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Abstract

This paper develops an econometric model of industry dynamics for

concentrated markets that can be estimated very quickly from market-

level panel data on the number of producers and consumers using a nested

fixed-point algorithm. Its estimation enables the measurement of economic

barriers to entry and the toughness of price competition. The model’s

econometric error comes from a shock to both potential entrants’ sunk

costs of entry and incumbents’ fixed costs of continuation. We show that

the model has an essentially unique symmetric Markov-perfect equilibrium

that can be calculated from the fixed points of a finite sequence of low-

dimensional contraction mappings. Our nested fixed point procedure

extends Rust’s (1987) to account for the observable implications of mixed

strategies on survival. We illustrate the model’s empirical application

with ten years of County Business Patterns data from the Motion Picture

Theaters in 573 Micropolitan Statistical Areas. Adding four firms to a

monopoly market reduces profits per customer by 23 percent.
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1 Introduction

This paper introduces an econometric model of firm entry, competition, and

exit in dynamic oligopolistic markets. The model includes market-level demand

and cost shocks and sunk entry costs. Because all shocks with dynamic

consequences occur at the market level, the model’s theoretical analysis and

equilibrium computation are straightforward. In particular, we prove that

there exists an essentially unique symmetric Markov-perfect equilibrium that

can be computed from the fixed points of a finite sequence of low-dimensional

contraction mappings. We use these results to develop a nested fixed point

(NFXP) algorithm for the model’s maximum likelihood estimation. This extends

Rust’s (1987) algorithm to account for mixed equilibrium survival strategies.

We begin with Abbring, Campbell, and Yang’s (2010) model of Markov-

perfect duopoly dynamics. They describe it as “simple” because adding a second

firm to a market always lowers the equilibrium payoff of a monopolist incumbent.

This result allows them to prove that there is an essentially unique “natural”

Markov-perfect equilibrium and to develop an algorithm for its fast calculation.

At the cost of removing firm-specific shocks to profitability, we extend their

equilibrium uniqueness and calculation results to an oligopoly setting. We also

add a market-level shock to both potential entrants’ sunk costs of entry and

incumbents’ fixed costs of continuation. This is observed by market participants

but not by the econometrician and so serves as the econometric error. Removing

firm-specific shocks makes our framework inappropriate for applications that

focus on persistent firm heterogeneity, as in Hopenhayn (1992) and Melitz (2003).

However, it is well suited for extending Bresnahan and Reiss’s (1990; 1991)

measurements of the effect of competition on profitability to a dynamic setting.

Monte Carlo results indicate that the model can accurately estimate sunk

costs and profits per customer (normalized to the per-period fixed cost of

production) using observations on the number of producers and consumers

from as few as 25 markets over ten years. We further illustrate the model’s

application by estimating its primitives for one concentrated industry, Motion

Picture Theaters (NAICS 512131). Our data include observations on the number

of theaters from 2000 to 2009 serving 573 Micropolitan Statistical Areas (µSAs).

We find that adding a single firm to a monopoly market lowers profits per

customer by 10 percent. Adding a third or fourth firm lowers profits only little,

while the fifth firm reduces profits by 13 percent more. The maximum likelihood

estimation takes only seconds on an ordinary personal computer. In this sense,
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we make Abbring, Campbell, and Yang’s (2010) analysis very simple.

Both our model and that of Abbring, Campbell, and Yang (2010) can be

viewed as special cases of the Ericson and Pakes (1995) Markov-perfect industry

dynamics framework in which firms cannot vary their investments in productivity

improvements. Since computing that model’s equilibria has proven to be

computationally challenging (see Doraszelski and Pakes (2007) for examples),

that framework’s estimation has focused on statistically inefficient methods

that avoid equilibrium calculation altogether. For example, Bajari, Benkard,

and Levin (2007) apply the Hotz and Miller (1993) inversion to estimate the

structural parameters governing a single agent’s dynamic optimization problem

after conditioning on the observed distribution of all other agents’ choices. Our

nested fixed-point algorithm computes maximum likelihood estimates which are,

of course, statistically efficient. Even with parameter estimates in hand, the lack

of a fast algorithm for equilibrium computation makes counterfactual analysis

of the Ericson and Pakes (1995) model difficult. Weintraub, Benkard, and

Van Roy (2008) make equilibrium computation more tractable by assuming that

firms ignore current information about competitors’ states. Instead, they make

dynamic decisions based solely on their own state and knowledge of the long-run

average industry state. Such oblivious equilibria approximate Markov-perfect

equilibria when the number of competitors is large, yet they are much easier to

compute and thus can serve as a starting point for empirical analysis, as in Xu

(2008). Our analysis can serve as a similar starting point for the analysis of

markets with only few firms.

The remainder of the paper proceeds as follows. The next section

presents the model’s primitives, and Section 3 discusses equilibrium existence,

uniqueness, and computation. Section 4 develops the model’s empirical

implementation. It subsequently discusses sampling, likelihood construction,

identification, and maximum likelihood estimation using the NFXP procedure.

Section 5 demonstrates the good computational performance of the NFXP

procedure and explores the estimator’s finite sample behavior using Monte

Carlo experiments. It also briefly discusses the relative performance of Su and

Judd’s (2012) mathematical programming with equilibrium constraints (MPEC)

implementation of the estimator. Section 6 illustrates the model’s application

with an empirical analysis of entry, competition, and exit in the Motion Picture

Theaters (NAICS 512131) industry. Section 7 concludes. The Appendix provides

technical details.
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2 The Model

Consider a market in discrete time indexed by t ∈ N. In period t, firms that

have entered in the past serve the market. Each firm has a name f ∈ F ≡ N ×N.
The firm’s name gives the precise node of the game tree in which the firm has

its single opportunity to enter the market. Aside from the timing of their entry

opportunities, the firms are identical.

