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Abstract

Several regulatory authorities worldwide have recently imposed forward contract

obligations on electricity producers as a way to mitigate their market power. In this

paper we investigate how such contractual obligations a¤ect equilibrium bidding in

electricity markets, or in any other auction-based market. For this purpose, we in-

troduce forward contracts in a uniform-price multi-unit auction model with complete

information. We �nd that forward contracts are pro-competitive when allocated to

relatively large or e¢ cient �rms; however, they might be anti-competitive otherwise.

We also show that an increase in contract volume need not always be welfare improv-

ing. From a methodological point of view, we aim at contributing to the literature on

multi-unit auctions with discrete bids.
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1 Introduction

Concerns over the exercise of market power in electricity markets have led several competition

and regulatory authorities to impose forward contract obligations on the dominant producers.

Such obligations have taken various forms, but they all share one important feature: they

commit producers to receiving a �xed price for some fraction of their output before wholesale

market competition takes place. The �vesting contracts�introduced at privatization in the

British electricity market (Wolfram (1999)) or the Competition Transition Costs for stranded

costs recovery in place in Spain from 1998 to 2006 (Fabra and Toro (2005)), provide two well-

known examples of such contract obligations. More recently, several European regulators

are forcing large electricity producers to auction-o¤ �virtual power plants� (VPPs), which

essentially work as forward sales. VPPs have been used as antitrust remedies in merger cases

(e.g. EDF/EnBW, DONG/Elsam/Energi 2 or E.ON/MOL), following antitrust proceedings

(as in the Italian AGCM case against ENEL), or in an attempt to dilute excessive market

concentration (as in Spain).1

In this paper we investigate how such contractual obligations - which we encompass under

the name of forward contracts - a¤ect equilibrium bidding behaviour in electricity markets, or

in any other auction-based market. Our purpose is two-fold. We seek to understand whether

forward contract obligations contribute to reducing prices and removing the ine¢ ciencies due

to market power. Related to this, we also seek to identify the most e¤ective way to allocate

such obligations among (possibly) asymmetric �rms.

There is already a large body of theoretical work on the impact of forward trading on the

performance of oligopolistic markets.2 In broad terms, the predictions of these papers are

based on a two-stage game in which (symmetric) �rms choose their level of contract coverage

prior to competing in the spot market. In the second stage, forward sales induce �rms to

compete more �ercely given that spot market prices only a¤ect their uncovered sales. This

occurs regardless of whether �rms compete by choosing quantities (as in Allaz and Vila

(1993) or Bushnell (2006)), prices (as in Mahenc and Salanié (2004)), or continuous supply

functions (as in Green (1992) or Newbery (1998)). However, once contracts are endogenized,

the predictions of these models tend to di¤er. For instance, whereas under Cournot com-

petition the subgame perfect equilibrium involves all �rms selling forward contracts, under

Bertrand competition all �rms buy their own production forward. Hence, prices decrease

1Market power concerns in electricity markets have also fostered the establishment and promotion of

forwards markets, as in the Pennsylvania-New Jersey-Maryland market (PJM) or in the Australian National

Electricity Market (Bushnell et al. (2007); Wolak (2000, 2007)). Furthermore, the default service auctions

used in several states of the US have implied an additional source of forward contracting for generators

(Loxley and Salant (2004)). However, these cannot be considered to be exogenous contract obligations,

which is the focus of this paper.
2There is also an extensive empirical literature that con�rms that contracts a¤ect the performance of spot

markets. See Bushnell, Mansur and Saravia (2007), Fabra and Toro (2005), Hortacsu and Puller (2007),

Kühn and Machado (2006), Mansur (2007) or Wolak (2000, 2007).
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under Cournot competition but increase under Bertrand competition with respect to the

no-contracts case. Furthermore, even when �rms compete à la Cournot, forward contracts

may turn out to be anti-competitive if there is an in�nite number of contract rounds before

the spot market opens. In particular, if �rms are allowed to buy and sell contracts in all such

rounds, there arise multiple equilibrium outcomes among which only the monopoly outcome

is renegotiation-proof (Ferreira (2003)). Last, if �rms interact for in�nitely many periods in

both the forward and spot markets, forward trading renders collusion more easily sustainable

(Liski and Montero (2006); Green and Le Coq (2006)).

Unfortunately, the above papers are not directly applicable to assessing the e¤ectiveness

of forward contract obligations in electricity markets. Firstly, forward contract obligations

are not endogenously chosen by �rms but rather imposed by regulators. One could argue

that it would then su¢ ce to focus attention on the second stage of the games described

above. However, we believe that a more detailed modelling of the institutional and struc-

tural features of electricity markets is necessary to �ne-tune our predictions. Regarding

institutional features, it is unnecessary to resort to either the Cournot of the Bertrand as-

sumptions when studying competition among electricity producers. Instead, it is possible

to model the actual market institution as electricity producers compete by submitting a

�nite number of price-quantity pairs to an auctioneer, who then dispatches generators in

increasing bid order and pays them a price equal to the highest accepted bid. Regarding

structural features, it is inadequate to assume perfect symmetry as it rarely holds in real

markets. Since �rms�capacity and cost asymmetries have profound e¤ects on equilibrium

market outcomes, ignoring them would miss an important determinant of the link between

forward contract obligations and spot markets.

For these reasons, we have adopted the �multi-unit auction approach�(von der Fehr and

Harbord (1993) and García-Díaz and Marín (2003)).3 Consistently with actual electricity

market rules, it assumes that �rms submit discrete supply functions to the pool;4 further-

more, it allows to obtaining equilibrium predictions with no need to assume speci�c functional

forms, thus imposing no constraints on the degree of capacity and/or cost asymmetry among

�rms. In sum, our approach captures essential institutional features of electricity markets

while providing enough �exibility to re�ect complex market structures.

In line with the existing literature, we �nd that forward contracts play a key role in

shaping equilibrium market outcomes. Furthermore, relaxing the symmetry assumption also

allows to uncovering new e¤ects. We show that forward contracts do not alter one intrinsic

3Formally, we analyze a uniform-price multi-unit auction model in which quantity-bids are discrete, which

is a common feature of virtually all auctions in practice. In this respect, our paper belongs to a small set

of papers that analyze equilibrium behavior when bidders submit step bid functions (Kastl (2006); Kremer

and Nyborg (2004)).
4Actual market rules limit the number of bids that may be submitted by an individual �rm to a �nite

number. For example, in the original market design in England and Wales, generators were allowed to submit

up to three incremental prices per unit, while in Spain, �rms are allowed to submit up to 25 price-quantity

pairs per generating unit.
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prediction of the �multi-unit auction approach�: the fact that �rms bid asymmetrically.

More speci�cally, all �rms but one (referred to as non-price-setters) behave as price-takers,

while the remaining �rm (referred to as the price-setter) sets the price at the level that

maximizes its pro�ts over the residual demand. However, forward contracts have a distinct

impact on �rms�strategies depending on their identity as either price-setters or non-price-

setters. On the one hand, forward contracts reduce the price-setter�s pro�t-maximizing price

because they have the same e¤ect as an inward shift in its residual demand. On the other

hand, forward contracts have no impact on the non-price setters�bidding behaviour, as they

continue to behave as price-takers irrespective of whether they hold contracts or not. If

taken in isolation, these results would unambiguously indicate that forward contracts are

pro-competitive.

However, assessing the impact of forward contracts on �rms� incentives alone is not

enough, as forward contracts also a¤ect equilibrium existence. If �rms are fully symmetric,

equilibrium existence is not an issue. Hence, irrespective of who sets the price, an even

increase in all �rms�contract positions leads to a monotonic reduction in spot market prices,

thus supporting the pro-competitive view of forward trading. However, when �rms are

asymmetric, the existence of an equilibrium in which a highly contracted �rm sets a low

price is not guaranteed, as one of the remaining �rms may be better o¤ deviating to set a

higher price even at the expense of losing output. Hence, if only the high-price equilibria

survive the introduction of contracts, these may turn out to be anti-competitive despite

reducing some �rms�incentives to raise prices.5

The extent to which contracts reduce (or increase) prices and improve (or worsen) wel-

fare depends on several factors. We �nd that welfare depends non-monotonically on total

contract volume: whereas a small amount of contracts may improve market performance

with respect to the no-contracts case, a large amount of forward contracts may worsen it by

destroying the low-price equilibria or by leading to ine¢ ciently low prices. The distribution

of forward contracts across �rms is also critical: forward contracts have the potential to

improve market performance only if they are allocated to �rms with strong incentives to

distort prices (typically, the large and e¢ cient �rms).

From a policy perspective, our analysis thus implies that forward contracts should be

allocated in ways that align all �rms� interests by (virtually) reducing their asymmetries.

Paradoxical though it may seem, it is as important to mitigate the large �rms�incentives to

increase prices as it is to enhance those of the smaller competitors. This could be achieved

by encouraging the intermediate to small �rms in the industry to act as counterparts of the

contractual obligations imposed on the dominant producers. Thus, restricting certain �rms

5Let us stress that the reasons underlying this result are unrelated to the potential anti-competitive e¤ects

of contracts when �rms hold long-positions (as in Mahenc and Salanié (2004)). In our model, contracts may

have anti-competitive e¤ects even when �rms�positions are short. We conjecture that this result is not

unique to our modelling approach, and that it would also arise in models that deliver multiple equilibria

(such as the Supply Function approach developed by Klemperer and Meyer (1989) and �rst applied to

electricity markets by Green and Newbery (1992)) whenever �rms�asymmetries are explicitly modelled.
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to enter into these contracts, as in the Spanish VPPs, is misplaced according to our model.

Regarding contract volume, forcing �rms to hold too few or too many forward contracts

might be at best ine¤ective. Since the optimal contract volume ultimately depends on �rms�

cost structures and demand, it should be determined on a case-by-case basis.

Beyond the regulatory debate in electricity markets, this paper also aims at contributing

to the analysis of forward contracts and spot markets within more general settings. Aside

from the empirical and simulation studies, there are limited theoretical results on the impact

of forward contracts on heterogenous �rms, a feature that is pervasive to most real-world

examples. Furthermore, besides electricity wholesale markets, there are several others in

which forward contracts and auctions coexist, or markets which are organized in ways that

make auction theory useful for understanding �rms�strategic behaviour (Klemperer (2003)).

The paper is structured as follows. In the next section we describe the ingredients of the

general model. In Section 3 we solve an illustrative example with the aim of presenting the

main results of the paper in a simple way. Section 4 is devoted to the analysis of the general

model. Section 5 investigates the impact of forward contracts on equilibrium outcomes,

which are further illustrated by means of a simulation exercise in Section 6. Last, Section 7

concludes with a summary of the main results and policy implications that can be derived

from the analysis. All proofs are contained in the Appendix.

2 Description of the Model

We consider a multi-unit uniform-price auction model in which N � 2 �rms compete for the
right to supply the market. Firm i�s productive capacity Ki; i = 1; :::; N; is made of several

units. Each unit has constant marginal costs of production up to the its capacity limit. By

stacking �rm i�s units in increasing cost order, we construct its marginal cost curve, ci(q):6

We use Ci(q) to denote �rm i�s cost function, i.e., Ci(q) =
R q
0
ci(x)dx.

Firms compete by submitting a �nite number of price-quantity pairs to an auctioneer.

