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Abstract

This paper introduces an agency relationship into a dynamic game with in-

formational externalities. Two competing �rms plan to launch a new product

and in each �rm headquarters bargain with its R&D division about the cost of

developing this product. The development cost is the private information of

R&D divisions and is correlated across the two �rms. We �nd that the agency

relationship creates an incentive for simultaneous launching of the product,

even if this involves an ine¢ cient delay. As the commitment power of the

headquarters decreases, this incentive becomes stronger. The e¤ect of com-

petition is decomposed into two parts. Inter-period competition (from past

and future sales) pushes �rms towards launching the product simultaneously,

while intra-period competition (from concurrent sales) does the opposite. JEL
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1 Introduction

When thinking about launching a new product, a �rm�s management or headquarters

may not be completely sure about how much it will cost to develop. The R&D divi-

sion usually has a better idea about the development costs. However, it is unlikely

that the division would provide such information for free; typically, it would in�ate

the costs. The decision of a competitor to introduce a similar product will provide

information that the product is not "too expensive" to develop. Headquarters now

have a better bargaining position vis-à-vis their R&D division. However, the com-

petitor�s headquarters, which face the same problem, may also decide to wait for the

information. Natural questions then arise. When is the product launched? Do �rms

launch the product simultaneously? What is the e¤ect of the strategic behaviour of

the R&D divisions? How does competition a¤ect the equilibrium?

The aim of this paper is to study the e¤ect of the agency relationship in a dynamic

game with informational externalities. Its crucial feature is that the information

which is being released and learned is about strategic agents (divisions). These

can in�uence what and when the uninformed parties (headquarters) learn. Agents�

incentives are shaped by both current and expected future rents and, therefore,

future information a¤ects them even before it becomes known.

Learning about the agent from the experience of others but also providing infor-

mation to them is a feature of many real-life situations. Consider a country opening

up to foreign capital. When a foreign �rm discusses a joint project (foreign direct

investment) with a local �rm, it does not know exactly what the cost will be. If local

�rms have similar technologies, the foreign �rm can wait and have a better idea of

local �rms�characteristics by observing the experience of other foreign �rms in this

market. However, a late entry may not be as pro�table as an early one. Another

example is that of unions bargaining with �rms. The �rms are privately informed of

their pro�ts, their market prospects, etc. This information is correlated across �rms

in the same industry. Then, each union may delay the agreement in order to learn

the outcome of negotiations in other �rms. Waiting too long, however, can be costly

as the suppliers and consumers may switch to other �rms.

In our model, two identical �rms, A and B, compete in a product market. In

each �rm, there are headquarters and an R&D division. The cost of the R&D of

the product is the private information of the division; headquarters know only the
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cost distribution. Each R&D division develops the product at most once during the

relationship. The costs of the two R&D divisions are perfectly correlated.1

There are two periods, and all participants share a common discount factor. The

bargaining between headquarters and their R&D division proceeds à la Sobel and

Takahashi (1983). In period 1, the headquarters o¤er a price they are ready to pay

for the product development in that period. If the division accepts it, development

takes place; the headquarters sell the good in the market, and the game ends for this

�rm. If the R&D division rejects the o¤er, the game moves to period 2. Headquarters

then observe whether the other �rm has introduced the product or not and make

another o¤er to their division that it is free to accept or reject.

In any equilibrium, there is a cut-o¤ level of cost at which a division is indi¤erent

as to whether it accepts developing the product in period 1; or waiting for a second-

period o¤er. Thus in period 1, by its decision each division reveals whether its cost

is above or below this cut-o¤. Then, each headquarters have an incentive to delay

the development of its own product in order to obtain information about the cost

of development of the other R&D division and, because they are the same, the cost

of development of its own R&D division. The delay is costly, however, because of

discounting and because of competition between �rms, as we discuss below.

The agency problem in our adverse selection environment means that the division

may pretend to have higher costs than it actually has. Then, it may reject a pro�table

o¤er in period 1 if it expects a su¢ ciently higher o¤er in period 2. In order to see the

e¤ect of this strategic behaviour, we �rst consider the benchmark setting in which

the division is non-strategic: it accepts any o¤er in period 1 that is higher than its

costs. We then study the full-commitment setting in which the division is strategic

(it can reject an o¤er above its costs in period 1), but the headquarters can commit

to a two-period contract. We also look at the no-commitment setting in which the

division is strategic and the headquarters can propose only one-period contracts.

In the absence of product market competition, the only feature of the contracting

in each �rm that is relevant for the other �rm is the information generated in period

1, i.e., the cut-o¤ level of cost. We look for the equilibria in these cut-o¤s. We

�nd that there are only asymmetric equilibria (in pure strategies) in the benchmark

setting, while there are only symmetric equilibria in the full and no-commitment

settings. In the benchmark setting, having the same cut-o¤s implies that the two

1The R&D divisions can be thought of as independent (exclusive) suppliers.
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divisions will generate exactly the same information. Headquarters prefer then to

have di¤erent cut-o¤s in order to learn more. When the divisions are strategic, in

contrast, having the same cut-o¤s becomes useful as it puts the headquarters in the

best position to limit the strategic behaviour of the divisions. If a division deviates

from the equilibrium behaviour and rejects a �rst-period o¤er which is above its cost,

the other division will still accept the same o¤er and, therefore, headquarters will

detect the deviation and will not improve their o¤er in period 2.

More generally, we show that the sets of symmetric equilibria are always nested:

the smallest is in the benchmark setting (it may be non-empty once competition is

introduced) and the largest is in the no-commitment setting. In other words, the

agency problem drives the �rms towards symmetric behaviour. Moreover, when the

contractual imperfections increase and only one-period contracts are available, there

is more need to discipline the agents and the symmetric behaviour becomes even

more likely. The strategic behaviour of the R&D divisions creates a coordination

motive in headquarters�actions. Therefore, the internal structure of the �rm and,

in particular, the way the agency problem is solved cannot be studied in isolation.

E¢ ciency is a¤ected by informational externalities via two e¤ects. The �rst e¤ect

is a standard one: the possibility to learn in the future causes the headquarters to

delay in the introduction of the new product, which harms e¢ ciency.2 The second

e¤ect is strategic and increases e¢ ciency. Since o¤ers in period 2 are made under

better information, they give a lower rent to the division in period 2 and, therefore,

the division becomes "softer", i.e., more likely to accept a given o¤er, in period 1. The

second e¤ect arises, obviously, only when the division is strategic. In the benchmark

setting there is just the �rst e¤ect, so informational externalities decrease e¢ ciency.

In the full-commitment setting, the strategic e¤ect is crucial. In the autarky, i.e.,

when the �rm is alone in the market, headquarters would commit to a take-it-or-

leave-it o¤er in period 1 which is very ine¢ cient.3 Information obtained from the

other �rm allows headquarters to revise their o¤er and to contract with high cost

types in period 2. In the no-commitment setting, the strategic e¤ect becomes less

important as the headquarters revise their o¤er anyway and the autarky is relatively

e¢ cient. The standard e¤ect is likely to dominate, as in the benchmark setting.

2We assume that �rms make pro�ts for any cost realization. Thus, any delay is ine¢ cient and

is due to rent extraction by the headquarters.
3This is a standard result in dynamic bargaining models. See, for example, Sobel and Takahashi

(1983) and Hart and Tirole (1988).
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Competition may take various forms and we allow for a great �exibility in the

ways in which it a¤ects �rms� pro�ts. We distinguish intra-period competition,

that is, competition from concurrent sales, from inter-period competition, that is,

competition from past sales and future sales.4 Competition from past sales re�ects

�rst-mover advantage: a second entrant in the market obtains smaller revenues than

the �rst one. We �nd that inter-period competition pushes �rms towards symmetric

behaviour. For example, in the benchmark setting the competitive pressure may

force �rms to forego the bene�ts of more information and opt to make the same

o¤ers. The e¤ect of intra-period competition is the opposite. Headquarters may

choose to o¤er di¤erent contracts and tolerate some strategic play of the divisions

in order to di¤erentiate themselves and introduce the product in di¤erent periods.

The rest of the paper is organized as follows. Below we discuss the related lit-

erature. In Section 2 we introduce the model and �nd equilibria in the benchmark

and the full-commitment settings assuming no competition. In Section 3 we intro-

duce competition and analyze the e¤ects of the four kinds of competition mentioned

above. We study the no-commitment setting in Section 4. In Section 5 we consider

alternative information structures. The �rst structure allows for imperfect correla-

tion between the costs of the two divisions, while in the second the costs of a division

are completely revealed if it develops the product in period 1, for example, through

reverse engineering by the other �rm. Section 6 concludes.

1.1 Related literature

The two most closely related papers are those of Gu and Kuhn (1998) and Drugov

(2007). Gu and Kuhn (1998) study simultaneous bargaining of several �rms with

their unions. However, in order to simplify the model, they assume that the principal

(union) can make an o¤er only once (but can choose when) and, therefore, the

agent (�rm) cannot be strategic.5 This setup roughly corresponds to our benchmark

setting. In Drugov (2007) the agent can strategically reject the principal�s o¤er in

4Note that under intra-period competition in period 2 and inter-period competition from future

sales the second-period probability of development, i.e., the second-period cut-o¤, also becomes

relevant for the other �rm.
5In a related paper, Kuhn and Gu (1999) study the same game with the possibility of a strategic

rejection, but impose a sequential order of moves and, therefore, the revelation of information is

exogenous. The �rst bargaining occurs in the autarky, while the second starts with more informa-

tion.
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an anticipation of a higher rent in the future. The model there is quite di¤erent as

there are only two types of agent, but the quantity produced is continuous. In both

papers, the only cost of the delay is discounting. In this paper, besides discounting,

the cost of the delay is also a disadvantage of not being the �rst in the market and,

therefore, depends on the strategy of other players. In other words, both the bene�ts

of the delay (learning the information revealed by others) and the costs of the delay

(being late in the market) are fully endogenous and may vary in di¤erent equilibria.

There is an extensive literature on learning from competitors. It may be about

a technology (see, for example, Reinganum (1989) and De Bondt (1997) for surveys

of patent, or R&D, races) or about the market or demand characteristics as in

Rob (1991), Décamps and Mariotti (2004) and others. The crucial di¤erence is

that, in this paper, the learning is about the agent (the R&D division) who is a

strategic player. In models of the investment-under-uncertainty type as in Dixit and

Pindyck (1994), better information in the future always delays the investment since

it increases the payo¤ of investing in the future while the payo¤ of investing today

is unchanged. In an agency model, better future information makes the agent softer

both in the future and in the present, and may lead to more contracting in the

present, i.e., a smaller delay (Drugov (2006), Fuchs and Skrzypacz (2008)).

