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Abstract

We study how professional players and college students play zero-sum two-
person strategic games in a laboratory setting. We first ask professionals to
play a 2x2 game that is formally identical to a strategic interaction situation
that they face in their natural environment. Consistent with their behavior in
the field, they play with a high degree of accuracy with respect to the equilib-
rium of the game. We find that: (i) they equate their strategies’ payoffs to the
equilibrium ones, and (ii) they generate sequences of choices that are serially
independent. In sharp contrast, however, we find that college students play
the game far from the equilibrium predictions. We then study the behavior of
professional players and college students in the classic O’Neill’s 4x4 zero-sum
game, a game that none of the subjects have encountered previously, and find
the same sharp differences in the behavior of these two pools of subjects. The
transfer of skills and experience from the familiar field to the unfamiliar labora-
tory observed for professional players is relevant to evaluate the circumstances
under which behavior in a laboratory setting may be a reliable indicator of
behavior in a naturally occurring setting. From a cognitive perspective, it is
useful for research on recognition processes, intuition, and similarity as a basis
for inductive reasoning.
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1 Introduction

An important question for those areas of economic research that rely on data collected

in a laboratory is how applicable are the insights gained in it for predicting behavior in

natural environments. This paper addresses this question for situations that involve

strategic interaction. Game theory is, in fact, one of the areas where experimental

data from the laboratory are often used to inform theoretical developments.1 One

reason for this is that Nature does not always create the circumstances that allow a

clear view of the principles at work in strategic situations. Furthermore, naturally

occurring phenomena are typically too complex to be empirically tractable.

Laboratory environments provide valuable control of players’ information, payoffs,

available strategies and other relevant aspects. This is important because game-

theoretic predictions are often sensitive to changes in these variables. However, as

Harrison and List (2004, pp. 1009-11) point out, “lab experiments in isolation are

necessarily limited in relevance for predicting field behavior, unless one wants to insist

a priori that those aspects of economic behavior under study are perfectly general ...

[The reason is that] the very control that defines the experiment may be putting the

subject on an artificial margin. Even if behavior on that margin is not different than

it would otherwise be without the control, there is the possibility that constraints on

one margin may induce effects on behavior on unconstrained margins.” These and

other concerns about the extent to which laboratory results may provide insights into

field behavior demand more elaborate experiments.2

In this paper we conduct a conventional experiment in which a non-standard pool

of subjects plays a game whose unique equilibrium involves mixed strategies. Our

idea is to use professional soccer to develop an “artefactual field experiment” in order

to study an aspect not studied previously for games with mixed-strategy equilibria.3

Soccer has three unique features which make it especially suitable for this purpose:

(i) Professional soccer players face a simple strategic interaction that is governed

by very detailed rules: a penalty kick; (ii) The formal structure of this interaction

can be reproduced in the laboratory; (iii) Previous research has found that when

professional soccer players play this game in the field, their behavior is consistent

with the equilibrium predictions of the theory. These three distinct characteristics

1Camerer (2003) offers a comprehensive review.
2See Harrison (2005), Weibull (2004) and Lazear, Malmendier and Weber (2005) for other con-

cerns, and Camerer (2003), Harrison and List (2004), and Kagel and Roth (1995) for relevant
references on the development of different experiments.

3We use the term suggested in the classification of experiments of Harrison and List (2004).

1



allow us to study whether the skills and heuristics that players may have developed in

the field transfer to the laboratory. Further, the extent to which field and laboratory

behavior differ can indicate whether laboratory findings are reliable for predicting

field behavior.

We proceed as follows. We first analyze the behavior of professional soccer players

in a laboratory setting playing a simultaneous two-person zero-sum 2x2 game that

is formally identical to a penalty kick. The equilibrium of the game is unique and

requires each player to use a mixed strategy. To test our methodological hypothesis,

we also implement exactly the same controlled laboratory experiment with subjects

drawn from a standard subject pool of college students with no soccer experience.

Palacios-Huerta (2003) found that the behavior of professional players in the soc-

cer field was consistent with equilibrium play: (i) their winning probabilities were sta-

tistically identical across strategies and (ii) their choices were serially independent.4

The results we obtain in this paper can be summarized as follows. We find that

professional players continue to behave with a high degree of accuracy with respect

to the implications of equilibrium in the entirely different setting of a lab. Inter-

estingly, we also find that their behavior is in sharp contrast with that of college

students who play quite poorly from the perspective of the equilibrium of the game:

their distribution of play is significantly different from the equilibrium one, and they

generate sequences that exhibit negative autocorrelation. We interpret these results

as evidence that professionals transfer their skills across these vastly different envi-

ronments and circumstances. As such, the nature of the subject pool is important

for drawing inferences about the predictive power of the equilibrium of the game.

These results may be of special interest in the context of understanding the de-

terminants of randomization, which is a testable hypothesis shared by every game

that admits a mixed strategy equilibrium. An extensive literature in experimental

economics, game theory, and psychology has consistently found that subjects are un-

able to generate i.i.d. sequences in the laboratory, but rather exhibit a significant

bias against repeating the same choice.5 We find, however, that professional soccer

players appear to generate random sequences in the lab while college students do not.

To evaluate whether professional players behave differently in a zero-sum game

they have not encountered previously in any setting, we ask them to play the 4x4

two-person simultaneous game developed in O’Neill (1987), and further studied in

4See also Chiappori et al. (2002) for further evidence in support of equilibrium behavior.
5See Neuringer (2002) and Camerer (1995) for surveys of the relevant literature.
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Brown and Rosenthal (1990), Shachat (2002) and Walker and Wooders (2001). We

also compare their behavior with that of college students. Consistent with this liter-

ature, the results show that students behave in a manner that is far from the unique

equilibrium of the game. Although we use much greater monetary incentives and

subjects play more repetitions than in previous studies of this game, students do not

equate winning probabilities across strategies and they generate sequences of choices

that are not random. In sharp contrast with this behavior, we find that professional

soccer players play remarkably close to equilibrium in virtually every dimension.

We interpret the results that professionals whose play in the field is consistent with

equilibrium also behave close to equilibrium in a laboratory setting, as supporting

the idea that the vast differences in environments do not undermine the skills these

subjects use in the field. This interpretation is strengthened by the fact that payoffs

in the lab are lower than in real life and that one of the games played in the lab is

entirely unfamiliar to the subjects. The evidence, therefore, suggests that the game-

theoretic equilibrium predictions may have greater empirical content than previously

considered for explaining behavior in both natural and experimental settings. Further,

the fact that the behavior of professional soccer players is distinctly different from

that of college students, the subject pool typically studied in a large experimental

literature, indicates that the nature of the subject pool may be a critical ingredient

of the laboratory experiment for predicting field behavior.

From a methodological viewpoint, we see the artefactual field experiments imple-

mented in this paper as being complementary to traditional laboratory experiments of

games where players are predicted to choose probability mixtures. While perfectively

competitive games do not represent the entire universe of strategic games involving

mixed strategies, they are considered a “vital cornerstone” of game theory (e.g., Au-

mann (1987), Binmore et al. (2001)). Indeed, zero sum games can be regarded as

the branch of game theory with the most solid theoretical foundations.6 From this

perspective, the positive results we find lend support to a fundamental result of game

theory in a setting where the small number of existing results were mainly negative.

Lastly, from the viewpoint of the literature on cognition and similarity as a basis

for inductive reasoning,7 the results support the hypothesis that cognitive skills may

6Within the class of zero-sum games even the less stringent concept of correlated equilibrium
coincides with the set of minimax strategies. In this sense, the theory of Minimax can be regarded
as one of the less controversial ones from the theoretical point of view.

7See, for instance, Hume (1748), Gilboa and Schmeidler (2001), Gigerenzer and Todd (1999),
Selten (1998), Simon (1983), and other references therein.
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exist beyond those that subjects are aware of in the context of games involving mixed

strategies, and that they transfer to the highly unfamiliar environment of the lab.

2 Experimental Procedures

We implement two different zero-sum games, each with two subject pools: profes-

sional soccer players and college students. The experiments were conducted during

the period November 2003-October 2004 at the Universidad del Páıs Vasco in Bilbao

(Spain). Each of the two zero-sum games was played by a different set of 40 profes-

sional soccer players working in twenty pairs and 40 college students with no soccer

experience working in twenty pairs. We also recruited two additional sets of 40 college

students with soccer experience at the amateur level, one for each of the two games,

for one of the extensions of the analysis that will be discussed later. Next, we explain

the recruiting process for these 240 subjects and other aspects of the experimental

procedure, and then describe the experimental designs of the two games.

2.1 Subjects

Each subject participated in only one type of game and one session. Sessions lasted

about an hour, and subjects received their winnings as payment.

Professional Players. These subjects were recruited from professional soccer

clubs in Spain. As in many other countries, league competition in Spain is hierar-

chical. It has three professional divisions: Primera Division with 20 teams, Segunda

Division A with 22 teams, and Segunda Division B with 80 teams divided into four

groups of twenty teams each.8 Our subjects come from a number of clubs in the north

of Spain, a region with a high density of professional teams.

Eighty male soccer players (40 kickers and 40 goalkeepers) were recruited from

these teams with telephone calls and visiting teams in daily practices. Marca (2005)

offers a vitae of every player in Primera Division and Segunda Division A that includes

personal information, professional playing history and other records.9 Forty kicker-

8The next division in the hierarchy, Tercera Division, also includes some players who are profes-
sional in that their salaries plus bonuses are similar to the average household salary in Spain. There
are 240 teams in Tercera Division in Spain. Teams in divisions lower in the hierarchy, playing in
“regional leagues,” do not typically have any professional players. Our sample of amateur players
comes from Tercera Division and these regional leagues.

9The average age in the sample is 26.5 years, and the average number of years of education is
11.2. No player that had played professionally for less than two years at the time of the experiment
was recruited. Data on wages and salaries on individual players are not publicly available, but esti-
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goalkeeper pairs were formed randomly using the last two digits of their national

ID card with the only requirement that subjects who were currently playing or had

played in the past for the same team were not allowed to participate in the same pair.

Undergraduate students. One hundred and sixty male subjects were re-

cruited from the Universidad del Páıs Vasco in Bilbao, and by visiting different un-

dergraduate classes. Subjects majoring in economics or mathematics were excluded

from the sample. Half of the subjects had no soccer experience. The other half had

soccer experience at the amateur level as they were required that they should be

currently participating in regular league competitions in regional amateur divisions,

that is Tercera Division and below.10 These leagues follow exactly the same structure,

calendar schedule, and are governed by the same rules (FIFA, 2005) as professional

leagues.

Pairs were formed randomly using the last two digits of their national ID card. For

subjects with soccer experience, those who were currently playing or had previously

played for the same team were not allowed to participate in the same pair.

2.2 Experimental Designs

2.2.1 Experiment 1: Penalty Kick

In soccer, a penalty kick is awarded against a team that commits a punishable offense

inside its own penalty area while the ball is in play. The Official Laws of the Game

(FIFA, 2005) describe in detail the simple rules that govern this strategic interaction.

Each penalty kick involves two players: a kicker and a goalkeeper. In a typical

kick the ball takes about 0.3 seconds to travel the distance between the penalty

mark and the goal line; that is, it takes less than the reaction time plus goalkeeper’s

movement time to any possible path of the ball. Hence, both kicker and goalkeeper

must move simultaneously. The penalty kick has only two possible outcomes: score

or no score. Actions are observable, and the outcome of the penalty kick is decided

almost immediately after the players choose their strategies.11

The clarity and simplicity of these rules suggests not only that the penalty kick

mates from Marca (2005) and Deloitte and Touche (2005) indicate that wage expenditures represent
between 60 to 75 percent of revenue for most clubs. This means that for the typical squad of 25
players, the average yearly wage is about 2 million dollars in Primera Division and 0.5 million dollars
in Segunda Division A. These amounts exclude other sources of revenues such as endorsements.
10The average age in the sample is 20.7 years, and the average number of years of education is

15.1. There are no statistical differences between the two pools of college subjects.
11See Palacios-Huerta (2003) for further details and references.
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can be studied empirically, but also that it may be easily reproduced in an artificial

setting such as a laboratory. For instance, the basic structure of a penalty kick may

be represented by the following simple 2× 2 game:
i\j
L
R

L R
πLL, 1− πLL πLR, 1− πLR
πRL, 1− πRL πRR, 1− πRR

,

where πij denotes the kicker’s probabilities of scoring when he chooses i and the

goalkeeper chooses j, for i, j ∈ {L,R}. This game has a unique Nash equilibrium
when πLR > πLL < πRL and πRL > πRR < πLR, which requires each player to use

a mixed strategy. When this game is repeated, equilibrium theory yields two sharp

testable predictions:

1. The probability that a goal will be scored must be the same across each

player’s strategies, and equal to the equilibrium scoring probability, namely: p =

(πLRπRL − πLLπRR) /(πLR − πLL + πRL − πRR).

2. Each player’s choices must be serially independent. Hence, players’ choices

must be independent draws from a random process and should not depend on one’s

own previous play, on the opponent’s previous play, or on any other previous actions

and outcomes.