In particular, each �rm submits one price per production unit specifying the minimum price

at which it is willing to supply the whole of the unit�s capacity. Prices cannot exceed the

�market reserve price�P , which is at least equal to the marginal cost of the most expensive

unit, i.e., P � maxi ci (Ki). By stacking �rms� price-quantity pairs in increasing order,

we construct their bid functions, i.e., for �rm i; bi(q) : [0; Ki] ! [0; P ]. Accordingly, bid

functions are left continuous increasing step functions.

The auctioneer calls units to produce in increasing bid order, until total demand D(p);

with D0(p) � 0; is fully satis�ed. The market clearing price or equilibrium price, denoted

p�; is set equal to the bid of the last accepted unit(s). Therefore, all units with bids strictly

below p� produce at capacity, whereas the unit(s) whose bid equals p� will serve the residual

6We impose no constraints on the number of units �rms have (other that it must be �nite), and allow for

all types of asymmetries (both in size and cost) among the units owned by a �rm, as well as across �rms.
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demand. If more than one unit has been bid in at p�, we assume that the units with lower

marginal costs are called to produce �rst; if their marginal costs are equal, we assume that

they split the residual demand equally.7 The quantity allocated to �rm i is denoted by qi:

The production by all dispatched units is paid at the equilibrium price.

One last feature of the model is that �rms are subject to forward contracts. We use � i
to denote �rm i�s contract price, and xi � 0 to denote �rm i�s contract quantity;8 both � i
and xi are set before competition to supply the market takes place. Consequently, when the

equilibrium price is p�; �rm i�s pro�ts are given by

�i (p
�) = p�qi � Ci(qi) + [� i � p�]xi; (1)

where the �rst two terms give the �rm�s spot market pro�ts, and the last term gives the

�rm�s contract pro�ts. This expression allows to interpret contracts as being purely �nancial,

i.e., �rm i continues to supply all its quantity qi to the market at p� and the contract�s

counterpart, e.g. a big customer, continues to buy all its demand from the market at p�.

The contract requires �rm i to pay (receive) the di¤erence between the contract price and

the market price times the contract quantity, [� i � p�]xi; whenever positive (negative).
Alternatively, the above expression can be re-written as follows,

�i (p
�) = p� [qi � xi]� Ci(qi) + � ixi: (2)

This formulation allows to interpret contracts as physical contracts in the sense that �rm

i only supplies [qi � xi] through the market, i.e., the di¤erence between its production and
its contracted quantity. If qi > xi �rm i is a net-seller, so it supplies a positive quantity

through the market. Conversely, if qi < xi �rm i is a net-buyer, so it has to buy the di¤erence

from the market. Whereas �rm i�s net position is settled at the market price, p� [qi � xi] ;
its contract quantity is settled at the agreed contract price, � ixi: Since both (1) and (2) are

analytical equivalent, our analysis allows for both �nancial as well as physical contracts.

Firm i�s problem is to choose a bid function that maximizes �i given the bid functions

submitted by its rivals. All aspects of the model are common knowledge among bidders.

In the remainder of the paper we will label equilibrium outcomes as competitive or non-

competitive. An equilibrium outcome is said to be competitive if, irrespective of how �rms

bid, the outcome (prices and quantities) is the same as if �rms bid at marginal costs. The

competitive price and the competitive quantities are respectively denoted pc and fqc1; :::; qcNg.
All other equilibrium outcomes are referred to as non-competitive.

7This tie breaking rule is common in the literature, e.g. Fabra et al. (2006), among others.
8We adopt the convention that xi > 0 corresponds to �rm i selling contracts (i.e., taking a short-position).

We do not allow �rms to buy forwards since in real markets regulators impose sale obligations. However, in

our set-up forward sales and forward purchases simply have reverse e¤ects.
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3 Illustrative Example

We start by analyzing a simple example in order to convey the intuitions of the main results

of the paper. In particular, we �x N = 2 and assume that �rm 1 and �rm 2 own three

production units, each with a capacity normalized to one, and constant marginal costs

respectively given by f0; 1; 2g and f0; 1; 3g : Demand is assumed to be perfectly inelastic at
D = 3: Under these assumptions, the competitive outcome is characterized by qci = 3=2;

pc = 1; and �i (pc) = [1� xi] + � ixi; for i = 1; 2:
In the absence of contracts, the competitive outcome cannot be sustained in equilibrium

since one of the two �rms would rather set the price at the marginal cost of its rival�s third

unit. For instance, if �rm 2 bids at marginal costs, �rm 1 responds optimally by bidding all

its units at 3: it produces 1 instead of qc1 = 3=2, but it raises the market price from p
c = 1 to

3; thus increasing its pro�ts by 2. Similarly, if �rm 1 bids its units at marginal costs, �rm 2

can increase its pro�ts by 1 by bidding its �rst two units at 2. In contrast to �rm 1, �rm 2

cannot pro�tably raise the price to 3 since �rm 1 would then satisfy all demand. Therefore,

there exist two equilibrium outcomes: a high-price equilibrium outcome in which �rm 1 sets

the price at 3, and a low-price equilibrium outcome in which �rm 2 sets the price at 2. These

outcomes can be sustained by several bid pro�les, as the low bids are price-irrelevant. The

only constraint put on such bids is that they must be low enough to discourage the �rm that

sets the price from undercutting them.

Let�s now introduce contracts. Consider �rst the case in which only �rm 1 holds contracts,

i.e., x1 > x2 = 0: If x1 2 (0; 1] ; the same two equilibrium outcomes that arise in the no-

contracts case can be sustained in equilibrium. Recall that under both equilibrium outcomes,

each �rm�s production is at least equal to 1; given their contracts do not exceed 1; both �rms

are net-sellers. As such, they do not want to reduce the price, and increasing it would imply

losing all production.

Assume now that x1 2 (1; 2]. As opposed to the no-contracts case, the equilibrium in

which �rm 1 sets the price at 3 and sells one unit is no longer an equilibrium (as a net-buyer,

�rm 1 would rather bid at marginal costs in order to reduce the price from 3 to 1). However,

if �rm 1 bids at marginal costs, �rm 2 is better-o¤ bidding all its units at 2, which implies

that only the low-price equilibrium outcome survives the introduction of contracts. Hence,

contracts can result in lower prices.

Last, suppose that x1 2 (2; 3] : Given that �rm 1�s incentives to depress the price are

now stronger, if �rm 2 bids at marginal costs, �rm 1 responds optimally by bidding all its

units at zero, thus driving the price down to zero. Even though this requires �rm 1 to sell

its second unit below marginal costs, its productive loss, �1, is more than compensated by
its savings on its net-buying position, � [1� x1] > 0. Firm 2 cannot pro�tably deviate,

given that it would face zero demand if it tried to increase the price. Hence, there are now

two equilibrium outcomes: one in which the price is zero and another one in which the price

equals 2. Therefore, contracts may lead to ine¢ ciently low prices, i.e., below the competitive
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Equilibrium Prices

Firm 1 is contracted Firm 2 is contracted

xi 2 [0; 1] f3; 2g f3; 2g
xi 2 (1; 2] 2 3

xi 2 (2; 3] f0; 2g f3; 0g

Table 1: Equilibrium prices as a function of �rms�forward contract positions

price.

To complete the example, let�s now assume that only �rm 2 holds contracts, i.e., x2 >

x1 = 0: For brevity, we focus on the case x2 2 (1; 2] in which contracts have a qualitatively
di¤erent e¤ect on equilibrium outcomes than the one described above. In particular, the

equilibrium in which �rm 2 sets the price at 2 and sells one unit does not exist since, as a

net-buyer, �rm 2 would rather bid at marginal costs in order to reduce the price from 2 to 1

(and thus save � [1� x2] > 0). However, �rm 1 would then respond by bidding all its units

at 3, which implies that only the high-price equilibrium outcome survives the introduction of

contracts. Hence, even though contracts reduce the contracted �rm�s incentives to increase

the price, contracts may result in (weakly) higher prices whenever the equilibrium in which

the contracted �rm sets the price fails to exist. Table 1 summarizes these results.

To sum-up, this example illustrates that the e¤ect of contracts on bidding incentives and

equilibrium outcomes crucially depends on both their total volume and their distribution

across �rms. It shows that contracts reduce �rms�incentives to increase prices. However,

this does not necessarily lead to lower equilibrium prices as contracts might also jeopardize

the existence of the low-price equilibria. Indeed, contracts might lead to (weakly) higher

prices whenever they are allocated in su¢ ciently large quantity to the �rm that already has

the greatest incentives to set low prices. For similar reasons, an increase in contract volume

might not necessarily be pro-competitive.

4 Analysis of the Model

In this section, we characterize equilibrium outcomes (equilibrium prices and quantities) in

the general model. For this purpose, we �rst note that at any equilibrium resulting in a

non-competitive outcome, �rms�bidding behavior must be asymmetric.9 More speci�cally,

to support any equilibrium outcome with a price p� 6= pc; one �rm must bid at p� some unit
with marginal costs other than p�, and this unit must be at least partially dispatched. We

refer to such �rm as the price-setter. Furthermore, at a non-competitive equilibrium there

9Previous papers have already predicted asymmetric bidding behaviour (García-Díaz and Marín (2003),

Fabra et al. (2006), and Crawford et al. (2007) among others). We note here that contracts do not alter

this intrinsic feature of the model. Further note that if the equilibrium outcome is competitive, all �rms

trivially act as price-takers. Hence, such asymmetries do not arise.
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exists at least and at most one price-setter, so that all other �rms must behave di¤erently.

We refer to such �rms as the non-price-setters.

The intuition behind this distinct bidding behavior relies on the fact that �rms submit

a �nite number of price-quantity pairs, which implies that there is a positive output mass

at the margin.10 Price-competition to supply this positive mass ensures that in any non-

competitive equilibrium there is a single price-setter. To see this, argue by contradiction

and suppose that there is more than one price-setter. Assume �rst that p� > pc; so that at

least one of the price-setters produces less than its competitive quantity. This could never

be part of an equilibrium given that the price-setter that is selling less than its competitive

quantity could expand its production by undercutting the other price-setter(s). Since there is

a positive mass at the margin, the increase in the deviant�s output outweighs the in�nitesimal

(if any) price reduction caused by its deviation. A similar reasoning applies to the case in

which p� < pc: In particular, if there is more than one price-setter, one of them must be

producingmore than its competitive quantity. However, given that it could avoid production

losses by bidding above p�; this can never be part of an equilibrium. Last, at any equilibrium

resulting in a non-competitive outcome there must be at least one price-setter. Otherwise,

if all marginal units were bid in at marginal costs, the equilibrium price p� would trivially

be equal to the competitive price pc.

Accordingly, in what follows we �rst �x the identity of the price-setter and non-price

setters in order to characterize �rms�optimal bidding behaviour conditional on their identi-

ties. We then characterize equilibrium outcomes by stating the conditions under which no

�rm prefers to reverse its identity given its rivals�bidding behavior. We end this section by

discussing existence and multiplicity of equilibrium outcomes.

4.1 Equilibrium behavior by the non-price setters

Let �rm i be the price-setter at p�. We �rst show that all other �rms j 6= i behave as

price-takers. Namely, they �nd it optimal to bid all their units at marginal costs, or at bids

that yield the same outcome as marginal cost bidding. This result holds true regardless of

whether �rms hold contracts or not.

Proposition 1 At any Nash equilibrium in which �rm i is the price-setter, all other �rms

produce the same output as if they bid at marginal costs.