Figure 1 details the actions taken by firms in period t and their consequences

for the game’s state at the start of period t + 1. We call this the game’s

recursive extensive form. For expositional purposes, we divide each period into

two subperiods, the entry and survival subgames. Play in period t begins on

the left with the entry subgame. The period begins with values of Nt and Ct−1
which were either inherited from period t − 1 (if t > 1) or set by nature at the

beginning of play (if t = 1). Nature draws a new demand state Ct from the

conditional distribution GC(⋅ Ct−1) and a real-valued cost state Wt from the

marginal distribution GW (⋅). We use C to denote the support of Ct, and Wt’s

support is the real line. All incumbent firms observe (Ct,Wt), and each earns a

surplus π(Nt, Ct) from serving the market. We assume that

• ∃π̌ <∞ such that ∀n ∈ N and ∀c ∈ C, π(n, c) < π̌;

• ∃ň ∈ N such that ∀n > ň and ∀c ∈ C, π(n, c) = 0; and

• ∀n ∈ N and ∀c ∈ C, π(n, c) ≥ π(n + 1, c).

The first assumption is technical and allows us to restrict equilibrium values to

the space of bounded functions. We will use the second assumption to bound

the number of firms that will participate in the market simultaneously. It is

not restrictive in empirical applications to oligopolistic markets. The third

assumption requires the addition of a competitor to reduce weakly per-period

surplus for all incumbents. Sutton (1991) labelled the rate at which additional

competitors lower post-entry surplus the toughness of competition.

The period t entry cohort consists of firms with names in t × N. After

incumbents receive their payoffs, these firms make their entry decisions

sequentially in the order of their names’ second components. We denote firm

f ’s entry decision with afE ∈ {0,1}. If j firms with lower names entered the

market in this period, then firm f incurs the sunk cost ϕ(Nt + j) exp(Wt) if it

enters the market (afE = 1). We assume that

• ϕ(n + 1) ≥ ϕ(n) ≥ 0 for all n ∈ N,
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so entrants might pay a higher entry cost if the market has more firms. McAfee,

Mialon, and Williams (2004) refer to this as an economic barrier to entry. If

firm f chooses to not enter the market (afE = 0), then it earns a payoff of zero

and never has an opportunity to enter again. This refusal to enter also ends the

entry subgame, so firms remaining in this period’s entry cohort that have not yet

had an opportunity to enter never get to do so. Since the next firm in line faces

exactly the same choice as did the firm that refused to enter, this convenient

assumption is without substantial loss of generality. Since every period has at

least one firm refusing an available entry opportunity, the model is one of free

entry.

The total number of firms in the market after the entry stage equals

NE,t, which sums the incumbents with the actual entrants (Jt in Figure 1).

Denote their names with f1, . . . , fNE,t . In the survival subgame, these firms

simultaneously choose probabilities of remaining active, aftS , . . . , a
fNE,t

S ∈ [0,1]

Nature subsequently draws the firms’ survival outcomes independently across

firms from the chosen Bernoulli distributions. Firms that survive pay a fixed

cost κ exp(Wt), with κ > 0. Firms that exit earn 0 and never again participate

in the market. The Nt+1 surviving firms continue in the next period, t + 1.

Firms make entry and exit decisions that maximize their flow of payoffs

discounted with a factor 0 ≤ ρ < 1, given the entry and exit strategies used

by their competitors.

Before continuing to the model’s analysis, we review its key assumptions

from the perspective of its econometric implementation using data on a panel of

markets. In Section 4, we will assume that, for each market, the data contain

information on Nt, Ct, and possibly some time-invariant market characteristics

X that shift the market’s primitives. The market-level cost shocks Wt are not

observed by the econometrician and serve as the model’s structural econometric

errors. Because they are observed by all firms and affect their payoffs from entry

and survival, they ensure that the relation between the market structure Nt and

the observed demand state Ct is statistically nondegenerate.

The assumptions on {Ct,Wt} make it a first-order Markov chain satisfying

Rust’s (1987) conditional independence assumption.1 This ensures that the

markets’ observed (by the econometrician) initial conditions (N1, C0) cannot be

1Rust (1987) defines “conditional independence” for a controlled Markov process, but his
definition immediately specializes to our case of an externally specified process {Ct,Wt} if
we take the control to be trivial. In terms of our model, Rust’s conditional independence
assumption more generally allows Wt and Ct to depend on (Ct−1,Wt−1) through a conditional
distribution GW (⋅ Ct). Our analysis easily extends to this case.
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Period t Entry Subgame (Sequential Moves)

Start with Nt incumbents and Ct−1
consumers (or initialize (N1, C0) if t = 1).

Ct ∼ GC(⋅�Ct−1) and Wt ∼ GW

a(t,1)E

Incumbents earn π(Nt, Ct).

Period t
Survival
Subgame,
Jt = 0

(t,1) earns 0.

0

a(t,2)E

(t,1) pays ϕ(Nt + 1)eWt .

1

Period t
Survival
Subgame,
Jt = 1

(t,2) earns 0.

0

a(t,3)E

1

(t,2) pays ϕ(Nt + 2)eWt .

�

(t,3) pays ϕ(Nt + 3)eWt .

1
Period t
Survival
Subgame,
Jt = 2

(t,3) earns 0.

