 4.9 5.2 6.9 7.2 1.8 4.6 1.9 4.7
Power Model S0 Model S4
T γ ADFα ADFt ADFQα ADFQt ADFα ADFt ADFDα ADFDt ADFQα ADFQt

100 −0.5 49.6 50.5 49.6 50.7 49.9 49.9 69.2 72.2 55.4 60.9
0 47.4 47.9 47.4 46.9 44.8 44.6 64.1 68.0 51.1 56.8

0.5 38.2 38.9 38.1 38.8 37.2 37.3 50.3 58.6 41.1 47.3

200 −0.5 49.7 50.4 49.9 50.3 48.6 48.4 69.3 72.3 67.3 70.8
0 51.2 51.2 51.1 51.2 48.8 49.4 70.0 73.3 67.7 71.8

0.5 43.4 43.7 43.5 44.0 43.2 43.1 59.8 65.2 58.4 63.6

400 −0.5 50.7 50.7 50.9 50.7 49.8 49.8 71.0 75.0 70.5 74.9
0 49.9 50.3 49.8 50.3 50.0 49.4 72.7 75.3 72.4 74.5

0.5 47.3 48.1 47.1 47.4 46.6 46.6 67.0 70.9 66.5 70.8
Empirical
power

Model S0 Model S4

T γ ADFα ADFt ADFQα ADFQt ADFα ADFt ADFDα ADFDt ADFQα ADFQt

100 −0.5 47.0 48.0 47.0 48.6 55.6 56.4 41.7 68.6 47.8 68.9
0 44.9 45.2 44.8 45.6 53.0 52.9 39.0 65.4 45.1 65.2

0.5 36.2 36.0 36.2 36.5 44.5 43.9 30.9 54.7 37.4 55.3

200 −0.5 52.1 53.6 52.0 53.9 60.8 62.1 48.0 73.9 48.8 74.9
0 51.2 52.2 51.1 52.4 59.2 60.2 45.8 71.9 47.1 73.3

0.5 45.5 46.3 45.6 46.7 54.0 54.8 40.9 65.7 42.1 67.0

400 −0.5 49.9 51.6 49.9 51.8 58.8 60.4 45.9 73.3 46.2 74.0
0 49.7 51.1 49.5 51.4 58.1 59.7 45.9 73.0 46.0 73.2

0.5 46.7 48.3 46.6 48.6 55.6 56.9 41.6 69.0 42.0 69.7