The intuition underlying the above result is simple. Suppose that one of �rm j�s units

with marginal costs strictly below the equilibrium price, p�; has not been called to produce.

That could never be part of an equilibrium since �rm j could always achieve a positive

10Competition for the margin is also the driving force for the no-underpricing equilibrium in the multi-unit

Treasury auctions analyzed by Kremer and Nyborg (2004). If one assumes smooth supply functions, as in

Newbery (1998), there is no mass at the margin and such asymmetries in �rms�bidding behavior do not

arise.
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increment in output by bidding such a unit slightly below p�: Such a deviation may or may

not a¤ect the equilibrium price, but even if it does, the quantity e¤ect always outweighs the

price e¤ect as the price reduction can be made arbitrarily small. Alternatively, suppose that

one of �rm j�s units with marginal costs strictly above p� has been called to produce. Again,

that could never be part of an equilibrium since �rm j could avoid losses by bidding such a

unit slightly above p�; with only (if any) an in�nitesimal increase in the price. These results

are valid independently of whether the �rm is a net-seller or a net-buyer precisely because

the price e¤ect on the �rm�s net position is almost nil.

Proposition 1 implies that, in equilibrium, all units belonging to �rms j with marginal

costs below the equilibrium price p� are dispatched at capacity, whereas all units belonging to

�rms j with marginal costs above p� are not dispatched at all. Given the e¢ cient tie-breaking

rule, the issue of whether the non-price setters dispatch units with marginal costs equal to

p� depends on whether p� is above or below the competitive price, pc: If p� is above (below)

pc, the price-setter is producing less (more) than its competitive quantity; as this implies

that price-setter�s marginal unit has marginal costs below (above) p�; the marginal output

will be allocated to the price-setter (non-price setters). This allows to specify the output

produced by the non-price-setters in equilibrium as a function of the equilibrium price p�:

Corollary 1 At any equilibrium in which �rm i is the price-setter and p� is the equilibrium

price, the quantity produced by �rm j 6= i is non-decreasing in p� and it satis�es

qNPSj (p�) =

8><>:
max fq : cj(q) � p�g if p� < pc;

qcj if p� = pc;

max fq : cj(q) < p�g if p� > pc:

Note that to guarantee that non-price-setters produce qNPSj (p�) ; they do not need to

bid at marginal costs as there are many other outcome equivalent strategies. However, their

choice of bidding strategies is not inconsequential, since these will determine the shape of

the residual demand faced by the price-setter and hence its optimal bidding behavior.

Proposition 1 also implies that, conditionally on the identity of the price-setter, we can

write the non-price-setters� pro�ts as a function of the equilibrium price p�: Consider a

candidate equilibrium at which �rm i is the price-setter at p�. Equilibrium pro�ts for the

remaining �rms j, j 6= i; are given by,

�NPSj (p�) = max
q2[0;D(p))

fp� [q � xj]� Cj (q)g+ � jxj:

The following Lemma derives properties of the non-price setters�pro�t function.

Lemma 1 Let p� be the equilibrium price.

(i) If p� � pc; then �NPSj (p�) is an increasing (non-decreasing) function of p� for all j

such that xj < qcj (xj = q
c
j):

(ii) If p� � pc; then �NPSj (p�) is a decreasing (non-increasing) function of p� for all j

such that xj > qcj (xj = q
c
j):
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Trivially, the pro�ts made by a �rm are increasing (decreasing) in p� if such a �rm is a

net-seller (net-buyer). However, since a �rm�s net position is in itself an endogenous outcome,

we can not state in general whether a non-price-setter�s pro�ts are increasing or decreasing

in the equilibrium price. Still, we can be sure that if xj < qcj �rm j will be better o¤ when

p� is raised above pc since p� � pc implies qcj � qNPSj (p�), which in turn guarantees that �rm

j is a net-seller. The reverse is true if xj > qcj :

4.2 Equilibrium behavior by the price-setter

The price-setter�s problem is simply to choose the price that maximizes its pro�ts over

the residual demand induced by its rivals�bidding behavior, i.e., total demand minus the

quantity that the other �rms are willing to supply at lower prices. Formally, the price-setter

must choose

p�i (b�i) 2 argmax
p
�PSi (p; b�i) ;

where

�PSi (p; b�i) = p [qi (p; b�i)� xi]� C (qi (p; b�i)) + � ixi;

and,

qi (p; b�i) = max

(
0; D (p)�

X
j 6=i

qj(p; b�j)

)
:

Furthermore, at the equilibrium price, optimal behavior by the non-price setters (i.e., con-

sistent with Proposition 1) implies that the price-setter sells

qPSi (p�) = D (p�)�
X
j 6=i

qNPSj (p�); 11

and makes pro�ts

�PSi (p�) = max
p

�
p
�
qPSi (p)� xi

�
� Ci

�
qPSi (p)

�	
+ � ixi

Since both the cost function and the residual demand are step-functions, the price-setter�s

pro�t function may fail to be di¤erentiable, so that the price-setter�s pro�t-maximizing price

might not be obtained as the solution to a �rst order condition.

Thus, in order to understand the price-setter�s bidding incentives, let us work directly

with changes in �rm i�s pro�ts when it raises the price from p to some p0 > p,

�i (p
0; b�i)� �i (p; b�i) = [p0 � p] [qi (p0; b�i)� xi]�

Z qi(p;b�i)

qi(p0;b�i)

[p� ci (q)] dq: (3)

As in any standard monopoly problem, the price increase implies greater revenues through

the �rm�s net position - the �rst term in (3), - but it also implies a pro�t loss due to the

11For prices other than p� this condition may not hold since the non-price-setters need not be bidding at

marginal costs.
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output reduction - the second term in (3). Accordingly, the price-setter�s incentives to raise

the price are stronger the bigger its net position is, the less elastic its residual demand is

and the smaller the price-cost margin on its lost production is. It then follows that �rm i�s

pro�t-maximizing price given its rivals�strategies, p�i (b�i) ; is non-increasing in its contract

cover xi: This mimics the standard result that smaller �rms (here, �rms with smaller net

positions) have weaker incentives to raise the price.12

Inspection of (3) further shows that it is never optimal for a price-setter that holds fewer

contracts than its competitive quantity, xi < qci ; to set a price below the competitive one,

p� < pc. To see this, note that �rm i could marginally increase the price above p� and still

remain a net-seller. This would allow the �rm to earn more through its positive net-position

- the �rst term in (3), - while saving the margin between the price and its marginal costs,

which is negative for prices below the competitive one - the second term in (3). However,

despite the fact that p� � pc, the price-setter remains a net-seller in equilibrium. Intuitively,
if �rm i were a net-buyer in equilibrium, it could always increase its pro�ts by marginally

reducing the price. The reversed arguments apply for the case in which the price-setter holds

more contracts than its competitive quantity, xi > qci .

Proposition 2 In an equilibrium in which �rm i is the price-setter, (i) if xi < qci ; then

p� � pc and xi � qi; (ii) if xi = qci ; then p� = pc and xi = qi; and (iii) if xi > qci ; then p� � pc

and xi � qi:

Proposition 2 thus relates the primitives of the model (contract quantities and �rms�costs,

which determine �rms�competitive quantities) to the equilibrium outcome. In particular, it

allows to predict whether the price-setter will raise or reduce the equilibrium price above or

below the competitive one, and whether it will be a net-seller or a net-buyer in equilibrium.

To conclude, let us compare the pro�ts made by the price-setter and the non-price-setters

in equilibrium. Given that the price-setter behaves as a monopolist over the residual demand,

one may be tempted to (wrongly) believe that the price-setter�s role is an appealing one,

when just the opposite is true.

Lemma 2 �PSi (p�) � �NPSi (p�) for any equilibrium price p�:

As stated in the previous Lemma, for any equilibrium price p�, the price-setter�s pro�ts

are bounded above by the pro�ts it could obtain as a non-price-setter. Both the price-setter

and the non-price setters are paid the same price. However, unlike the non-price setters, the

price-setter either sells less (when p� > pc) than if it behaved as a price-taker, in which case

it gives up a positive pro�t margin on its reduced production, or it produces more (when

p� < pc), in which case it must be incurring in productive losses.

12Discreteness in the bidding functions is the reason why the pro�t-maximizing price is not strictly de-

creasing in the contract quantity. Indeed, Newbery (1998) �nds that prices are strictly decreasing in contract

cover when �rms�bidding functions are continuous.
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Since we have already characterized �rms�optimal behaviour conditional on their iden-

tities, we are now ready to characterize the equilibria of the game. This requires to assess

whether the price-setter prefers to become a non-price-setter and vice-versa, an issue which

we analyze next.

4.3 Equilibrium characterization

An equilibrium outcome will be a collection of quantities produced by the non-price setters

and a price chosen by the price-setter such that no �rm wants to deviate neither by changing

its quantity or price choice, nor by changing its identity. The following Theorem provides

necessary and su¢ cient conditions for equilibrium bidding.

Theorem 1
(i) A strategy pro�le constitutes a Nash equilibrium in which �rm i sets the price at

p� � pc if and only if the following three conditions hold:
1). p� = p�i (b�i) and qj = q

NPS
j (p�) for all j 6= i;

2). �PSi (p
�) � �NPSi (p) for all p < p� such that qNPSi (p) +

P
j 6=i qj(p; b) = D(p); and

3). �NPSj (p�) � �PSj (p�j) for all j 6= i such that either p�j (b�j) > p� and xj < qj
�
p�j ; b�j

�
hold or p�j (b�j) < p

� and xj > qj
�
p�j ; b�j

�
hold.

(ii) A strategy pro�le constitutes a Nash equilibrium in which �rm i sets the price at

p� � pc if and only if the following three conditions hold:
1). p� = p�i (b�i) and qj = q

NPS
j (p�) for all j 6= i;

2). �PSi (p
�) � �NPSi (p) for all p > p� such that qNPSi (p) +

P
j 6=i qj(p; b) = D(p); and

3). �NPSj (p�) � �PSj (p�j) for all j 6= i such that either p�j (b�j) < p� and xj > qj
�
p�j ; b�j

�
hold or p�j (b�j) > p

� and xj < qj
�
p�j ; b�j

�
hold.

Consider part (i) of Theorem 1 - part (ii) follows the reversed arguments. In equilibrium,

one �rm sets the price that maximizes its pro�ts over the residual demand, p� = p�i (b�i), and

all other �rms behave as price-takers given p� (Proposition 1). Since all �rms are already

optimizing conditionally on their identities, the only relevant deviations are those by which

the price-setter becomes a non-price-setter and viceversa. If the price-setter became a non-

price setter, it would do so in order to increase its production, implying that the only relevant

deviations by the price-setter are those that involve a price reduction. Furthermore, for the

non-price-setters, it is never pro�table to deviate by setting the price at its pro�t maximizing

price if this results in a reversal of its net-position.

To see this, consider a non-price-setter that is a net-seller at the candidate equilibrium.

Suppose �rst that its pro�t-maximizing price as a price-setter is below the equilibrium price.