Several recent papers such as Raith (2003), Golan, Parlour, and Rajan (2007) and

Marin and Verdier (2008) study a general, or rather industry, equilibrium in which

the agency problem inside �rms and market competition interact and in�uence each

other. We also make a step in this direction. These papers study models with moral

hazard in which competition a¤ects contracts inside �rms through changes in the

pro�ts that the principal obtains from a given agent�s action. In our model, the

agency problem is adverse selection, and competition has a dual role of providing

information about the agents�types and changing principal�s pro�ts from a given

contract. However, the informational role of competition may be important in the

moral hazard environment as well. Indeed, starting with Lazear and Rosen (1981)

and Holmstrom (1982) comparing performance of di¤erent agents is known to provide

additional information, if there are common shocks to agents�performance. Then,

the dual role of competition seems natural independently of the type of the agency

problem.

It is well known that the principal can use correlation among agents�types to

extract rents (see Crémer and McLean (1985) and Shleifer (1985) for early papers).
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We obviously use this insight but the present paper di¤ers in two aspects. First,

in our paper there are many "principal-agent" pairs and not a single principal.6

Second, we study a dynamic game which allows us to analyse delay in contracting.

Several papers study an adverse selection problem with an exogenous signal about

agent�s type. This is precisely the �rst step in analysing our model, the signal

being information revealed by the other �rm (taken as given). Fuchs and Skrzypacz

(2008) analyze an in�nite-horizon bargaining model and show that the delay is non-

monotonic in the likelihood of a signal that reduces informational asymmetry. In

Drugov (2006), in a two-period model, we show a related result that the delay is non-

monotonic in the quality of the signal (as Drugov (2007), it is a two-type model with

continuous quantity). In Strausz (2006) the model is also dynamic but the agent

has unlimited liability which is known to be crucial for Crémer-McLean mechanisms

(together with risk neutrality). Other papers, such as Riordan and Sappington

(1988), Demougin and Garvie (1991), Boyer and La¤ont (2003) and Gary-Bobo

and Speigel (2006), study a static adverse selection problem with an exogenous

contractible signal.

2 The Model

2.1 Setup

Two �rms, A and B, plan to introduce a new product into the market. This product

has yet to be developed. In particular, in each �rm, headquarters (the principal)

negotiate with the R&D division (the agent) about the development of the product.

There are two periods, and all parties share a common discount factor � < 1. Each

R&D division may develop the new product only once, either in period 1 or in period

2. The two divisions have the same cost of development, �, uniformly distributed on

[0; 1].7 ;8 They know �, but headquarters know only its distribution. If the product is

developed, the production costs are zero. In what follows we use the words "develop"

6Another early paper is Nalebu¤ and Stiglitz (1983) that discusses, mostly informally, the ben-

e�ts of relative compensation in markets where �rms have correlated costs. There, �rms design

contracts taking information from other �rms as given.
7Assuming uniform distribution allows us to obtain closed-form solutions. Qualitative results

do not depend on this assumption.
8We consider imperfect correlation in Section 5.1.
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and "produce" interchangeably.

If a �rm introduces the product in period 1, it obtains revenues of v1; introducing

the product in period 2 yields v2. In this Section, there is no competition so the

revenues do not depend on the behaviour of the other �rm (competition is analyzed

in Section 3). Introducing the product in period 1 is more pro�table, v1 � v2, since it
may be sold for two periods (if the product is non-durable) or it may be used for two

periods (if it is a durable good). Also, it is always e¢ cient to develop the product,

v2 � 1 . Therefore, if some types do not produce, this is only for rent-extraction

reasons. Finally, we also assume that v1 � 2 in order to avoid trivial cases.

The timing of the game is as follows. At the beginning of period 1 each head-

quarters propose a contract to their R&D division. If a division agrees to develop the

product in period 1, it does so, headquarters earn v1 and the game is over for that

�rm. If the division does not develop the product in period 1, both headquarters

and the division observe whether the other �rm has developed the product in period

1 (but they do not observe the contract between the other �rm�s headquarters and

the division). Then headquarters make an o¤er in the beginning of period 2 which

the division accepts or rejects. Production, transfers and selling of the good in the

market, if any, take place and the game ends.

The agency problem in our adverse selection environment means that the division

may pretend to have higher costs than it actually has. Then, it may reject a pro�table

o¤er in period 1 if it expects a su¢ ciently higher o¤er in period 2. In order to see the

e¤ect of this strategic behaviour, we �rst consider the benchmark setting in which

the division is non-strategic: it accepts any o¤er in period 1 that is higher than

its costs. It can also be interpreted as the headquarters committing to outsource

the development of the product if the o¤er is rejected. We then study the full-

commitment setting in which the division is strategic (it can reject an o¤er above

its costs in period 1) and the headquarters can commit to a two-period contract

(possibly conditional on the production decision of the other �rm in period 1). In

Section 4, we also look at the no-commitment setting in which the division is strategic

and the headquarters can propose only one-period contracts.

A strategy of each headquarters is a triple (p1; p
y
2; p

n
2 ) (all o¤ered in period 1 or

not, depending on the setting), where p1 is the price to be paid to the division if

it develops the product in period 1; and py2 and p
n
2 are the prices, conditional on

whether the other division has produced or not, to be paid for the development in
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period 2.9 We consider only pure strategies.10

The equilibrium concept is Perfect Bayesian Equilibrium. We solve the model

in the following way. In period 1, a division is indi¤erent about producing or not

producing when its type is the cut-o¤ type, � = s. If � < s, the division strictly

prefers to produce in period 1; while it strictly prefers not to produce if � > s. The

information revealed by each �rm after period 1 is a partition, whether the type is

below or above s. Then, s summarizes all the information revealed by each �rm after

period 1 and, therefore, only s (which is the probability of production in period 1) is

payo¤-relevant for the other �rm. In an equilibrium, any strategy (p1; p
y
2; p

n
2 ) maps

into a cut-o¤ type s of that �rm�s division. The strategies of the two �rms can then

be characterized by reaction functions sA
�
sB
�
and sB

�
sA
�
and their intersections

are equilibria. Since the two �rms are (ex ante) identical, sA
�
sB
�
and sB

�
sA
�
are

symmetric about the diagonal.

In each setting, we will �rst �nd the reaction function sA
�
sB
�
(that is, we solve

the problem of headquarters A) and then look for intersections with its inverse. We

also �nd prices p1; p
y
2 and p

n
2 o¤ered by headquarters A to division A (that we do

not mark with superscript "A" to keep notation simple as this does not create any

confusion.)

2.2 The Benchmark

In the benchmark setting, the R&D divisions do not behave strategically. Facing an

o¤er p1, division A accepts it if it is higher than its costs. Thus, the cut-o¤ type is

sA = p1.

After period 1, observing whether �rm B has introduced the product or not,

headquarters A learn if the division�s costs � are higher or lower than sB (remember

that the costs are perfectly correlated). There are two cases to consider depending

on whether their �rst-period o¤er p1 is higher or lower than sB.

Start with the case sA � sB that we call case a (for above). The information

9The fact that p1 is not conditional on the behaviour of the other �rm matters only if the

division is strategic and it is justi�ed by additional assumptions that we introduce in Section 2.3

on full commitment.
10Mixed strategies introduce a signi�cant complication since the updated beliefs after observing

(no) production by the other �rm in period 1 are not truncated uniform. Also, a pure-strategy

equilibrium always exists in our model.
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generated by �rm B is useless since, following a rejection of an o¤er in period 1, the

headquarters learn that � is higher than sA which is more precise than the fact that

� is higher than sB. Then, headquarters A act as if they were in the autarky (i.e.,

alone in the market) and solve the following problem11

8>>><>>>:
max
p1;pn2

�BMa = (v1 � p1) p1 + � (v2 � pn2 ) (pn2 � p1)

s.t. sB � p1 � pn2 � 1

(1)

(superscript "BM" refers to the benchmark setting).

When p1 and pn2 are o¤ered, with probability p1 = sA the development takes

place in period 1; in which case the pro�ts are v1 � p1; with probability pn2 � p1
it takes place in period 2; in which case the pro�ts are � (v2 � pn2 ). If division A
rejects p1, the headquarters A never observe production in �rm B and therefore p

y
2 is

irrelevant. The two prices are obtained from the �rst-order conditions of (1) unless

the constraints sB � p1; pn2 � 1 bind, that is,

p1 = min

�
max

�
sB;

v1 � �v2 + �pn2
2

�
; 1

�
; (2a)

pn2 = min

�
v2 + p1
2

; 1

�
: (2b)

Consider now the case sA � sB which we call case b (for below). In this case the
information generated by �rm B is useful since, following a rejection of a �rst-period

o¤er p1 = sA, the headquarters learn if the costs of the divisions are in the interval

(sA; sB] or (sB; 1]. The headquarters maximize12

8>>><>>>:
max
p1;p

y
2 ;p

n
2

�BMb = (v1 � p1) p1 + �
�
(v2 � py2) (p

y
2 � p1) + (v2 � pn2 )

�
pn2 � sB

��
s.t. p1 � py2 � sB � pn2 � 1:

(3)

From the �rst-order conditions and the constraints, the expressions for the three

prices are

11This is the setting of Sobel and Takahashi (1983).
12Note that, at sA = sB , (1) and (3) are identical.
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p1 = min

�
v1 � �v2 + �py2

2
; sB

�
; (4a)

py2 = min

�
v2 + p1
2

; sB
�
; (4b)

pn2 = min

�
v2 + s

B

2
; 1

�
: (4c)

The price o¤ered when there was no production by �rm B, pn2 , does not depend

on p1 since the updated beliefs of the headquarters are that � 2 (sB; 1], and therefore
do not depend on p1.

Once the maximal pro�ts �BMa and �BMb have been found using (2) and (4),

respectively, we can �nd when sA is above and below sB and therefore characterize

the optimal contract as a function of sB. This is done in the next Lemma. We only

characterize sA in the text of the Lemma since it is enough to �nd equilibria. We

give the complete characterization in the proof in the Appendix.

Lemma 1 In the benchmark setting, there are two cases:

1. If v1+(2��)v2
4�� � 1, there exists �BM1 2

�
v1��v2
2�� ;

v1��v2+�
2

�
such that

sA =

"
v1��v2+�

2
; if sB � �BM1

v1��v2+�sB
2

; if sB > �BM1

2. If v1+(2��)v2
4�� < 1, there exists �BM2 2

�
v1��v2
2�� ;

v1� �
2
v2

2� �
2

�
such that

sA =

26664
v1� �

2
v2

2� �
2

; if sB � �BM2
v1��v2+�sB

2
; if sB 2

h
�BM2 ; v1+(2��)v2

4��

i
v1� �

2
v2

2� �
2

; if sB � v1+(2��)v2
4��

Proof. See Appendix.