Using data on over a thousand penalty kicks during a five year period in three

countries, Palacios-Huerta (2003) found strong support for the two implications of

this 2x2 model. We adopt this model and bring it to the laboratory. The payoffs we

use in the experiment are:

πLL = 0.60; πLR = 0.95; πRL = 0.90; πRR = 0.70,

which come from a sample of 2,717 penalty kicks collected from European profes-

sional leagues during the period 1995-2004.12 No other field referents and no soccer

terminology that may trigger any type of psychological reaction were used in the

experiment.13 In particular, subjects are not told that the structure of the game

corresponds to a penalty kick or that the payoffs correspond to empirically observed

probabilities.

12The exact empirical probabilities in the sample are πLL = 0.597, πLR = 0.947, πRL = 0.908,
and πRR = 0.698. The sample includes the 1,417 penalties studied in Palacios-Huerta (2003), which
discusses how to treat the few occasions in which the strategy of “center” may be observed in the
soccer field.
13As is well known, the choice of parameters can add some field context to experiments. The idea,

pioneered by Grether and Plott (1984) and Hong and Plott (1982), is to estimate parameters that
are relevant to field applications and take these into the lab.
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The rules of the experiment, which follow as closely as possible O’Neill’s (1987),
are the following. The players sat opposite each other at a table. Kickers played the
role of row player and goalkeepers the role of column player. Each held two cards
(A and B) with identical backs. A large board across the table prevented them from
seeing the backs of each opponent’s cards. The experimenter gave them one page
with the following instructions (in Spanish), which he then read aloud to them:

“We are interested in how people play a simple game. You will first
play this game for about 15 hands for practice, just to make sure you
are clear about the rules and the results. Then, you will play a series of
hands for real money at 1 euro per hand. Before we begin, first examine
these dice. They will be used at some point during the experiment. They
generate a number between 1 and 100 using a 10-face die for the tens and
another 10-face die for the units. The faces of each die are marked from
‘0’ to ‘9,’ so the resulting number goes from ‘00’ to ‘99,’ where ‘00’ means
100. [The two subjects examine the dice and play with them.] The rules
are as follows:
1. Each player has two cards: A and B.
2. When I say “ready” each of you will select a card from your hand

and place it face down on the table. When I say “turn,” turn your card face
up and determine the winner. (I will be recording the cards as played).
3. The winner should announce “I win,” and will then receive 1 euro.
4. Then return the card to your hand, and get it ready for the next

round.
I will explain how the winner is determined next. Are there any ques-

tions so far?
Now, the winner is determined with the help of the dice as follows:
• If there is a match AA, [row player’s name] wins if the dice yield a

number between 01 and 60; otherwise [column player’s name] wins.
• If there is a match BB, [row player’s name] wins if the dice yield a

number between 01 and 70; otherwise [column player’s name] wins.
• If there is a mismatch AB, [row player’s name] wins if the dice yield

a number between 01 and 95; otherwise [column player’s name] wins.
• If there is a mismatch BA, [row player’s name] wins if the dice yield

a number between 01 and 90; otherwise [column player’s name] wins.

The following diagram may be useful:

1\2 A B
A .60 .95
B .90 .70
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Are there any questions?”

Thus, the game was presented with the help of a matrix, and subjects learned

the rules by a few rounds of practice. The unique mixed-strategy equilibrium of this

game dictate that row and column players choose the A card with probabilities 0.3636

and 0.4545, respectively. The subjects played 15 rounds for practice and then 150

times for real money, proceeding at their own speed. They were not told the number

of hands they would play. On the few occasions they made an error announcing the

winner, the experimenter corrected them.

A typical session lasted about one hour and fifteen minutes, proceeding at about

2 hands per minute. From the perspective of the response times study of Rubinstein

(2005) on instinctive and cognitive reasoning, it is of interest to note that professionals

took on average 70 minutes, which is 15 percent less time than the average time

taken by college students: 81 minutes and 24 seconds. The difference is statistically

significant.

2.2.2 Experiment 2: O’Neill (1987)

The design of this experiments closely follows O’Neill’s original design. The players
sat opposite each other at a table. Each held four cards with identical backs. A
large board across the table prevented them from seeing the backs of each opponent’s
cards. The experimenter gave one page with the following instructions (in Spanish)
to the participants, which he then read aloud to them:

“We are interested in how people play a simple game. You will first
play this game for about 15 hands for practice, just to make sure you are
clear about the rules and results. Then, you will play a series of hands
for money at 1 euro per hand. The rules are as follows:
1. Each player has four cards: {Red, Brown, Purple, Green}.
2. When I say “ready” each of you will select a card from your hand

and place it face down on the table. When I say “turn,” turn your card face
up and determine the winner. (I will be recording the cards as played).
3. The winner should announce “I win,” and will then receive 1 euro.
4. Then return the card to your hand, and get it ready for the next

round.

Are there any questions?

Now, to determine the winner: [subject 1’s name] wins if there is a
match of Greens (two Greens played) or a mismatch of other cards (Red-
Brown for example); hence, [subject 2’s name] wins if there is a match of

8



cards other than Green (Purple-Purple for example) or a mismatch of a
Green (one Green, one other card).”

Thus, the game was presented without the help of a matrix and subjects learned

the rules by practice. The payoff structure of the game is:

1\2 Red Brown Purple Green
Red − + + −
Brown + − + −
Purple + + − −
Green − − − +

where the ‘+’ and ‘−’ symbols denote a win by the row and column player respectively.
The stage and the repeated games have a unique equilibrium which requires both

players to chose the red, brown, purple, and green cards with probabilities 0.2, 0.2,

0.2, 0.4, respectively. Subjects played 15 rounds for practice and then 200 times for

real money, proceeding at their own speed. They were not told the number of hands

they will play. If they happened to make an error in determining the winner, the

experimenter corrected them.

A typical session lasted slightly above one hour, proceeding at about 3.3 hands

per minute. As in the previous case, professionals took less time than college students

(in this case about 11 percent less time on average: 61.2 versus 67.9 minutes). The

difference is statistically significant.

There are several differences between our design and that of O’Neill. For one

thing, our subjects engage in 200 stage games instead of 105. Secondly, we rename

the elements of the action space to be {Red, Brown, Purple, Green}, as in Shachat
(2002), rather than using {Ace, Two, Three, Joker}. This is done to avoid the

previously observed Ace bias.14 Nonetheless, in order to avoid confusion and to

facilitate comparison with the literature, actions will be referred to by the names used

in O’Neill’s experiment for the remaining exposition of the paper, namely 1 (Ace) for

Red, 2 (Two) for Brown, 3 (Three) for Purple, and J (Joker) for Green. A last

difference is that we use much greater stage game payoffs (the winner receives 1 euro

for a win, that is about 1.30 dollars using the exchange rate at the time the experiment

took place, rather than 5 cents), and do not provide any initial endowments to the

players.

14See O’Neill (1987) and Brown and Rosenthal (1991).
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3 Experimental Evidence

This section is structured as follows. We first describe the evidence from the penalty

kick experiment for both the professionals and the college students with no soccer

experience, and then the results for O’Neill’s experiment for each of these two pools

of subjects.

3.1 Penalty Kick Experiment

3.1.1 Professional Soccer Players

Table 1A presents aggregate statistics describing the outcomes of the experiment. We

use the standard notation of L and R instead of A and B. In the top panel each

interior cell reports the relative frequency with which the pair of moves corresponding

to that cell occurred. The Minimax relative frequencies appear in parentheses and the

standard deviation for the observed relative frequencies under the Minimax hypothesis

appear in brackets. At the bottom and to the right are the overall relative frequencies

with which players were observed to play a particular card, again accompanied by

the corresponding relative frequencies and standard deviations under the Minimax

model. Observed and Minimax win frequencies for the row player are reported in the

bottom panel.

[Table A1 here]

The pattern of observed relative frequencies for each pair of choices shows a gen-

eral consistency with the Minimax model in that they all are within 1 to 2 percentage

points from the predicted frequencies. Likewise, the marginal frequencies of actions

for the players are extremely close to the Minimax predictions for the column player.

Row players, on the other hand, choose frequencies 0.333 for L and 0.667 for R,

which, while close to the Minimax predictions, are statistically different from them.15

The observed aggregate row player win frequency (0.7947), is less than one standard

deviation away from the theoretically expected value (0.7909). Although the aggre-

gate mixture of the row players is statistically different from the equilibrium one, the

difference is minuscule. Indeed, row players chose L with probability 0.33, while the

equilibrium prescribes 0.36. Also, if column players played the best response to row

players’ actual mix, their success rate would increase from 20.9 percent to only 21.6

percent.

15Indeed, the p-value of the null hypothesis that row players choose the equilibrium frequencies
is 0.06 percent, for column players it is 41 percent, and for both players it is 0.48 percent.
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Data at the individual pair level allow a closer scrutiny of the extent to which

Minimax play may be supported for most individual subjects and most pairs of play-

ers. Table A2 reports the relative frequencies of choices for each of the twenty pairs

in the sample and some initial tests of the model.

[Table A2 here]

The Minimax hypothesis implies that the choices of actions represent independent

drawings from a binomial distribution where the probabilities of L are 0.363 and 0.454

for the row and column players, respectively. We should then expect a binomial test

of conformity with Minimax play to reject the null hypothesis for 2 players at the

5 percent significance level, and 4 players at the 10 percent level. The results show

that indeed these are precisely the number of rejections at those confidence levels.

These initial findings support the hypothesis that professional soccer players play

with a high degree of accuracy, though not perfectly, with respect to the equilibrium

of the game. However, since equilibrium behavior also implies that action combina-

tions should be realizations of independent drawings of a multinomial distribution,

further support is needed. In order to test whether the players’ actions are correlated

we perform the following test. Minimax play implies that action combinations are

realizations of independent drawings from a multinomial distribution with probabil-

ities 0.165 for LL, 0.198 for LR, 0.289 for RL and 0.347 for RR. Table A2 reports

the relative frequencies of each combination of actions for each of the twenty pairs in

the sample. Using the corresponding absolute frequencies along with their Minimax

probabilities, we can then test the joint hypothesis that players choose actions with

the equilibrium frequency and that their choices are stochastically independent. A

Chi-square test for conformity with Minimax play based on Pearson’s goodness of

fit with 3 degrees of freedom produces the p-values reported in the last column of

the table. Under Minimax play we would expect to reject the null hypothesis for 1

and 2 pairs at the 5 and 10 percent significance levels. We find 0 and 2 rejections,

respectively.

Summing up, even though the observed aggregate frequency for the row players

is statistically different from the equilibrium predictions, this initial evidence lends

substantial support to the Minimax hypothesis. Our next task is to test more closely

the implications of the equilibrium of the game.
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i. Winning Rates and the Distribution of Play

Minimax play implies that the success probabilities of each action will be the same

for each player and equal to 0.7909 for the row player and 0.2090 for the column player.

Further, when combined with the equilibrium strategies, we can obtain the relative

action-outcome frequencies associated with the equilibrium. Table A3 reports the

relative frequencies of action-outcomes combinations observed for each of the row

and column players in the sample. Using the absolute frequencies corresponding to

these entries, we can then implement a Chi-square test of conformity with Minimax

play. This test would be identical to the one performed in Table A2 if it were not for

the fact that the success rate is determined not only by the choice of strategies but

also by the realization of the dice.

[Table A3 here]

The results of the test show that the null hypothesis is rejected for no player at

the 5 percent significance level, and for 3 players at the 10 percent significance level,

both cases being fewer than the expected number of rejections, 2 and 4, respectively.

Hence, at the individual level the hypothesis that scoring probabilities are identical

both across strategies and to the equilibrium rate cannot be rejected for most players

at conventional significance levels.

The question of whether behavior at the aggregate level is generated from equi-

librium play may be evaluated by testing the joint hypothesis that each one of the

experiments is simultaneously generated by equilibrium play. The test statistic for

the Pearson joint test is simply the sum of the individual test statistics for each type

of players. Under the null hypothesis, it is distributed as a χ2 with 60 degrees of

freedom for both the set of row players and the set of column players. We find that

the Pearson statistics are 40.002 and 32.486, with an associated p-value above ninety

percent in both cases.16 Hence, the null hypothesis that the data for all players were

generated by equilibrium play cannot be rejected at conventional significance levels.

We interpret these individual and aggregate results as consistent with the hypoth-

esis that these subjects equate their strategies’ payoffs to the equilibrium ones.