If such a �rm deviated to become the price-setter, it would receive less for its net-sales and it

would have to incur in productive losses on its increased production, rendering its deviation

unpro�table. Suppose instead that its pro�t-maximizing price as a price-setter is above the

equilibrium price. Inspection of equation (3) again shows that it cannot be pro�table for
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such a �rm to deviate if it became a net-buyer after the price increase, as both terms in the

equation would be negative. Hence, we need not impose any additional condition on this

subset of �rms - other than behaving optimally as non-price setters - given that they cannot

pro�tably become the price-setter. The reversed arguments show that the only relevant

deviations by the net-buyers involve a price reduction, which is unpro�table whenever it

forces the deviant to become a net-seller.

4.4 Equilibrium existence and multiplicity

We now analyze whether equilibrium existence is guaranteed, and whether there is multiplic-

ity of bid function equilibria and/or multiplicity of equilibrium outcomes.13 For this purpose,

it is useful to distinguish between two cases: (i) the polar cases, in which all �rms�are either

net-sellers or net-buyers at the competitive outcome (i.e., either xi � qci or xi � qci for all

�rms), and (ii) the mixed cases in which at least two �rms�net positions have opposite signs.

The polar cases are the empirically relevant ones (in practice, �rms rarely hold that many

contracts so as to exceed their competitive quantities), but we will also cover the mixed cases

for completeness.

4.4.1 Polar cases

Under the polar cases, all �rms agree as to whether the equilibrium price should be set

above or below the competitive one (Proposition 2). This has important implications for

equilibrium behavior. In particular, there is always an equilibrium in which the non-price-

setters bid at marginal cost. Furthermore, conditionally on the identity of the price-setter,

any other equilibrium is outcome equivalent to the equilibrium at which the non-price setters

bid at marginal costs.

Proposition 3 Index �rms by their pro�t-maximizing prices when rivals bid at marginal
costs, i.e., p�i (c�i) � p�i+1 (c�i+1).
(i) If xi � qci for all �rms, there exists a pure-strategy equilibrium in which �rm i sets

the price at p� = p�i (c�i) � pc while �rms j 6= i sell qj = qNPSj (p�) if and only if �NPSj (p�) �
�PSj (p

�
j) for all �rms j such that p

�
j (c�j) > p

�.

(ii) If xi � qci for all �rms, there exists a pure-strategy equilibrium in which �rm i

sets the price at p� = p�i (c�i) � pc while �rms j 6= i sell qj = qNPSj (p�) if and only if

�NPSj (p�) � �PSj (p�j) for all �rms j such that p�j (c�j) < p�.

Consider part (i) of the Proposition above. By Proposition 2, xi � qci implies p
� � pc:

Furthermore, since all �rms j 6= i are price-takers, it follows that all �rms in equilibrium

13We will re�ne the equilibrium set by restricting attention to strategies that are not weakly-dominated.

Weak-dominance arguments eliminate below marginal cost bidding for quantities above the �rm�s contract

cover, above marginal cost bidding for quantities below the �rm�s contract cover, and bidding units out of

marginal cost order (see Lemma A.1 in the Appendix).
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are net-sellers. Accordingly, the only relevant deviations are those of the non-price setters

whose pro�t-maximizing price is above the equilibrium price: becoming a price-setter at

a lower price cannot be pro�table as the deviant would produce less, and it would sell its

positive net position at a lower price. The price-setter cannot pro�tably deviate: on the

one hand, it is already optimizing given its identity; on the other hand, if it became a non-

price setter, the resulting price would be the competitive price, which cannot be pro�table

by revealed preference. Similarly, when all �rms are net-buyers in equilibrium, as in part

(ii) of Proposition 3, the only relevant deviations are those of the non-price setters with a

pro�t-maximizing price below the equilibrium price, as raising the price is unpro�table.

The above implies that equilibrium existence is guaranteed under both cases.14 If xi � qci
for all �rms, no �rm would like to deviate from the highest price equilibrium; if xi � qci for
all �rms, no �rm would like to deviate from the lowest price equilibrium.

Corollary 2 Index �rms by their pro�t-maximizing prices when rivals bid at marginal costs,
i.e., p�i (c�i) � p�i+1 (c�i+1).
(i) If xi � qci for all �rms, the equilibrium in which �rm 1 sets the price always exists.

(ii) If xi � qci for all �rms, the equilibrium in which �rm N sets the price always exists.

For a given price-setter, there exist multiple bid function pro�les that constitute an

equilibrium (all those satisfying Theorem 1). This derives from the fact that �rms only care

about one point in their bid functions, the one corresponding to the market clearing price.

Furthermore, the price that maximizes the price-setter�s pro�ts depends on the bid functions

submitted by the non-price setters, thus paving the way for this multiplicity of equilibrium

bid functions to also generate multiplicity in equilibrium outcomes. Fortunately, this is not

the case: for a given price-setter, all the equilibria result in the same market price and output

allocation across �rms.15

Proposition 4 Suppose that either xi � qci or xi � qci for all �rms. Conditionally on the

identity of the price-setter, all the equilibria are outcome equivalent.

Consider the case in which all �rms are net-sellers at the competitive outcome, and assume

that there exists an equilibrium in which all the non-price-setters bid at marginal costs and

the price-setter, �rm i, bids all its units at its pro�t-maximizing price.16 Proposition 4

above guarantees that there cannot exist any other equilibrium in which �rm i is the price-

setter that results in a di¤erent equilibrium outcome. If in equilibrium one of the non-price

14In contrast, in Kastl (2006)�s model, incomplete information implies that "existence of an equilibrium

in a model of uniform-price auction with restricted space is an open question."
15In contrast, multiplicity of equilibrium outcomes is pervasive in auctions with continuous bid functions

(see Back and Zender (1993), Klemperer and Meyer (1989) and Wilson (1979)).
16More speci�cally, we assume that the price-setter bids all units at p�i except for those units for which

bidding at p�i is weakly dominated, in which case they are bid in at marginal costs.
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setters bids above marginal costs and this results in a di¤erent equilibrium price, such a non-

price-setter would be producing less than under marginal cost bidding, thereby contradicting

Proposition 1. Instead, if one of the non-price setters bids some units below marginal costs,

the resulting equilibrium outcome must remain unchanged by revealed preference arguments.

Last, if the price-setter uses a di¤erent bid function, it should also result in the same market

price and lead (by Proposition 1) to the same output allocation as the original equilibrium.

When all �rms are net-buyers, the reverse arguments apply.

Finally, a di¤erent source of multiplicity of equilibrium outcomes may arise due to the

coexistence of several equilibria which di¤er in the identity of the price-setter. This (po-

tential) multiplicity was highlighted in the illustrative example provided in Section 3 but it

holds more generally, as shown next.

Corollary 3 Index �rms by their pro�t-maximizing prices as price-setters when their rivals
bid at marginal costs, i.e., p�i (c�i) � p�i+1 (c�i+1) :
(i) Suppose that xi � qci for all �rms i = 1; :::; N: If the equilibrium in which �rm k is

the price-setter exists, the equilibria in which �rms i < k are the price-setters also exist.

Alternatively, if it does not exist, the equilibria in which �rms i > k are the price-setters do

not exist either, k = 2; :::; N:

(ii) Suppose that xi � qci for all �rms i = 1; :::; N: If the equilibrium in which �rm k

is the price-setter exists, the equilibria in which �rms i > k are the price-setters also exist.

Alternatively, if it does not exist, the equilibria in which �rms i < k are the price-setters do

not exist either, k = 1; :::; N � 1:

In the case in which all �rms are net-sellers (net-buyers) at the competitive outcome,

existence of a candidate equilibrium implies that all other candidate equilibria with higher

(lower) equilibrium prices also exist. To understand this result, note that the pro�ts that a

�rm achieves as a price-setter are given, but the pro�ts it makes as a non-price setter are

increasing (decreasing) in the equilibrium price (Lemma 1). Hence, if none of the �rms has

incentives to deviate from a candidate equilibrium, it must also be the case that none of

them wants to deviate from a candidate equilibrium with a higher (lower) price. For similar

reasons, if a candidate equilibrium does not exist, any other candidate equilibrium with lower

(higher) prices does not exist either.

4.4.2 Mixed cases

Consider now the mixed cases, in which some �rms hold fewer contracts than their compet-

itive quantities while others hold more. Similar results regarding equilibrium existence and

multiplicity as those found under the polar cases also arise under the mixed cases as long

as in equilibrium all �rms are either net-sellers or net-buyers. The intuition is simple: if all

�rms�net position at the candidate equilibrium have the same sign, none of the non-price

setters would like to deviate in order to increase or reduce the price.
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Under the remaining cases, net-sellers and net-buyers have con�icting interests concerning

the level of the equilibrium price. An over-contracted �rm would set a price below marginal

costs, whereas an under-contracted �rm would set a price above. This con�ict of interests

has profound e¤ects on equilibrium behavior. In particular, and in contrast with the polar

cases, the non-price setters�choice of bidding strategies is not inconsequential as it a¤ects

both equilibrium existence as well as the multiplicity of equilibrium outcomes.

Furthermore, equilibria in which the non-price setters bid at marginal cost may fail to

exist as marginal cost bidding exacerbates the aforementioned con�ict of interests. To see

this, note that marginal cost bidding makes it easier for an over-contracted �rm to set a low

price, as it reduces the number of units that it has to bid below marginal costs in order to

drive the market price below the competitive one. Since �rms with fewer contracts may �nd

it pro�table to set a much higher price, an equilibrium may fail to exist. However, if one

allows the non-price setters to follow any (undominated) strategy, equilibrium existence is

guaranteed, as shown next.

Proposition 5 Under the mixed cases, an equilibrium always exists. However, in this equi-
librium the non-price setters may not be bidding at marginal costs.

The e¤ect of enlarging the set of the non-price setters�bidding strategies is not only to

restore equilibrium existence. In contrast to the polar cases (Proposition 4), it also implies

that there may arise multiple equilibrium outcomes even when the identity of the price-setter

is �xed. To see this, consider a duopoly game in which demand is inelastic. Firm 1 has no

contracts whereas �rm 2�s contracts do not exceed total demand,17 and p�1 (c2) > p
c > p�2 (c1) :

To make the analysis interesting, suppose that at p�1 (c2) �rm 2 is a net-buyer. By Theorem

1, it is then an equilibrium for �rm 1 to bid all its units at p�1 (c2) and for �rm 2 to bid them

at marginal costs given that: 1) both �rms are optimizing conditional on their identities; 2)

if �rm 1 became the non-price setter the price would be driven down to pc; which by revealed

preference is unpro�table; and 3) if �rm 2 became the price-setter and reduced the price, it

would face total demand and hence become a net-seller, which would render the deviation

unpro�table.

However, it is also an equilibrium for �rm 2 to bid at zero up to its contract quantity

and to bid its remaining units at marginal costs. The best response by �rm 1 is then to set a

price above c2(x2); given that at any lower price �rm 1�s residual demand is constant. Note

that at the new candidate equilibrium �rm 2 would be a net-seller, and that the new price

would exceed p�1 (c2) given that at p
�
1 (c2) �rm 2 was a net-buyer. No �rm has incentives to

deviate from this equilibrium given that: 1) both �rms are optimizing conditional on their

identities; 2) if �rm 1 became the non-price setter the price would be driven down to zero;

and 3) �rm 2 is a net-seller and hence does not �nd it pro�table to reduce the price.

