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The monetary search model by Lagos and Wright (2005) is extended with imperfect information

about nominal shocks à la Lucas (1972 and 1973). This framework is useful to estimate the welfare

costs of expected and erratic inflation because it provides an avenue to identify the transactions

affected by monetary shocks and how tolerant individuals are to the fluctuations of output in these

transactions. We find that the welfare gain of eliminating the United States monetary business

cycle observed from 1892 to 2005 is 0.01 percent of GDP while the welfare gain of reducing the

observed average rate of inflation to the Friedman rule is 0.26 per cent of GDP, that is almost two
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1 Introduction

Expected inflation represents an implicit tax on money balances. To avoid this tax, individuals

modify their behavior thus causing a welfare cost. In the presence of nominal rigidities, unexpected

and erratic inflation undermines the information transmitted through the price system causing

another welfare cost. Most of the literature has studied these two costs separately. However, we

discover synergies in the combination of both analyses in the Lagos-Wright (JPE 2005) framework

extended with imperfect information about nominal shocks à la Lucas (JPE 1972).

The welfare cost of an erratic monetary policy depends not only on the variability it generates

on real GDP (the monetary business cycle), but also on the concentration of these effects to a

particular segment of the economy, and on the tolerance of individuals to the fluctuations of output

in that segment. There is no reason to believe that this tolerance can be estimated from the

risk premium in financial markets because individuals may be quite willing to tolerate fluctuations

in the consumption of a subset of goods, but be highly intolerant to fluctuations in their total

consumption, or vice versa. (One may easily tolerate wide fluctuations in restaurant meals, but

be very intolerant to fluctuations in total food intake. Vice versa, one may easily tolerate wide

fluctuations in the purchase of drinks, but be very intolerant to fluctuations in beer intake.)

The Lagos-Wright model provides an avenue to identify the transactions affected by monetary

shocks and how tolerant individuals are to the fluctuations of output in these transactions. For

unexpected monetary shocks to generate real effects, expenditures must be responsive to extra

liquidity, and prices must be instrumental to allocate output. Therefore, we can narrow down the

transactions affected by nominal shocks to those for which money is essential because contracts

on the terms of these transactions are either impossible or impractical. Moreover, the tolerance

of individuals to fluctuations on the expenditures involved in these transactions is pinned down

by the elasticity of these expenditures with respect to the nominal rate of interest. Therefore, the

shape of the money demand curve provides not only information about the welfare cost of expected

inflation, as it has been traditionally recognized, but also it provides key information to estimate the

tolerance of individuals to the monetary business cycle, and hence the welfare cost of unexpected

inflation.

Our empirical analysis indicates that the welfare gain of eliminating the United States monetary

business cycle observed from 1892 to 2005 is 0.01 percent of GDP while the welfare gain of reducing

the observed average rate of inflation to the Friedman rule is 0.26 per cent of GDP (over one order
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of magnitude higher). This calls for a major reconsideration of what issues are most policy relevant

in monetary economics.

The rest of the paper is organized as follows. Section 2 describes the model of the paper. Section

3 provides the analytical solution of the model in a special case that preferences are logarithmic

and shocks are log-normally distributed. Section 4 calibrates the model to United States data.

This calibration requires using preferences that are not logarithmic, so the model has to be solved

numbericall. Finally, Section 5 concludes with a brief summary of the main results.

2 The Model

Time is discrete and the horizon is infinite. Each period consists of two subperiods to be called

day and night. There is a single non-durable good. During the day, the good is traded in a

centralized market with perfect information. During the night, it is traded in N ≥ 2 decentralized
markets, where personal identities are anonymous and asset holdings are private information. In

the day market, everybody can produce and consume the good. At the night markets, a fraction

of the population are able to produce the good and the remaining fraction get utility from their

consumption. The individuals who can produce at night are called sellers, while those who then can

consume are called buyers. Following Rocheteau and Wright (2005) and Lucas (1972 and 1973),

both the day and night markets are competitive.

There is a continuum of buyers and sellers. Sellers are evenly distributed across all night markets,

and their measure in each one of them is normalized to 1. Buyers are randomly distributed across

the night markets, so the measure of buyers at market i in period t is a stochastic variable nit > 0.

The distributions of nit, i = 1, ..., N and t = 0, 1, ... are identical across markets and time, and

independent across time. Moreover, E (nit) = 1.