0

Period t Survival Subgame (Simultaneous Moves)

Start with NE,t ≡ Nt + Jt active
firms with names f1, f2, . . . , fNE,t .

af1S

Exp. disc. profits: vE(NE,t, Ct,Wt)

f1 pays κeWt . f1 earns 0.

1

af2S

0

f2 pays κeWt . f2 earns 0.

1
⋮

0

a
fNE,t

S

fNE,t pays κe
Wt . fNE,t earns 0.

1

Nt+1 ∼ B �af1S , af2S , . . . , a
fNE,t

S �

0

Period t + 1
Entry Subgame

Exp. disc. profits: vS(Nt+1, Ct)

Assumptions:

• ∃π̌ <∞ ∶ ∀n ∈ N and ∀c ∈ C, π(n, c) < π̌.

• ∃ň ∈ N ∶ ∀n > ň and ∀c ∈ C, π(n, c) = 0.

• ∀n ∈ N and ∀c ∈ C, π(n, c) ≥ π(n + 1, c).

• κ > 0 and ∀n ∈ N, 0 ≤ ϕ(n) ≤ ϕ(n + 1).

• Firms maximize profits discounted with factor 0 ≤ ρ < 1.

Figure 1: The Model’s Recursive Extensive Form

informative of the unobserved cost shocks {Wt}.

3 Equilibrium

We assume that firms play a symmetric Markov-perfect equilibrium (Maskin

and Tirole, 1988), a subgame-perfect equilibrium in which all firms use the same

Markov strategy.

3.1 Markov Strategies

A Markov strategy is a strategy that maps payoff relevant states into actions.

When a potential entrant (t, j) makes its entry decision in period t, the payoff-

relevant states are the number of firms in the market including all current period’s

entrants up to (t, j), M j
t ≡ Nt + j, the current state of demand Ct, and the cost

shock Wt. We collect the entrant’s payoff relevant state variables into the tuple

(M j
t , Ct,Wt), which takes values in H ≡ N×C×R. Similarly, we collect the payoff
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relevant state variables of a firm f contemplating survival in period t in the

H-valued tuple (NE,t, Ct,Wt). Since survival decisions are made simultaneously,

this state is the same for all active firms. A Markov strategy is a pair of functions

aE ∶ H → {0,1} and aS ∶ H → [0,1]. Since time itself is not payoff relevant, we

drop the subscript t from the payoff relevant states and denote the next period’s

value of N with N ′, etcetera.

3.2 Symmetric Markov-Perfect Equilibrium

In a symmetric Markov-perfect equilibrium, firms’ expected discounted profits

(values) at each node of the game are a function of that node’s payoff-relevant

state variables. Two value functions are particularly useful for the model’s

equilibrium analysis: the post-entry value function, vE, and the post-survival

value function, vS. The post-entry value vE(NE, C,W ) equals the expected

discounted profits of a firm facing C consumers in a market with NE firms just

after all entry decisions are made. The post-survival value vS(N ′, C) equals

the expected discounted profits from being active in a market with N ′ firms just

after the survival outcomes are realized. Figure 1 shows the points in the survival

subgame where these value functions apply. The post-survival function does not

depend on W because that cost shock has no forecasting value and is not directly

payoff relevant after survival decisions are made. Since the payoff from leaving

the market equals zero, the post-entry value function vE satisfies

vE(nE, c,w) = aS(nE, c,w) �−κ exp(w)

+ EaS �vS(N
′, c)�NE = nE, C = c,W = w��. (1)

Here and throughout, random variables are denoted by capital letters and

realizations of random variables by small letters. The expectation EaS over N ′
takes survival of the firm of interest as given. We make its dependence on the

equilibrium survival rule explicit with the subscript aS. The post-survival value

function vS satisfies

vS(n
′, c) = ρEaE�π(n

′, C ′) + vE(N ′E, C ′,W ′
)�N ′ = n′, C = c�. (2)

A strategy (aE, aS) forms a symmetric Markov-perfect equilibrium with

payoffs (vE, vS) if and only if no firm can gain from one-shot deviations (see

Sections 4.2 and 13.2 in Fudenberg and Tirole, 1991). Thus, given the pair of
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payoff functions (vE, vS) as obtained in equations (1) and (2), it must hold that

aE(m,c,w) ∈ arg max
a∈{0,1}a� −ϕ(m) exp(w) (3)

+EaE [vE(NE, c,w)�M =m,C = c,W = w]�,

aS(nE, c,w) ∈ arg max
a∈[0,1]a� − κ exp(w) +EaS [vS(N

′, c)�NE = nE, C = c]�. (4)

Before proceeding to the equilibrium analysis, we wish to note and dispense

with an uninteresting source of equilibrium multiplicity. If a potential entrant

is indifferent between its two choices, we can construct one equilibrium from

another by varying only that choice. Similarly, an incumbent monopolist can be

indifferent between continuation and exit, and we can construct one equilibrium

from another by changing that choice alone. Moreover, the assumption that flow

profits weakly decline with n leaves open the theoretical (but not so practically

relevant) possibility that n oligopolists are each indifferent across all possible

survival outcomes. To avoid these uninteresting caveats to our results, we focus

on equilibria that default to inactivity. In such an equilibrium, a potential entrant

that is indifferent between entering or not stays out,

EaE [vE(NE, c,w)�M =m,C = c,W = w] = ϕ(m) exp(w)⇒ aE(m,c,w) = 0,

and an active firm that is indifferent between all possible outcomes of the survival

stage exits,

vS(n, c) = � = vS(1, c) = κ exp(w)⇒ aS(n, c,w) = 0.