The two cases are very similar. When sB is small, sA is larger than sB and

constant. We are in case a and the information is not used. At a higher sB = �BM1
or sB = �BM2 , depending on case 1 or 2, sA jumps down to v1��v2+�sB

2
< sB (case b)

and continues to be smaller than sB for even higher sB. See Figure 1 for a numerical
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example.13 The most important feature of the optimal sA is that it never equals sB.

Indeed, whenever sA = sB, it generates exactly the same partition of the division�s

type space and, therefore, the information from the other division is useless. The

headquarters then prefer either to decrease sA to be able to use the information from

division B or to increase sA up to the autarky level. Also note that sA is the same at

sB = 0 and at sB = 1 since there is no information actually revealed and, therefore,

the autarky solution is implemented.

The two �rms are identical; thus, the reaction function of �rm B is the inverse of

that of �rm A. Then, in order to �nd equilibria we need to �nd intersections of the

reaction curve sA
�
sB
�
with its inverse, which is done in the next Proposition (the

exact values of equilibrium points are given in the Appendix).

Proposition 1 In the benchmark setting, there are only two equilibria and they are

asymmetric.

Proof. See Appendix.

In an asymmetric equilibrium, by de�nition, the �rst-period production in one

�rm, say, �rm A, is higher than that in �rm B, sA > sB. Then, when � 2
�
sB; sA

�
only �rm A introduces the product in period 1. In other words, with probability

sA� sB, �rm A is the "leader" and �rm B is the "follower" introducing the product
in period 2 with a positive probability. The strategy of �rm B can be described

as "wait and see" and it is more pro�table than being the "leader" (see pro�ts in

Figure 1). Firm A, knowing that �rm B will wait, has to act on its own and use the

autarky solution. This asymmetric equilibrium exists despite the fact that the �rms

are ex ante identical and there is a place for both of them in the market.

Let us discuss the e¢ ciency of the equilibria. Production is always e¢ cient in our

model since v1 � v2 � 1. For the same total production over two periods, it is more
e¢ cient to produce in period 1 than in period 2 since v1 > �v2. Second-period prices

and, therefore, second-period production are weakly increasing in the �rst-period

price (production). Then, e¢ ciency increases with the �rst-period production, i.e.,

with s.

In an asymmetric equilibrium, the "leader" has a higher �rst-period production

and, thus, is more e¢ cient than the "follower". The behaviour of the "leader", as
13The only di¤erence between the two cases is that the constraint pn2 � 1 always binds in case 1,

while in case 2 it does not bind when sB < �BM2 and sB > v1+(2��)v2
4�� .
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Figure 1: Prices and pro�ts in the benchmark setting (case 1), v1 = 1:5; v2 = 1:4;

� = 0:5. The long-dashed line is the inverse p1 and its intersections with p1 are

(asymmetric) equilibria. For pro�ts, the scale is adjusted.
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we noted above, is the same as in the autarky, that is, when each �rm acts on its

own. The autarky is then more e¢ cient since both �rms would behave as "leaders".

Indeed, informational externalities create an incentive to delay the production which

is ine¢ cient, though, privately optimal (the "follower" has higher pro�ts than the

"leader"). This is the only e¤ect in the benchmark setting.14

2.3 Full commitment

In this Section, the R&D division is strategic: it agrees to develop the product in

period 1 only if its rent is higher than its expected rent from waiting for period 2.

The headquarters can commit to a two-period contract.

We make two following assumptions to ensure that, if headquarters want to use

the information from the other �rm, they have to delay the production until period

2. First, limited liability of the division: the rent earned by the division (payment

it receives minus its true costs) is consumed in the same period and cannot be

claimed back later even if the headquarters realize, after observing the other �rm,

that they have paid too much. Second, the credit (or cash) constraint of the division:

headquarters have to cover the (claimed) costs of the division in the period when the

development takes place. That is, the headquarters cannot order the development

of the new product and pay for it later when there will be more information. These

constraints imply that, at the beginning of period 1, headquarters propose a �rst-

period price p1 and a non-negative bonus to be paid later (conditional on future

information). Moreover, only a division with costs below p1 can accept this o¤er, and

therefore, sA � p1. The bonus could be used to bring sA closer to p1; however, as we
will see below, the full commitment solution involves sA = p1 and the optimal bonus

is actually zero. Then, the contract o¤ered by the headquarters at the beginning of

period 1 is a triple (p1; p
y
2; p

n
2 ).

Once contracts have been o¤ered (simultaneously and secretly) by the headquar-

ters, each division decides whether to produce in period 1 or not; if it does not, it will

be o¤ered a pre-speci�ed second-period price conditional on the production of the

other �rm. As in the benchmark setting, we �rst look for the optimal cut-o¤ type

14In a di¤erent model, informational externalities could improve second-period production of all

the �rms, not only of the "follower". Then, there would be a trade-o¤ between a higher delay of

the "follower" and a better second-period production of the "leader".
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of division A, sA, taking the cut-o¤ type of division B, sB, as given. The equilibria

are then obtained by �nding intersections of sA
�
sB
�
with its inverse.

Start with case a where sA � sB. If division A has costs � � sB, it will produce in
period 1. Indeed, it knows that, if it does not produce in period 1, the headquarters

will learn that its costs are below sB since division B will produce in period 1 and the

second-period price py2 will satisfy p
y
2 � sB � p1. Then, division A �nds it optimal

to produce in period 1.

The division with costs � > sB has a rent of p1� � if it produces in period 1. If it
does not produce, it will be o¤ered a price pn2 � p1 since in period 1 the other division
will not have produced either. Its rent will be � (pn2 � �). As before, sA denotes the
type which is indi¤erent about producing in period 1 or in period 2, which is now

sA =
p1 � �pn2
1� � : (5)

The problem of the headquarters is

8>>><>>>:
max
p1;pn2

�FCa = (v1 � p1) sA + � (v2 � pn2 )
�
pn2 � sA

�
s.t. sB � p1 � pn2 � 1 and (5).

(6)

In case b, i.e., sA � sB, by a similar logic, the type which is indi¤erent between
production in period 1 and in period 2 is sA � sB given by

sA =
p1 � �py2
1� � : (7)

The headquarters�problem is

8>>><>>>:
max
p1;p

y
2 ;p

n
2

�FCb = (v1 � p1) sA + �
�
(v2 � py2)

�
py2 � sA

�
+ (v2 � pn2 )

�
pn2 � sB

��
s.t. p1 � py2 � sB � pn2 � 1 and (7).

(8)

The next Lemma simpli�es further analysis. It says that the headquarters commit

not to change their o¤er (unless there is evidence that the �rst-period price was

unacceptable for the division). The reason is that the losses that occur because
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the division delays its production outweigh the bene�ts of an additional production

in period 2. This is the same reason as in Sobel and Takahashi (1983) and, more

generally, in the bargaining literature where, for example, the seller, selling to a

privately informed buyer, restricts sales to a single period.

Lemma 2 In case a, p1 = pn2 = s
A. In case b, p1 = p

y
2 = s

A.

Proof. For case a, plug (5) into �FCa and di¤erentiate it with respect to pn2 to obtain

sign

�
@�FCa
@pn2

�
= sign [2p1 � 2pn2 + v2 � v1] :

As v1 � v2, the derivative is negative if pn2 > p1. Then, pn2 = p1 and, from (5),

sA = pn2 = p1.

Case b is proved analogously.

Note that in case b the second-period price when no �rm produced in period

1, pn2 , is ex post e¢ cient: p
n
2 = min

n
sB+v2
2
; 1
o
. The headquarters commit not to

change their o¤er unless they receive a signal that the �rst-period o¤er was too low.

As the headquarters commit not to increase the (relevant) price in the future,

the division accepts any o¤er above its costs. Then, the �rst-period price is also

the division�s type which is indi¤erent about producing in period 1 or 2. The next

Lemma characterizes the optimal sA. Figure 2 shows the optimal sA, prices and

pro�ts.

Lemma 3 In the full-commitment setting, there exists �FC < v1
2
such that

sA =

2664
v1
2
; if sB � �FC ;

sB; if sB 2
�
�FC ; v1

2

�
;

v1
2
; if sB � v1

2
:

Proof. Using Lemma 2, (6) becomes

max
p12[sB ;1]

�FCa = (v1 � p1) p1

and the optimal price is p1 = max
�
v1
2
; sB

	
. (8) becomes

max
p1�sB�pn2�1

�FCb = (v1 � p1) p1 + � (v2 � pn2 )
�
pn2 � sB

�
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Figure 2: Prices and pro�ts in the full-commitment setting, v1 = 1:5; v2 = 1:4;

� = 0:5. For pro�ts, the scale is adjusted.
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and the optimal prices are p1 = sA = min
�
v1
2
; sB

	
and pn2 = min

n
v2+sB

2
; 1
o
.

Finally, �FCa < �FCb for sB � v1
2
, therefore, �FC < v1

2
and is found from the

equality of pro�ts in the two cases with the corresponding prices inserted.

The optimal cut-o¤ sA equals v1
2
; with the exception of the range

�
�FC ; v1

2

�
where

it equals sB. When sA = v1
2
and is above sB, headquarters do not use the information.

To use the information, the production has to be at most sB. Thus, headquarters

face a trade-o¤: to distort sA downwards and to use information or not to distort

sA and to ignore information. When sB becomes close enough to v1
2
, the distortion

of sA becomes relatively small and the bene�ts of information outweigh the losses

due to the distortion. This happens at sB = �FC . Headquarters keep the distortion

minimal, that is, sA = sB. In contrast to the benchmark setting, having sA = sB

is useful as it allows headquarters to detect the strategic rejection of p1. When sB

exceeds v1
2
, headquarters keep sA undistorted at v1

2
and still use the information.

Let us now turn to the equilibria of the game which are characterized in the next

Proposition.

Proposition 2 In the full-commitment setting, there is a continuum of symmetric

equilibria in which both �rms have the same production sA = sB 2
�
�FC ; v1

2

�
. There

are no other equilibria.