17More precisely let us assume that D > x2 � x2; where x2 (formally de�ned in the Appendix).is the

maximum quantity whose marginal costs do not exceed c2 (x2) :
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The two equilibria described above are not outcome equivalent despite the fact that �rm

1 is the price-setter under both of them. Furthermore, one cannot derive a general Pareto

ranking among them: by revealed preference, the price-setter is strictly better-o¤ at the

equilibrium in which the non-price setter bids at marginal costs; however, the non-price

setter might be worse-o¤ or better-o¤ depending on the value of x2:

To conclude, under the polar cases (i) equilibrium existence is always guaranteed and,

(ii) conditionally on the identity of the price-setter, the equilibrium outcome is unique.

Hence, any potential multiplicity of equilibrium outcomes must derive from the coexistence

of equilibria in which di¤erent �rms act as price-setters. These results may not hold in some

mixed cases.

5 The Impact of Forward Contracts

We now analyze the impact of forward contracts on equilibrium outcomes under two alter-

native speci�cations: a symmetric oligopoly and an asymmetric duopoly. This allows to

assessing the relationship between �rms�asymmetries and the e¤ects of forward contracts,

an issue which, as far as we are aware of, has not been studied elsewhere.

5.1 Symmetric �rms

First, assume that �rms are symmetric in all respects (including their contract quantities),

and consider the e¤ects of increasing their contract coverage on prices and productive e¢ -

ciency.18

Lemma 3 Assume there exist N symmetric �rms. If contracts are symmetrically distributed

among them, i.e., x1 = ::: = xN = x;

(i) equilibrium prices are non-increasing in x; and

(ii) productive e¢ ciency is non-decreasing in x for x � qc; and non-increasing in x for
x � qc:

Since �rms are fully symmetric, there exist N equilibrium outcomes that only di¤er in

the identity of the price-setter. As �rms� contract coverage is increased, the equilibrium

price is reduced from the level that results at the no-contracts case to the competitive

price, when all �rms are fully contracted. Hence, up to the competitive quantity, contracts

unambiguously contribute to reduce prices and improve productive e¢ ciency. However, as

total contract coverage is further increased, �rms start exercising monopsony power, leading

to prices below the competitive price. Furthermore, since the price-setter produces more

than at the competitive outcome, productive ine¢ ciencies re-emerge. Hence, contracts have

18The symmetry assumption guarantees that we are always under the polar cases, implying that both

equilibrium existence and uniqueness of equilibrium outcomes are guaranteed.
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the potential of being welfare improving, but they may also reduce it if held in su¢ ciently

large quantities.

For given contracts, similar results also arise in Allaz and Vila (1993)�s and Bushnell

(2007)�s Cournot models, as well as in Newbery (1998)�s Supply Function Equilibrium model.

Our contribution here is to show that these results are robust to the introduction of a di¤erent

mode of competition provided that �rms are fully symmetric.

5.2 Asymmetric �rms

We now focus on the duopoly case while allowing for all types of asymmetries among them.

In order to guarantee equilibrium existence and uniqueness of equilibrium outcomes, we shall

assume that �rms hold contracts that never exceed their competitive quantities. Also, this

assumption implies that any potential ine¢ ciency cannot be explained by �rms holding an

excessive amount of contracts, as in point (ii) of Lemma 3 above. Similarly, in order to

isolate the distinct e¤ects of contracting by each �rm, we shall assume that only one �rm is

contracted at a time. These assumptions make the analysis clearer without biasing its main

conclusions.

The following Proposition summarizes the e¤ects of contracts on equilibrium prices.

Proposition 6 Assume that there exist N = 2 (possibly) asymmetric �rms, indexed by

their pro�t-maximizing prices when rivals bid at marginal costs at the no-contracts case,

p�1 (c2) � p�2 (c1) > pc: There exists 0 � x0i < x00i � qci ; i = 1; 2; such that,
(i) as compared to the no-contracts case, contracts by �rm 1 lead to (weakly) lower prices.

In contrast, whereas contracts by �rm 2 below x02 also lead to (weakly) lower prices, contracts

above x02 lead to (weakly) higher prices. Furthermore,

(ii) there is a non-monotonic relationship between contract volume and equilibrium prices.

Speci�cally, increasing �rm i�s contracts up to x00i leads to (weakly) lower prices, but increas-

ing contracts above x00i has the opposite e¤ect, i = 1; 2:

Point (i) of Proposition 6 compares equilibrium prices with and without contracts, con-

ditioning on the identity of the contracted �rm. If all contracts are allocated to the �rm

with the high pro�t-maximizing price, contracts (weakly) reduce prices with respect to the

no-contracts case. This occurs regardless of whether the equilibrium in which the contracted

�rm sets the price exists or not, as when it does not, the price will be set by the uncontracted

�rm, which has the low pro�t-maximizing price.

This conclusion might be reversed when all contracts are allocated to the �rm with the low

pro�t-maximizing price. Whereas it is still true that contracts (weakly) reduce prices when

both equilibria exist (for x2 � x02), this is no longer the case when the equilibrium in which

the contracted �rm sets the price does not exist (for x2 > x02). Given that the equilibrium

price will then be set by the uncontracted �rm, which has the high pro�t-maximizing price,
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contracts in this case may result in (weakly) higher prices as compared to the no-contracts

case.

Point (ii) of Proposition 6 assesses the desirability of increasing contract volume. It shows

that, irrespective of whether contracts are allocated to one �rm or another, an increase in

contract volume does not always lead to price reductions. Indeed, an increase in contract

volume may lead to (weakly) higher prices whenever such an increase in contracts destroys

the equilibrium in which the contracted �rm sets the price (for instance, for x1 > x001 the

equilibrium in which �rm 1 sets a price below p�2 (c1) no longer exists).

The above results are illustrated in the numerical example provided in Section 3.

To sum up, our analysis highlights two key factors as determinants of whether contracts

are pro-competitive or anti-competitive: the allocation of contracts across �rms as well as

their total volume. The analysis shows that contracts have anti-competitive e¤ects when

allocated to �rms which, even in the absence of contracts, have weak incentives to raise

prices (i.e., the �rms with low pro�t-maximizing prices, which are typically the small and/or

the ine¢ cient ones). However, contracts may be pro-competitive and lead to lower prices

when allocated to �rms which would otherwise have strong incentives to raise prices (i.e.,

typically the large and/or the e¢ cient ones). Furthermore, we have found that more is not

always better. That is, even when contracts are allocated to the �rm with greatest incentives

to distort prices, an increase in its contract cover might lead to higher prices. As a corollary,

contracts should be allocated to �rms with strong incentives to raise prices, and contract

quantities should not be neither �too small� nor �too large�- the optimal contract volume

ultimately depends on �rms�cost structures and demand.

6 Simulating the Impact of Forward Contracts

We next apply the theoretical model to simulate equilibrium bidding behaviour and market

outcomes in the Spanish electricity market during 2005. The aim is to illustrate with real data

the strategic e¤ects of contracts that we have described in the previous section. Appendix

B contains details on the Spanish electricity market as well as on the procedures we have

followed to compute �rms�marginal costs.

We have considered alternative scenarios regarding total contract volume and its dis-

tribution across �rms. In particular, under the assumption that only the two main �rms

(Endesa and Iberdrola) behave strategically, we have computed both the competitive as well

as the equilibrium market outcomes under the no-contracts case and the cases in which either

Endesa (END) or Iberdrola (IB) hold contracts, ranging from 1,000 to 8,000 MWs.19

19Since the simulations are conducted on an hourly basis over a year, there are at least 8,760 and at most

(if both �rms act as price-setters) 17,520 equilibrium market outcomes under each of the 17 cases considered,

plus the 8,760 competitive outcomes (these are the same regardless of whether �rms hold contracts or not)-

summing over 300,000 simulated market outcomes in total. Simulations have been produced by ENERGEIA,

a simulation programme developed by the authors.
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No Contracts END 2,000 END 5,000 IB 6,000 IB 8,000

Price-setter IB END IB END IB END IB END IB END

Peak load 50.0 50.0 50.0 50.0 50.0 *� 50.0 50.0 *� 50.0

75% 11.2 15.0 11.2 *11.6 11.2 *� *� 15.0 *� 15.0

50% � 15.9 *5.2 *10.7 *5.2 *� � 15.9 � 15.9

25% 23.4 23.6 23.4 23.6 23.4 *� 23.4 23.6 23.4 23.6

Table 2: The impact of forward contracts (MWs) on markups p
��pc
p� in the Spanish electricity

market during 2005

Note on Table 2: The table reports the simulated mark-ups p
��pc
p� for four demand levels (the year�s

peak load, and the 75%, 50% and 25% demand percentiles). The results are divided in columns,

depending on the identity of the price-setter. A table entry is left empty if, for the associated

demand level and contract volumes, there is not an equilibrium in which such a �rm behaves as

price-setter. An asterisk denotes that the equilibrium has changed with respect to the no-contracts

case.

Table 2 reports the markups that result from comparing the simulated equilibrium price

to the price that would arise in a competitive market (Borenstein et al. ( 2002)).20 Markups

are computed at four demand levels (expressed in percentiles), under the no-contracts case

and under the cases in which Endesa has contracted either 2,000 or 5,000 MWs, and Iber-

drola has contracted either 6,000 or 8,000 MWs (results for all other cases are qualitatively

similar).21 By comparing the markups across �rms at the no-contracts case, we can readily

verify that Endesa�s pro�t-maximizing price exceeds that of Iberdrola�s for all demand levels

considered.

Let us �rst consider the e¤ects of contracts when allocated to the �rm with the high pro�t-

maximizing price, Endesa. First, contracts may reduce Endesa�s pro�t-maximizing price as

a price-setter; this is for instance the case when Endesa contracts 2,000 MWs and demand

is at its 50% or 75% percentiles. Second, contracts may give rise to a new equilibrium in

which Iberdrola sets a lower price; this is for instance the case when Endesa contracts either

2,000 or 5,000 MWs and demand is at its 50% percentile. Last, contracts may eliminate

certain equilibria at which Endesa sets the price; this is for instance the case when Endesa

contracts 5,000 MWs for all demand levels. Therefore, contracts by Endesa have (weakly)

pro-competitive e¤ects.

20We have chosen to report these markups rather than prices for clarity. Nevertheless, note that both

markups and prices illustrate identical results to the extent that the competitive price is the same regardless

of which �rm sets the price.
21The markups are based on the equilibria at which the non-price-setter bids at marginal costs. For the

vast majority of cases, this equilibrium generates the unique equilibrium outcome. Whenever there are

multiple equilibrium outcomes, the unreported outcomes result in higher markups.
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Min Max

END Contracts � Payments

1,000 MWs -84 -107

2,000 MWs -143 -194

3,000 MWs -377 -410

4,000 MWs -457 -577

5,000 MWs -439 -608

6,000 MWs -456 -632

7,000 MWs -548 -639

8,000 MWs -709 -654

Min Max

IB Contracts � Payments

1,000 MWs -24 -78

2,000 MWs -54 -161

3,000 MWs -88 -222

4,000 MWs -117 -280

5,000 MWs -181 -379

6,000 MWs -200 -434

7,000 MWs -169 -437

8,000 MWs -171 -437

Table 3: The impact of forward contracts on total payments to producers (Million e) for

the Spanish electricity market during 2005

Note on Table 3: Total payments to producers under the competitive outcome are 9,599 Me; the

minimum value under the no-contracts case is 11,422 Me, while the maximum is 11,728 Me. The

table reports how these �gures change when forward contracts are introduced. Given that there

might be multiplicity of equilibrium outcomes, the Min and the Max columns report the minimum

and maximum change in total payments.