The restriction to equilibria that default to inactivity does not restrict

the game’s strategy space. Hereafter, we require the strategy underlying a

“symmetric Markov-perfect equilibrium” to default to inactivity.

3.3 Existence, Uniqueness, and Computation

This section presents our analysis of the existence, uniqueness, and computation

of the symmetric Markov-perfect equilibrium. The paper’s Appendix contains its

claims’ proofs. We start by noting that the assumption that per-period surplus

equals zero if n > ň bounds the long-run number of firms in equilibrium.

Lemma 1 (Bounded number of firms) In a symmetric Markov-perfect equi-

librium, ∀c ∈ C and ∀w ∈ R, aE(n, c,w) = 0 and aS(n, c,w) < 1 for all n > ň.
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Intuitively, the post-survival payoff to one of more than ň firms must be

negative because the flow payoff can become positive only when some other firm

leaves. Since all firms must earn zero expected payoffs if the common survival

strategy gives a positive probability to exit, any positive expected profits earned

after other firms’ departures are balanced by the payment of the (stochastic)

fixed cost κ exp(W ) when more than ň firms continue. Thus survival with

ň or more rivals incurs a cost — the current value of κ exp(W ) — with no

benefit. Consequently, no firm would pay a positive sunk cost to enter the

market (aE(n, c,w) = 0) and all incumbent firms choosing sure continuation is

inconsistent with individual payoff maximization (aS(n, c,w) < 1).

In equilibrium, the market can only have more than ň active firms if N1 > ň.

Because these firms exit with positive probability until there are ň or fewer of

them, Nt must eventually enter {0,1, . . . , ň} permanently. Consequently, the

equilibrium analysis hereafter focuses on the restrictions of aE, vE, and aS to

{1,2, . . . , ň} × C × R ⊂ H and of vS to {1,2, . . . , ň} × C. With an equilibrium

strategy over this restricted state space in hand, it is straightforward to extend

it to the full state space.

The next step in the equilibrium analysis extends the assumption that flow

payoffs decrease with the number of competitors to the post entry and survival

value functions.

Lemma 2 (Monotone equilibrium payoffs) In a symmetric Markov-perfect

equilibrium, ∀c ∈ C and ∀w ∈ R, vE(n, c,w) and vS(n, c) weakly decrease with n.

The monotonicity assumption on π rules out exogenously specified com-

plementarities between firms in the market. Lemma 2 says that endogenous

complementarity also does not arise in equilibrium. Although this is intuitive,

it is not a trivial result. Indeed, Abbring, Campbell, and Yang (2010) give

a counterexample to the analogous proposition in a model with heterogeneous

productivity types. In it, two high-productivity firms mutually benefit each

other by jointly deterring the entry of two low-quality potential rivals. That

counterexample shows that the lack of post-entry heterogeneity is crucial for

obtaining Lemma 2.2

Consider a one-shot simultaneous-moves survival game played by nE active

firms. In it, each of the n′ survivors earns −κ exp(w)+vS(n′, c), with vS referring

2Abbring, Campbell, and Yang (2010) show that a version of Lemma 2 also holds in
a model with heterogeneous productivity if ň = 2, so proving payoff monotonicity does not
(strictly speaking) require post-entry homogeneity.
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to the post-survival value in a symmetric Markov-perfect equilibrium of our

model, and those that choose exit earn zero. The Nash equilibria of this game are

intimately connected to the Markov-perfect equilibria of our model. In particular,

(3) and (4) imply that a strategy that forms a symmetric Nash equilibrium of

the one-shot game equals the survival rule aS, evaluated at the state (nE, c,w),

in a symmetric Markov-perfect equilibrium of our model, and vice versa.

Now note that Lemma 2 guarantees that the one-shot game has a unique

symmetric Nash equilibrium (that defaults to inactivity). If vS(1, c) < κ exp(w),

then Lemma 2 guarantees that vS(n, c) < κ exp(w) for all n > 1. Therefore,

exiting for sure (setting as(n, c,w) = 0) is a dominant strategy. On the other

hand, if vS(nE, c) > κ exp(w), Lemma 2 requires vS(n′, c) > κ exp(w) for n′ =
1, . . . , nE − 1. Again, we have a dominant strategy, aS(n, c,w) = 1. Finally, if

neither of these conditions holds, then no pure-strategy symmetric equilibrium

exists, but there is an equilibrium in a mixed strategy. In this equilibrium,

aS(n, c,w) has to make firms indifferent between continuation and exit:

n

�
n′=1
�
n − 1

n′ − 1�aS(n, c,w)
n′−1
[1 − aS(n, c,w)]

n−n′
[−κ exp(w) + vS(n

′, c)] = 0.
(5)

The left hand side of (5) is the expected payoff of a firm that continues and that

assumes that all its n − 1 rivals continue with probability aS(n, c,w). Lemma 2

guarantees that this payoff is decreasing in aS(n, c,w), so that there is only one

mixed strategy equilibrium. For future reference, we state this result as

Corollary 1 Let vS be the post-survival value function associated with a

symmetric Markov-perfect equilibrium. Consider the one-shot survival game

in which nE firms simultaneously choose between survival and exit (as in the

survival subgame of Figure 1), each of the n′ survivors earns −κ exp(w)+vS(c, n′),
and each exiting firm earns zero. This game has a unique symmetric Nash

equilibrium, possibly in mixed strategies.