16The test statistics for the row and column players may not be added given that within each pair
the players’ success rates are not independent.
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ii. The Serial Independence Hypothesis

Another testable implication of equilibrium play is that a player should random-

ize using the same distribution at each stage of the game. This implies that players’

choices are serially independent. To our knowledge this hypothesis has never found

support in a laboratory setting. In particular, when subjects are asked to generate

random sequences their sequences often have negative autocorrelation, that is, indi-

viduals exhibit a bias against repeating the same choice (see Bar-Hillel and Wagenaar

(1991), Rapoport and Budescu (1992), Rapoport and Boebel (1992) and Mookherjee

and Sopher (1994)).17 This phenomenon is sometimes referred to as the “Law of

Small Numbers” (Tversky and Kanheman (1971), Camerer (1995)). The only possi-

ble exception that we are aware of is Neuringer (1986) who explicitly taught subjects

to choose randomly after hours of training by providing them with detailed feedback

from previous blocks of responses in the experiment. These training data are interest-

ing in that they suggest that experienced subjects might be able to learn to generate

randomness.18 In our case, however, subjects have accumulated their experience in

the entirely different environment of a soccer field. Moreover, professional soccer

players rarely take penalty kicks in the field in rapid succession, as they are asked

to do in the experiment. Instead, there is often a substantial time delay, typically

weeks, between subsequent penalties. Whether their skills and experience in the field

are useful to generate random sequences in a laboratory setting where stage games

are repeated in rapid succession is the question to which we turn next.

To address this question, we consider the “runs test” of serial independence previ-

ously performed by Walker and Wooders (2001), which proceeds as follows. Take

the sequence of actions chosen by player i in the order in which they occurred

si = {si1, si2, ..., sini} , where six ∈ {L,R}, x ∈ [1, ni], ni = niL + n
i
R, and n

i
R and

niL are the number of R and L choices made by player i. A run is defined as a succes-

sion of one or more identical actions which are followed and preceded by a different

action or no action at all. When the choices six are serially independent, all the com-

binations of niR right choices and n
i
L left choices out of n

i
L + n

i
R choices are equally

probable. In that case, the probability of observing r runs in a sequence of niL + n
i
R

17Slonim, Roth and Erev (2003) report evidence of positive autocorrelation in various zero-sum
2x2 games.
18See Neuringer (2002) for a thorough review of the literature.
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action choices, niL left and n
i
R right, is known (see Gibbons and Chakraborti (1992))

and given by:

f(r|niL, niR) =

⎧⎪⎨⎪⎩
2
³
niL−1
r/2−1

´³
niR−1
r/2−1

´
/
³
niL+n

i
R

niL

´
if r is even³³

niL−1
(r−1)/2

´³
niR−1
(r−3)/2

´
+
³
niL−1
(r−3)/2

´³
niR−1
(r−1)/2

´´
/
³
niL+n

i
R

niL

´
if r is odd

for r = 2, 3, . . . , niL + n
i
R.

Let ri be the observed number of runs in the sequence si. Then the null hypothesis of

serial independence will be rejected at the 5 percent confidence level if the probability

of ri or fewer runs is less than .025 or if the probability of ri or more runs is less

than .025; that is, if F (r|niL, niR) < 0.025 or if 1 − F (r − 1|niL, niR) < 0.025, where
F (r|niL, niR) =

Pr
k=1 f(k|niL, niR) denotes the probability of obtaining r or fewer runs.

The results of these tests are shown in Table A4.

[Table A4 here]

We find that the null hypothesis of serial independence is rejected for 2 players

at the 5 percent significance level and 4 players at the 10 percent level, precisely the

expected number of rejections in both cases under the null hypothesis. These results

indicate that, according to this test, the hypothesis that professional soccer players

generate random sequences cannot be rejected. They neither switch strategies too

often nor too little. Moreover, the number of rejections is remarkably consistent with

the theory. This behavior is in sharp contrast with the overwhelming experimental

evidence from the psychological and experimental literatures mentioned earlier. It

indicates that field skills and years of experience may be quite valuable, even if it

comes from situations where repetitions are not taken in rapid succession, and from

circumstances that are vastly different from those they found in the laboratory.

This evidence represents the first time that subjects have been found to display

statistically significant serial independence in a strategic game in a laboratory setting.

Furthermore, together with the evidence supporting the hypothesis that subjects

equate payoffs across strategies and to the equilibrium success rates, these results also

represent the first time that any subjects satisfy these two equilibrium conditions in

the laboratory in games where players are predicted to choose probabilistic mixtures.
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3.1.2 College Students

The results for this subject pool are presented in a way that parallels the presenta-

tion of the evidence for the professional soccer players. Table B1 presents aggregate

statistics describing the aggregate outcomes of the experiment.

[Table B1 here]

The aggregate data for these players also seem to conform well to the equilibrium

predictions since the observed frequencies appear broadly consistent with the Min-

imax model, especially for the diagonal pairs of choices. Moreover, as in the case

of professionals, the observed aggregate win frequency for the row player (0.7877)

is below one standard deviation away from the expected value. However, a closer

look quickly reveals that observed behavior is far from the Minimax predictions. For

instance, observed marginal frequencies for both the row and column players are sub-

stantially different from the predicted values.19 Furthermore, both players choose very

similar frequencies, roughly 0.40 for L and 0.60 for R. This suggests that these sub-

jects may not appreciate the slight differences in payoffs in the off-diagonal elements

of the payoff matrix, differences that in equilibrium induce players to adopt different

strategies from the opponent.

The rejections of Minimax play are even more apparent from Table B2, which

reports the marginal frequencies for each player and the relative frequencies of choices

at the pair level.

[Table B2 here]

First, the binomial test for conformity with Minimax play indicates that the model

is rejected for 6 and 22 players at the five and ten percent levels respectively. This

excessively high amount of rejections, three and more than five times greater than

those predicted by the equilibrium of the game at those levels, indicates that there will

be substantial deviations from equilibrium play in the subsequent tests of the Minimax

hypothesis. Indeed, using the absolute frequencies corresponding to the observed joint

choices reported in the table and their associated Minimax probabilities, a Chi-square

test for conformity with Minimax play indicates that the model is rejected for 6 and

19The aggregate Chi-square test for the conformity with Minimax play based on Pearson goodness
of fit has a p-value of 2× 10−13.
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9 pairs at the five and ten percent levels of significance. Under the null hypothesis

we would expect only 1 and 2 rejections, respectively.20

To sum up, the excessively high amount of rejections in these tests clearly indicate

substantial deviations from equilibrium play. Next, we test the Minimax predictions

more closely.

i. Winning Rates and the Distribution of Play

Table B3 tests whether the observed distribution of play is equal to the equilibrium

distribution using the success rates of each action for each player.

[Table B3 here]

Using the absolute frequencies corresponding to each action-outcome combination,

a Chi-square test shows that the Minimax multinomial model is rejected for 9 players

at the five percent significance level and 13 players at the ten percent level, when

the expected number of rejections under the hypothesis of Minimax play is 2 and 4

respectively. Thus, at the individual level the hypothesis that scoring probabilities

are identical across strategies and equal to the equilibrium strategies can be rejected

for an excessively high number of players.

With regard to aggregate behavior, the sum of the individual test statistics of

each type of player under the null hypothesis is distributed as a χ2 with 60 degrees

of freedom. For the row players the joint test statistic is 108.652 and for the column

players 113.102, with associated p-values 1.2×10−4 and 4.1×10−5 respectively. Hence,
the null hypothesis that the data for all players are generated by equilibrium play is

strongly rejected at conventional significance levels.

These results, therefore, indicate that observed behavior is far from the equilib-

rium one and highly different from professional soccer players’ behavior.

ii. The Serial Independence Hypothesis

In order to test whether subjects randomize across actions using the same prob-

ability distribution at each stage, we implement the runs test of serial independence.

The results are given in Table B4.

20The case of pairs #12 and #20 is interesting. Although the marginal frequencies with which
the players choose each action are not statistically different from the equilibrium strategies, their
joint behavior rejects the equilibrium multinomial model. As can be seen from the data, their joint
behavior is highly correlated in that they tend to choose main diagonal entries too frequently.
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[Table B4 here]

The null hypothesis of serial independence is rejected for 7 and 13 players at the

five and ten percent significance levels, in each case more than three times the number

of expected rejections. These findings indicate that college subjects do not generate

random sequences. Hence, they are consistent with an extensive experimental ev-

idence in the literature and drastically different from the behavior of professional

soccer players observed earlier. Also consistent with past evidence is the fact that in

most cases the reason for the rejections is an excessive number of alternations.

Consequently, the results of the tests of serial independence decisively indicate

that individuals display statistically significant serial dependence. Together with the

results from the tests of equality of winning probabilities, we can conclude that the

Minimax model is not supported for college students.

3.2 O’Neill’s Experiment

The differences between professional soccer players and college students are sub-

stantial in the penalty kick experiment. Professionals’ behavior is very close to the

equilibrium of the game while college students’ behavior is far from it. In this section

we examine a different zero-sum game in an attempt to study whether the experience

and skills that professional players use in the field are valuable in laboratory situa-

tions that do not resemble any previously encountered situation. We implement the

same tests as in the penalty kick experiment.

3.2.1 Professional Players

Table C1 presents aggregate statistics describing observed relative frequencies for each

pair of moves and each card. Minimax relative frequencies appear in parentheses, and

their standard deviations under the Minimax hypothesis in brackets. The bottom

panel reports the observed win frequencies for the row player.

[Table C1 here]

These aggregate data conform remarkably well to the equilibrium predictions. In

fact, there is a striking consistency of the observed relative frequencies with those

implied by the Minimax model. Relative frequencies for action pairs involving non-J

cards are in the neighborhood of 0.04, while relative frequencies for pairs involving
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one J card and for the pair involving the two J cards are in the neighborhood of

0.08 and 0.16 respectively. The aggregate row player win frequency (0.3945) is less

than one standard deviation away from the expected value (0.40). Also, a Chi-square

test for the conformity with Minimax play based on Pearson goodness of fit indicates

that the Minimax model cannot be rejected at conventional significance levels. It

yields a statistic of 7.873 whose p-value is above ninety percent. In addition, the

marginal frequencies of actions for the row and column players are extremely close

to the Minimax predictions. In every case, they are less than one standard deviation

away.

Table C2 reports the observed marginal frequencies for each player. Under the

Minimax hypothesis, each player’s chosen actions are a realization of a multinomial

distribution with probabilities 0.4 for the J card, and 0.2 for each of the other cards.

The table reports the p-values of the corresponding Chi-square tests with 3 degrees

of freedom. The Minimax hypothesis also implies that observed action combinations

for each pair (not reported here) are a realization of a multinomial distribution that

results from the product of the marginals mentioned above. The last column of Table

C2 reports the p-values of the corresponding Chi-square tests with 15 degrees of

freedom.

[Table C2 here]

The expected number of rejections in the case of individual players is 2 and 4

at the five and ten percent significance levels. We find that the actual number of

players for whom the null hypothesis is rejected is 2 and 3 at these levels. Likewise,

at the pair level we would expect 1 and 2 rejections respectively. We find, however,

2 and 6 rejections. These differences between the individual and pair level number of

rejections indicate that there is contemporaneous correlation in some players’ choices.

An interesting aspect of these tests is concerned with the distribution of p-values.21

If players’ choices were draws from the equilibrium mixture, the resulting p-values

should be realizations of a uniform distribution U [0, 1] both in the individual and

pair level tests. A look at the distribution of p-values in the individual level tests

readily reveals that this is not the case. The distribution is skewed towards 1. There

are far too many values above 0.5 and too few below 0.5.22 For instance, there are

21We are indebted to a referee for pointing this aspect out.
22Indeed, if we perform a Kolmogorov-Smirnov test of equality of the empirical distribution of

the forty players’ p-values to the uniform distribution, we get a statistic equal to 2.43 which is high
enough to reject the null hypothesis at virtually any significance level.
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about 14 values too many above 0.85: we would expect 6 such values and we find 20.

Thus, while about two third of the values seem consistent with a U [0, 1] distribution,

the marginal distributions of one third of the sample are too close to the equilibrium

ones, suggesting that these players do not behave as perfect iid randomizers. Section 4

discusses in more detail this feature of players’ behavior.

On the other hand, the evidence at the pair level is more consistent with strict

randomization. If we examine the hypothesis that the joint behavior is a realization

of the product of the equilibrium mixtures, the Kolmogorov-Smirnov test of equality

of the empirical distribution of p-values and the uniform distribution U [0, 1] results

in a statistic equal to 1.06 (p-value = 0.2105), which is not large enough to reject the

null hypothesis at the 20 percent level.

Based on the above findings, we can say that Minimax theory predicts well the

individual and joint behavior of our subjects.

i. Winning Rates and Distribution of Play

Table C3 tests the null hypothesis that the success probabilities for both players

are identical across strategies and equal to the equilibrium probabilities. As in Walker

and Wooders (2001) analysis of O’Neill’s data, we aggregate actions 1, 2, and 3 into a

single non-Joker action. We then implement the corresponding χ2 test of conformity

with Minimax play. The tests have three degrees of freedom given that the game

being played is known. The table also indicates the rejections that are obtained

when the test is implemented for the individual choices of cards (i.e., when 1, 2, 3,

and J are treated on an individual basis).

[Table C3 here]

The results show that for the choice of Joker and non-Joker the null hypothesis

is rejected for 3 players at the five percent significance level and 6 players at the ten

percent level, whereas the number of rejections when the test is implemented for the

individual card choices is 3 and 4 at these levels respectively. In both cases, therefore,

the number of rejections is very close to the expected number (2 and 4 respectively)

according to the null hypothesis.