Following Lagos and Wright (2005), preferences are assumed to be quasi-linear to generate a

tractable distribution of money balances. The instantaneous utility of a buyer who visits night

market i at date t is:

U b(xbt , y
b
t , q

b
it) = v(xbt)− ybt + u(qbit); (1)

where xbt and ybt are respectively quantities consumed and produced during the day, and qbit is the

quantity consumed during the night. Likewise, the instantaneous utility of a seller is:

Us(xst , y
s
t , q

s
it) = v(xst )− yst − c(qsit); (2)
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The lifetime utilities of buyers and sellers are E
P∞

t=0 β
tUh

¡
xst , y

s
t , q

h
it

¢
, for h = b and s, and β ∈

(0, 1) is the one period discount factor. The functions v, u, and c are all continuously differentiable

and increasing. The functions v and u are concave, while c is convex. Moreover, v(0) = u(0) =

c(0) = c0(0) = 0, and u0(0) = ∞. Finally, there are x∗ and q∗ such that v0 (x∗) = 1 and u0(q∗) =

c0(q∗).1

In this environment, there is a role for a medium of exchange to facilitate trade because at

night there is a lack of double coincidence of wants and all traders are anonymous. We further

assume that the government has the monopoly on issuing money, which is the only counterfeit-proof

note in the economy, so money is essential. Money is an intrinsically useless, perfectly divisible,

and storable asset. The money supply grows at a random factor γt : Mt+1 = γtMt, where Mt

is the quantity of money per buyer. The distribution of γt is independent and identically across

time, and the unconditional mean of the inverse of γt satisfies: βEγ
−1
t < 1. The units of money

are called dollars. New money is injected via a uniform lump-sum transfers to all buyers at the

beginning of the night. This form of introducing money differs from Lucas’s classical contributions,

which assumed that transfers are proportional to the money balances held by their receipient. This

difference matters little for the effect of monetary shocks on output, but it allows for a welfare cost

of expected inflation, which is absent in Lucas’s contributions.

The same anonymity that makes money essential prevents long-term contracts between buyers

and sellers regulating the transactions taking place at night. Consequently, at night liquidity has

a direct effect on buyers’ demands, and spot prices are the coordinating device in the N night

markets. As in the second model of Rocheteau and Wright (2005), these markets are assumed to

be competitive. Furthermore, following Lucas (1972 and 1973), we focus on recursive equilibria,

where prices are functions of the state variables.

A full description of the state of the economy includes the distribution of money and wealth at

the beginning of each subperiod, and the distribution of the allocation of buyers at night. However,

quasi-linear preferences imply that consumption and the demand for money during the day are

independent of wealth (see below). As a result, in the recursive equilibrium we focus on, the price

of the day good for money, Pt, depends only on Mt; and the relative pricea of a night good for the

day good of the same period, pit, depends on the vector of the realized values of the two stochastic

variables (γt, nit) . As it will be proven below, pit (γt, nit) is monotonic in both arguments, and

1If production is constrained to be non-negative, then our characterization of an equilibrium is valid as long as

the choice of ybt and yst is interior for all t. (Is c
0(q∗)q∗ < x∗ sufficient?)
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because of recursivity and symmetry this function is the same in all periods and all night markets.

At the night of period t, the buyers who visit market i know the quantity of money they carry,

so they can infer the growth factor the money supply γt. Also, they know the price pit. These

two pieces of information allow them to infer nit. In contrast, sellers ignore both γt and nit, so in

general pit conveys information about γt and nit, but does not perfectly reveal neither one of these

two variables. This is the signal extraction problem emphasized by Lucas (1972 and 1973).

As is standard, in a recursive equilibrium the nominal price of day goods Pt is proportional

to the quantity money Mt, because a proportional change in these two variables leaves individual

incentives and opportunities as well as market clearing conditions unaltered. However, as in Lucas

classical contributions monetary shocks have real effects in the night markets because sellers when

they observe a high price cannot be certain if there has been a positive monetary shock (γt is large)

or a positive real shock (nit is large). Hence, monetary shocks affect the incentives that determine

the supply of goods.