It follows that the survival rule in a symmetric Markov-perfect equilibrium is

unique and takes values equal to the symmetric Nash equilibrium strategies of

the one-shot game. Because this rule gives firms the individual payoff from joint

continuation if positive and zero otherwise (because the equilibrium strategy puts

positive probability on exit), we also have

Corollary 2 If vE and vS are the post-entry and post-survival value functions
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associated with a symmetric Markov-perfect equilibrium, then

vE(nE, c,w) =max{0,−κ exp(w) + vS(nE, c)}. (6)

With Corollaries 1 and 2 in hand, we proceed to demonstrate equilibrium

existence constructively. Our equilibrium uniqueness result and algorithm

for equilibrium calculation follow from the construction as byproducts. The

construction of a candidate equilibrium begins by calculating vE(ň, ⋅, ⋅) and

vS(ň, ⋅). From Lemma 1, there will be no entry in the next period, so

vS(ň, c) = ρE�π(ň,C ′) + vE(ň,C ′,W ′
)�C = c�. (7)

Using Corollary 2 to replace vE(ň,C ′,W ′) yields

vS(ň, c) = ρE�π(ň,C ′) +max{0,−κ exp(W ′
) + vS(ň,C

′
)}�C = c�. (8)

The right-hand side defines a contraction mapping on the complete space of

bounded functions on C, with a unique fixed point vS(ň, ⋅). Although we are

constructing a candidate equilibrium, the fixed point’s uniqueness implies that

this is the only possible equilibrium post-survival value. Applying Corollary 2

to this immediately yields vE(ň, ⋅, ⋅). Again, this is the only possible candidate

value. The unique entry rule that is consistent with these payoffs and individual

optimality is

aE (ň, c,w) = 1 [vE(ň, c,w) > ϕ(ň) exp(w)] .

Here, 1(⋅) = 1 if ⋅ is true and 1(⋅) = 0 otherwise.

With vE(ň, ⋅, ⋅) and aE(ň, ⋅, ⋅) in hand, the construction of the remaining

candidate value functions and entry strategies proceeds recursively. To this end,

define

µ(n, c,w) ≡ n +
ň

�
m=n+1

aE(m,c,w). (9)

This is the number of firms that will be active after potential entrants follow the

candidate entry strategies. For given n, suppose that vE(m, ⋅, ⋅) and aE(m, ⋅, ⋅)

for m = n+1, n+2, ..., ň are in hand. Then, the equilibrium optimality conditions
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(3) and (4) along with Corollary 2 imply

vS(n, c) =

ρE�π(n,C ′) +
ň

�
m=n+1

1{µ(n,C ′,W ′
) =m}vE(m,C ′,W ′

) (10)

+ 1{µ(n,C ′,W ′
) = n}max{0,−κ exp(W ′

) + vS(n,C
′
)}�C = c�.

Given the values of vE(m, ⋅, ⋅) for m = n + 1, . . . , ň, the right hand side defines a

contraction mapping with vS(n, ⋅) as its unique fixed point. Corollary 2 again

yields the unique vE(n, ⋅, ⋅). Finally, by (3), a firm in state (n, c,w) enters if

EaE [vE(NE, c,w)�M = n,C = c,W = w] > ϕ(m) exp(w). (11)

Because, by Lemma 2, further entry can only make an incumbent worse off,

a necessary condition for (11) is that the firm would enter in the absence of

further entry, vE(n, c,w) > ϕ(n) exp(w). On the other hand, because later

entrants pay (weakly) higher entry costs, further entry will never take post-

survival values below the firm’s entry cost ϕ(n) exp(w), and it also suffices for

(11) that vE(n, c,w) > ϕ(n) exp(w). It follows that

aE (n, c,w) = 1 [vE(n, c,w) > ϕ(n) exp(w)] .

When this recursion is complete, we have the unique continuation values

and entry strategies that are consistent with an equilibrium. To find a candidate

survival strategy aS(n, c,w), we find an equilibrium to the one-shot survival game

described above. If the candidate is actually an equilibrium, then Corollary 1

guarantees that these survival strategies are unique. This is indeed the case.

Theorem 1 (Equilibrium existence and uniqueness) There exists a unique

symmetric Markov-perfect equilibrium that defaults to inactivity, with equilibrium

payoffs (vE, vS) and equilibrium strategy (aE, aS).

This theorem concludes the model’s theoretical analysis. We assumed that

the costs of entry and continuation are additively separable from per-period

flow profits and that {Ct,Wt} satisfies Rust’s (1987) conditional independence

assumption. However, the proof of Theorem 1 requires neither of these

conditions.
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4 Empirical Implementation

The previous section shows that there exists a unique symmetric Markov-

perfect equilibrium for given primitives π, κ, ϕ, ρ, GC , and GW . With

some distribution of the initial condition (N1, C0), this equilibrium implies an

equilibrium distribution of the process {Nt, Ct}. This section studies how data on

this process for a panel of markets can be used to infer these markets’ primitives.

4.1 Sampling

Suppose that we have data on R ≥ 1 markets r = 1, . . . ,R. For each market r, we

observe the number of active firms Nr,t and the demand state Cr,t in each period

t = 1, . . . , T ; for some T ≥ 2.3 We also observe some time-invariant characteristics

of each market r, which we store in a row vector Xr. However, we have no data

on its cost shocks Wr,t.