All the equilibria are symmetric in the full-commitment setting. This means

that the two �rms always introduce the new product simultaneously, whether it be

in period 1 or in period 2. The two �rms generate the same information (the same

partition) and headquarters use the information from the other �rm to discipline

their division. In the benchmark setting, there was no need for this and generating

the same information was useless. O¤ering identical contracts, headquarters can

detect strategic rejection of the contract in period 1, that is, rejection when the

costs of the division � are below p1, since in this case both divisions are supposed to

accept the contracts and produce in period 1. Then, headquarters can contract with

their division in period 2 when no �rm produced before o¤ering pn2 > p1 without a

strategic response from the division in period 1. Indeed, as we see from (7), pn2 does

not a¤ect sA in case b.

These multiple symmetric equilibria can be ranked in terms of their e¢ ciency.

As we noted above, a higher �rst-period production, that is, a higher cut-o¤ s, cor-

responds to a higher and earlier total production and, therefore, a higher e¢ ciency.
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Then, the "highest" symmetric equilibrium, in which sA = sB = v1
2
, is the most

e¢ cient one. In the autarky, each �rm produces at the same level s = v1
2
in pe-

riod 1; however, headquarters commit to this take-it-or-leave-it o¤er and there is

no production in period 2. Information obtained from the o¤er allows headquarters

to o¤er a higher price pn2 in period 2 without a possibility of strategic rejection of

their o¤er in period 1. This is the strategic e¤ect which increases e¢ ciency. In the

highest symmetric equilibrium informational externalities only improve contracting

in period 2, as compared to the autarky. In other equilibria, they also cause a higher

delay in period 1 which is a standard negative e¤ect. Comparison with the autarky

becomes then ambiguous.

A more e¢ cient equilibrium is always associated with higher prices o¤ered to the

divisions which means higher rents for them. The pro�t-maximizing equilibrium is,

however, an intermediate one as we can see in Figure 2. Then, in equilibria below

the pro�t-maximizing one the headquarters, the divisions and consumers all want

to move to a higher equilibrium. In equilibria above the pro�t-maximizing one, the

preferences of the headquarters are opposed to those of divisions and consumers.

3 Competition

In this Section, we introduce competition. We allow for a great generality parame-

trizing possible e¤ects of competition in the following way. Intra-period competition

arises when the two �rms introduce new products in the same period. If this happens

in period 1, each �rm earns �1v1, �1 � 1, and if in period 2, each �rm earns �2v2,

�2 � 1. Inter-period competition arises when the two �rms introduce their products
in two di¤erent periods. Under competition from past sales, a �rm su¤ers when it

is the second to introduce the product and in this case its revenues decrease to 
v2,


 � 1. The �rst �rm then has a �rst-mover advantage. Under competition from

future sales, the �rm which �rst introduces the product su¤ers from the market�s

anticipation that the other �rm will introduce the product later. Its revenues then

decrease to �v1; � � 1.15 We keep our assumption that it is always e¢ cient to pro-
duce, that is, �1v1; �2v2; 
v2 and �v1 are all greater than 1. A stronger competition

means that revenues fall more and, therefore, it corresponds to a lower �1, etc.

15More precisely, its revenues become a combination of �v1 and v1 weighted by the probability

that the competitor will introduce the product in period 2.
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There are four possible e¤ects of competition on the optimal cut-o¤ type sA:

competition may increase or decrease sA in case a (when sA is above sB) or in case b

(when sA is below sB). It turns out that there is one-to-one correspondence between

the four kinds of competition described above and these four e¤ects. This is described

in Table 1 below. We say that the set of symmetric equilibria shrinks if the interval

of the values of sB such that sA = sB decreases. In some cases, this interval may

even disappear and then there will be two asymmetric equilibria. When there are

already no symmetric equilibria, the asymmetric ones become more asymmetric in

the sense that the ratio sA

sB
goes further away from one. We also say that the set of

symmetric equilibria expands to describe the opposite phenomenon.

Table 1: E¤ects of di¤erent kinds of competition

Type of competition Setting a¤ected Cut-o¤ type s Set of sym. eq.

Intra-period 1, �1 # both B and FC decreases in case b shrinks

Intra-period 2, �2 # both B and FC increases in case a16 shrinks

Past sales, 
 # only B increases in case b expands

Future sales, � # only B decreases in case a expands

Table 1 should be interpreted in the following way. Each line describes the e¤ects

of one of the four kinds of competition. Consider, for example, the �rst line which

corresponds to a stronger intra-period competition in period 1, i.e., a lower �1. It

a¤ects both the benchmark and full-commitment settings. It decreases the optimal

cut-o¤type in case b (and does not a¤ect it in case a). The set of symmetric equilibria

shrinks.

Below, we start with inter-period competition from past sales and study it in

some detail. In particular, we characterize optimal sA in the benchmark setting

and show that symmetric equilibria might appear. We summarize the results for

the three other kinds of competition, providing intuition for their e¤ects. Then,

we provide an example of how a standard model of competition (Hotelling�s spatial

model) translates into intra- and inter-period competition.

Finally, we show that, independently of the strength and the form of competition,

symmetric equilibria exist for a larger range of parameters in the full-commitment

setting than in the benchmark setting.
16Only in the benchmark setting.
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3.1 Inter-period competition from past sales

A stronger inter-period competition from past sales, or a bigger �rst-mover advan-

tage, corresponds to a lower 
. It hurts �rm A when �rm A produces in period 2

while �rm B has produced in period 1, that is, when sA < py2 � sB. Then, in case
a, competition from past sales does not have any e¤ect.

Consider case b and let us start with the benchmark setting. Problem (3) should

be replaced by

8>>><>>>:
max
p1;p

y
2 ;p

n
2

�BMb = (v1 � p1) p1 + �
�
(
v2 � py2) (p

y
2 � p1) + (v2 � pn2 )

�
pn2 � sB

��
s.t. p1 � py2 � sB � pn2 � 1:

The only di¤erence with (3) is that, when production takes place after that of

the other �rm, the revenues are multiplied by 
. As intuition suggests, a stronger

competition (lower 
) decreases pro�ts (apply envelope theorem). The prices become

(compare with (4))

p1 = min

�
v1 � �
v2 + �py2

2
; sB

�
;

py2 = min

�

v2 + p1

2
; sB

�
;

pn2 = min

�
v2 + s

B

2
; 1

�
:

We see that p1 = sA decreases with 
 and, therefore, a stronger competition from

past sales (lower 
) will increase p1. A lower 
 makes waiting until period 2 less

attractive and therefore increases production in period 1.

Lemma 10 in the Appendix characterizes the optimal p1. In particular, compared

to Lemma 1, a new case 0 appears: whenever v1+(2��)v2
2
v2+2�� � 1, s

A = sB in some range.

This obviously gives rise to symmetric equilibria that we did not observe before, in

Section 2. See Figure 3.

The next Lemma characterizes equilibria in the benchmark setting.

Lemma 4 In the benchmark setting, under inter-period competition from past sales,

there are the following equilibria:
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Figure 3: Prices and pro�ts in the benchmark setting (case 0) under inter-period

competition from past sales, v1 = 1:5; v2 = 1:4; � = 0:8; 
 = 5
7
. For pro�ts, the scale

is adjusted.
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0. If v1+(2��)v2
2
v2+2�� � 1, there is a continuum of symmetric equilibria in which both

�rms produce at the same level sA = sB 2
�
v1��v2+�

2
; v1��
v2

2��
�
: There are no

asymmetric equilibria.

1,2. If v1+(2��)v2
2
v2+2�� < 1, there are only two equilibria and they are asymmetric.

Proof. Analogous to the proof of Proposition 1.

Thus, under competition from past sales, symmetric equilibria appear whenever
v1+(2��)v2
2
v2+2�� � 1. A lower 
 makes this condition easier to satisfy and it expands the
interval

�
v1��v2+�

2
; v1��
v2

2��
�
, where sA = sB, to the right. In the same spirit, a lower


 makes the asymmetric equilibria of cases 1 and 2 of the benchmark setting less

asymmetric, in the sense that the cut-o¤s in the two �rms in period 1 become closer

to each other. Indeed, in these equilibria in one of the �rms (say, A) the production

is higher than that of �rm B, sA > sB: Then, sA is not a¤ected by 
; while sB

decreases with 
. The ratio of the higher cut-o¤ to the smaller one (from Lemma 10

in Appendix, case 1)

sA

sB
= 2

v1 � �v2 + �
(2 + �) v1 � �v2 (2
 + �) + �2

:

increases in 
 and, therefore, a lower 
 moves it towards one. The same holds for

case 2.

Consider now the full-commitment setting. There, the headquarters commit not

to contract with the division in period 2 (unless the costs are revealed to be higher

than the �rst-period price), and so when sA � sB, sA = p1 = py2 (Lemma 2).

Therefore, in the full-commitment setting, inter-period competition from past sales

does not have any e¤ect.

The next Proposition summarizes the main e¤ects of the competition from past

sales.

Proposition 3 A stronger inter-period competition from past sales (lower 
) in-

creases the cut-o¤ type s in case b and expands the range of symmetric equilibria to

the right in the benchmark setting. It does not a¤ect the full-commitment setting.
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3.2 Three other kinds of competition

3.2.1 Intra-period competition in period 1

Consider now intra-period competition in period 1. If both �rms produce in period 1,

they obtain only �1v1 each, �1 � 1. A stronger intra-period competition corresponds
to a lower �1. It a¤ects both the benchmark and the full-commitment settings.

In case a, the headquarters�pro�ts in period 1, instead of (v1 � p1) sA, become
(�1v1 � p1) sB + (v1 � p1)

�
sA � sB

�
; as if they were selling sA units, and the �rst

sB of them at the price �1v1 and the other s
A � sB at the price v1. The pro�ts

decrease when �1 becomes smaller; however, the marginal pro�ts are una¤ected

and, therefore, the optimal prices do not depend on �1.

In case b, in period 1 the headquarters obtain (�1v1 � p1) sA and therefore all
prices and the cut-o¤ type sA should be adjusted downwards for v1 becoming e¤ec-

tively �1v1.

Consider the set of symmetric equilibria in the full-commitment setting. The

lower end of the interval where sA = sB is de�ned as the value of sB, such that the

autarky pro�ts. i.e., sA > sB, equal pro�ts when sA = sB. From the discussion

above, it is clear that �1 has an identical e¤ect on both pro�ts and, therefore, the

lower end of the interval where sA = sB does not depend on �1. In the benchmark

setting, the lower end of the interval sA = sB is the autarky production that does

not depend on �1.
17 The upper end of the interval where sA = sB is the optimal sA

when the constraint sA � sB stops binding. It decreases since a lower �1 decreases
the optimal sA. In both settings, the set of symmetric equilibria thus shrinks from

the right.