3 Optimal Behavior

Consider a buyer who starts day t with mb
0t dollars and faces a nominal price of goods Pt. Let z

b
0t

be the real value of mb
0t, that is z

b
0t = mb

0t/Pt. Consumption, x
b
t , production, y

b
t , and real money

balances at the end of the day, zbt , are constrained by the following budget:

xbt + zbt = ybt + zb0t, zbt ≥ 0. (3)

Denoting as V b
t the value function at the beginning of the night and Φ the joint distribution function

of pit and γt, the buyer solves the maximization program:

W b
t (z

b
0t) = max

{xbt ,ybt ,zbt}

·
v(xbt)− ybt +

Z
V b
t (z

b
t , pit, γt)dΦ(pit, γt)

¸
(4)

subject to (3). The solution of this maximization program defines the value function W b
t at the

beginning of the day.

At night the purchasing power of the buyer is limited by the money acquired during the day,

zbt , plus the real value of the lump-sum transfer received from the government ∆t. Consequentely,

the buyer solves:

V b
t (z

b
t , pit, γt) = max

qbit

·
u(qbit) + βW b

t+1

µ
zbt +∆t − pitq

b
it

γt

¶¸
, (5)
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subject to:

pitq
b
it ≤ zbt +∆t. (6)

In this expression, it has been used that in a recursive equilibrium Pt+1 = γtPt, and γt is known

by the buyer at the night of t.

The analogous relations for a seller are the following. The maximization problem for the day is

identical to that of a buyer:

W s
t (z

s
0t) = max

{xst ,yst ,zst }

·
v(xst )− yst +

Z
V s
t (z

s
t , pit, γt)dΦ(pit, γt)

¸
(7)

subject to the budget constraint

xst + zst = yst + zs0t, zst ≥ 0. (8)

In contrast, the maximization program for the night has two important differences:

V s
t (z

s
t , pit) = max

qsit
− c(qsit) + β

Z
W s

t+1

µ
zst + pitq

s
it

γt

¶
dF (γt|pit) (9)

First, there is no liquidity constraint binding the optimal supply of goods. Second, the seller does

not know γt, but it uses pit, the relation pit (γt, nit), and the joint distribution Φ(pit, γt) to calculate

the conditional distribution F (γt|pit).
As in Lagos and Wright (2005), the quasi-linear preferences in (4) and (7) imply that day

consumption for buyers and sellers is the efficient quantity that satisfies v0(x∗) = 1, xbt = xst = x∗.

Moreover, the day value functions are affine with unit marginal values of real money balances and

constant terms which are independent of time: W b
t

¡
zbt
¢
= wb + zbt and W s

t (z
s
t ) = ws + zst for all t.

Combining these functional forms with (5) and (9), the optimal choices at night solve the following

programs:

max
qbit

·
u(qbit)−

βpitq
b
it

γt

¸
subject to pitqbit ≤ zbt +∆t. (10)

max
qsit

·
−c(qsit) + β

Z
pitq

s
it

γt
dF (γt|pit)

¸
. (11)

The net demand functions that solve (10) and (11) are denoted respectively as q̃b
¡
zbt ,∆t, γt, pit

¢
and q̃s (pit) .

To characterize the optimal demand for money, it is convenient to use the day budget (3) and

the night Bellman equation (5) to eliminate yb and V b
t from the day optimization program (4).

With this transformation, the first order condition that characterizes zbt isZ ©
βγ−1t + (t

ª
dΦ(pit, γt) = 1,
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where (t is the Lagrange multiplier associated with (6). This condition can be conveniently trans-

formed using the first order condition for the optimal choice of qbt in (10) to obtain:Z n
p−1it u

0
h
q̃b
³
zbt , γt, pit,∆t

´io
dΦ(pit, γt) = 1. (12)

That is, buyers equate the expected marginal benefit of zbt at night with the marginal cost of its

acquision during the day. Regardless of being cash contrained or not, the marginal value of money

at night is the marginal utility of the goods one can purchase with an extra dollar. So, the expected

marginal benefit of zbt in utils is the integral in the LHS of (12). To acquire an extra real unit of

money, the buyer must supply an extra unit of ybt , which costs one util, as stated in the RHS of

(12).

As a vehicle for saving from period t to period t+ 1, money’s return factor is E
¡
γ−1t+1

¢
. Since

the utility discount factor is β and by assumption βE
¡
γ−1t+1

¢
< 1, no individual should carry

money balances that with certainty will not be spent during the night. Therefore, the seller’s

optimal demand for money is zero: zst = 0 for all t. Also, buyers should face a binding liquidity

constraint (6) in at least one of the markets they can potentially visit at night, so in the margin

their money balances are not only an instrument for saving, but also an instrument to facilitate

their transactions.