However, such conclusion is reversed when contracts are allocated to the �rm with the low

pro�t-maximizing price, Iberdrola. More speci�cally, contracts by Iberdrola have (weakly)

anti-competitive e¤ects when they destroy the low-price equilibrium outcomes. This is the

case when Iberdrola contracts either 6,000 or 8,000 MWs and demand is at its 75% percentile.

The e¤ects of contracts reported so far vary with the demand level, e.g. whereas at very

high or very low demand levels contracts barely have no e¤ect on equilibrium outcomes, their

e¤ect for intermediate demand levels can go in either direction depending on contract volume

and contract allocation. In real markets, since demand changes over time while contract

volumes remain �xed, the overall e¤ect of contracts will depend on the relative occurrence

of periods in which contracts are either pro-competitive or anti-competitive. Therefore,

with illustrative purposes, we have assessed the e¤ect that contracts would have had on the

Spanish electricity prices during 2005 by computing total payments to producers over the

year.

Table 3 reports the change in total payments when contracts are introduced. Given that

there may be multiplicity of equilibrium outcomes depending on which �rm sets the price,

we have reported the minimum and the maximum change in payments. Under all contract

cases, total payments to generators go down, thereby indicating that the pro-competitive

e¤ects of contracts seems to dominate over the anti-competitive ones. However, the anti-

competitive e¤ects can also be inferred from these �gures as they account for the non-
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monotonic relationship between payments to producers and total contract volume. For

instance, such non-monotonicity arises when Iberdrola�s contracts are increased above 6,000

MWs, when savings are reduced from 200 Me to either 169 Me or 171 Me.

7 Conclusions

In this paper we have analyzed the impact of forward contracts on the performance of spot

markets in a model that tries to capture the essential institutional and structural features of

electricity markets. Instead of assuming either Cournot or Bertrand competition, we have

tried to model the actual market rules that govern most electricity markets in practice. In

particular, we have assumed that �rms compete by submitting step functions to the auction-

eer, who then sets prices and dispatches production in increasing bid order. Furthermore,

we have put no restrictions on either the market demand function - which could be either

downward-sloping or price-inelastic,- or the �rms�cost functions - which could result in ei-

ther constant or step-wise increasing marginal costs, and could be symmetric or asymmetric

across �rms. Thus, the model is �exible enough so as to make it comparable with other

more stylized models at the same time as it allows for all degrees of complexity. Indeed,

we have used it to simulate real electricity market outcomes in order to illustrate the model

predictions.

We have found that the scope of contracts to improve market performance crucially de-

pends on both its volume and its distribution across �rms. If contracts are symmetrically

distributed across symmetric �rms, an increase in contracts up to �rms�competitive quanti-

ties is welfare improving. This supports the pro-competitive view of forward trading found

in previous papers. However, this prediction might be reversed when �rms are asymmetric.

Indeed, contracts might lead to higher prices and reduced welfare if they jeopardize the

existence of the low price equilibria. This may be the case when contracts are allocated to

those �rms with weak incentives to distort prices, e.g. typically the small and/or the inef-

�cient ones. On the contrary, contracts are welfare improving whenever they are allocated

to large and e¢ cient �rms with strong incentives to raise prices. These results suggest that

the policy debate should focus on how allocate forward contract obligations rather than on

their desirability per se.

We have focused on exogenously given contracts since we believe, in line with Bushnell et

al. (2007), that many "vertical arrangements [in electricity markets] are better understood

and can reasonably be considered to be exogenous." Furthermore, without knowledge of

how exogenously given contracts a¤ect market performance, it would be di¢ cult to inform

policy-makers on how to design forward contract obligations, e.g. how much virtual power

to auction-o¤ and to whom. Still, a further step of the analysis would be to allow for more

general types of contracts by investigating the incentives to sign new contracts and hence

their endogenous distribution across �rms.22 The current paper provides the needed �rst

22Our paper also abstracts from other types of dynamic e¤ects. For instance Newbery (1998) shows that if
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step to perform such an analysis.

To conclude, even though our analysis has been inspired by the workings of electricity

markets, we believe that its implications have broader applicability. Since the most relevant

features of our model are not unique to electricity markets, its conclusions could be applied

to other contexts. Indeed, many modern markets are organized around a centralized auction

site where all transactions are executed at market prices, e.g. order driven periodic auctions

in �nancial markets, auctions for on-line services, or markets for inputs such as gas.
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Appendix

Notation

The following pieces of notation are used throughout the Appendix. We will denote by xi
the maximum quantity that �rm i can produce at marginal costs strictly below the marginal

costs of producing its contract quantity, ci(xi); and by xi the maximum quantity that �rm

i can produce with marginal costs not exceeding ci(xi): Note that xi 2 [xi; xi] : Formally,

xi � max fq : q 2 [0; Ki] and ci (q) � ci (xi)g ; and
xi � max fq : q 2 [0; Ki] and ci (q) < ci (xi)g ;

Similarly, we will denote by si(p) the maximum quantity that �rm i can produce at marginal

costs strictly below p; and by si(p) the maximum quantity that �rm i can produce with

marginal costs not exceeding p: Formally,

si(p) = max fq : q 2 [0; Ki] and ci (q) < pg ; and
si(p) = max fq : q 2 [0; Ki] and ci (q) � pg :

Last, note that the market clearing price p� depends on the bid pro�les, and that the

quantity allocated to each �rm will depend on both p� and b: Nevertheless to simplify no-

tation, in the proofs that follow we will suppress these arguments whenever clear from the

context.

A Proofs

Lemma A.1. For �rm i; it is weakly dominated (i) to bid below marginal cost for quantities

such that ci (q) > ci (xi), as well as (ii) to bid above marginal cost for quantities such that

ci (q) < ci (xi) :

Proof of Lemma A.1. (i) Let us �x the bid functions submitted by �rms other than i

at b�i (q) ; and compare the pro�ts made by �rm i with the strategies b0i (q) and bbi (q) which
only di¤er in the bids for units above xi: Whereas under b0i (q) those units are bid in at

marginal costs, under bbi they are bid in at prices below marginal cost. More precisely,
b0i (q) =

(
bi (q) if q � xi
ci (q) if q > xi

and bbi (q) = ( bi (q) if q � xiebi (q) 2 [bi (xi) ; ci(q)) if q > xi:

Letbb (respectively, b0) denote the bidding pro�le (bbi (q) ; b�i (q)) (respectively, (b0i (q) ; b�i (q))).
We �rst note that the equilibrium price under bb is no larger than under b0 as bbi (q) � b0i (q)
while b�i (q) coincides under both pro�les. Consequently bp � p0: Furthermore, if bp < p0 thenbqi � q0i and q0i � xi � xi as bbi (q) = b0i (q) for all q � xi: Pro�ts at the two pro�les are given
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by

�i (b
0) = [q0i � xi] p0 � Ci (q0i) + � ixi and

�i

�bb� = [bqi � xi] bp� Ci (bqi) + � ixi;
with bqi � q0i � xi � xi. Consequently,

�i (b
0) = �i

�bb�+ [q0i � xi] [p0 � bp]| {z }
�0

�
Z bqi
q0i

[bp� ci(q)]| {z }
�0

dq � �i
�bb�

where
R bqi
q0i
[bp� ci(q)] dq � 0 as either bqi = q0i so that the integral is zero or q0i < bqi and thenbp � ci(q) for all q > xi and hence for q 2 [q0i; bqi] : Since pro�ts under b0 are no smaller than

under bb, the statement follows.
(ii) Let us �x the bid functions submitted by �rms other than i at b�i (q) ; and compare

the pro�ts made by �rm i with the strategies b0i (q) and bbi (q) that only di¤er in the bids for
units below x; with

b0i (q) =

(
ci (q) if q � xi
bi (q) if q > xi

and bbi (q) = ( ebi (q) 2 (ci(q); ci (xi)] if q � xi
bi (q) if q > xi:

We �rst note that the equilibrium price under bb is no smaller than under b0 as bbi (q) � b0i (q)
while b�i (q) coincide under both pro�les. Consequently bp � p0: Furthermore, if bp > p0 thenbqi � q0i and q0i � xi � xi as bbi (q) = b0i (q) for all q > xi: The di¤erence in pro�ts at the two
pro�les is hence

�i (b
0) = �i

�bb�� [q̂i � xi] [bp� p0]| {z }
�0

+

Z q0i

q̂i

[p0 � ci(q)]| {z }
�0

dq � �i
�bb� :

Since pro�ts under b0 are no smaller than under bb, the statement follows.
Proof of Proposition 1. Since we have to show that qj 2

�
sj(p

�); sj(p
�)
�
, we �rst prove

that qj � sj (p�) : Assume for the sake of contradiction that there is some �rm j; j 6= i; for
which qj < sj(p

�) with qj � xj as weakly dominated strategies are not allowed: As there is
a �nite number of units, there exists �̂ > 0 such that no unit has been bid in at prices in the

interval (p� � �̂; p�) : Pick an � < �̂ and consider the following deviation by �rm j :

b0j (q) =

8><>:
bj (q) for 0 � q < qj
p� � � for q 2

�
qj; sj (p

�)
�

bj (q) for sj (p
�) < q � Kj

�

Let the resulting bidding pro�le be denoted by b0; where b0 = (b1(q); ::; b0j(q); ::; bN(q)); with

associated equilibrium price p0 and with q0j = qj (b
0) � qj. The di¤erence between �rm j�s

pro�ts under b and b0 is given by:

�j (b
0)� �j (b) = [p0 � p�]

�
q0j � xj

�
+

Z q0j

qj

[p� � cj(q)] dq:

28



There are two cases to consider: (a) If p0 = p���, then the di¤erence in pro�ts is positive:
the second term of the above equation is positive by the de�nition of sj (p

�) as p� > cj(q) for

any positive q < q0j � sj (p�) ; whereas the �rst term can be made arbitrarily small by taking
� small enough. (b) If p0 = p�; the deviant now sells the additional output

�
qj � sj (p�)

�
at a

price above its marginal costs and thus gets more pro�ts. The derived contradictions prove

the �rst result.

We now show that qj � sj(p�):By contradiction, assume there is some �rm j; j 6= i; for
which qj > sj(p

�): By elimination of weakly dominated strategies, this requires qj � xj:

Consider the following deviation by �rm j :

b0j (q) =

8><>:
bj (q) for 0 � q < sj (p�)
p� + � for q 2 [sj (p�) ; qj]
bj (q) for qj < q � Kj

�

Let the resulting pro�le be denoted by b0; with equilibrium price p0 and with q0j = qj (b
0) � qj:

The di¤erence between �rm j�s pro�ts under b and b0 is given by:

�j (b
0)� �j (b) = [p0 � p�]

�
q0j � xj

�
+

Z qj

q0j

[cj(q)� p�] dq:

There are two cases to consider: (a) If p0 = p� + �, then the di¤erence in pro�ts is

positive: the second term of the above equation is positive given that cj(q) > p� for any

positive q > q0j � sj (p
�) ; whereas the �rst term can be made arbitrarily small by taking

� small enough. (b) If p0 = p�; the deviant now reduces its output by (qj � sj (p�)) and
therefore reduces its losses. As in either case, the deviation is pro�table we ran into a

contradiction that proves the second result.