Symmetric equilibria may even cease to exist. Take, for example, the full-

commitment setting. There, the interval where sA = sB becomes
h
�FC ; �1v1

2

i
.18

Then, if �1v1
2
is smaller than �FC , there are no symmetric equilibria. Instead, two

asymmetric equilibria appear in which in one �rm the cut-o¤ s equals v1
2
and in

the other s = �1v1
2
. The same may happen in case 0 of the benchmark setting.19

17We implicitly assume that there is also competition from past sales (or future sales) under

which symmetric equilibria in the benchmark setting may exist.
18Once �1 is introduced, s

A becomes equal to �1v1
2 in case b.

19In particular, the condition that separates case 0 from cases 1 and 2 in the benchmark setting

becomes
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Whenever symmetric equilibria do not exist, asymmetric equilibria arise with the

same structure, as in cases 1 and 2 of the benchmark setting.

The next Proposition summarizes the e¤ects of a lower �1.

Proposition 4 A stronger intra-period competition in period 1 (lower �1) decreases

the cut-o¤ type s in case b and shrinks the range of symmetric equilibria from the

right in both the benchmark and the full-commitment settings.

3.2.2 Intra-period competition in period 2

Suppose now that there is intra-period competition in period 2. If both �rms produce

in period 2, they obtain only �2v2 each, �2 � 1. A stronger intra-period competition
corresponds to a lower �2.

The crucial di¤erence (and complication) of this kind of competition is that the

pro�ts of each �rm are now a¤ected not only by the other division�s cut-o¤ type

s (in period 1), but also by its cut-o¤ type in period 2 in the case where nobody

produced in period 1 which is pn2 . In other words, the strategy of each �rm is now a

two-dimensional vector (s; pn2 ).

In the benchmark setting, intra-period competition in period 2 hurts pro�ts in

both cases a and b since in each there is some probability that none of the divisions

produces in period 1. In case a, exposure to this kind of competition occurs whenever

� 2 (sA;min
n
pn;A2 ; pn;B2

o
]. Then, the desire to escape from this competition will

make headquarters A go for more production in period 1, that is, increase sA. This

implies the set of symmetric equilibria shrinks from the left. In case b, exposure to

intra-period competition in period 2 occurs whenever � 2 (sB;min
n
pn;A2 ; pn;B2

o
]. It

does not depend on sA and, therefore, the optimal sA does not change. This implies

that the upper end of the interval where sA = sB is not a¤ected. Symmetric equilibria

may disappear in the benchmark setting since the interval (v1��v2+�
2

; v1��
v2
2�� ] may not

exist once v2 is decreased to �2v2 at its lower end.

v1 + (2� �) v2
2v1
� (1� �1) + 2
v2 + 2� �

� 1:

(when 
 = 1, we obtain the condition in Lemma 4).

Its left-hand side increases with �1; therefore, a stronger competition (lower �1) makes it more

di¢ cult to satisfy.
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In the full-commitment setting, only case b is a¤ected since in case a there is no

production in period 2. In case b, the pro�ts are not a¤ected at the margin and,

therefore, sA still equals v1
2
unless constrained by sB. Then, �FC < v1

2
still exists

since, even at the lowest possible value of �2 =
1
v2
; headquarters prefer to distort sA

downwards to sB to be able to use the information if sB is su¢ ciently close to v1
2

(from below). Therefore, symmetric equilibria always exist in the full commitment

setting.

The next Proposition summarizes the e¤ects of a stronger intra-period competi-

tion in period 2.

Proposition 5 A stronger intra-period competition in period 2 (lower �2) shrinks

the range of symmetric equilibria from the left in both settings and increases the

cut-o¤ type s in case a of the benchmark setting.20

3.2.3 Inter-period competition from future sales

Finally, the revenues in period 1 may be hurt if the competitor is expected to sell in

period 2. Suppose that �rm A earns only �v1; � � 1, in period 1 if �rm B sells in

period 2.

Under this kind of competition, as well as under intra-period competition in

period 2, the pro�ts of the headquarters of each �rm are a¤ected not only by the

other division�s cut-o¤ type s (in period 1) but also by its cut-o¤ type in period 2

in the case where nobody produced in period 1 which is pn2 . In other words, the

strategy of each �rm is a two-dimensional vector (s; pn2 ).

Case b in each setting is not a¤ected as, there, each �rm produces only if the

other one does. In case a, when only �rm A is to sell in period 1 (that is, when the

costs of divisions are between sB and sA), the market knows that for types of the

division lower than py;B2 , �rm B will sell in period 2. We obtain immediately that

the full-commitment setting is not a¤ected at all since there sA = py2, that is, there

is no production in period 2 by �rm B if �rm A produces in period 1.

In the benchmark setting, the pro�ts in case a decrease. The e¤ect on marginal

pro�ts, and therefore prices and sA, depends on whether the constraint py;B2 � sA

binds. If it binds, py;B2 = sA, the market knows that the other �rm will sell in period

20In the full-commitment setting, symmetric equilibria never disappear.
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2 and therefore, headquarters A get only �v1. Then, when computing sA, we need to

replace v1 by �v1 in the expressions we had before. If it does not bind, p
y;B
2 = v2+sB

2
,

�rm B sells in period 2 if the cost of the division is between sB and py;B2 ; it does

not sell in period 2 if the cost of the division is between py;B2 and sA. Then, assume

that �rm A earns a weighted sum of revenues with and without future sales, that

is, v1
sA�sB

h�
py;B2 � sB

�
�+ sA � py;B2

i
. Future sales still reduce marginal pro�ts and

production in period 1, though to a lesser extent than when py;B2 = sA.

The next Proposition summarizes the e¤ects of competition from future sales.

Proposition 6 A stronger competition from future sales (lower �) expands the range

of symmetric equilibria to the left and decreases the cut-o¤ type s in case a in the

benchmark setting. It does not a¤ect the full-commitment setting.

3.3 Example: Hotelling�s competition

We show here how Hotelling�s model of horizontal di¤erentiation translates into the

intra- and inter-period competition described above. Consider a "linear city" of

length 1 populated by consumers distributed uniformly across the city. Firm A is

located at the left end of the city, while the �rm B is located at the right end and

consumers have transportation cost c < 2
3
per unit of length. The (per period)

valuation of each consumer is 1. The product is non-durable and, therefore, if a �rm

develops the product in period 1, it will sell it for two periods. Then, if a consumer

located at x buys the product from �rm A at price p, his utility is

u = 1� p� xc.

If �rm A is alone selling the product in the market and sets its price equal to p,

it sells to consumers located below 1�p
c
. The price that maximizes its pro�ts p1�p

c
is

p = 1
2
and the resulting pro�ts are 1

4c
.21 Then,

v1 =
1

4c
(1 + �) and v2 =

1

4c
.

When the two �rms compete o¤ering pA and pB, the consumer located at x� such

that pA + x�c = pB + (1� x�) c is indi¤erent between buying from �rm A and �rm

21Once the product has been developed, the production costs are zero.
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B. Firm A maximizes pAx� = pA
pB�pA+c

2c
taking pB as given. In the equilibrium,

pA = pB = c and each �rm earns c
2
. Then,

�1v1 =
c

2
(1 + �) ;

�2v2 =
c

2
;


v2 =
c

2
;

�v1 =
1

4c
+ �

c

2
:

We can now �nd �1 and other parameters:

�1 = �2 = 
 = 2c
2 and � =

1 + 2c2�

1 + �
.

Lower transportation cost c increases pro�ts in the monopoly case, v1 and v2,

since more consumers are served. In the competition case, it decreases pro�ts since

competition becomes more intense. Both e¤ects lead to stronger intra- and inter-

period competition, that is, lower �1 and other parameters.

3.4 Comparison of the equilibria in the benchmark and full-

commitment settings

When competition is absent, there are only asymmetric equilibria in the benchmark

setting (Proposition 1) and only symmetric ones in the full-commitment setting

(Proposition 2). Then, trivially, the set of symmetric equilibria in the benchmark

setting is contained in the set of symmetric equilibria in the full-commitment set-

ting. Under competition, symmetric equilibria may appear in the benchmark setting

(Lemma 4) or disappear in the full-commitment setting (Section 3.2.1). However, as

we show below in Proposition 7, the sets of symmetric equilibria are still nested.

In order to simplify the exposition, we �rst prove Lemma 5. In its statement, the

optimal sA is meant.

Lemma 5 (i) If sA = sB in the benchmark setting, then sA = sB in the full-

commitment setting and the pro�ts are the same in the two settings.

(ii) If sA 6= sB (and sA < 1) in either of the two settings, then pro�ts in the

benchmark setting are strictly higher than in the full-commitment setting.
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Proof. The proof is based on the fact that �BM � �FC since the full-commitment
solution is feasible in the benchmark setting. The equality is reached if and only if

all the prices and production are the same.

(i) In the benchmark setting, p1 = sA and p
y
2 2

�
sA; sB

�
. When the two cut-o¤s

are the same, then p1 = py2 = sA = sB (and pn2 is ex post optimal). In the full-

commitment setting, p1 = p
y
2 = s

A (Lemma 2). When the two cut-o¤s are the same,

then p1 = p
y
2 = s

A = sB (and pn2 is ex post optimal). Thus, prices and production

are the same in the two settings and pro�ts are the same as well.

(ii) Suppose sA > sB in the benchmark setting, then pn2 > sA. In the full-

commitment setting, in order to have the same sA, headquarters set p1 = pn2 = s
A.

The prices are di¤erent in the two settings and, therefore, the full-commitment pro�ts

are lower than the benchmark ones. If sA < sB, it is py2 which is di¤erent in the two

settings. If sA 6= sB in the full-commitment setting, again, either pn2 or p
y
2 will be

equal to p1 while this is not the case in the benchmark setting.

The next Proposition presents the main result of this section.

Proposition 7 The set of symmetric equilibria in the benchmark setting is con-

tained in the set of symmetric equilibria in the full-commitment setting. Moreover,

the inclusion is strict unless the set of symmetric equilibria in the full-commitment

setting is empty.

Once Lemma 5 is proven, the proof of Proposition 7 is simple and therefore omit-

ted. Indeed, from Lemma 5(i) it immediately follows that any symmetric equilibrium

in the benchmark setting is also a symmetric equilibrium in the full-commitment set-

ting. The fact that the inclusion is strict follows from Lemma 5(ii). The intuition is

the following. In the full-commitment setting, headquarters commit not to change

the price in period 2 unless they learn from the other �rm that the �rst-period o¤er

was too low. As soon as sA 6= sB, this commitment is costly since types above sA

(in case a) or between sA and sB (in case b) are shut down. In the benchmark set-

ting, contracting in period 2 is always ex post optimal. Hence, when the division is

strategic, headquarters have an additional motive to set sA = sB.