A recursive equilibrium is a set of real numbers zb and ∆, which respectively describe the

buyer’s money demand zbt and the monetary transfer ∆t for all t, and a set of real functions

p (γ, ni) , q
b (γ, ni) , and qs (γ, ni), which respectively map the realized values the shocks γt and ni

onto the prices pit and the quantities qbit and q
s
it traded at night markets for all i and t, that satisfy

the following:2

1. Optimal behavior:

(a) qb (γ, ni) = q̃b
£
zb,∆, γ, p (γ, ni)

¤
.

(b) qs (γ, ni) = q̃s [p (γ, ni)] .

(c) E
n
[p (γ, ni)]

−1 u0
£
qb (γ, ni)

¤o
= 1.

2. Market clearing:

niq
b(γ, ni) = qs(γ, ni). (13)

2To complete the description of the equilibrium allocation, during the day all individuals consume x∗, and produce

whatever quantities yb or ys needed for the budget constraints (3) and (8) to hold. Market clearing, ensured by Walra’s

Law, implies that aggregate day production is 2x∗.
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3. Government budget:

∆ = zb (γ − 1) . (14)

4. Rational expectations: F (γ | pi) in (11) is the distribution of γ conditional pi = p (γ, ni) .

In what follows, time subscripts are dropped when this does not create ambiguity.

[Existence and monotonicity properties to be added here]

4 Efficient Allocation

The efficient allocation solves:

max
{qbi ,qsi }

Z h
niu

³
qbi

´
− c(qsi )

i
di subject to niqbi = qsi . (15)

The solution to this program is:

u0
³
qbi

´
= c0 (qsi ) , for all i. (16)

Define the Frieman Rule, as the monetary policy in which σ2γ = 0 and γ ↓ β. Under the Friedman
Rule, the rate of return on money is the subjective discount rate. Since day value functions

are affine, individuals are willing to hold money even if it were not the medium of exchange at

night. Consequently, the liquidity constraint (6) cannot be strictly binding and the solution to the

optimization programs (10) and (11) are respectively u0
¡
qbi
¢
= pi and c0 (qsi ) = pi. Therefore, under

the Friedman Rule, condition (16) holds.

5 Special Case: Lucas (1973)

One of the difficulties of solving for a recursive equilibrium is that, in contrast to Lucas (1972

and 1973), buyers do not always spend all the money balances they carry. That is, conditions

in the market a buyer visits may be such that the solution to the optimization problem (10) is

interior. This complication can be easily dealt with numerical methods, but in general it prevents

an explicit solution to the model. An exception to this general rule is when buyers have logarithmic

preferences for the night good, in which case, as shown in the next paragraph, buyers spend all

their money in whatever night market they visit. Moreover, if the sellers’s disutility of production

and the distribution function of shocks are chosen appropriately, the explicit solution one can then
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obtain is similar to the solution of the reduced form model by Lucas (1973), which has become a

fixture in undergraduate macroeconomics textbooks.

Let u(qbi ) = ln(q
b
i ). The first order condition that result from applying the Kuhn-Tucker Theorem

to the optimization program (10) is qbipi = γmin
©
zb, β−1

ª
for all i. If zb < β−1, the liquidity

constraint (6) is not binding and the optimum is interior. Otherwise, (6) is binding and buyers

exhaust their money balances. In any case, buyers’ expenditures are the same in all markets they

visit. Intuitively, because a high pi in market i means that the good for sale is relatively expensive,

buyers purchase a low qbi ; with logarithmic preferences, the demand elasticity of q
b
i with respect to

pi is minus one, so the high pi exactly compensates for the low qbi to make the expenditure q
b
ipi

independent from pi. Furthermore, the optimum cannot be interior because then the buyer would

be carrying money balances in excess of the maximum quantity ever purchased, which as seen above

is suboptimal.3 Consequently, with logarithmic preferences the buyers demand for goods at night

obeys:

qbi =
γzb

pi
. (17)

Combining (12) with (17), the buyers demand for money during the day is:

zb = E
¡
γ−1

¢
. (18)

To obtain an explicit solution similar to Lucas (1973), we further assume that c (qs) = (qs)1+α /(1+