We assume that ({Nr,t, Cr,t; t = 1, . . . , T},Xr) is distributed independently

across markets r.4 The initial conditions (Nr,1, Cr,1,Xr) are drawn from some

distribution that is common across markets r. Conditional on (Nr,1, Cr,1,Xr),

industry dynamics {Nr,t, Cr,t; t = 2, . . . , T} follow the transition rules implied by

Section 2’s unique equilibrium, with primitives πr, κr, ϕr, ρr, GC,r, andGW,r. The

primitives may vary across markets r, but with Xr only.5 We make this explicit

by parameterizing πr(⋅, ⋅) = π(⋅, ⋅ � Xr, θP ), κr = κ(Xr, θP ), ϕr(⋅) = ϕ(⋅ � Xr, θP ),

and ρr = ρ(Xr, θP ) for some common parameter θP ; GC,r(⋅ � ⋅) = GC(⋅ � ⋅ ;Xr, θC)

for some parameter θC ; and GW,r(⋅) = GW (⋅ ;Xr, θW ) for some parameter θW .

Our estimation procedure is designed for finite parameters θP , θC , and θW .

For example, in Section 6’s empirical illustration, the demand state Cr,t will be

the population of market r at time t and we will use the specification πr(c, n) =

(c�n)k(n) exp(Xrβ) of market r’s flow surplus, with k the average surplus per

3In a typical application, like our empirical illustration in Section 6, T would be small and
R would be large. However, the model can be estimated with data on a sufficiently long time
series for a single market; that is, with T large and R = 1.

4Our estimation procedure can be straightforwardly extended to allow for observed (to
the econometrician) time-varying covariates that are common across markets, such as business
cycle indicators, provided that we make appropriate assumptions on their evolution.

5This rules out unobserved (to the econometrician) heterogeneity in the markets’ primitives.
It is straightforward to introduce e.g. a finite number of unobserved market types and
extend the NFXP procedure to estimate a version of the model with such finite unobserved
heterogeneity, under the assumption that {Ct,Wt} satisfies Rust’s (1987) conditional
independence assumption conditional on the unobserved heterogeneity. This extension requires
a solution to the usual initial conditions problem that, typically, (Nr,1, Cr,1,Xr) would not be
independent of the unobserved heterogeneity (see Footnote 6).
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consumer served at Xr = 0. Then, θP will include the finite number of values of

k and the parameter vector β. Section 4.3’s identification discussion, however,

does not rely on parametric restrictions.

4.2 Likelihood

We focus on inferring the structural parameters θ ≡ (θP , θC , θW ) from the

conditional likelihood L(θ) of θ for data on market dynamics {Nr,t, Cr,t; t =

2, . . . , T ; r = 1, . . . ,R} given the initial conditions (Nr,1, Cr,1,Xr; r = 1, . . . ,R).6

Using the model’s Markov structure and conditional independence, this

likelihood can be written as L(θ) = LC(θC) ⋅LN(θ), with

LC(θC) ≡
R

�
r=1

T

�
t=2

gC (Cr,t � Cr,t−1;Xr, θC) , (12)

the marginal likelihood of θC for the demand state dynamics; and

LN(θ) ≡
R

�
r=1

T

�
t=2

p (Nr,t � Nr,t−1, Cr,t−1;Xr, θ) , (13)

the conditional likelihood of θ for the evolution of the market structures. Here,

gC (⋅ � ⋅;Xr, θC) is the density of GC,r with respect to its dominating measure

and p(n′�n, c;Xr, θ) = Pr(Nr,t = n′�Nr,t−1 = n,Cr,t−1 = c;Xr, θ) is the equilibrium

probability that market r with n firms and in demand state c has n′ firms next

period. Note that LC can be computed directly from the demand data, without

ever solving the model. The remainder of this section focuses on the construction

of LN .

First, we recursively compute the fixed point vS,r of (10) and use this to derive

the equilibrium entry rule aE,r and exit rule aS,r. Next, we use aE,r (m + 1, c,w),

m ≥ n, and aS,r(m,c,w) to construct the equilibrium Pr(Nr,t = n′�Nr,t−1 =
n,Cr,t−1 = c,Wr,t−1 = w;Xr, θ). Finally, we integrate this probability over w with

respect to the distribution GW,r of Wr,t−1�Xr, θW . This gives p(n′�n, c;Xr, θ).

Repeating these calculations for all markets r and substituting into (13) gives

LN(θ).

6We do not specify nor estimate the distribution of the initial conditions. In particular, we
ignore information about θ in the initial conditions, because we want to be agnostic about their
relation to the dynamic model. Alternatively, we could, for example, assume that the initial
conditions and covariates are drawn from their ergodic distribution in the dynamic model,
which is fully determined by θ. This would allow us to develop a more efficient estimator, at
the price of robustness. Moreover, in an extension with unobserved heterogeneity of markets,
it would allow us to deal with the initial conditions problems alluded to in Footnote 5.
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In practice, we can simplify these calculations considerably by exploiting that

the entry and exit rules are monotone in the unobserved cost state. In particular,

this monotonicity allows us to (partially) characterize these rules in terms of

thresholds on the unobserved cost state. This brings two key simplications.

First, it allows us to rewrite (10) so that it no longer involves the full strategy,

but only the corresponding thresholds. This simplifies the computation of the

fixed points vS,r, and the corresponding thresholds, in the first step. Second, it

allows for simple expressions of p(n′�n, c;Xr, θ) in terms of these thresholds.

First, consider the (partial) characterization of the equilibrium strategy in

terms of thresholds on the cost state. From Section 3, it follows that market r’s

entry rule satisfies

aE,r (m,c,w) = 1 [vE,r(m,c,w) > ϕr(m) exp(w)] .

Lemma 2 and (6) imply that vE,r(m,c,w) is weakly decreasing with w, so that

we can rewrite aE,r as a cost threshold rule:

aE,r (m,c,w) = 1 [w < wE.r(m,c)] ,

with

wE,r(m,c) ≡ log vS,r(m,c) − log [κr +ϕr(m)] , (14)

the value of w that sets vE,r(m,c,w) = ϕr(m) exp(w). Moreover, because

vE,r(m,c,w) is weakly decreasing with m, wE,r(m,c) decreases with m.