We also test whether behavior at the aggregate level is generated from equilibrium

play. Since the Pearson statistic for the joint test for all row players is 53.351 with

an associated p-value of 0.715, and for all column players 55.122 with an associated

p-value of 0.654, the null hypothesis that the data for all players were generated by

equilibrium play cannot be rejected at conventional significance levels.
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ii. The Serial Independence Hypothesis

In Table C4 we implement the runs tests to study whether players’ choices are

serially independent for the choice of Joker and non-Joker cards. We find that the

null hypothesis of serial independence is rejected for 2 and 4 players at the five and

ten percent significance levels. According to the theory, this is precisely the number

of rejections that we should expect at these levels.

[Table C4 here]

These findings, therefore, support the hypothesis that professional soccer players

are able to generate random sequences in the laboratory. As professionals behave

with a high degree of accuracy with respect to the equilibrium of the game in the

previous hypothesis as well, the results are consistent with the idea that field skills

and experience transfer to this zero-sum game as well.

3.2.2 College Students

In principle, it is conceivable that it is the greater stage payoffs and the greater

number of repetitions in the experiment relative to previous implementations of the

experiment in the literature, and not the skills and field experience of the subjects,

that accounts for the consistency with the Minimax hypothesis. Thus, we turn next

to the study of college students under identical circumstances to those faced by pro-

fessionals.

The results are presented in Tables D1 to D4 in a way that parallels the pre-

sentation of the empirical evidence for the professional soccer players. They can be

summarized as follows. Our findings are consistent with those obtained by Brown

and Rosenthal (1991), Walker and Wooders (2001) and Shachat (2002) for O’Neill’s

experiment. Even though aggregate frequency data does not seem too far from equi-

librium behavior, the Minimax hypothesis is decisively rejected in virtually every

test we implement. Observed aggregate row player win percentage is more than one

standard deviation away from the predicted value (Table D1). The hypotheses that

players mix according to the equilibrium distributions are rejected, both at the in-

dividual and at the pair level, in an excessively large number of cases (Table D2).

Individual Pearson tests for the equality of winning rates to the equilibrium one are

also rejected for a very high number of subjects; at the aggregate level the joint

hypothesis that each observation is generated from equilibrium play is rejected for
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all row players and all column players as well, both when cards are treated as NJ

and J, and when they are treated on an individual basis (Table D3). There is also

strong evidence that too many players, relative to the Minimax predictions, exhibit

statistically significant serial dependence in the runs tests (Table D4), in fact about

three times the number of rejections observed for professional players.

As in the penalty kick experiment, these findings are in sharp contrast with those

obtained for professional soccer players. These results also testify to the robustness

of previous findings in the literature. Although we use much greater monetary in-

centives and more repetitions than in O’Neill’s original experiment, and we do find

improvements in the behavior of college students from the perspective of equilibrium

(see Table F in the next section for a comparison), the Minimax model continues to

be rejected. Given that the circumstances of the experiment are identical for college

students and professional players, the results indicate that field skills and experience

are indeed important.

4 Discussion

4.1 Evaluation of the Results

Over the past decades, many experimental attempts have been made to test the theory

of Minimax, the results of which seem to go against the theory.23 The first tests

that yielded some support to the equilibrium theory used empirical data obtained

from competitive sports. Walker and Wooders (2001), for instance, bring evidence

that top tennis players may behave much more closely to the equilibrium predictions

than the experimental subjects whose play had been observed thus far. Palacios-

Huerta (2003) offers additional empirical evidence showing that professional soccer

players’ play is consistent with Minimax theory. In order to properly evaluate our

experimental results and compare them with the previous literature, let us describe

some implications of Minimax theory and the circumstances under which they are

testable.

When players behave according to the unique mixed strategy equilibrium of a

given game,

1. The distribution of play should be close to the equilibrium one;

2. Marginal frequencies should be close to the equilibrium mixtures;

23See O’Neill (1987), Erev and Roth (1998) and the references therein.
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3. For each player, success rates should be:

(a) equal across chosen actions,

(b) equal to the equilibrium success rate;

4. There should be no contemporaneous correlation;

5. There should be no serial correlation.

The above are some of the direct implications of equilibrium play. There are other,

second order, implications as well:

6. When one tests for implication 2, the distribution of the resulting p-values

across individuals and pairs should be close to uniform. Similarly, in the tests of im-

plication 3, the distribution of p-values across individuals should be close to uniform.

Not all the above implications are equally strong. For example, implication 1

implies 2, but not the other way around. Indeed, marginal frequencies may well

be the equilibrium ones but due to contemporaneous correlation, the distribution of

play may be far from the equilibrium distribution. Similarly, implication 1 implies 3,

but not the other way around. Also, neither 1, 2 and 3, either jointly or separately,

imply 6, and clearly 4 does not imply 5. Needless to say, the failure of even a single

one of the above implications is enough to conclude that the observed behavior is not

consistent with equilibrium. Nevertheless, if we are willing to go beyond the reject/no

reject approach of classical hypothesis testing, we may say that the more implications

are not rejected, and the stronger these are, the more closely the observed behavior

conforms to the theory.24

When the game is not known, as in the case of empirical studies like Walker and

Wooders (2001) and Palacios-Huerta (2003), implications 1,2 and 3b cannot be tested.

This is so because since the game is not known, the equilibrium is not known either.

On the other hand, implication 3a can be tested (using the Maximum Likelihood

estimates of the success rates) even when the game is not known. Further, one can

use the resulting p-values to check the corresponding implication 6. The favorable

evidence reported in Walker and Wooders (2001) is based only on the non rejection of

implication 3a and implication 6 when applied to 3a. Similarly, the favorable evidence

reported in Palacios-Huerta (2003) is based on the non rejection of implications 3a,

5, and 6 applied to 3a.

24See O’Neill (1991) for an argument supporting a Bayesian approach to hypothesis testing com-
bined with a measure of closeness of the results to the predictions that is much less rigid than
the reject/no reject dichotomy. He argues that this approach may be particularly appropriate for
situations which make precise point predictions as the games we study.
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When the game is known, as is typically the case in experimental studies like the

present one, all the above implications are testable. In other words, the number and

strength of the implications we can test is greater than in the field studies where

the theory found support. Our qualitative results for the case of professional soccer

players can be summarized as follows:

• Implications 1 and 2 are not rejected at the individual level, both in the penalty
kick game and in O’Neill’s game. At the aggregate level, these implications are

not rejected for O’Neill’s game.

• Although in the penalty kick game implication 1 is rejected at the aggregate
level (and so is implication 2 for row players), an alternative hypothesis that

the row players play the mixture 1/3 - 2/3 (only 3 percentage points apart from

the theoretical 0.36-0.63 mixture), and the column players play the equilibrium

mixture, is far from being rejected. This alternative hypothesis is consistent

with the implication 4 of no contemporaneous correlation. And although 1/3

is statistically significantly different from 0.36, it seems it would be unfair to

blame players for not hitting 0.36 precisely, especially when the opponents, even

if they were sharp enough to notice it, could barely increase their success rate.

• Implications 3 and 4 are not rejected.

• There is little evidence of serial correlation.

• In O’Neill’s game, implication 6 is rejected when applied to implication 2 at
the player level but not at the pair level. It is also rejected when applied to

implication 3b but not to implication 3a.25

Based on the above, we can say that although strictly speaking Minimax theory

is rejected, it is still useful in explaining the experimental behavior of professional

soccer players in the lab. More importantly perhaps, as the testable implications in

the field (3a, 5, and 6 applied to 3a) find support in the field, and also find strong

support in the lab both in the penalty kick and O’Neill’s games, the evidence in the

lab represents a good predictor for how they behave in the field.

Lastly, with regard to the main evidence against the theory, it consists of the fact

that in O’Neill’s game the marginal frequencies of one third of the players’ action

25The p-values of the corresponding Kolmogorov-Smirnov tests are 0.267 for implication 3a and
0.002 for implication 3b.
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choices are too close to the equilibrium mixtures to have been generated by an i.i.d.

process. Nevertheless, as long as players’ behavior is largely unpredictable to other

players, which seems to be the case given that the data pass our tests of serial in-

dependence, we may safely say that the Minimax theory does well in explaining our

soccer players’ choices.

4.2 Are All Professionals Perfect IID Randomizers?

The time series evidence from the runs tests is not inconsistent with this hypothesis

in any of the two experiments we have implemented. Yet, the cross-sectional evidence

in O’Neill’s game showed that about one third of the players in this experiment chose

actions with a relative frequency that is too close to the equilibrium distribution.

While this is evidence that Minimax theory is useful for predicting subjects’ behavior,

it is also evidence that these players are not choosing their actions according to

an exact i.i.d. process. Next we examine whether similar evidence of this lack of

randomization may also be present in the 2x2 game.

Recall that in the 2x2, penalty kick game, the hypothesis that professionals play

according to the equilibrium was rejected at the aggregate level. The reason is that

the aggregate relative frequencies with which row players choose their actions are

statistically different from the equilibrium mixtures. This suggests the hypothesis

that subjects do randomize, but with non-equilibrium probabilities. Consider the

following hypothesis: “At each stage, row players choose L and R with probabilities

1/3 and 2/3, respectively, and column players with probabilities 0.462 and 0.538.”26

It turns out that a Chi-square test based on Pearson goodness of fit indicates this

new hypothesis cannot be rejected at conventional significance levels. It yields a

statistic of 0.296 whose p-value is 0.96. Further, we can perform for each player a chi-

square test of conformity with our new hypothesis and check whether the resulting

distribution of p-values is significantly different from uniform U [0, 1]. And indeed, it

turns out that a Kolmogorov-Smirnov test rejects the hypothesis that the p-values

are draws from a uniform distribution. It yields a statistic of 1.99 with a p-value =

0.0007. The reason is, as in O’Neill’s experiment, that the p-values are much higher

than expected. In other words, our alternative theory predicts subjects’ choices “too

well.”

The excessive closeness of the observed frequencies to the hypothesized ones sug-

26These are the empirical frequencies. If we replace column players’ frequencies by the equilibrium
ones the qualitative results do not change.
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gests that subjects do not randomize, but rather try to “match” some probabilities

they have, consciously or unconsciously, in mind. In the case of the penalty kick

game, it does not seem unreasonable that row players may try to keep their choices

of L and R close to the 1/3 — 2/3 distribution. This distribution is very close to the

equilibrium one, the difference likely to be difficult to detect by the opponent, and

it is arguably much simpler to play than the equilibrium distribution. These may

explain why they seem to try to choose R twice as often as L. Similarly, in O’Neill’s

game about one third of the subjects seem to try to keep their choices too close to

the equilibrium distribution which, interestingly enough, also prescribes choosing the

J card twice as often as any other given card.

4.3 Features that Catalyze Equilibrium Play

There is a growing literature in experimental economics that shows how certain

anomalies found in experiments with students as subjects are attenuated when the

experiments are implemented, instead, with a non-standard pool of subjects in their

own natural environment (e.g., List (2003, 2004)). On the other hand, there is also

evidence that experienced players still exhibit some non-equilibrium behavior when

they play under laboratory conditions where they perform abstract tasks that lack a

familiar context and that may not capture all the relevant aspects of the environment

encountered in the field.27 The non-equilibrium behavior observed in some profes-

sionals in O’Neill’s game may in part be attributed to this aspect. Recall that this is

an unfamiliar game and that the equilibrium requires treating a subset of available

choices (the three non-J cards) identically to each other. Clearly, this component of

the equilibrium represents an abstract task that professionals have never encountered

in the field. Indeed, if we look only at the distribution of non-J card choices and com-

pare it to the equilibrium distribution 1/3-1/3-1/3, we find that the cross-sectional

distribution of the p-values of the tests is even more skewed than the distribution

in the tests for all the cards. Thus, subjects exhibit a tendency to match particu-

larly well the equilibrium frequencies of these three cards. While this may not be

exceedingly surprising since the written instructions of the experiment already treat

the NJ cards identically, this evidence indicates that the unfamiliar component of the

27Kagel (1995), for instance, suggests that the reasons why professional bidders from the construc-
tion industry fall prey to the winner’s curse in the experiments he cites are that (i) experiments
strip away a number of contextual cues that they employ in field settings, and (ii) the bidding
environment created in the experiment is not representative of the environment encountered in the
field as the construction industry has private value and repeated play elements that are not present
in the experiments.
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equilibrium in this game drives the one departure from Minimax that some subjects

exhibit.28

Lastly, there is also a literature that addresses the effect of context as an induce-

ment towards equilibrium behavior. Cooper et al (1999), for instance, show that

context speeds up the learning process of Chinese managers towards equilibrium play

in a signaling game. In the psychology literature, Cosmides (1989) and Gigerenzer

and Hug (1992) report experimental evidence that the introduction of context dra-

matically reduces anomalous behavior in the unfamiliar but arguably simple Wason

selection task.29 In our experiments, professional soccer players were given no contex-

tual cues. Although our 2x2 games were calibrated to be as close as possible to the

real life penalty kick, players were not informed of this fact. Furthermore, O’Neill’s

4x4 game is far from being representative of any interactive situation soccer play-

ers may encounter in their everyday life. Therefore, it seems somewhat striking that

players exhibited very few departures from Minimax play. The following observations

may help elucidate our results:

Simplicity of the games. The zero-sum games studied in our experiments are very

simple and do not require too much abstraction. They are complete information

games with very few actions. In fact, our 2x2 game requires little more than perform-

ing the routine, day-to-day tasks of professional players. Note that besides playing

one official game per week, these people practice 4-5 hours a day, 4-5 days a week,

for 10 months a year, and soccer is a game that involves many zero-sum strategic

situations (not only penalty kicks) that require randomization.30 In this sense, our

subjects might have spent a large part of their lives attempting to generate i.i.d. se-

quences while facing opponents that do the same. O’Neill’s game on the other hand is

simple in the sense that payoffs involve no probabilities and there are only two payoff

levels; all that players need to know is that there are outcomes in which they win, and

outcomes in which they lose. Compare this simplicity with the informational require-

28In general, matching frequencies is a behavior consistent with the evidence in the economics
and psychology literature documenting that agents exhibit a law of small numbers bias (see e.g.,
Tversky and Kahneman (1971), Rabin (2002) and other references therein). Although it is the time
series properties (negative autocorrelation) of this law that has been the focus of the literature, the
cross-sectional implication is also quite apparent: a distribution of p-values skewed towards 1.
29Ortmann and Gigerenzer (2000) summarize the results of the effect of context on experimental

outcomes in this task.
30Data from the weekly official games indicate that the goalkeepers in our sample are involved,

on average, in twelve penalty kicks per year, and our kickers in roughly seven. About one third of
the kickers can be considered “designated penalty kick takers” for their teams. For this subset the
average number of penalty kicks is eleven. No data are available for their day-to-day practices.
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ments of common value auctions like the ones used in several experimental studies

(e.g., Kagel (1995), Harrison and List (2005)). In these type of auctions, there is an

underlying (possibly infinite) set of states of the world over which each player holds

a prior, and each player has a state dependent utility function. Unlike in O’Neill’s

game, both the priors and the utility functions affect the equilibria of these Bayesian

games. Strategies in these games are very complicated objects, and the equilibrium

ones are much more difficult to calculate, or even guess, than those in our zero-sum

games.

Uniqueness of the equilibrium: Both our zero-sum games have unique equilibria

that are independent of the risk preferences of the players. Players only need to

know that both players want to win. Even the simple signaling games of Cooper et

al (1999) are of an order of magnitude more complex than our zero-sum games.31

They usually have several equilibria which even the most accepted refinements fail

to disqualify. It is not completely surprising then that some contextual cues may

help players coordinate on one of them. In our zero-sum games there is not much to

coordinate on. Moreover, we know of no solution concept that does not select the

Minimax strategies in zero-sum games. It seems that context does not add much to

the structure of the simplest of these games.

These considerations may help to explain why none of the potential drawbacks

and limitations associated with the artificial environment that represents a laboratory

seem to induce professional players to play very differently from the way they play

in the field (in the penalty kick experiment) and from Minimax equilibrium play (in

both games). At the same time, they are not sufficient for inexperienced student

subjects to play according to the predictions of equilibrium.

5 Additional Evidence and Extensions

In this section we discuss some additional evidence we have collected and studied:

1. Tests of Serial Independence. We have considered a logit model for

individual players to study whether own and opponent’s past choices and outcomes,

alone and interacted, play a role in determining current choices. For O’Neill’s ex-

periment we have followed the formulation that Brown and Rosenthal (1990) study,

whereas for the penalty kick experiment we have followed the formulation suggested

31This may explain the observation in Cooper et al (1999) that in abstract tasks, without contex-
tual cues, students tend to perform old managers with inferior education.
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in Slonim, Roth and Erev (2003). Consistent with the evidence from the runs tests,

the main finding is that the null hypothesis that all the explanatory variables are

jointly statistically insignificant is rejected for very few professional subjects, espe-

cially in the penalty kick experiment, whereas it is rejected for up to six times many

more students.32

We have also pooled all forty subjects for each experiment and class of players and

estimated the binary choice dynamic panel data model with predetermined endoge-

nous variables and unobserved individual heterogeneity developed in Arellano and

Carrasco (2003). The model controls for the state dependence that may be caused

by past choices and past outcomes. The results confirm previous findings in that no

lagged endogenous variables (past own and opponent’s choices and outcomes alone

or interacted) are significant for professionals. Negative autocorrelation and positive

reinforcement, however, significantly characterize the behavior of students.

2. Robustness. We have also studied some variations in the experiments with

smaller samples of subjects. For instance, in the penalty kick experiment we used

payoffs that are entirely different from the scoring probabilities occurring in the field.

We also studied the behavior of professional players where kickers in the soccer field

play the role of goalkeepers in the laboratory and vice versa. Although care should

be exercised here since our sample sizes are smaller, we find that none of these modi-

fications of the experimental procedures seem to cause any significant changes in the

basic results obtained earlier: professional soccer players continue playing with a high

degree of accuracy with respect to the equilibrium predictions while college students

do not.

3. Extensions. The important differences among subject pools open up var-

ious avenues for further research. For instance, it may be of interest to study the

extent to which field experience at the professional level is necessary to reach the

predicted equilibrium. As indicated earlier, we have pursued this question by re-

cruiting subjects drawn from the same pool of male college students as the students

recruited previously, except that they were required to be currently playing in one

of the official amateur senior regional leagues, including Tercera Division, described

in Section 2. Playing in these leagues is still quite competitive. Amateur teams

practice as often as professional ones and have exactly the same 10-month playing

schedule. Also, players in these leagues began playing soccer as early as those that

became professional. Hence, conditional on age, they have roughly the same years of

32Likewise, we also considered the test suggested in Shachat (2002) and found substantial serial
correlation among standard college students but not among professional soccer players.
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field experience. They simply are not as skilled as professional players in the many

different aspects of the game.

We implemented both the penalty kick experiment and O’Neill’s experiment for

these subjects. Tables E and F report the main results along with those obtained with

professional players and college students with no soccer experience presented earlier.

In Table F, in addition, we include the results of Pearson’s tests of equality of winning

rates when, rather than using the equilibrium value, we use its maximum likelihood

estimate,33 and the original results of O’Neill’s experiment reported in Brown and

Rosenthal (1990) and Walker and Wooders (2001).

[Tables E and F here]

We find that the behavior of these subjects adheres in many cases almost as closely

as the behavior of professionals to the equilibrium predictions, and sometimes even

slightly better. As such they differ greatly from the way the standard pool of college

students behave.

These results indicate that field skills and years of experience playing soccer, a

game that offers several opportunities to behave strategically in zero-sum situations,

are a critical determinant of behavior in the laboratory.

6 Concluding Remarks

This paper exploits three distinct features of soccer: (i) the existence of a precisely

defined strategic situation played in the soccer field whose formal structure can be

reproduced in the laboratory, (ii) the fact that this situation has a unique mixed-

strategy equilibrium, and (iii) the evidence that professional subjects play in a real

life setting consistent with the equilibrium of this game. These features are helpful

for designing a first artefactual field experiment about mixed-strategy interactions

that isolates the role of laboratory context and which allows the comparison of field

and laboratory behavior.

We find that experience and skills “travel” from the familiar soccer field to the

highly unfamiliar laboratory when subjects play a game that is formally identical

to a game they find under natural circumstances (List (2003, 2006), Harrison and

List (2004)). They are also valuable for playing with a high degree of accuracy with

33This is the procedure that Walker and Wooders (2001) follow in their reanalysis of O’Neill’s
data. It implies that the tests at the player level have 1 degree of freedom instead of 3.
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respect to the equilibrium in a zero-sum game that subjects have never faced before.

These findings provide insights into the transfer of knowledge across strategic settings

and also indicate that is important how experience is defined in experimental settings.

Our results may have theoretical, methodological and cognitive implications:

In terms of the theory, since professionals behave with a high degree of accu-

racy with respect to equilibrium, the theoretical concept of equilibrium may have

greater predictive power than previously considered, even in artificial settings such

as a laboratory.

From a methodological perspective the results are relevant to the extent to which

data that are typically used to inform game theory and other theoretical areas in

various social sciences as well, often comes from laboratory environments. In this

sense, the insights obtained in the laboratory with the pool of subjects that we would

be interested in studying empirically in the field seem largely applicable for predicting

field behavior.

Lastly, from a cognitive perspective our findings are consistent with the idea

that skills are learned unconsciously and are active in the solution of the games we

have studied. In this sense, the “capacity of motivated subjects to find equilibrium

outcomes . . . without cognitive awareness of this capacity” emphasized in Smith

(2005) is supported, for the first time to our knowledge, in situations requiring use

of mixed strategies. From this perspective, Camerer, Loewenstein and Prelec (2005)

discuss neurological evidence showing how “with experience at a task or a problem,

the brain seems to gradually shift processing toward brain regions and specialized

systems that can solve problems automatically and efficiently with low effort.” We

cannot disregard the idea that years of field experience in different zero-sum strategic

situations, not only in penalty kicks, have had these effects in professional soccer

players. Similarly, we cannot disregard the idea that players that became professional

were born with greater aptitude for playing strategic zero-sum games. Likewise,

selection rules into the experiment may be different for professionals and students.

To delineate between treatment and selection effects further treatments in the spirit

of List (2003, 2006) would be needed.
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Table A1 
 

Relative Frequencies of Choices and Win Percentages 
in Penalty Kick’s Experiment for Professional Players 

 
 
 
 
A. Frequencies 

        

        Column Player   
          Choice    Marginal 
     Frequencies for 
  L R  Row Player: 

 L 0.152 0.182  0.333 
   (0.165) (0.198)  (0.364) 

Row   [0.0068] [0.0073]  [0.0088] 
Player       
Choice R 0.310 0.356  0.667 

   (0.289) (0.347)  (0.636) 
   [0.0083] [0.0087]  [0.0088] 
         

      Marginal 0.462 0.538   
Frequencies for (0.455) (0.545)   
Column Player: [0.009] [0.009]   

 
 
B. Win Percentages  
    

Observed Row Player Win Percentage: 0.7947
Minimax Row Player Win Percentage: 0.7909
Minimax Row Player Win Std. Deviation: 0.0074

 
 
_________________________________________________________ 
Notes: In Panel A numbers in parentheses represent Minimax predicted relative  
frequencies. Numbers in brackets represent standard deviations for observed relative 
frequencies under the Minimax hypothesis. In Panel B, Minimax Row Player Win  
Percentage and Std. Deviation are the mean and the std. deviation of the observed row  
player mean percentage win under the Minimax hypothesis. 

 
 
 



Table A2 

Marginal Frequencies and Action Pair Frequencies in Penalty Kick’s Experiment for Professional Players 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Notes: ** and * denote rejections at the 5 and 10 percent levels respectively of the Minimax binomial model for the marginal frequencies  
of the row and column players. In the last column they denote rejections of the joint hypothesis that both players in a pair choose actions  
with the equilibrium frequency. 

 
Marginal 

Frequencies 
 

                       Pair Frequencies  
 

Pair # 
Row 

L 
Column 

L LL LR RL RR χ2  p-value 
1 0.320 0.453 0.140 0.180 0.313 0.367 0.729 
2 0.360   0.380* 0.127 0.233 0.253 0.387 0.305 
3 0.307 0.427 0.127 0.180 0.300 0.393 0.459 
4 0.327 0.460 0.153 0.173 0.307 0.367 0.819 
5 0.327 0.493 0.153 0.173 0.340 0.333 0.568 
6 0.340 0.480 0.140 0.200 0.340 0.320 0.525 
7    0.287** 0.427 0.133 0.153 0.293 0.420 0.190 
8 0.320 0.460 0.100 0.220 0.360 0.320  0.068* 
9 0.307 0.467 0.133 0.173 0.333 0.360 0.479 
10 0.313 0.480 0.167 0.147 0.313 0.373 0.454 
11 0.353 0.480 0.180 0.173 0.300 0.347 0.866 
12   0.427* 0.480 0.193 0.233 0.287 0.287 0.359 
13 0.367 0.473 0.167 0.200 0.307 0.327 0.952 
14 0.327 0.447 0.153 0.173 0.293 0.380 0.782 
15 0.340    0.553** 0.173 0.167 0.380 0.280   0.071* 
16 0.320 0.473 0.160 0.160 0.313 0.367 0.659 
17 0.347 0.467 0.200 0.147 0.267 0.387 0.256 
18 0.327 0.440 0.140 0.187 0.300 0.373 0.791 
19 0.327 0.440 0.140 0.187 0.300 0.373 0.791 
20 0.327 0.460 0.153 0.173 0.307 0.367 0.819 



Table A3 - Testing that Professional Players Equate  
their Strategies’ Payoffs to the Equilibrium Rates 

 
      