α) and the stochastic shocks are log-normal: ln γ ∼ N
¡
µγ, σ

2
γ

¢
and lnni ∼ N

¡
µn, σ

2
n

¢
. With this

functional forms, the optimal demand for money during the day, and the optimal supply of goods

at night implied by (11) are:

zb = exp

Ã
−µγ +

σ2γ
2

!
, and (19)

qsi =
£
βpiE

¡
γ−1|pi

¢¤ 1
α (20)

Therefore, substitution of (17) and (20) into the market clearing condition: (13) yields

niγ =
p
1+ 1

α
i

£
βE

¡
γ−1|pi

¢¤ 1
α

zb
. (21)

The RHS of (21) is a function pi, while the LHS is the product of the realized values of the two

stochastic variables unobserved by the sellers. Therefore, observing pi in a recursive equilibrium

carries the same information as observing niγ, so F (γ | pi) = F (γ | ωi) , where ωi = niγ. That is,

3Notice that if the optimum were interior, (12) would simplify to E γ−1 = β−1, which contradicts the assumption

E γ−1 < β−1.

9



finding F (γ | pi) turns out to be equivalent to the standard signal extraction problem of knowing

the unconditional distributions of two log-normally distributed random variables ni and γ and

finding the distribution of one of them conditional on observing the realized value of their product.

As explained in Lucas (1973), the distribution of γ conditional on ωi is log-normal and characterized

by the following two moments::

E (ln γ|ωi) = θµγ + (1− θ) (lnωi − µn) , and

Var (ln γ|ωi) = θσ2γ , where (22)

θ =
σ2n

σ2n + σ2γ
.

In words, the conditional mean of ln γ is a weighted average between two pieces of information: the

unconditional mean µγ and log of the observed product corrected to also have unconditional mean

µγ. If monetary shocks are small or real shocks are large (σ
2
γ → 0 or σ2γ → ∞), then θ → 0 and

the unconditional mean µγ carries most of the weight in the average. In contrast, if real shocks are

small or monetary shocks are large (σ2n → 0 or σ2γ →∞), then θ → 1, so current observations of the

pi and so ωi carry most of the weight in forming the conditional mean E (ln γ|ωi) . The conditional
variance of ln γ is increasing in both σ2n and σ2γ .

Subsituting (22) into (21) yields the equilibrium price at the night markets:

pi = A−1
³
zb
´α−θ
1+α

(γni)
(1−λ) . (23)

The values of zb and θ are in (19) and (22), and the values of remaining constants are λ = θ/(1+α),

and A = {β exp [(1− θ)µn]}
1

1+α . Since θ ∈ [0, 1] and α > 0, λ must belong to the interval (0, 1) .

Therefore, pi is monotonically increasing in both γ and ni. Substituting (23) into (17) yields the

equilibrium quantities demanded at the night markets:

qbi = A
³
zb
´λ+ 1

1+α
γλn

−(1−λ)
i . (24)

Finally, substituting (24) into the market clearing condition (13) yields:

qsi = A
³
zb
´λ+ 1

1+α
(γni)

λ . (25)

As advanced by Lucas (1973), sellers supply a large quantity of output in response to a large

realization of the monetary shock γ. Given the information structure adopted, this is a rational

response. The monetary shock increases prices at the night markets. Sellers do not know if the high

prices they observe are due to a large realization of γ or a high realization of ni. If they knew, they
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would realize that the real return on their effort, which is the goods they can purchase the next day

for one good sold at night (pi/γ), actually falls with γ as implied by (23) because λ ∈ (0, 1). Sellers
use whatever information they have to their best advantage, and they infer that on average a high

price correlates with a high return on their effort, so they respond to monetary shocks by supplying

more output. The size of this response depends on the distributions of real and monetary shocks.

If monetary shocks are rare and small relative to real shocks σ2γ/σ
2
n → 0, then θ = 0 and the

elasticity of qsi with respect γ is large: λ = 1/ (1 + α). At the other extreme, if the money supply

is erratic relative to real shocks σ2γ/σ
2
n → ∞, then θ = 1 and sellers do not respond to monetary

shocks λ = 0. In general, θ falls and the elasticity λ increases with σ2γ/σ
2
n. So, suppliers repond

most strongly to monetary shocks when these are rare and small.