Proof of Lemma 1. (i) We �rst note that qj � sj(p
�) holds for all j 6= i because of

Proposition 1: Thus if p� � pc; then sj (p
�) � sj (p

c) given that sj in a non-decreasing

function of p: Consequently, �NPSj (p�) = maxq fp� [q � xj]� Cj (q)g + � jxj is an increasing
function of p� as qNPSj (p�) � qcj > xj: Finally, if qcj = xj; �rms i�s pro�ts are increasing in p�

if qj > qcj ; and they are independent of p
� if qj = qcj :

(ii) Since qNPSj (p�) � qcj if p
� � pc; then, using similar arguments to those above,

qNPSj (p�) � qcj � xj implies that �NPSj (p�) is a decreasing function of p� if qcj < xj and it is

non-increasing if qcj = xj:

Proof of Lemma 2. If p� � pc then qPSi (p�) = D(p�)�
P

j q
NPS
j (p�) = D(p�)�

P
j 6=i sj(p

�):

Since D(p�) �
P

i si(p
�) then qPSi (p�) � si (p�) ; so that the result follows as

�PSi (p�) = p�
�
qPSi (p�)� xi

�
� C

�
qPSi (p�)

�
+ � ixi

� p� [si (p
�)� xi]� C (si (p�)) + � ixi = �NPSi (p�) :

If p� < pc then qPSi (p�) > �si (p
�) and

�PSi (p�) = �NPSi (p�) +

Z qPSi (p�)

�si(p�)

[p� � ci(q)] dq < �NPSi (p�) ;
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as p� < ci(q) for all q > �si (p�) :

Proof of Proposition 2. (i) We �rst show that xi < qci implies p
� � pc: Argue by

contradiction and assume xi < qci and p
� < pc where p� = p�i (b�i) : Since p

� < pc, then

by appealing to Proposition 1 it must hold that qNPSj (p�) � qcj ; so that q
PS
i (p�) � qci and

hence qPSi (p�) � xi: As there is a �nite number of units, there exists �̂ > 0 such that no

unit has been bid in at prices in the interval (p�; p� + �̂) : Pick an � < �̂ such that p�+ � < pc

and suppose that �rm i deviates from setting the price at p� to p� + �: We argue that this

deviation increases �rm i�s pro�ts, contradicting equilibrium behaviour, i.e., contradicting

p� = p�i (b�i). To see this, note that the di¤erence in pro�ts is given by

�PSi (p� + �)� �PSi (p�) = � [q0i � xi] +
Z qi

q0i

[ci (q)� p�] dq;

where q0i = qi (p
� + �) � qi = qi (p�) :

There are two cases to consider: (a) If q0i = qi; then the di¤erence in pro�ts, � [q
0
i � xi] ; is

positive given that q0i = qi � qci > xi. (b) If q0i < qi; then it must be still the case that q0i > qci
as p� + � < pc and no other unit is bid in at (p�; p� + �̂) : Consequently � [q0i � xi] > 0 andR qi
q0i
[ci (q)� p�] dq > 0 as p� < pc � ci (q) for any q > qci . As the �rm is better-o¤ deviating,a

contradiction is reached.

Second, we show that xi < qci implies xi � qi: Argue by contradiction and assume

xi � qci and xi > qi: Since xi � qci then p
� � pc by the proof above. Let�s �rst assume

p� > pc: As the rivals are dispatching all units with marginal costs below p�, then qi � qci
and p� > ci (qi) : Consider the following deviation by �rm i: all units that were originally

bid in at p� plus the extra units needed to cover qci are bid in at p
� � �; where again � < �̂;

and p� � � > pc; the remaining units are bid in as originally. Since the equilibrium price is

now p�� � > pc �rm i produces qci � q0i = qi(p�� �; b�j) � qi(p�; b�j) = qi: Firm i�s deviation
gains are given by

�PSi (p
� � �)� �PSi (p�) = � [xi � qi] +

Z q0i

qi

[p� � �� ci (q)] dq > 0;

where the last inequality follows from the fact that xi > qi and p� � � > pc � ci(q) for all

q � q0i as q0i � qci : The existence of a pro�table deviation gives the desired contradiction.
Last, let�s assume p� = pc: As this implies qi = qci ; xi � qci and xi > qi would contradict

each other.

(ii) If xi = qci and p
� = pc; which trivially imply xi = qi; �rm i has no incentives to deviate.

If �rm i reduced the price to p0 < p� = pc; its pro�ts would decrease by
R q0i
qi
[p0 � ci (q)] dq < 0;

given that p0 < p� = pc � ci (q) for all q > qi = qci : If it increased the price to p0 > p� = pc;
its pro�ts would decrease by

R qi
q0i
[ci (q)� p0] dq < 0; given that p0 > p� = pc � ci (q) for all

q < qi = q
c
i :

(iii) The proof follows the same steps and (reversed) arguments as the one in part (i); it

is hence omitted.
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Proof of Theorem 1. (i) [Only if] Suppose there exists a pure-strategy equilibrium

(b1; ::; bn) in which �rm i sets the price at p� � pc and �rms�payo¤s are �PSi (p�) and �NPSj (p�);

i; j = 1; :::N; j 6= i: If this is the case then Condition 1). follows from Propositions 1 and 2,

and both Conditions 2). and 3). follow trivially from the de�nition of Nash equilibrium.

[If ] We have to show that no �rm pro�ts by deviating from strategies that satisfy con-

ditions 1). to 3). Consider �rst the non-price setters j; j 6= i: By 1). we only need to

consider deviations that imply a change in identity. Let us distinguish between those �rms

with xj > qj and those with xj � qj: For a �rm j with xj > qj the only relevant deviations

are those that allow to become the price-setter at a price below p�: To see this, compare for

any p0 � p�;

�NPSj (p�) = p� [qj � xj]� C(qj) + � jxj with
�PSj (p0) = p0

�
q0j � xj

�
� C(q0j) + � jxj,

where qj = qNPSj (p�) � q0j = qj (p0). The di¤erence in pro�ts is given by

�PSj (p0)� �NPSj (p�) = [p0 � p�]
�
q0j � xj

�
+

Z qj

q0j

[cj (q)� p�] dq: (4)

The �rst term of the above expression is negative given that p0 > p� and q0j � qj < xj:

The second term is also negative given that p� � cj (qj) � cj
�
q0j
�
; where the �rst inequality

follows from Proposition 1. Hence, those �rms j with xj > qj and p�j (b�j) � p� will not

deviate. To assess whether �rms j with xj > qj have incentives to deviate by reducing the

price, note that for any p0 < p� the di¤erence in pro�ts becomes,

�PSj (p0)� �NPSj (p�) = [p0 � p�]
�
q0j � xj

�
+

Z q0j

qj

[p� � cj (q)] dq; (5)

where now qj � q0j: The second term of the above expression is negative given that p� � pc and
Proposition 1 imply p� < cj (q) for all q > qj: The �rst term is also negative if xj < q0j: Since

deviating to p�j is the most pro�table deviation, it follows that �rms with p
�
j (b�j) < p

� and

xj � qj
�
p�j
�
will not deviate. Finally, since 3). ensures that �rms j with p�j (b�j) < p

� and

xj > qj
�
p�j
�
do not want to become the price-setter either, one can conclude that no deviation

by �rms j with xj > qj is pro�table.

Consider now �rms j such that xj � qj: The only relevant deviations are those that

allow to become the price-setter at a price p�j > p�. Deviating to a price lower than p� is

not pro�table given that xj � qj � q0j implies that the �rst term in (5) is negative. Hence,

those �rms j with xj � qj and p�j (b�j) � p� will not deviate. Those �rms j with xj � qj

and p�j (b�j) > p� will not deviate if xj � qj
�
p�j
�
given that (4) would then be negative.

Last, since by 3). �rms j with p�j (b�j) > p� and xj < qj
�
p�j
�
do not want to become the

price-setter either, no deviation by the non-price setters is pro�table.

Consider now �rm i: Since Condition 1 holds, the only deviations we have to consider

are those that would allow �rm i to become a non-price setter at a price below p�i : Since this
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deviation is ruled out by Condition 2, we can conclude that the strategy pro�le (b1; ::; bn)

constitutes a Nash equilibrium.

(ii) The proof follows the same steps and (reversed) arguments as the one in part (i); it

is hence omitted.

Proof of Proposition 3. (i) We �rst note that the set of su¢ cient conditions for a strategy

pro�le to constitute a Nash equilibrium follow from Theorem 1 part (i). Condition 2). of the

Theorem, i.e., �PSi (p
�) � �NPSi (p) for all p < p� such that qNPSi (p) +

P
j 6=i qj(p; b) = D(p);

holds trivially as the only price at which �rm i can be a non-price setter is pc and this

deviation is ruled out by the fact that p� = p�i is a maximizer, i.e., �
PS
i (p

�) � �PSi (p
c) =

�NPSi (pc) as rivals are bidding at marginal costs. Condition 3). also holds: xi � qci (which
by Proposition 2 implies p� � pc) and qj = qNPSj (p�) � qcj ; rule out deviations by the non-
price-setters to lower prices as Lemmas 1 and 2 imply �NPSj (p�) � �NPSj (p) � �PSj (p) for any
p � p� given that xj � qcj for all �rms j: Hence, we only need to show that an equilibrium
exists with p� = p�i � pc at which �rm i is the price-setter and pro�ts are given by �PSi (p�)

and �NPSj (p�) for all j 6= i: We prove this by constructing a strategy pro�le that results in
such an equilibrium. Consider the strategy pro�le b according to which all �rms but �rm i

bid at marginal costs and �rm i submits the strategy bi (q; �p�i ) where

bi (q; �p
�
i ) =

(
ci (q) if q < xi;

max f�p�i ; ci (q)g if q � xi:

We �rst note that the equilibrium price under the proposed pro�le, p�, must be equal to p�i :

The proposed pro�le cannot result in p� > p�i since at any such price p
� all �rms are bidding

at marginal costs, and p� > p�i � pc; a contradiction. The proposed pro�le cannot result in
p� < p�i either as at any such price, qi = xi; implying that �rm i�s pro�ts would be negative,

which contradicts that p�i maximizes �rm i �s pro�ts as �PSi (p
�
i ) � �PSi (p

c) � 0 given that

xi � qci :
Last, we need to show that �rms are best responding to each other. Under pro�le b; �rm

i cannot pro�tably deviate since p� = p�i (c�i) implies that it is already maximizing over its

residual demand. For �rms j; j 6= i, any pro�table deviation must result in the deviant �rm
becoming the price-setter. Such a deviation can only be pro�table by �rms j with p�j > p

�
i

as by appealing to lemmas 1 and 2 we have that

�NPSj (p�i ) � �NPSj (p) � �PSj (p) for any p � p�i :

For prices above p�i �rm i is bidding at marginal costs, so that if �rm j with p�j > p�i
deviates it will set the price at p�j (c�j). Since �

NPS
j (p�) � �PSj (p�j) holds for all j 6= i such

that p�j (c�j) > p
�; such deviations are not pro�table either. As �rms are best responding to

each other, the proposed pro�le b constitutes an equilibrium as claimed.