  L R Pearson  

Pair # Player Success Fail Success Fail statistic p-value 
1 Row 0.260 0.060 0.540 0.140 1.360 0.715 
  Column 0.080 0.373 0.120 0.427 0.491 0.921 
2 Row 0.300 0.060 0.500 0.140 0.645 0.886 
 Column 0.047 0.333 0.153 0.467 6.441  0.092* 
3 Row 0.233 0.073 0.553 0.140 2.351 0.503 
  Column 0.100 0.327 0.113 0.460 0.774 0.856 
4 Row 0.247 0.080 0.540 0.133 1.306 0.728 
 Column 0.107 0.353 0.107 0.433 0.302 0.960 
5 Row 0.280 0.047 0.520 0.153 2.278 0.517 
 Column 0.100 0.393 0.100 0.407 0.989 0.804 
6 Row 0.280 0.060 0.513 0.147 0.776 0.855 
 Column 0.080 0.400 0.127 0.393 1.755 0.625 
7 Row 0.207 0.080 0.600 0.113 6.673  0.083* 
 Column 0.093 0.333 0.100 0.473 1.161 0.762 
8 Row 0.273 0.047 0.507 0.173 3.640 0.303 
 Column 0.113 0.347 0.107 0.433 0.670 0.880 
9 Row 0.233 0.073 0.560 0.133 2.508 0.474 
 Column 0.113 0.353 0.093 0.440 1.134 0.769 

10 Row 0.247 0.067 0.560 0.127 2.051 0.562 
 Column 0.093 0.387 0.100 0.420 0.617 0.892 

11 Row 0.260 0.093 0.513 0.133 1.018 0.797 
 Column 0.107 0.373 0.120 0.400 0.683 0.877 

12 Row 0.327 0.100 0.493 0.080 5.132 0.162 
 Column 0.073 0.407 0.107 0.413 1.857 0.603 

13 Row 0.287 0.080 0.480 0.153 0.657 0.883 
 Column 0.100 0.373 0.133 0.393 1.112 0.774 

14 Row 0.247 0.080 0.553 0.120 1.843 0.606 
 Column 0.080 0.367 0.120 0.433 0.426 0.935 

15 Row 0.260 0.080 0.533 0.127 0.743 0.863 
 Column 0.093 0.460 0.113 0.333 7.563  0.056* 

16 Row 0.253 0.067 0.553 0.127 1.578 0.664 
 Column 0.073 0.400 0.120 0.407 1.687 0.640 

17 Row 0.253 0.093 0.540 0.113 2.043 0.564 
 Column 0.120 0.347 0.087 0.447 2.119 0.548 

18 Row 0.253 0.073 0.533 0.140 0.950 0.813 
 Column 0.087 0.353 0.127 0.433 0.337 0.953 

19 Row 0.260 0.067 0.527 0.147 0.942 0.815 
 Column 0.073 0.367 0.140 0.420 1.696 0.638 

20 Row 0.260 0.067 0.553 0.120 1.509 0.680 
 Column 0.093 0.367 0.093 0.447 0.671 0.880 

 
Notes: ** and * denote rejections at the 5 and 10 percent levels respectively. 



 
Table A4 

Runs Tests in Penalty Kick’s Experiment 
for Professional Players 

 
   Choices Runs     

Pair Player R L ri F(ri-1) F(ri) 
1 Row 102 48 72 0.840 0.877 
  Column 82 68 69 0.129 0.167 
2 Row 96 54 74 0.727 0.779 
 Column 93 57 72 0.488 0.554 

3 Row 104 46 64 0.404 0.469 
  Column 86 64 82 0.884 0.913 
4 Row 101 49 69 0.604 0.682 
 Column 81 69 75 0.433 0.499 

5 Row 101 49 79   0.985** 0.992 
  Column 76 74 80 0.717 0.770 
6 Row 99 51 74 0.830 0.869 
 Column 78 72 89   0.981** 0.987 

7 Row 107 43 53 0.025  0.041* 
  Column 86 64 72 0.315 0.375 
8 Row 102 48 69 0.655 0.730 
 Column 81 69 69 0.124 0.160 

9 Row 104 46 63 0.323 0.404 
  Column 80 70 67 0.066 0.089 

10 Row 103 47 58 0.065 0.089 
 Column 78 72 85 0.922 0.943 

11 Row 97 53 66 0.235 0.289 
  Column 78 72 69 0.113 0.147 

12 Row 86 64 68 0.125 0.162 
 Column 78 72 77 0.541 0.605 

13 Row 95 55 71 0.484 0.559 
  Column 79 71 80 0.729 0.781 

14 Row 101 49 72 0.802 0.845 
 Column 83 67 63 0.018  0.027* 

15 Row 99 51 68 0.441 0.507 
  Column 67 83 68 0.103 0.135 

16 Row 102 48 67 0.509 0.592 
 Column 79 71 74 0.353 0.416 

17 Row 98 52 71 0.605 0.679 
  Column 80 70 72 0.246 0.301 

18 Row 101 49 62 0.156 0.199 
 Column 84 66 71 0.231 0.285 

19 Row 101 49 68 0.539 0.604 
  Column 84 66 78 0.666 0.724 

20 Row 101 49 75 0.918 0.947 
  Column 81 69 71 0.204 0.254 

 
Notes: ** and * denote rejections at the 5 and 10 percent levels respectively.



Table B1 
 

Relative Frequencies of Choices and Win Percentages 
in Penalty Kick’s Experiment for College Students 

 
 
A. Frequencies 

 
        

        Column Player   
          Choice    Marginal 
     Frequencies for 
  L R  Row Player: 

 L 0.168 0.233   0.401 
   (0.165) (0.198)   (0.364) 

Row   [0.0068] [0.0073]   [0.0088] 
Player        
Choice R 0.228 0.370   0.599 

   (0.289) (0.347)   (0.636) 
   [0.0083] [0.0087]   [0.0088] 
        

      Marginal 0.397 0.603   
Frequencies for (0.455) (0.545)   
Column Player: [0.009] [0.009]   

 
 
B. Win Percentages  
    

Observed Row Player Win Percentage: 0.7877
Minimax Row Player Win Percentage: 0.7909
Minimax Row Player Win Std. Deviation: 0.0074

 
 
 
_________________________________________________________ 
Notes: Numbers in parentheses represent Minimax predicted relative frequencies.  
Numbers in brackets represent standard deviations for observed relative frequencies  
under the Minimax hypothesis. In Panel B, Minimax Row Player Win Percentage  
and Std. Deviation are the mean and the std. deviation of the observed row player  
mean percentage win under the Minimax hypothesis. 
 

 
 
 



 
Table B2 

Marginal Frequencies and Action Pair Frequencies in Penalty Kick’s Experiment for College Students 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Notes:  ** and * denote rejections at the 5 and 10 percent levels respectively of the Minimax binomial model for the marginal frequencies  
of the row and column players. In the last column they denote rejections of the joint hypothesis that both players in a pair choose actions  
with the equilibrium frequency.

 
Marginal 

Frequencies 
 

                       Pair Frequencies  
 

Pair # 
Row 

L 
Column 

L LL LR RL RR χ2  p-value 
1 0.360   0.387* 0.147 0.213 0.240 0.400 0.399 
2  0.427*   0.387* 0.160 0.267 0.227 0.347 0.134 
3  0.427*   0.387* 0.160 0.267 0.227 0.347 0.134 
4  0.427*  0.433 0.173 0.253 0.260 0.313 0.350 
5 0.413   0.387* 0.167 0.247 0.220 0.367 0.220 
6 0.413   0.387* 0.147 0.267 0.240 0.347 0.164 
7   0.427*  0.407 0.207 0.220 0.200 0.373   0.096* 
8 0.407   0.387* 0.140 0.267 0.247 0.347 0.168 
9   0.427* 0.393 0.187 0.240 0.207 0.367 0.143 
10 0.380    0.367** 0.133 0.247 0.233 0.387 0.172 
11   0.427*  0.480 0.167 0.260 0.313 0.260   0.091* 
12 0.420  0.400 0.213 0.207 0.187 0.393    0.036** 
13   0.427*  0.393 0.233 0.193 0.160 0.413    0.002** 
14    0.287**  0.460 0.140 0.147 0.320 0.393 0.260 
15    0.220**  0.440 0.100 0.120 0.340 0.440    0.004** 
16    0.460**     0.300** 0.120 0.340 0.180 0.360    0.000** 
17   0.427*     0.367** 0.160 0.267 0.207 0.367  0.064* 
18 0.407    0.387* 0.153 0.253 0.233 0.360 0.250 
19   0.427*  0.393 0.233 0.193 0.160 0.413    0.002** 
20 0.420  0.393 0.227 0.193 0.167 0.413    0.004** 



Table B3 - Testing that College Students Equate  
their Strategies’ Payoffs to the Equilibrium Rates 

 
      
  L R Pearson  

Pair # Player Success Fail Success Fail statistic p-value 
1 Row 0.313 0.047 0.520 0.120 2.322 0.508 
  Column 0.053 0.333 0.113 0.500 4.668 0.198 
2 Row 0.360 0.067 0.427 0.147 4.866 0.182 
 Column 0.107 0.280 0.107 0.507 4.892 0.180 

3 Row 0.353 0.073 0.433 0.140 3.781 0.286 
  Column 0.060 0.327 0.153 0.460 4.702 0.195 
4 Row 0.360 0.067 0.427 0.147 4.866 0.182 
 Column 0.093 0.340 0.120 0.447 0.291 0.962 

5 Row 0.293 0.120 0.440 0.147 5.234 0.155 
 Column 0.120 0.267 0.147 0.467 6.411  0.093* 

6 Row 0.367 0.047 0.453 0.133 5.706 0.127 
 Column 0.067 0.320 0.113 0.500 3.559 0.313 

7 Row 0.327 0.100 0.447 0.127 2.931 0.402 
 Column 0.107 0.300 0.120 0.473 2.348 0.503 

8 Row 0.347 0.060 0.447 0.147 3.491 0.322 
 Column 0.053 0.333 0.153 0.460 5.345 0.148 

9 Row 0.340 0.087 0.433 0.140 3.168 0.366 
 Column 0.120 0.273 0.107 0.500 5.789 0.122 

10 Row 0.307 0.073 0.493 0.127 0.280 0.964 
 Column 0.053 0.313 0.147 0.487 6.096 0.107 

11 Row 0.387 0.040 0.460 0.113 8.677     0.034** 
 Column 0.060 0.420 0.093 0.427 4.037 0.257 

12 Row 0.300 0.120 0.427 0.153 6.108 0.106 
 Column 0.140 0.260 0.133 0.467 8.243    0.041** 

13 Row 0.293 0.133 0.433 0.140 8.008    0.046** 
 Column 0.147 0.247 0.127 0.480       10.549    0.014** 

14 Row 0.207 0.080 0.600 0.113 6.673   0.083* 
 Column 0.093 0.367 0.100 0.440 0.311  0.958 

15 Row 0.173 0.047 0.640 0.140       14.135     0.003** 
 Column 0.047 0.393 0.140 0.420 5.102  0.164 

16 Row 0.373 0.087 0.447 0.093 6.791   0.079* 
 Column 0.060 0.240 0.120 0.580       15.620    0.001** 

17 Row 0.320 0.107 0.453 0.120 3.335 0.343 
 Column 0.120 0.247 0.107 0.527 9.523    0.023** 

18 Row 0.367 0.040 0.460 0.133 6.381  0.094* 
 Column 0.060 0.327 0.113 0.500 4.025 0.259 

19 Row 0.347 0.080 0.440 0.133 3.045 0.385 
 Column 0.093 0.300 0.120 0.487 2.590 0.459 

20 Row 0.280 0.140 0.460 0.120 8.854    0.031** 
 Column 0.140 0.253 0.120 0.487 9.002    0.029** 

 
Notes: ** and * denote rejections at the 5 and 10 percent levels respectively. 



 
Table B4 

Runs Tests in Penalty Kick’s Experiment 
for College Students 

 
   Choices Runs     

Pair Player R L ri F(ri-1) F(ri) 
1 Row 96 54 69 0.383 0.457 
  Column 92 58 61 0.022 0.033* 
2 Row 86 64 90   0.995** 0.997 
 Column 92 58 70 0.324 0.386 

3 Row 86 64 65 0.049 0.069 
  Column 92 58 91   0.999** 1.000 
4 Row 86 64 77 0.637 0.699 
 Column 85 65 82 0.873 0.904 

5 Row 88 62 78 0.737 0.788 
  Column 92 58 78 0.823 0.863 
6 Row 88 62 72 0.352 0.415 
 Column 92 58 71 0.386 0.456 

7 Row 86 64 65 0.049 0.069 
  Column 89 61 66 0.091 0.121 
8 Row 89 61 84  0.958* 0.971 
 Column 92 58 58 0.006   0.009** 

9 Row 86 64 79 0.754 0.804 
  Column 91 59 80 0.883 0.913 

10 Row 93 57 82  0.958* 0.970 
 Column 95 55 66 0.182 0.229 

11 Row 86 64 76 0.574 0.637 
  Column 78 72 69 0.113 0.147 

12 Row 87 63 63 0.026  0.038* 
 Column 90 60 85    0.976** 0.984 

13 Row 86 64 68 0.125 0.162 
  Column 91 59 88    0.995** 0.997 

14 Row 107 43 82   0.999** 0.999 
 Column 81 69 66 0.049 0.068 

15 Row 117 33 67   0.999** 0.999 
  Column 84 66 82 0.863 0.896 

16 Row 81 69 73 0.309 0.369 
 Column 105 45 70 0.863 0.896 

17 Row 86 64 74 0.441 0.507 
  Column 95 55 69 0.348 0.419 

18 Row 89 61 84  0.958* 0.971 
 Column 92 58 83  0.963* 0.976 

19 Row 86 64 76 0.574 0.637 
  Column 91 59 76 0.692 0.747 

20 Row 87 63 72 0.332 0.394 
  Column 91 59 81 0.913 0.938 
Notes: ** and * denote rejections at the 5 and 10 percent levels respectively.