Since the day market is not affected by monetary shocks and all night markets face the same γ,

both aggregate output and aggregate inflation are correlated with γ. Therefore, as emphasized by

Lucas (1973), this model generates a short-run upward sloping Phillips curve. However, if monetary

authorities were to increase the average rate of inflation by increasing µγ , aggregate output would

actually fall as it can be seen in the following equations:

Eqsi = A
³
Enλi

´
exp

(
1

1 + α

"
−µγ +

µ
1 + θ +

θ2

1 + α

¶
σ2γ
2

#)
, (26)

which results from combining (24) with (19), the assumed log-normal distribution for γ, and the

definition of λ below (23). With higher expected inflation, buyers carry less money balances,

so output at night falls. This effect of expected inflation on output is not present in Lucas’s

contributions because, as well known, with proportional transfers perfectly anticipated inflation

has no effect on the demand for money.

6 Estimation of the Model

The special case studied in the previous section has the double interest of having an explicit solution

and this being similar to the classical contribution by Lucas (1973). However, with logarithmic

preferences the demand for money turns out to be too inelastic to fit United States historical

data on nominal interest rates and the velocity of M1. For this reason, this section presents and

estimates a version of the model in which the utility of consumption at night has the isoelastic

form u
¡
qbi
¢
=
¡
qbi
¢1−η

/ (1− η) . The utility of consumption during the day is assumed logarithmic:

v (x) = B log(x), since our results have little to do with this function form.
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As suggested by Lagos and Wright (2005), even though day markets are complete, one can

assume the existence of bonds, which because of counterfeiting problems, cannot be traded at

night. The Euler equation that relates day consumption t and t + 1 of an individual that uses a

risk-free bond earning nominal interest i is: v0 (xt) = βv0(xt+1) (1 + i)E
¡
γ−1t

¢
. Since in equilibrium

xt = x∗, the equilibrium nominal interest rate must be: i =
£
βE

¡
γ−1t

¢¤−1−1. Using this expression,
the real demand for money (18) can be written as follows: zb = [β (1 + i)]−1. Consequently, the

absolute value of the interest semi-elasticity of the demand for money is (1 + i)−1 < 1. Using

historical United States time series on M1 and nominal interest rates, the absolute value of this

semi-elasticity is around 5, so the model with logarithmic utility for consuming at night generates a

demand for money, which is too inelastic with respect to the nominal interest rate to be consistent

with United States data.

The source of the interest elasticity of the demand for money in the present model is the elasticity

of the demand for night goods with respect to the overall cost of their purchase, which includes the

opportunity cost of carrying money. Consequently, the parameter η, which controls the demand

elasticity of qbi , indirectly determines the elasticity of the demand for money. If η is less than one,

then demands for both qbi and money are more elastic than with logarithm preferences, so one

may sucessfully fit the model to United States data. Unfortunately for tractability purposes, if the

elasticity of qbi with respect to pi is above one, buyers do not wish to spend all their money balances

in markets with a sufficiently high pi, so unused or precautionary money balances are a typical

equilibrium outcome. This precautionay balances are held to take good shopping opportunities that

arise when buyers visit a market with low prices, and they add an additional source of elasticity to

the money demand. That is, as the opportunity cost of holding money increases buyers sacrificy

this good trading opportunities to economize on money balances.4

If the cash constraint (6) is not binding, the first order condition for optimality of program (10)

is ³
qbi

´−η
=

βpi
γ

, (27)

with implies that expenditure is qbi pi = (γ/β)
1/η p

1− 1
η

i . Therefore, the application of Kuhn-Tucker

theorem, to take into account constraint (6), yields the folling demand function:

qbi =
1

pi
min

(µ
γ

β

¶ 1
η

p
1− 1

η

i , zb

)
. (28)

4See Faig and Jerez (2006) for a monetary search model with precautionary balances due to preference shocks.
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With this demand function, the demand for money that result from (12) does not have an explicit

solution. Consequently, we use numerical methods to solve the model, and to calibrate its parameter

values.

Using historial annual data for the United States from 1892 to 2005 as reference, the parameters

of the models are calibrated to match the following list of moments:

• Average continuously compounded annual rate inflation (GDP deflator): 4.14 percent.

• Standard deviation of the innovation of log of M1*: 0.0465.

• Average annual velocity (GDP/M1*): 4.87 (M1* is the M1 in circulation inside the United
States).

• Interest semi-elasticity of detrended velocity: 4.52.

• Standard deviation of the monetary business cycle (projection of the innovation of log of GDP
on to the innovation of log of M1*): 0.0193.