Another way to state Proposition 7 is that the range of parameters for which there

exists a symmetric (asymmetric) equilibrium expands (shrinks) when the setting is

changed from the benchmark to the full commitment.
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4 No commitment

In this Section, we analyse the no-commitment setting in which headquarters cannot

commit to two-period contracts. To simplify the exposition, we assume away com-

petition as we did in Section 2. We �rst derive the best response function sA
�
sB
�

and then �nd the equilibria. After that we prove that the set of symmetric equilibria

is larger in the no-commitment setting than in the full-commitment one. In other

words, symmetric behaviour of the two �rms is more likely the more severe are the

contractual problems.

At the beginning of period 1 headquarters o¤er a �rst-period price p1.22 If the

division rejects the o¤er, headquarters o¤er py2 or p
n
2 depending on whether the other

�rm produced in period 1 or not. These second-period prices are ex post optimal

and higher than p1.

As in the full-commitment setting, the division is strategic, that is, it accepts the

�rst-period o¤er only when it brings a higher rent than the expected rent in period

2. The cut-o¤ type of the division which is indi¤erent as to whether it produces in

period 1 or in period 2 is sA given, as in the full commitment setting, by (5) and (7),

respectively, depending on whether sA is higher or lower than sB. Now, however,

second-period prices py2 and p
n
2 are not announced in period 1 but expected to arise

as ex post optimal in period 2.

The game is solved backwards. In period 2, headquarters choose the optimal pn2
and py2 knowing that they face an R&D division with costs higher than s

A. In period

1, when deciding about p1 and, thus, about sA, the headquarters take into account

that p1 will a¤ect second-period prices. They also take the behaviour of �rm B;

summarized by the cut-o¤ type sB, as given.

As in the benchmark and full-commitment settings, there are two cases to con-

sider. Let us start with case a, sA � sB.

If p1 is rejected by the division A, the fact that �rm B has not produced either

gives the headquartersA no information as sA � sB. Thus, in period 2 they maximize
(v2 � pn2 )

�
pn2 � sA

�
which gives

22Under no commitment, headquarters cannot commit to future positive payments. The credit

constrained assumed in Section 2.3 can then be relaxed.
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pn2 = min

�
v2 + s

A

2
; 1

�
: (9)

Then, the problem of headquarters A in period 1 is

8>><>>:
max
p1
�NCa = (v1 � p1) sA + � (v2 � pn2 )

�
pn2 � sA

�
s.t. sB � p1 � 1; (5) and (9).

(10)

When sA � sB (case b), the headquarters�problem in period 1 is

8>>><>>>:
max
p1
�NCb = (v1 � p1) sA + �

�
(v2 � py2)

�
py2 � sA

�
+ (v2 � pn2 )

�
pn2 � sB

��
s.t. p1 � sB, (7), py2 = min

n
v2+sA

2
; sB

o
and pn2 = min

n
v2+sB

2
; 1
o
:

(11)

The next Lemma characterizes the optimal sA. For a numerical example see

Figure 4.

Lemma 6 In the no-commitment setting, there exist �NC1 < v1
2
, �NC2 > v1

2
andev2 2 �v1��v22� 3

2
�
; v1��v2
2(1��)

�
such that

sA =

26666666664

24 minnv1��v22(1��) ; 1
o
; if 2� v2 � ev2

min
n
v1��v2
2� 3

2
�
; 1
o
; if 2� v2 > ev2 if sB � �NC1 ;

sB; if sB 2
h
�NC1 ;min

n
v1��v2
2(1��) ; �

NC
2

oi
;

min
n
v1��v2
2(1��) ; 1

o
; if sB 2

h
v1��v2
2(1��) ; �

NC
2

i
(when this region exists),

min
n
v1��v2
2� 3

2
�
; 1
o
; if sB � �NC2 :

Proof. See Appendix.

The behaviour of the optimal response function sA is similar to the full-commitment

case. When sB is small, sA is higher and, therefore, the information coming from

�rm B is not used. Then, at sB = �NC1 , sA falls and becomes equal to sB as, in this

way, headquarters use the information but keep the distortion to a minimum. For

some range of sB, sA is equal to sB. When sB becomes close to one, there are three

possibilities. First, sA may continue to be equal to sB for sB up to one. Second,

sA may become constant, as in the full-commitment setting. Third, sA may become
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constant and then fall down again at sB = �NC2 to another level. The second jump

at sB = �NC2 is unique to the no-commitment setting.

The second case is illustrated in Figure 4. When sA becomes lower than sB, an

increase in sB causes headquarters to o¤er a higher py2 ; however, s
A stays constant.

That is, headquarters su¤er more and more from the inability to commit not to

increase the second-period price.

Finding equilibria is again straightforward as there are only symmetric equilibria.

Proposition 8 In the no-commitment setting, there is a continuum of symmetric

equilibria in which headquarters in both �rms set the same �rst-period price p1 that

results in the same production sA = sB 2
h
�NC1 ;min

n
v1��v2
2(1��) ; �

NC
2

oi
. There are no

other equilibria.

As in the full-commitment setting, there are multiple symmetric equilibria and no

asymmetric ones. The two �rms always introduce the new product together, either in

period 1 or in period 2. They generate the same partition of the type space, i.e., the

same information, and the headquarters use it to commit not to improve their o¤er,

py2 = p1 = s
B. The most e¢ cient equilibrium is the "highest" symmetric equilibrium,

that is, the one in which sA = sB = min
n
v1��v2
2(1��) ; �

NC
2

o
. The comparison with the

autarky is ambiguous for two reasons. First, unlike the full-commitment setting, the

autarky is relatively e¢ cient since headquarters cannot shut down high cost types

in period 2. Second, even in the highest equilibrium, �rst-period production may be

greater or smaller than in the autarky.23

We now show that the set of symmetric equilibria in the no-commitment setting

is larger than the one in the full-commitment setting. For this, we use Lemma 7

which is similar to Lemma 5 and has a similar proof (omitted).

Lemma 7 (i) If sA = sB in the full-commitment setting, then sA = sB in the no-

commitment setting as well and the pro�ts are the same in the two settings.

(ii) If sA 6= sB (and sA < 1) in either of the two settings, then pro�ts in the

full-commitment setting are strictly higher than in the no-commitment setting.

23As in the full-commitment setting, a more e¢ cient equilibrium is always associated with higher

prices o¤ered to the divisions which means higher rents for them. The pro�t-maximizing equilibrium

is, however, an intermediate one as we can see in Figure 4.
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Figure 4: Prices and pro�ts in the no-commitment setting, v1 = 1:5; v2 = 1:4;

� = 0:5. For pro�ts, the scale is adjusted.
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The proof is based on the fact that �FC � �NC since the no-commitment solution
is feasible in the full-commitment setting. The equality is reached if and only if all

the prices are the same.

Proposition 9 The set of symmetric equilibria in the full-commitment setting is

contained in the set of symmetric equilibria in the no-commitment setting. Moreover,

the inclusion is strict unless the set of symmetric equilibria in the no-commitment

setting is empty.

From Lemma 7(i) it immediately follows that any symmetric equilibrium in the

full-commitment setting is also a symmetric equilibrium in the no-commitment set-

ting. The fact that the inclusion is strict follows from Lemma 7(ii). Intuitively, in

the no-commitment setting, when p1 is smaller than sB, the headquarters cannot

commit not to o¤er py2 > p1. However, if p1 is equal to s
B, it e¤ectively commits the

headquarters not to increase py2 as then p1 = py2 = sB. Thus, as compared to the

full-commitment setting, there is an additional incentive for the headquarters to set

sA = sB.

5 Alternative information structures

In this Section, we consider alternative information structures. First, we study the

setup where the costs of the two R&D divisions are independent with some prob-

ability, while still the same with a complementary probability. Second, we assume

that, after development of the new product by one �rm in period 1, the other can

learn the exact development costs through reverse engineering.

5.1 Imperfect correlation of costs

Here, we relax the assumption that the costs of the two divisions are exactly the

same. Suppose that the new product can be developed using one of two available

technologies and in period 1 neither headquarters nor the division know if they use

the same technology as their competitor. They only know that it is the same with

probability �. After period 1 they learn not only about the production of the other

�rm but also which technology it uses. Then, with probability � the costs of the

two divisions are the same, while with probability 1 � � they are independent. In

34



the latter case, the production of the other �rm in period 1 does not reveal any

information (but still may matter if there is competition). A higher � is interpreted

as more, or better, information being revealed by each �rm in expectation. For ease

of analysis and exposition, we assume that there is no competition and discuss the

e¤ects of competition only at the end of this Section.

When sA � sB (case a), �rm A does not use information it receives from �rm B.
Therefore, case a is not a¤ected by �.

Consider case b of the benchmark setting. Denote py;c2 and pn;c2 the prices, condi-

tional on the production of the other �rm in period 1, o¤ered by the headquarters

in period 2; when the costs of the two divisions turn out to be the same, and pi2 the

price o¤ered by the headquarters in period 2; when the costs of the two divisions are

independent. Problem (3) becomes

8>>>>>>>><>>>>>>>>:

max
p1;p

y;c
2 ;pn;c2 ;pi2

�BMb = (v1 � p1) p1

+�

"
�
�
(v2 � py;c2 ) (p

y;c
2 � p1) + (v2 � pn;c2 )

�
pn;c2 � sB

��
+(1� �) (v2 � pi2) (pi2 � p1)

#

s.t. p1 � py;c2 � sB � pn;c2 � 1; pi2 2 [p1; 1] :

(12)

It is intuitive, and can be easily shown, that p1 = sA decreases with � since more

information makes waiting more pro�table.24 This implies that the set of symmetric

equilibria shrinks from the right.

In the full-commitment setting, case b, the cut-o¤type sA, instead of (7), becomes

sA =
p1 � � [�py;c2 + (1� �) pi2]

1� � : (13)

When � = 1, the headquarters commit not to increase the price in period 2

(Lemma 2). For � < 1, they have even fewer reasons to contract in period 2 and

Lemma 2 extends to this case as well. That is, p1 = p
y;c
2 = pi2 = s

A and we obtain

the same solution as the one characterized in Lemma 3. Then, when p1 = sB, pro�ts

increase with � since a higher � increases the chances that the costs of the division

are known to be higher than sB; in which case some production takes place in period

2. In case a the pro�ts are una¤ected by � and, therefore, �FC increases with a lower

24If pi2 = p
y;c
2 = v2+p1

2 < sB , then p1 does not change with �. Indeed, (12) becomes (3) that does

not depend on �.
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�. When � = 0 , no information is ever revealed by the other �rm and p1 = v1
2
for

any sB, i.e., �FC = v1
2
. This is the autarky solution.