Table C1 
 

Relative Frequencies of Card Choices in O’Neill’s Experiment 
Professional Players 

 
 
 
A. Frequencies  

 
Column Player Choice           Marginal Frequencies 

       for 
  1 2 3 J  Row Player: 

 1 0.037 0.042 0.039 0.083  0.201 
  (0.040) (0.040) (0.040) (0.080)  (0.200) 
  [0.003] [0.003] [0.003] [0.004]  [0.006] 

 2 0.042 0.038 0.044 0.079  0.203 
Row  (0.040) (0.040) (0.040) (0.080)  (0.200) 
Player  [0.003] [0.003] [0.003] [0.004]  [0.006] 
Choice         
 3 0.038 0.037 0.040 0.083  0.198 
  (0.040) (0.040) (0.040) (0.080)  (0.200) 
  [0.003] [0.003] [0.003] [0.004]  [0.006] 

 J 0.084 0.082 0.081 0.153  0.398 
  (0.080) (0.080) (0.080) (0.160)  (0.400) 
  [0.004] [0.004] [0.004]  [0.006]  [0.008] 
Marginal 
Frequencies 0.200 0.198 0.204 0.398   
For Column (0.200) (0.200) (0.200) (0.400)   
Player:  [0.006] [0.006] [0.006] [0.008]   
        

 
B. Win Percentages  
   Observed Row Player Win Percentage: 0.3945 
   Minimax Row Player Win Percentage: 0.4000 
   Minimax Row Player Win Std. Deviation: 0.0077 
 
____________________________________________________________________ 
Notes: In Panel A, numbers in parentheses represent Minimax predicted relative frequencies, and 
numbers in brackets represent standard deviations for observed relative frequencies under the 
Minimax hypothesis. In Panel B, Minimax Row Player Win Percentage and Std. Deviation are the 
mean and the std. deviation of the observed row player mean percentage win under the Minimax 
hypothesis. 



Table C2 

Relative Frequencies of Card Choices in O’Neill’s Experiment and Minimax Multinomial Tests for Professional Players 

 
Notes: ** and * denote rejection of the Minimax binomial model for a given card and player at the 5 and 10 percent levels. Similarly, ‡ and † denote 
rejection at those levels of the Minimax multinomial model based on Pearson statistic and a χ2(3) for all cards chosen by a given row or column player,  
and based on Pearson statistic and a χ2(15) for all cards chosen by both players.  

Row Player (R) Choices  Column Player (C) Choices 

  
P-values for Tests of Minimax 

Multinomial Models 
 

Pair # 1 2 3 J 1 2 3 J 
Row 

Player 
Column 
Player 

Both  
Players 

1 0.190 0.225    0.290**    0.295** 0.195 0.185 0.210 0.410   0.002‡ 0.940   0.018‡ 
2 0.205 0.215   0.245*    0.335** 0.200 0.205  0.250*  0.345* 0.223 0.257   0.001‡ 
3 0.210 0.195 0.200 0.395 0.195 0.175 0.205 0.425 0.987 0.804 0.802 
4 0.215 0.205 0.180 0.400    0.145** 0.185 0.225 0.445 0.885 0.180 0.126 
5 0.180 0.195 0.205 0.420 0.200 0.195 0.210 0.395 0.885 0.987 0.959 
6 0.210 0.205 0.185 0.400 0.205 0.185 0.205 0.405 0.950 0.962 0.873 
7 0.215 0.215    0.130** 0.440 0.205 0.190 0.205 0.400  0.105† 0.985   0.067† 
8 0.195 0.215 0.195 0.395 0.225  0.150* 0.205 0.420 0.962 0.341 0.346 
9 0.185 0.195 0.215 0.405 0.205 0.180 0.205 0.410 0.922 0.919 0.844 
10 0.175 0.180 0.170    0.475** 0.195 0.195 0.215 0.395 0.192 0.962 0.787 
11 0.205 0.190 0.170 0.435  0.250* 0.200 0.205  0.345* 0.651 0.257 0.864 
12 0.200 0.200 0.195 0.405 0.195 0.200 0.205 0.400 0.998 0.997 0.986 
13 0.215 0.185 0.195 0.405 0.195 0.215 0.190 0.400 0.922 0.950 0.893 
14 0.185 0.185 0.205 0.425 0.205    0.290** 0.195    0.310** 0.852   0.007‡   0.062† 
15 0.215 0.200 0.170 0.415 0.210 0.185 0.200 0.405 0.744 0.953 0.923 
16 0.205 0.195 0.195 0.405 0.195 0.165 0.175  0.465* 0.993 0.263 0.231 
17 0.205 0.230 0.190 0.375 0.225 0.215 0.205 0.355 0.720 0.596   0.081† 
18 0.210 0.195 0.180 0.415 0.205  0.245* 0.210  0.340* 0.888 0.267   0.080† 
19 0.205 0.220 0.235  0.340* 0.170 0.205 0.175 0.450 0.327 0.423 0.192 
20 0.195 0.210 0.200 0.395 0.185 0.205 0.180 0.430 0.987 0.777 0.436 



Table C3 - Testing that Professional Players Equate  
their Strategies’ Payoffs to the Equilibrium Rates 

 
  Mixtures Win Rates   

Pair # Player Joker Non-Joker Joker Non-Joker Pearson p-value 
1 R 0.295 0.705 0.407 0.312 14.535       0.002** ‡
  C 0.410 0.590 0.707 0.627 4.472 0.215 
2 R 0.335 0.665 0.403 0.316 7.878      0.049** ‡
 C 0.345 0.655 0.609 0.679 6.295  0.098*  

3 R 0.395 0.605 0.367 0.413 0.462 0.927 
  C 0.425 0.575 0.659 0.565 2.378 0.498 
4 R 0.400 0.600 0.388 0.433 0.608 0.895 
 C 0.445 0.555 0.652 0.532 4.795       0.187    †

5 R 0.420 0.580 0.429 0.379 0.833 0.841 
 C 0.395 0.605 0.544 0.636 1.701 0.637 

6 R 0.400 0.600 0.388 0.408 0.087 0.993 
 C 0.405 0.595 0.617 0.588 0.191 0.979 

7 R 0.440 0.560 0.352 0.438 2.865 0.413 
 C 0.400 0.600 0.613 0.592 0.087 0.993 

8 R 0.395 0.605 0.456 0.372 1.431 0.698 
 C 0.420 0.580 0.571 0.612 0.701 0.873 

9 R 0.405 0.595 0.358 0.429 1.024 0.795 
 C 0.410 0.590 0.646 0.568 1.337 0.720 

10 R 0.475 0.525 0.358 0.419 5.660 0.129 
 C 0.395 0.605 0.570 0.636 0.993 0.803 

11 R 0.435 0.565 0.368 0.442 2.229 0.526 
 C 0.345 0.655 0.536 0.618 3.729 0.292 

12 R 0.405 0.595 0.383 0.420 0.323 0.956 
 C 0.400 0.600 0.613 0.583 0.191 0.979 

13 R 0.405 0.595 0.420 0.387 0.243 0.970 
 C 0.400 0.600 0.575 0.617 0.347 0.951 

14 R 0.425 0.575 0.353 0.470 3.576 0.311 
 C 0.310 0.690 0.516 0.609 8.208       0.042** ‡

15 R 0.415 0.585 0.373 0.402 0.441 0.932 
 C 0.405 0.595 0.617 0.605 0.135 0.987 

16 R 0.405 0.595 0.420 0.378 0.389 0.943 
 C 0.465 0.535 0.634 0.579 4.222 0.238 

17 R 0.375 0.625 0.387 0.392 0.608 0.895 
 C 0.355 0.645 0.592 0.620 1.941 0.585 

18 R 0.415 0.585 0.301 0.479 6.628  0.085* 
 C 0.340 0.660 0.632 0.576 3.608 0.307 

19 R 0.340 0.660 0.412 0.386 3.146 0.370 
 C 0.450 0.550 0.689 0.536 7.118  0.068* 

20 R 0.395 0.605 0.367 0.405 0.385 0.943 
 C 0.430 0.570 0.663 0.570 2.670 0.445 

 
Notes:    ** and * denote rejections at the 5 and 10 percent levels respectively.  ‡ and † denote the 
players for whom rejections at the 5 and 10 percent levels of the tests of equality of winning proba-
bilities to the equilibrium rate are also found when the four cards are treated individually.



 
Table C4  

Runs Tests in O’Neill’s Experiment 
Professional Players 

 
   Choices Runs     

Pair Player Joker Non-Joker ri F(ri-1) F(ri) 
1 R 59 141 90 0.821 0.856 
  C 82 118 88 0.067 0.087 
2 R 67 133 94 0.707 0.754 
 C 69 131 92 0.508 0.564 

3 R 79 121 90 0.147 0.182 
  C 85 115 100 0.543 0.599 
4 R 80 120 98 0.530 0.586 
 C 89 111 115   0.983** 0.988 

5 R 84 116 94 0.236 0.283 
  C 79 121 96 0.436 0.493 
6 R 80 120 110  0.968* 0.977 
 C 81 119 95 0.334 0.391 

7 R 88 112 89 0.056 0.074 
  C 80 120 100 0.644 0.696 
8 R 79 121 94 0.324 0.377 
 C 84 116 102 0.672 0.722 

9 R 81 119 103 0.773 0.816 
  C 82 118 91 0.143 0.180 

10 R 95 105 98 0.322 0.375 
 C 79 121 98 0.554 0.610 

11 R 87 113 107 0.850 0.882 
  C 69 131 97 0.786 0.833 

12 R 81 119 91 0.155 0.194 
 C 80 120 100 0.644 0.696 

13 R 81 119 93 0.235 0.284 
  C 80 120 93 0.252 0.303 

14 R 85 115 89 0.068 0.090 
 C 62 138 87 0.488 0.563 

15 R 83 117 101 0.635 0.690 
  C 81 119 99 0.563 0.622 

16 R 81 119 114    0.992** 0.994 
 C 93 107 108 0.840 0.873 

17 R 75 125 97 0.601 0.662 
  C 71 129 101 0.889 0.918 

18 R 83 117 98 0.465 0.521 
 C 68 132 78 0.019  0.027* 

19 R 68 132 90 0.422 0.478 
  C 90 110 96 0.260 0.308 

20 R 79 121 96 0.436 0.493 
  C 86 114 90 0.084 0.108 

 
Notes: ** and * denote rejections at the 5 and 10 percent levels respectively.



Table D1 
 

Relative Frequencies of Card Choices in O’Neill’s Experiment 
College Students 

 
 
 
A. Frequencies  

Column Player Choice                Marginal Frequencies 
       for 
  1 2 3 J  Row Player: 

 1 0.045 0.042 0.040 0.079   0.205 
  (0.040) (0.040) (0.040) (0.080)  (0.200) 
  [0.003] [0.003] [0.003] [0.004]  [0.006] 

 2 0.044 0.046 0.038 0.080   0.207 
Row  (0.040) (0.040) (0.040) (0.080)  (0.200) 
Player  [0.003] [0.003] [0.003] [0.004]  [0.006] 
Choice         
 3 0.042 0.034 0.046 0.075   0.196 
  (0.040) (0.040) (0.040) (0.080)  (0.200) 
  [0.003] [0.003] [0.003] [0.004]  [0.006] 

 J 0.076 0.084 0.078 0.154   0.392 
  (0.080) (0.080) (0.080) (0.160)  (0.400) 
  [0.004] [0.004] [0.004] [0.006]  [0.008] 
Marginal 
Frequencies 0.206 0.205 0.202 0.387    
For Column (0.200) (0.200) (0.200) (0.400)   
Player:  [0.006] 0.006 [0.006] [0.008]   
        

 
 
B. Win Percentages  
   Observed Row Player Win Percentage: 0.3915 
   Minimax Row Player Win Percentage: 0.4000 
   Minimax Row Player Win Std. Deviation: 0.0077 

 
____________________________________________________________________ 
Notes: In Panel A, numbers in parentheses represent Minimax predicted relative frequencies, and 
numbers in brackets represent standard deviations for observed relative frequencies under the 
Minimax hypothesis. In Panel B, Minimax Row Player Win Percentage and Std. Deviation are the 
mean and the std. deviation of the observed row player mean percentage win under the Minimax 
hypothesis. 
 
 
 



Table D2 

Relative Frequencies of Card Choices in O’Neill’s Experiment and Minimax Multinomial Tests for College Students 

 
   Notes: ** and * denote rejection of the Minimax binomial model for a given card and player at the 5 and 10 percent levels. Similarly, ‡ and † denote 
rejection at those levels of the Minimax multinomial model based on Pearson statistic and a χ2(3) for all cards chosen by a given row or column player,  
and based on Pearson statistic and a χ2(15) for all cards chosen by both players. 