Consequently, a market with n firms and demand state c in period t − 1 will

have exactly m > n firms in period t if wE,r(m + 1, c) ≤ Wr,t−1 < wE,r(m,c).

Similarly,

wS,r(n, c) ≡ log vS,r(n, c) − logκr (15)

is the value of w at which vS,r(n, c) = κr exp(w). An incumbent firm in market

r in demand state c that faces n − 1 rivals when deciding on survival in period

t − 1 will survive for sure if Wr,t−1 < wS,r(n, c) and exit with positive probability

if Wr,t−1 > wS,r(n, c). Therefore, we will refer to wS,r(n, c) as a sure survival

threshold. Because entrants incur a sunk cost, entry implies sure survival: If

Wr,t−1 < wE,r(n, c), then Wr,t−1 < wS,r(n, c). Consequently, there cannot be entry
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and exit within the same period.7

Now consider the computation of LN . First, note that we can rewrite (10) in

terms of the entry and sure survival thresholds:

vS,r(n, c) =

ρ�C �πr(n, c
′
) +�

wS,r(n,c′)
wE,r(n+1,c′) [−κr exp(w

′
) + vS,r(n, c

′
)]dGW,r(w

′
) (16)

+

ň

�
m=n+1 �

wE,r(m,c′)
wE,r(m+1,c′) [−κr exp(w

′
) + vS,r(m,c′)]dGW,r(w

′
)�dGC,r(c

′
�c).

A key advantage of (16) over (10) is that it does not involve the full strategy

(aE,r, aS,r) on H, but only the corresponding thresholds, which are defined on the

smaller space {1, . . . , ň} × C. Recursively computing the fixed point vS,r of (16),

using (14) and (15) to compute wE,r and wS,r along the way, is straightforward.

With vS,r, wE,r, and wS,r in hand, it is straightforward to compute

p(n′�n, c;Xr, θ). There are four cases to consider.

Case I: n′ > n. If the number of firms increases from n in period t−1 to n′ > n
in period t, then it must be profitable for the n′th firm to enter, but not for the

(n′ + 1)th: wE,r(n′ + 1, c) ≤Wr,t−1 < wE,r(n′, c). The probability of this event is

p(n′�n, c;Xr, θ) = GW,r [wE,r(n
′, c)] −GW,r [wE,r(n

′
+ 1, c)] . (17)

Case II: 0 < n′ < n. If the number of firms decreases from n in period t − 1

to n′ in period t, with 0 < n′ < n, then Wr,t−1 must take a value w such that

firms exit with probability aS,r(n, c,w) ∈ (0,1). Thus, this value w must be

high enough so that n firms cannot survive profitably, w ≥ wS,r(n, c), but low

enough for a single firm to survive profitably, w < wS,r(1, c). Given such value

w and (Nr,t−1 = n,Cr,t−1 = c,Wr,t−1 = w;Xr, θ), Nr,t is binomially distributed with

success probability aS,r(n, c,w) and population size n. Hence, the probability of

observing a transition from n to n′ with 0 < n′ < n equals

p(n′�n, c;Xr, θ) (18)

= �

wS,r(1,c)
wS,r(n,c) �

n

n′�aS,r(n, c,w)
n′
[1 − aS,r(n, c,w)]

n−n′ gW,r(w)dw,

7The model can be applied to data with simultaneous entry and exit by specifying data
periods as aggregates of model periods, specifying data markets as aggregates of model markets,
or both.
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where gW,r is the Lebesgue density of GW,r. The integrand in (18) involves the

mixing probabilities aS,r(n, c,w). We avoid computing these mixing probabilities

by substituting for w in (18) the value ωr(a;n, c) that sets aS,r [n, c,ωr(a;n, c)] =

a for given survival probability a ∈ (0,1). This gives

p(n′�n, c;Xr, θ) = �
1

0
�
n

n′�a
n′
(1 − a)n−n′ dωr(a;n, c)

da
gW,r [ωr(a;n, c)]da.

(19)

A simple rearrangement of (5) gives an explicit expression for ωr(a;n, c):

ωr(a;n, c) ≡ − logκr + log
n

�
n′=1
�
n − 1

n′ − 1�a
n′−1
(1 − a)n−n′ vS,r(n′, c).

Using this, and the explicit expression for dωr(a;n, c)�da that can be derived

from it, gives an explicit expression for the integrand in (19). We compute the

integral with Gauss-Legendre quadrature.

Case III: n′ = 0. If all firms exit in period t− 1, then either it is not profitable

for even a single firm to continue, Wr,t−1 ≥ wS,r(1, c), or it is profitable for a single

firm but not for all firms to continue, wS,r(n, c) ≤ Wr,t−1 < wS,r(1, c), firms exit

with probability aS(n, c) ∈ (0,1) as in Case II, and by chance none of the n firms

survives. The probability of these events is

p(0�n, c;Xr, θ) (20)

= 1 −GW,r [wE,r(1, c)] +�
wS,r(1,c)

wS,r(n,c) [1 − aS,r(n, c,w)]
n gW,r(w)dw.

As in Case II, the integral in the right hand side of (20) can be computed by

substituting w = ωr(a;n, c), which gives

�

1

0
(1 − a)n

dωr(a;n, c)

da
gW,r [ωr(a;n, c)]da,

and applying Gauss-Legendre quadrature.