In the no-commitment setting, the cut-o¤ type sA is also given by (13). Since

there is no commitment to two-period contracts, at least pi2 will be higher than

p1 and, thus, sA will be lower than p1. There is now a strategic e¤ect of more

information:

@sA

@�
=

�

1� �
�
pi2 � p

y;c
2

�
> 0.

This is the precise sense in which the division becomes softer in bargaining in

period 1 when more information is anticipated in the future. This e¤ect calls for

more production in period 1. The strategic e¤ect is opposite to the direct e¤ect

that we observed in the benchmark setting where more information leads to more

production after this information becomes available. It turns out that, in our model,

the strategic e¤ect is always the (weakly) dominating one. This result is the next

Lemma.

Lemma 8 In the no-commitment setting, more information increases production in

period 1, @s
@�
� 0.

Proof. See Appendix.

This implies that the set of symmetric equilibria expands to the right.

We summarize the main e¤ects of more information in the next Proposition.

Proposition 10 More information (higher �)

(i) decreases the cut-o¤ type s in case b and shrinks the set of symmetric equilibria

from the right in the benchmark setting;

(ii) expands the set of symmetric equilibria to the left in the full-commitment set-

ting;

(iii) increases the cut-o¤ type s in case b and expands the set of symmetric equilibria

to the right in the no-commitment setting.
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The e¤ects of higher � are opposite whether the agent is strategic or not. A

higher � makes information obtained from the other �rm more valuable. In the

benchmark setting, this increases incentives of the headquarters to delay the pro-

duction and to use information from the other �rm. When the agent is strategic,

this information can also be used for more e¢ cient contracting in period 1, that is,

even before it becomes available (strategic e¤ect). In the no-commitment setting,

this e¤ects dominates. In the full-commitment setting, the take-it-or-leave-it o¤er

made in period 1 does not depend on �. However, whenever sA � sB, a higher �

increases the chances that the headquarters will learn that the �rst�period o¤er was

too low and will make a better o¤er in period 2. Then, while sA is not a¤ected by

� in both cases a and b, pro�ts in case b increase with � and, therefore, the set of

symmetric equilibria expands to the left (�FC falls).

5.2 Perfect learning

So far we have considered "contractual" learning, that is, the inference about the

division�s costs made after in period 1 was based solely on the equilibrium contracts.

Often, however, competitors may learn the production costs of a product doing

reverse engineering. Then, headquarters learn the exact cost of the division if the

other �rm has produced in period 1. This is why we call it perfect learning. After

no production in period 1, as before, headquarters learn only that the division�s cost

is above a certain cut-o¤. As in Section 2, consider the setup without competition.

Case a does not change under perfect learning since, here, neither �rm uses any

information revealed by the other �rm.

Consider case b. If the division does not accept producing at price p1, headquar-

ters will learn its type and, therefore, will o¤er py2 = � in period 2. The division will

not get any rent and, thus, accepts any �rst-period price above its cost. That is,

the cut-o¤ type sA equals p1 in all three settings. Even when strategic, the division

behaves "myopically" and the commitment ability of the headquarters no longer

matters.

The problem of the headquarters is now
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8>>>>>><>>>>>>:
max
sA;pn2

�b =
�
v1 � sA

�
sA + �

sBZ
sA

(v2 � �) d� + � (v2 � pn2 )
�
pn2 � sB

�

s.t. sA � sB � pn2 � 1:

Solving it, we obtain

sA = min

�
v1 � �v2
2� � ; sB

�
; (14a)

pn2 = min

�
v2 + s

B

2
; 1

�
: (14b)

Since in case a perfect learning does not matter, our previous analysis applies for

sB � v1��v2
2�� , in particular, the characterization of the cut-o¤ type s

A in Lemmas 1, 3

and 6. For sB > v1��v2
2�� , the three settings become identical and the same s

A = p1 =
v1��v2
2�� is optimal in case b. This implies that v1��v2

2�� becomes the upper end of the

interval where sA = sB. Since v1��v2
2�� < v1

2
, the sets of symmetric equilibria shrink

in the full-commitment and no-commitment settings. In the benchmark setting,

symmetric equilibria exist only if inter-period competition is present. For example,

under inter-period competition from past sales, (14a) becomes

sA = min

�
v1 � �
v2
2� � ; sB

�
and sA = sB if sB 2

�
v1��v2+�

2
; v1��
v2

2��
�
, which is the same interval as before (Lemma

4, case 0). Therefore, perfect learning does not a¤ect the set of symmetric equilib-

ria.25 ;26

The next Proposition summarizes the main e¤ects of perfect learning.

Proposition 11 Introduction of perfect learning shrinks the sets of symmetric equi-

libria from the right in the full-commitment and no-commitment settings.

25This is because at sB = v1��
v2
2�� , when it becomes optimal to have sA < sB , the e¤ect of perfect

learning in terms of higher pro�ts is still of the second order.
26In cases 1 and 2 of the benchmark setting, perfect learning decreases �BM1 and �BM2 , respectively,

since pro�ts are higher under perfect learning in case b while remaining unchanged in case a.
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Under perfect learning, the sets of symmetric equilibria still increase with the

severity of the agency problem as before (see Proposition 7). However, this result is

now driven by case a where information is not used. In case b, the agency problem

is the same across the three settings, and the sets of symmetric equilibria have the

same upper endpoint.

6 Conclusion

This paper investigated informational externalities across intra-�rm bargaining games

in a market setting. We found that the agency relationship creates a coordination

motive in headquarters�actions making simultaneous launching of a new product

more likely. Each �rm uses the information generated by the competitor to disci-

pline its R&D division. This is done the best when the divisions are put in the

same conditions, that is, when they face the same incentives to develop the product.

When the agency problem becomes more severe, there are more bene�ts in limiting

the strategic behaviour of the R&D division and �rms tend to behave symmetrically

even more. The e¤ects of competition are very di¤erent depending whether it is

intra- or inter-period. Inter-period competition penalizes �rms when they launch

the new product in di¤erent periods and, therefore, it is conducive for the simul-

taneous launching. Intra-period competition has an opposite e¤ect since it pushes

�rms to di¤erentiate and to launch the product in di¤erent periods.

This paper makes a step towards understanding the interactions between internal

structure of �rms and competition in an industry equilibrium. Competition plays

a dual role since it a¤ects both the costs and the bene�ts of solving the agency

problem in any given way. The way the agency problem is solved then maps back

into competition. We still have a very limited understanding of these interactions

and general equilibrium e¤ects, and more research is needed.

Appendix

Proof of Lemma 1. In case a, solve (2). Assume that pn2 = 1, solve for p1 and �nd

the condition that v2+p1
2

is indeed larger than one. Then, assume that pn2 =
v2+p1
2

and �nd p1 = sA. This gives the following:
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Case 1. if v1+(2��)v2
4�� � 1 :

p1 = max
�
v1��v2+�

2
; sB

	
; pn2 = 1;

Case 2. if v1+(2��)v2
4�� < 1 :

p1 =
v1� �

2
v2

2� �
2

; pn2 =
v1+(2��)v2

4�� ; if sB � v1� �
2
v2

2� �
2

p1 = s
B; pn2 =

v2+sB

2
; if sB 2

h
v1� �

2
v2

2� �
2

; 2� v2
i

p1 = s
B; pn2 = 1; if sB � 2� v2

(15)

In case b, solving (4) in a similar way, we obtain that pn2 = min
n
v2+sB

2
; 1
o
and

p1 = p
y
2 = s

B; if sB � v1��v2
2��

p1 =
v1��v2+�sB

2
; py2 = s

B; if sB 2
h
v1��v2
2�� ;

v1+(2��)v2
4��

i
p1 =

v1� �
2
v2

2� �
2

; py2 =
v1+(2��)v2

4�� ; if sB � v1+(2��)v2
4��

(16)

We are now left to determine where the change from case a to case b occurs. We

will need the following Lemma.

Lemma 9 (i) If p1 = sB in both cases, the pro�ts are the same. (ii) If p1 = sB in

one of the two cases and p1 6= sB in the other, then pro�ts are higher in the latter.

Proof. (i) True by comparing (1) and (3) (for the latter case, p1 = p
y
2 = s

B). (ii)

True since p1 = sB is feasible in both cases.

We will say that p1 (and the corresponding case) is constrained when p1 = sB in

this case. If only one case is constrained, the other is optimal. The change from case

a to case b occurs when either both are unconstrained, or both are constrained (so

p1 = s
B) and one case becomes unconstrained.

There are the following parameter ranges to consider.

Case 1. If v1+(2��)v2
4�� � 1, up to sB = v1��v2

2�� case a is unconstrained while

case b is constrained. For sB 2
�
v1��v2
2�� ;

v1��v2+�
2

�
both cases are unconstrained and

the cut-o¤ �BM1 is found from the equality of �BMa and �BMb , given by (1) and (3),

respectively, with the corresponding prices. For sB > �BM1 , case b is optimal.

Case 2. If v1+(2��)v2
4�� < 1, then v1��v2

2�� <
v1� �

2
v2

2� �
2

, and therefore, up to sB = v1��v2
2��

case a is unconstrained while case b is constrained; thus, case a is optimal. For

sB 2
�
v1��v2
2�� ;

v1� �
2
v2

2� �
2

�
both cases are unconstrained and �BM2 is found from the
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equality of (1) and (3) with the corresponding prices. For sB > �BM2 , case b is

optimal.

Proposition 1 In the benchmark setting, there are only two equilibria and they are

asymmetric:

1. If v1+(2��)v2
4�� � 1, in one �rm the cut-o¤ is s = v1��v2+�

2
and in the other

s = (2+�)v1��v2(2+�)+�2
4

.

2. If v1+(2��)v2
4�� < 1, in one �rm the cut-o¤ is s = v1� �

2
v2

2� �
2

and in the other s =

(2+ �
2)v1�2�v2
4�� .

Proof. Plug optimal second-period prices from (2) and (4) into (1) and (3), respec-

tively. The pro�t function �BM

�BM =

"
�BMa ; if sA � sB

�BMb ; if sA � sB;

where �BMa and �BMb are given by (1) and (3), respectively, is a function of
�
sA; sB

�
only. While it is continuous in both arguments, it may not be quasiconcave in sA.

Then, the standard theorem for the existence of a pure-strategy Nash equilibrium

(Theorem 1.2 in Fudenberg and Tirole (1991) due to Debreu (1952)) cannot be

applied. Pure-strategy Nash equilibria still exist in our model and we prove their

existence by construction.