(ii) The proof follows the same steps and (reversed) arguments as the one in part (i);

hence, we only provide here the pieces of information which are speci�c to this case. In par-

ticular, a strategy pro�le that results in such an equilibrium is a strategy pro�le b according
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to which all �rms but �rm i bid at marginal costs and �rm i submits the strategy bi(q; p�i );

where

bi

�
q; p�

i

�
=

(
min

n
p�
i
; ci (q)

o
if q � �xi;

ci (q) if q > �xi:

Proof of Proposition 4.
Consider the case in which xi � qci for all �rms. First, suppose there exist at least two

equilibria: one in which �rm i sets the price at p� and all other �rms bid at marginal costs

and another one in which �rm i sets the price at p0 and at least one �rm j; j 6= i; bids some
units above marginal costs, b0j (q) > cj (q). Let the bid pro�les submitted by the non-price

setters under both equilibria be respectively denoted b�i and b0�i. Three cases may arise:

(a) Equilibrium prices under both pro�les are equal, p0 = p�; so that both equilibria are

outcome-equivalent.

(b) Equilibrium prices di¤er, with p0 < p�:

Note that b0�i (q) � b�i (q) implies that qi
�
p; b0�i

�
� qi (p; b�i) for any p: By revealed

preference,

�PSi (p�; b�i) > �
PS
i (p0; b�i) and �PSi

�
p�; b0�i

�
< �PSi

�
p0; b0�i

�
implying

p� [qi (p
�; b�i)� xi]� Ci (qi (p�; b�i)) > p0 [qi (p

0; b�i)� xi]� Ci (qi (p0; b�i)) and
p�
�
qi
�
p�; b0�i

�
� xi

�
� Ci

�
qi
�
p�; b0�i

��
< p0

�
qi
�
p0; b0�i

�
� xi

�
� Ci

�
qi
�
p0; b0�i

��
:

Rearranging terms, Z qi(p�;b0�i)

qi(p�;b�i)

[p� � ci(q)] dq <
Z qi(p0;b0�i)

qi(p0;b�i)

[p0 � ci(q)] dq: (6)

Since p0 < p� and marginal cost functions are non-decreasing, we must have

qi
�
p�; b0�i

�
� qi (p�; b�i) < qi

�
p0; b0�i

�
� qi (p0; b�i) :

Furthermore, since at least one non-price-setter is bidding above marginal costs under

b0; then qi
�
p�; b0�i

�
� qi (p

�; b�i). Consequently, qi
�
p0; b0�i

�
> qi (p

0; b�i) : As this impliesP
j 6=i qj

�
p0; b0�j

�
<
P

j 6=i qj (p
0; b�j) ; at least one non-price-setter must have unit(s) with

marginal cost below p0 which are not dispatched under b0; so that Proposition 1 is violated,

a contradiction with equilibrium behaviour.

(c) Equilibrium prices di¤er, with p0 > p�:

Again, qi
�
p0; b0�i

�
� qi (p

0; b�i) : By revealed preference, equation (6) applies. Thus, if

qi (p
0; b�i) = qi

�
p0; b0�i

�
then the left hand side of (6) must be negative, which contradicts

Proposition 2, i.e., that p� is an optimal price for �rm i when the rivals bid at b�i, so that

qi
�
p0; b0�i

�
> qi (p

0; b�i) must hold. As this implies
P

j 6=i qj
�
p0; b0�j

�
<
P

j 6=i qj (p
0; b�j) ; a
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non-price-setter must have unit(s) with marginal cost below p0 which are not dispatched

under b0; violating Proposition 1 and hence contradicting equilibrium behaviour.

Last, suppose there exist at least two equilibria: one in which �rm i sets the price at p�

and all other �rms bid at marginal costs; and another one in which �rm i sets the price at p0

and at least some �rm j; j 6= i; bids some units below marginal costs, b0j (q) < cj (q). Again,
let the bid pro�les submitted by the non-price setters under both equilibria be respectively

denoted b�i and b0�i: Since xi � qci for all �rms, then p� � pc and xj � qj so that, by revealed
preference arguments, �rm j may only bid below marginal costs those units that are already

dispatched under the �rst equilibria. Hence, qi
�
p�; b0�i

�
= qi (p

�; b�i) : As this implies that

�rm i must still �nd it optimal to set the price at p� when all other �rms bid at b0�i, then

p� = p0 and both equilibria must be outcome equivalent. This shows our claim.

Proof of Corollary 3. (i) Suppose xi � qci for all �rms i = 1; :::; N: First, assume

that the equilibrium in which �rm k is the price-setter exists. From Proposition 3 part (i)

�NPSr (p�k) � �PSr (p�r) must hold for all �rms r < k: Since by Lemma 1 the non-price-setters�

pro�ts are increasing in p; it follows that �NPSr

�
p�k�i

�
� �NPSr (p�r) for any i = 1; ::; k � 1:

Consequently, �NPSr

�
p�k�i

�
� �NPSr (p�r) � �NPSr (p�k) � �PSr (p�r) implies that the equilibria

in which �rms f1; :::; k � 1g are the price-setters also exist:
Last, assume that the equilibrium in which �rm k is the price-setter does not exist. Since

�rms j > k do not have any pro�table deviation, it must be the case that for some �rm r < k,

�NPSr (p�k) < �
PS
r (p�r) : Since the non-price-setters�pro�ts are increasing in p; it follows that

�NPSr

�
p�k+i

�
� �NPSr (p�k) for any i = 1; ::; N � k: Consequently, �NPSr

�
p�k+i

�
� �NPSr (p�k) <

�PSr (p�r) implies that the equilibria in which �rms fk + 1; :::; Ng are the price-setters do not
exist either:

(ii) Suppose xi � qci for all �rms. It su¢ ces to reverse the direction of the inequalities

with respect to the ones above.

Proof of Proposition 5. Existence of an equilibrium trivially follows from Theorem 3 in

Jackson and Swinkels (2005). Note further that existence can be guaranteed by appealing

to Reny�s better reply security (see corollary 5.2 to Theorem 3.1 in Reny (1999)): due to the

e¢ cient tie-breaking rule, bidders�payo¤s are secure and their sum is upper semi-continuous,

so that an equilibrium always exists.

To see why marginal cost bidding by the non-price setters may not generate an equilib-

rium, consider the following example. A duopoly composed of �rms 1 and 2 face demand

D(p) = 20 � p. Both �rms�production units have capacity normalized to one, and their
marginal costs are given by

c1(q) =

(
4 if 0 � q � 4
dqe if 4 � q � 20

and c2(q) =

8><>:
dqe
2

if 0 � q � 11
11
2

if 11 � q � 16
dqe
2

if 16 � q � 20
�

Finally, let their contract positions be x1 = 0 and x2 = 15. If �rm 1 acts as the price setter,

then p�1 = 5:5; D (p�1) = 14:5; q2 = 10 and �NPS2 (p�1) = �55: However, �rm 2 prefers to
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deviate and set the price at 5:25: It would then sell 14:75 units (since x1 = 0; �rm 1 is not

o¤ering any unit below 5:5) and would make pro�ts equal to �54:938: Since the deviation
is pro�table, the candidate price p�1 = 5:5 fails to be in equilibrium. If �rm 2 acts as the

price-setter, then p�2 = 4; D (p�2) = 16; q1 = 4 and �NPS1 (p�2) = 0: However, �rm 1 prefers

to deviate and set the price at 4:5: It would then sell 0:5 units (�rm 2 is bidding x2 = 15

units at prices no larger than 4) and it would make pro�ts equal to 0:25: Since the deviation

is pro�table, the candidate price p�2 = 4 fails to be in equilibrium.
23 Nevertheless, for this

market con�guration it is an equilibrium for �rm 2 to set the price by biddingmin f4:5; c2 (q)g
for q � 15 and marginal cost for the remaining units, while �rm 1 follows a �at strategy at

4:5, i.e., b1(q) = max(4:5; c1(q)). This equilibrium results in p� = 4:5:

B Details on Simulations

The Spanish electricity market is organized similarly to many other wholesale electricity

markets around the world. In particular, most transactions take place through an organized

exchange, that operates on an hourly basis according to the rules described in Section 2 (see

Crampes and Fabra (2005) for more details). The market structure is highly concentrated,

with the two largest �rms - Endesa and Iberdrola - controlling almost 60% of total thermal

capacity, more than 80% of total hydro capacity, and approximately 40% of total renewables.

Even though the shares of these technologies on total production vary across years, in 2005

hydro and renewables contributed to cover 8% and 11% of total demand, respectively. Table

4 summarizes the market structure of the main generators in the Spanish electricity market.

In order to conduct the simulations, we have �rst computed �rms�marginal cost curves

following similar techniques as in previous papers (Fabra and Toro (2005)).24 In particular,

we have estimated each thermal unit�s marginal production costs on a daily basis, taking

into account the type of fuel it burns, the cost of the fuel, the plant�s heat rate (i.e., the

e¢ ciency rate at which each plant converts the heat content of the fuel into output), the

short-run variable cost of operating and maintaining it, and the costs of its CO2 emissions.

In addition, for coal plants, we have added an estimate of the costs of transporting coal

from the nearest harbor where it is delivered to the plant where it is consumed. Lastly, each

unit�s generation capacity has been reduced by its estimated outage rate. By aggregating the

capacities of each �rm�s thermal units in increasing marginal cost order, we have obtained

estimates of �rms�thermal marginal cost curves for each day of the year.

Furthermore, we have assumed that the marginal costs of producing electricity with

hydro and renewables equal zero. The production coming from such sources has therefore

23Note that non-existence of the equilibrium at which the non-price setter bids at marginal cost is the

exception rather than the rule. In the example discussed above, if x2 � 14:5; then p�1 = 5:5 is an equilibrium.
Similarly, if x2 > 15; then p�2 = 4 is an equilibrium.
24The data used in the simulations have been obtained from various sources, including The National

Energy Commission (CNE), Red Eléctrica de España (REE), OMEL and UNESA.
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Firm/ Technology Nuclear Coal CCGT Oil-Gas Total Shares

Endesa 3,511 5,511 1,170 1,779 10,918 33%

Iberdrola 3,222 1,225 3,704 3,050 8,456 26%

Unión Fenosa 702 1,946 1,559 747 4,954 15%

Gas Natural � � 2,729 � 2,729 8%

Hidrocantábrico 155 1,549 390 � 2,094 6%

Others � 909 2,144 731 3,784 11%

Table 4: Installed Thermal Capacity (MW) by Firm and Technology in the Spanish Elec-

tricity Market, 2005 (Source: REE)

been added to the left of each �rm�s thermal marginal costs curve in order to construct their

overall marginal costs curves. We have chosen not to use actual data on hydro production,

as it is already the result of �rms�strategic decisions. Instead, poundage hydro generation

has been set to peak-shave demand on a monthly basis, taking into account maximum hydro

�ows.25 Both run-of-river hydro as well as renewables� production have been uniformly

spread across time. Hydro stocks, run-of-river hydro �ows and renewable energy are monthly

estimates of a representative year.

Demand has been assumed to be price-inelastic at the actual hourly demand levels that

were observed in 2005. Furthermore, we have set the price cap at 120e/MWh, below its

explicit 180e/MWh level, with the aim of re�ecting issues such as the threat of entry or

regulatory intervention. Nevertheless, setting the price at either 120 or 180e/MWh does

not change the qualitative nature of the results.

25As it is by now well understood (Bushnell (2003)), �rms could strategically shift hydro from peak to

o¤-peak hours, thereby distorting the e¢ cient use of hydro resources. A full analysis of this issue is out of

the scope of this section. However, despite assuming competitive bidding for hydro units, hydro still a¤ects

�rms�strategic decisions through its impact on their inframarginal output.
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