Row Player (R) Choices  Column Player (C) Choices 

  
P-values for Tests of Minimax 

Multinomial Models 
 

Pair # 1 2 3 J 1 2 3 J 
Row 

Player 
Column 
Player 

Both  
Players 

1 0.225    0.270** 0.195    0.310**    0.140** 0.205   0.260** 0.395   0.022‡   0.065†   0.054† 
2 0.205 0.180 0.160    0.455** 0.185 0.205 0.210 0.400 0.316 0.950 0.916 
3 0.200 0.205 0.215 0.380 0.230 0.190 0.225 0.355 0.930 0.451 0.624 
4    0.145** 0.215  0.155*    0.485** 0.175 0.180 0.225 0.420   0.031‡ 0.604   0.011‡ 
5    0.135** 0.190 0.235 0.440 0.195 0.175 0.195 0.435   0.096† 0.732   0.028‡ 
6 0.185 0.215 0.235 0.365 0.215 0.230 0.230    0.325** 0.515 0.184   0.048‡ 
7 0.230 0.185 0.215 0.370 0.200  0.150* 0.165    0.485** 0.615   0.062†   0.078† 
8 0.195 0.225 0.165 0.415 0.185 0.225 0.185 0.405 0.575 0.780   0.024‡ 
9  0.150* 0.215 0.200 0.435 0.200 0.215 0.195 0.390 0.342 0.960   0.085† 
10    0.280**    0.260** 0.200    0.260**  0.250* 0.185 0.210 0.355   0.000‡ 0.280   0.000‡ 
11 0.195 0.175 0.180 0.450 0.225    0.260** 0.205    0.310** 0.513   0.040‡ 0.203 
12    0.280** 0.210 0.180    0.330** 0.215 0.220 0.175 0.390   0.025‡ 0.729   0.000‡ 
13 0.175 0.195 0.195 0.435 0.200 0.200 0.210 0.390 0.732 0.985 0.998 
14 0.170 0.230    0.260**  0.340* 0.195 0.195 0.205 0.405   0.066† 0.993 0.160 
15    0.140** 0.210 0.200 0.450 0.195 0.205 0.200 0.400 0.175 0.997 0.677 
16 0.245 0.195 0.190  0.370* 0.225 0.215 0.160 0.400 0.457 0.484   0.020‡ 
17 0.195 0.160 0.200 0.445 0.210 0.205 0.200 0.385 0.451 0.971 0.514 
18    0.265** 0.210 0.185  0.340* 0.215 0.205 0.180 0.400   0.096† 0.885   0.036‡ 
19    0.300** 0.185 0.190    0.325**    0.255** 0.240 0.195    0.310**   0.004‡   0.034‡   0.000‡ 
20 0.195 0.205 0.165 0.435 0.215 0.195 0.205 0.385 0.596 0.943 0.744 



Table D3 – Testing that College Students Equate  
their Strategies’ Payoffs to the Equilibrium Rates 

 
  Mixtures Win Rates   

Pair # Player Joker Non-Joker Joker Non-Joker Pearson p-value 
1 R 0.310 0.690 0.371 0.355 8.253      0.041** ‡
  C 0.395 0.605 0.709 0.595 3.885      0.274   †
2 R 0.455 0.545 0.352 0.394 3.542 0.315 
 C 0.400 0.600 0.600 0.642 0.868 0.833 

3 R 0.380 0.620 0.382 0.371 0.885 0.829 
  C 0.355 0.645 0.592 0.643 2.795 0.424 
4 R 0.485 0.515 0.351 0.427 7.493  0.058* 
 C 0.420 0.580 0.595 0.621 0.542 0.910 

5 R 0.440 0.560 0.375 0.464 3.385 0.336 
 C 0.435 0.565 0.621 0.540 2.795 0.424 

6 R 0.365 0.635 0.438 0.402 1.431 0.698 
 C 0.325 0.675 0.508 0.622 6.875  0.076* 

7 R 0.370 0.630 0.432 0.381 1.250 0.741 
 C 0.485 0.515 0.670 0.534 10.035   0.018** 

8 R 0.415 0.585 0.349 0.504 6.274  0.099* 
 C 0.405 0.595 0.642 0.504 5.135 0.162 

9 R 0.435 0.565 0.425 0.327 3.608 0.307 
 C 0.390 0.610 0.526 0.697 6.670  0.083* 

10 R 0.260 0.740 0.558 0.324           24.195       0.000** ‡
 C 0.355 0.645 0.592 0.628 2.156 0.541 

11 R 0.450 0.550 0.311 0.473 7.639      0.054*  †
 C 0.310 0.690 0.548 0.623 7.639  0.054* 

12 R 0.330 0.670 0.515 0.343 9.097      0.028*  †
 C 0.390 0.610 0.564 0.623 0.764 0.858 

13 R 0.435 0.565 0.391 0.407 1.076 0.783 
 C 0.390 0.610 0.564 0.623 0.764 0.858 

14 R 0.340 0.660 0.324 0.424 4.764 0.190 
 C 0.405 0.595 0.728 0.529 8.104   0.044* 

15 R 0.450 0.550 0.389 0.318 4.948 0.176 
 C 0.400 0.600 0.563 0.708 6.337   0.096* 

16 R 0.370 0.630 0.473 0.357 3.281 0.350 
 C 0.400 0.600 0.563 0.625 0.781 0.854 

17 R 0.445 0.555 0.371 0.360 2.712 0.438 
 C 0.385 0.615 0.571 0.675 3.378 0.337 

18 R 0.340 0.660 0.368 0.326 6.587      0.086*  ‡
 C 0.400 0.600 0.688 0.642 3.420 0.331 

19 R 0.325 0.675 0.400 0.533           15.937      0.001** ‡
 C 0.310 0.690 0.581 0.478           16.626      0.001** ‡

20 R 0.435 0.565 0.368 0.354 2.368 0.500 
 C 0.385 0.615 0.584 0.675 3.201 0.362 

 
Notes: ** and * denote rejections at the 5 and 10 percent levels respectively.  ‡ and † denote the 
players for whom rejections at the 5 and 10 percent levels of the tests of equality of winning proba-
bilities to the equilibrium rate are also found when the four cards are treated individually.



 
 

Table D4 

Runs Tests in O’Neill’s Experiment 
College Students 

 
   Choices Runs     

Pair Player Joker Non-Joker ri F(ri-1) F(ri) 
1 R 62 138 102   0.995** 0.996 
  C 79 121 92 0.226 0.271 
2 R 91 109 95 0.208 0.251 
 C 80 120 92 0.209 0.252 

3 R 76 124 92 0.287 0.338 
  C 71 129 107    0.985** 0.990 
4 R 97 103 99 0.366 0.421 
 C 84 116 111   0.961* 0.972 

5 R 88 112 103 0.663 0.715 
  C 87 113 131    0.999** 1.000 
6 R 73 127 99 0.766 0.813 
 C 65 135 99 0.942 0.961 

7 R 74 126 112    0.996** 0.997 
  C 97 103 94 0.146 0.182 
8 R 83 117 107 0.889 0.915 
 C 81 119 90 0.123 0.155 

9 R 87 113 102 0.624 0.677 
  C 78 122 96 0.461 0.518 

10 R 52 148 82 0.747 0.790 
 C 71 129 103 0.937 0.956 

11 R 90 110 105 0.740 0.785 
  C 62 138 92 0.796 0.834 

12 R 66 134 114    0.999** 1.000 
 C 78 122 88 0.099 0.126 

13 R 87 113 94 0.201 0.244 
  C 78 122 89 0.126 0.161 

14 R 68 132 72 0.001    0.002** 
 C 81 119 84 0.021  0.029* 

15 R 90 110 93 0.141 0.176 
  C 80 120 112    0.984** 0.989 

16 R 74 126 83 0.037 0.052 
 C 80 120 101 0.696 0.747 

17 R 89 111 112  0.954* 0.966 
  C 77 123 109  0.973* 0.981 

18 R 68 132 104    0.980** 0.986 
 C 80 120 89 0.104 0.135 

19 R 65 135 91 0.605 0.673 
  C 62 138 91 0.737 0.796 

20 R 87 113 107 0.850 0.882 
  C 77 123 98 0.606 0.660 

 
Notes: ** and * denote rejections at the 5 and 10 percent levels respectively.



 
 
 
 

Table E - Summary Statistics in Penalty Kick’s Experiment 
 
 

       Professional         College Students 
          Soccer  Soccer        No Soccer  

              Equilibrium       Players         Experience    Experience 
I. Aggregate Data  
   Row Player frequencies  L 0.363  0.333  0.392  0.401 

      R 0.636  0.667  0.608  0.599  

   Column Player frequencies L 0.454  0.462  0.419  0.397 
      R 0.545  0.538  0.581  0.603 
      

   Row Player Win   percentage  0.7909  0.7947  0.7927  0.7877 
           (std. deviation)          (0.0074) 

 
 

II. Number of Individual Rejections of Minimax Model at 5 (10) percent  
   Row Player (All Cards)   1 (2)   0 (1)   1 (3)    2  (3) 
   Column Player (All Cards)   1 (2)   1 (2)   2 (2)    3 (10) 
   Both Players (All Cards)   1 (2)   1 (1)   1 (3)    3  (9) 
   All Cards      4 (8)   4 (7)   9 (12)  12 (20) 
 
 
III. Equality of Win Rates  
   Rejections at 5 (10) percent  2 (4)    0 (2)    2 (3)   5 (12) 
   Aggregate Pearson statistic    ---   31.60   42.45   65.69 

         p-value    ---   0.826   0.366   0.006 
 
 

IV. Runs tests for 40 players 
   Rejections at 5 (10) percent  2 (4)  2 (4)  3 (5)  7 (13) 

 



 
Table F - Summary Statistics in O’Neill’s Experiment 

 
            Professional         College Students 
             Soccer          Soccer          No Soccer  

                   Equilibrium         Players        Experience    Experience     O’Neill(1)  
    I. Aggregate Data  
            Row Player frequencies  1 0.200  0.201  0.203  0.206  0.221 
      2 0.200  0.203  0.197  0.206   0.215 
     3 0.200  0.198  0.197  0.196  0.203 
     J 0.400  0.398  0.403  0.392  0.362  

            Column Player frequencies  1 0.200  0.200  0.199  0.206  0.226 
      2 0.200  0.198  0.198  0.205  0.179 
     3 0.200  0.204  0.203  0.201  0.169 
     J 0.400  0.398  0.400  0.387  0.426   

             Row Player Win percentage  0.400  0.394  0.403  0.391  0.410 
                  (std. deviation)             (0.007)                 

 
 
    II. Number of Individual Rejections of Minimax Model at 5 (10) percent  

   Row Player (All Cards)   1  (2)   1  (1)    2  (2)    5  (8)    6 (na) 
   Column Player (All Cards)   1  (2)   1  (1)    2  (2)    2  (4)    9 (na) 
   Both Players (All Cards)   1  (2)   2  (2)    1  (2)    3  (5)    9 (na) 
   All Cards     8 (16)   8 (18)  11 (18)  23 (31)  35 (na) 
 

    
III. Equality of Success Rates Across Strategies and to the Equilibrium Rate using NJ and J (2) 
    A. Using equilibrium frequencies and success probabilities (3 degrees of freedom at individual level)  

    Rejections at 5 (10) percent   2 (4)     3 (6)     3 (6)   5 (15)   22 (25) 
    Aggregate Pearson tests 

All Row players p-value      ---   0.715  0.514  0.000009 6.78·10-17  
All Column players p-value   ---   0.654  0.959  0.0042   1.90·10-21  

 
    B. Using maximum likelihood estimates (1 degree of freedom at individual level)  

    Rejections at 5 (10) percent   2 (4)    2 (4)    3 (6)  8 (10)  10 (15) 
    Aggregate Pearson tests 

All Row players p-value      ---   0.404  0.221  0.005  4.93·10-8  
All Column players p-value   ---   0.298  0.387  0.002   1.45·10-8  

 
 
    IV. Runs Tests  

      Rejections at 5 (10) percent    2 (4)    2 (4)   3 (5)  7 (12)  15 (19)      
 
  
______________________________ 
1. The results for O’Neill come from Brown and Rosenthal (1990) and Walker and Wooders (2001), where “na” means that the 
corresponding estimate was not reported by the authors and may not be computed from the data they report. O’Neill’s (1987) 
experiment involves 25 pairs, rather than 20 pairs, and 105 repetitions instead of 200. Hence, the number of expected rejections  
under Minimax at a given percentage level in the original O’Neill’s experiment is 1.25 greater than those reported in the first  
column, and the std. deviation for observed relative frequencies under Minimax play in Panel I is 0.009, rather than 0.007.  
2. In O’Neill’s original experiment there are two pairs that represent extreme outliers. When these are ignored, the p-values in  
panel A remain very low (1.2·10-9 and 1.7·10-12 , respectively). 