Case 1. Denote sB� = v1��v2+�sB
2

at sB = v1��v2+�
2

, that is,

sB� =
(2 + �) v1 � �v2 (2 + �) + �2

4
:

We need to show that sB� is smaller than �BM1 . The necessary and su¢ cient

condition for this is that, at sB = sB�, pro�ts �BMa are higher than pro�ts �BMb .

Let us �rst �nd the optimal prices and then compare pro�ts. Note that the

following inequalities hold:

v1 � �v2
2� � � sB� � v1 � �v2 + �

2
� v1 + (2� �) v2

4� � .

Then, in the case where p1 � sB, p1 = v1��v2+�
2

and pn2 = 1 (see (15)). If

p1 � sB, then p1 = v1��v2+�sB�
2

, py2 = sB� and pn2 = min
n
v2+sB�

2
; 1
o
(see (16)). At
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sB = sB�, min
n
v2+sB�

2
; 1
o
= 1. Once these prices are plugged into �BMa and �BMb ,

the di¤erence in pro�ts is positive:

�BMa jsB=sB� ��BMb jsB=sB�=
1

64
�2(4� �2)(v1 � �v2 + � � 2)2 > 0:

Case 2. Denote sB� = v1��v2+�sB
2

at sB = v1� �
2
v2

2� �
2

, that is,

sB� =

�
2 + �

2

�
v1 � 2�v2

4� � :

We need to show that sB� is smaller than �BM1 . The necessary and su¢ cient

condition for this is that, at sB = sB�, pro�ts �BMa are higher than pro�ts �BMb .

Let us �rst �nd the optimal prices and then compare pro�ts. Note that the

following inequalities hold:

v1 � �v2
2� � � sB� �

v1 � �
2
v2

2� �
2

� v1 + (2� �) v2
4� � .

Then, in the case where sA � sB, p1 =
v1� �

2
v2

2� �
2

and pn2 =
v1+(2��)v2

4�� (see (15)). If

sA � sB, then p1 = v1��v2+�sB�
2

, py2 = s
B� and pn2 = min

n
v2+sB�

2
; 1
o
(see (16)). At

sB = sB�, min
n
v2+sB�

2
; 1
o
= v2+sB�

2
. Once these prices are plugged into (1) and (3),

the di¤erence in pro�ts is positive:

�BMa jsB=sB� ��BMb jsB=sB�=
1

16
�2(4� � � �2)(v2 � 1)2 � 0:

Lemma 10 In the benchmark setting, under inter-period competition from past sales,

0. If v1+(2��)v2
2
v2+2�� � 1, s

A is

sA =

2666664
v1��v2+�

2
; if sB � v1��v2+�

2

sB; if sB 2
�
v1��v2+�

2
; v1��
v2

2��
�

v1��
v2+�sB
2

; if sB 2
h
v1��
v2
2�� ;min

n
v1+(2��)
v2

4�� ; 1
oi

v1� �
2

v2

2� �
2

; if sB � v1+(2��)
v2
4�� (if v1+(2��)
v2

4�� < 1)
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1. If v1+(2��)v2
2
v2+2�� < 1 �

v1+(2��)v2
4�� , there exists �BM1 2

�
v1��
v2
2�� ; v1��v2+�

2

�
such that

sA is

sA =

26664
v1��v2+�

2
; if sB � �BM1

v1��
v2+�sB
2

; if sB 2
h
�BM1 ;min

n
v1+(2��)
v2

4�� ; 1
oi

v1� �
2

v2

2� �
2

; if sB � v1+(2��)
v2
4�� (if v1+(2��)
v2

4�� < 1)

2. If v1+(2��)v2
4�� < 1, there exists �BM2 2

�
v1��
v2
2�� ;

v1� �
2
v2

2� �
2

�
such that sA is

sA =

26664
v1� �

2
v2

2� �
2

; if sB � �BM2
v1��
v2+�sB

2
; if sB 2

h
�BM2 ; v1+(2��)
v2

4��

i
v1� �

2

v2

2� �
2

; if sB � v1+(2��)
v2
4��

Proof. Proceeds in the same way as the proof of Lemma 1.

Proof of Lemma 6. As before, there are two possible cases depending on whether

sA is higher or lower than sB. In each of these cases there are two subcases. We

solve each subcase, write the combined solution for each case, and then characterize

the (full) solution.

Start with case a, i.e., solving (10). There are two subcases. If sA � 2� v2, then

p1 =
(2� �) sA + �v2

2

pn2 =
v2 + s

A

2
:

We can reformulate the problem (10) as the one of choosing sA

max
sA2[sB ;2�v2]

1

2

��
2v1 � (2� �) sA � �v2

�
sA +

1

2
�
�
v2 � sA

�2�
:

The solution is

sA = min

�
max

�
sB;

v1 � �v2
2� 3

2
�

�
; 2� v2

�
:

If sA > 2� v2,

p1 = (1� �) sA + �

pn2 = 1:

43



(10) becomes

max
sA2[maxf2�v2;sBg;1]

�
v1 � (1� �) sA � �

�
sA + � (v2 � 1)

�
1� sA

�
and the solution is

sA = min

�
max

�
sB;

v1 � �v2
2 (1� �) ; 2� v2

�
; 1

�
:

Combining the two subcases, the optimal sA is

sA =

26664
min

n
max

n
v1��v2
2(1��) ; s

B
o
; 1
o
; if 2� v2 � v1��v2

2� 3
2
�

min
n
max

n
v1��v2
2(1��) or

v1��v2
2� 3

2
�
; sB

o
; 1
o
; if 2� v2 2

h
v1��v2
2� 3

2
�
; v1��v2
2(1��)

i
min

n
max

n
v1��v2
2� 3

2
�
; sB

o
; 1
o
; if 2� v2 � v1��v2

2(1��)

However, the intermediate case 2 � v2 2
�
v1��v2
2� 3

2
�
; v1��v2
2(1��)

�
is not a separate case.

There is ev2 2 �v1��v22� 3
2
�
; v1��v2
2(1��)

�
such that

sA =

24 minnmaxnv1��v22(1��) ; s
B
o
; 1
o
; if 2� v2 � ev2

min
n
max

n
v1��v2
2� 3

2
�
; sB

o
; 1
o
; if 2� v2 � ev2 (17)

Consider now case b, that is, solve (11). The second-period price when the other

�rm did not produce in period 1; pn2 ; is

pn2 = min

�
v2 + s

B

2
; 1

�
:

To �nd sA, consider again two subcases. If sA � 2sB � v2, the prices are

p1 =
(2� �) sA + �v2

2

py2 =
v2 + s

A

2
:

The maximization problem (11) becomes (omit the last part that depends only

on pn2 )

max
sA�2sB�v2

1

2

��
2v1 � (2� �) sA � �v2

�
sA +

1

2
�
�
v2 � sA

�2�
(18)

and the solution is

sA = min

�
v1 � �v2
2� 3

2
�
; 2sB � v2

�
:
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If sA � 2sB � v2, the prices are

p1 = (1� �) sA + �sB

py2 = sB:

The maximization problem (11) becomes (omit the last part that depends only

on pn2 )

max
sA2[2sB�v2;sB ]

�
v1 � (1� �) sA � �sB

�
sA + �

�
v2 � sB

� �
sB � sA

�
(19)

and the solution is

sA = max

�
min

�
sB;

v1 � �v2
2 (1� �)

�
; 2sB � v2

�
:

Combining the two subcases, there is �NC2 such that the optimal sA is

sA =

26664
sB; if sB � min

n
v1��v2
2(1��) ; �

NC
2

o
v1��v2
2(1��) ; if s

B 2
h
v1��v2
2(1��) ; �

NC
2

i
(when this region exists)

v1��v2
2� 3

2
�
; if sB � �NC2

The cut-o¤�NC2 is found from the equality of (18) and (19) with the corresponding

prices. If this equation does not have solutions, de�ne �NC2 as being equal to one.

Note that sA jumps down at �NC2 .

Before we combine this case with the previous one, let us show that �NC2 >
v1
2
. To do this, we need that for sB � v1

2
, pro�ts (18) are smaller than pro�ts

(19). Consider (19). Since v1��v2
2(1��) �

v1
2
, sA = max

n
min

n
sB; v1��v2

2(1��)

o
; 2sB � v2

o
=

max
�
sB; 2sB � v2

	
= sB. Therefore, sA = p1 = py2 = sB. By Lemma 3 (and its

proof), this is also the full-commitment solution for p1 � sB. Then, pro�ts (19)

cannot be lower than pro�ts (18) and are actually strictly higher since, in the latter

case, sA = min
n
v1��v2
2� 3

2
�
; 2sB � v2

o
< sB.

Finally, we need to �nd out at which sB the change from case a to case b occurs.

Denote it �NC1 . For sB � v1
2
, if sA � sB, the no-commitment solution (17) is

di¤erent from the full-commitment solution (see Lemma 3 and its proof). Therefore,

�NCa < �FCa . If sA � sB, then the full and no-commitment solutions coincide (see

the paragraph above), and therefore, �NCb = �FCb . But then �NC1 has to be smaller

than its full-commitment counterpart, �FC . Note that

�NC1 < �FC <
v1
2
< �NC2 :
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Proof of Lemma 8. The headquarters�problem is8>>>>>>>>>>><>>>>>>>>>>>:

max
p1
�NCb = (v1 � p1) sA

+�

"
�
�
(v2 � py;c2 )

�
py;c2 � sA

�
+ (v2 � pn;c2 )

�
pn;c2 � sB

��
+(1� �) (v2 � pi2)

�
pi2 � sA

� #

s.t. p1 � sB, py;c2 = min
n
v2+sA

2
; sB

o
; pi2 = min

n
v2+sB

2
; 1
o
;

pi2 = min
n
v2+sA

2
; 1
o
; (13)

Replace p1 = sA (1� �) + � [�py;c2 + (1� �)] so that the problem amounts to the

choice of sA. We need to show that @
2�NCb
@�@sA

� 0. Di¤erentiate �NCb with respect to �

@�NCb
@�

1

�
= (v2 � pn;c2 )

�
pn;c2 � sB

�
+
�
pi2 � p

y;c
2

� �
pi2 + p

y;c
2 � v2

�
:

Then,

@2�NCb
@�@sA

1

�
=

2664
0; if py;c2 = pi2 =

v2+sA

2

sA

2
if py;c2 = sB; pi2 =

v2+sA

2

0; if py;c2 = sB; pi2 = 1
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