In addition to this list of moments, we pick the length of a period to be one year, and calibrate

the model so the risk-free real interest rate is 3 percent, and there is the same number of buyers

and sellers in aggregate. Finally, we restrict the elasticity of the marginal cost of production, α, to

be 0.01. This is a value very low to be close to the constant returns to scale assumed by Lagos and

Wright (2005), but it still generates an upward sloping supply curve, which is needed for prices to

partly reveal demand conditions.

The calibrated values of the parameters are the following:

• β = e−0.03,

• µγ = 0.0414,

• σγ = 0.0465,

• B = 2.8123,

• η = 0.1784,

• σn = 0.8926, and

• µn = σ2n/2.
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The risk-free real interest rate adjusted for the length of the model period determines the value

of the discount factor β. To allow for economic growth, which is abstracted from the model, the

average rate of growth of the money supply is calibrated using the average rate of inflation. The

standard deviation of monetary shocks is taken to be the standard deviation of the innovation of

the logarithm of M1* (M1 in circulation inside the United States). The remaining parameters are

calibrated so the model matches the observed average velocity of circulation of money, interest

semi-elasticity of velocity, and amplitude of the monetary business cycle. The measure of velocity

is GDP over M1*. The interest semi-elasticity of velocity is calculated regressing the logarithm of

velocity on the short-term commercial paper rate and a cubic polynomial of time. This time trend

is necessary to take into account that velocity in the early 21st century is four times its value in the

early 20th century while nominal interest rates are similar. Finally, the amplitude of the monetary

business cycle is measured by the standard deviation of the innovations of the log of GDP. To take

into account the existence of aggregate real shocks abstracted from our model, the innovation of log

of GDP in the United States is projected onto the innovations of the log of M1*. This procedure

assumes no reverse causation between output and money. If reverse causation actually took place,

we would be exagerating the welfare cost of erratic monetary policy, which would only reinforce our

conclusion that these costs are small. On the other hand, we are abstracting for long-term effects

of monetary shocks, which biases our estimate in the opposite direction. However, at the annual

frequency, we do not expect that this bias is a major concern.

Once calibrated, we use the model to evaluate the welfare cost of the United States suboptimal

monetary policy during the sample period, measured as the equivalent variation of income as a

percentage of GDP. That is, we calculate how much residents of the United States should have

been willing to pay to have faced the optimal Friedman rule instead of the prevalent monetary

policy, and we express this payment as a percentage of GDP. We find this welfare cost to be 0.26

percent of GDP.

Our model also allows us to calculate how much of this welfare cost is due to the monetary

business cycle generated by an erratic monetary policy, and how much it is due to a positive op-

portunity cost of holding money. We find that eliminating the monetary business cycle contributes

very little to the welfare gain of implementing the Friedman rule. The welfare gain of reducing σγ

to zero and adjusting µγ to keep the nominal interest unchanged is equivalent to 0.01 percent of

GDP.5 Therefore, eliminating the monetary business cycle contributes 3.8 percent (0.01/0.26) to

5With the adjustment of µγ , the nominal interest increases slightly, so the welfare gain is even smaller: 0.003
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the overall welfare gain of implementing the Friedman rule, while the elimination of the opportunity

cost of holding money contributes the remaining 96.2 percent.

7 Conclusions

Lucas non-neutrality theory can be succesfully incorporated in the framework of Lagos and Wright

(2005) model, where simultaneously money is essential and individuals optimize. In general, the

solution of the model is more complicated than in Lucas’s (1972 and 1973) classical contributions

because, depending on market conditions, money holders do not spent all the money they carry.

However, an exception to this general rule occurs with logarithmic utility for goods purchased with

money. In this special case, buyers always spend all the money they carry, and the model can be

explicit solved to obtain a similar reduced form similar to that of Lucas (1973).

The model so developed is useful to estimate the welfare costs of expected and unexpected

inflation. In the framework of the Lagos and Wright (2005) model the sector of the economy where

money is essential is also the sector directly affected by monetary shocks. Moreover, the elasticity

of the demand for money is informative about the tolerance of individuals to the business cycle

induced by an erratic monetary policy. Using United States annual time series of output, prices,

interest rates, and money balances from 1892 to 2005, the welfare cost of the monetary business

cycle is calculated to be equivalent to 0.01 percent of GDP; while the welfare cost of the inflation

tax due to positive nominal interest rates is equivalent to 0.26 percent of GDP.

percent of GDP.
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