Case IV: n′ = n. If there is entry nor exit in period t − 1, then either no

firm finds it profitable to enter and all n incumbents find it profitable to stay,

wE,r(n + 1, c) ≤ Wr,t−1 < wS,r(n, c), or the n incumbents mix as in Cases II and
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III, but by chance end up all staying. The probability of these events is

p(n�n, c;Xr, θ) = GW,r [wS,r(n, c)] −GW,r [wE,r(N + 1, c)]

+�

wS,r(1,c)
wS,r(n,c) aS,r(n, c,w)

ngW,r(w)dw. (21)

The integral in (21) can be computed as in Cases II and III.

This completes our construction of p(n′�n, c;Xr, θ). Substituting in (13) gives

LN(θ).

4.3 Identification

This section inverts the construction of the likelihood function to consider

identification: How can the model’s primitives be recovered if we are given the

joint distribution of N ′, C ′ conditional on N , C (and implicitly X)? Rust (1994)

established the non-identifiability of the discount rate in a decision theoretic

model of dynamic discrete choice. Since his fundamental insight holds good in

our model, we will assume that auxiliary information that identifies ρ, such as

the average borrowing rate for small businesses, is in hand. Furthermore, the

density of C ′ given C can be read directly off of the given joint distribution.8

The remaining primitives of interest are the model’s fixed cost, κ, sunk cost

function ϕ, surplus function π, and the distribution of the econometric error,

GW . The observations on the number of producers in N ′ gives us no information

about the level of producer surplus or the magnitude of its variation with the

econometric error. Just like discrete choice models, our model requires an a-

priori assumption on these quantitites. For this, we set the per-period fixed cost

κ to one and assume that W has a standard normal distribution.

If wS(n, c) were known, we could recover π(n, c) by first using the thresholds’

definitions to recover the post-survival values,

vS(n, c) = exp(wS(n, c)), (22)

(where we have imposed κ’s assumed value of one) and then finding the

values of π(n, c) for which these value functions satisfy their Bellman equations

constructed with the assumed value of ρ and the known transition probabilities

for C ′ and N ′. To recover these sure survival thresholds, we begin with that for

8Above, we specified this density as a function of a vector of parameters, θC . Such a
parametric restriction might be of use when estimating using a finite sample, but it is not
necessary for identification.
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a monopolist. Since Pr[N ′ = 0�N = 1, C = c] = 1 −GW (wS(1, c)), we have

wS(1, c) = G
−1
W (1 −Pr[N

′
= 0�N = 1, C = c]) .

The identification of wS(n, c) for n > 1 is complicated by the mixed survival

strategies firms follow when W is between it and wS(1, c). For n = 2, we observe

Pr(N ′ = 0�N = 2, C = c) =
Pr[W > wS(1, c)] + �

wS(1,c)
wS(2,c) (1 − aS(2, c,w))

2gW (w)dw

The first term equals Pr[N ′ = 0�N = 1, C = c] and so is known. The second term

depends on the known wS(1, c) and the unknown wS(2, c) and aS(2, c,w). Using

the indifference condition for the mixed strategy, we can replace the unknown

strategy with a simple function of w, vS(1, c), and vS(2, c). Substituting the sure

survival thresholds for these two value functions with (22) yields

�

wS(1,c)
wS(2,c) �1 −

exp(wS(1, c)) − exp(w)

exp(wS(1, c)) − exp(wS(2, c))
�

2

gW (w)dw.

This decreases with wS(2, c), so the probability of two dupolists simultaneously

exiting identifies it. Proceeding to n > 2, a recursive argument shows that the

probability that k ≤ n oligopolists simultaneously exit identifies wS(n, c). As

with n = 2, the key to the argument is the recognition that the indifference

condition defining the equilibrium strategy gives that strategy as a function of

the sure survival thresholds already in hand and the unknown threshold being

recovered.

Of course, the survival thresholds contain no information on ϕ(n). To get

this, we recover entry thresholds from the probabilities of the number of firms

growing. Select an n′ ∈ {1,2, . . . , ň} and n < n′. Since Pr[N ′ ≥ n′�N = n,C = c] =
GW (wE(n′, c)), we have

wE(n
′, c) = G−1W (Pr[N ′ ≥ n′�N = n,C = c]) .

From the definition of this threshold, we get

ϕ(n′, c) = vS(n′, c) exp(−wE(n
′, c)) − 1

We take two lessons away from this identification argument. First, it is
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possible to identify the model’s parameters without examining the cross-sectional

relationship between N and C that Bresnahan and Reiss (1990, 1991) use in

their estimation. Second, estimation of our model need not follow the nested

fixed point approach that we adopt. In the spirit of Hotz, Miller, Sanders, and

Smith (1994), we could instead estimate the equilibrium value functions directly

from observed transition probabilities and from these deduce the underlying

primitives.

4.4 Estimation

We have created C++ and Matlab code for computing a full information

maximum likelihood estimator of θ. Following Rust (1994), we compute the

estimator in three steps:

1. Estimate θC by computing the marginal likelihood estimator θ̃C ≡

argmaxθC LC(θC);

2. estimate (θP , θW ) by computing the conditional likelihood estimator

(θ̃P , θ̃W ) ≡ argmax(θP ,θW )LN(θP , θ̃C , θW ); and

3. estimate θ by computing the full information maximum likelihood

estimator θ̂ ≡ argmaxθ L(θ), using θ̃ as a starting value.

Note that the partial likelihood estimator θ̃ computed in the first two steps is

consistent, but not efficient. Under the usual regularity conditions, the third

step’s estimator θ̂ has the standard properties of full information maximum

likelihood, including asymptotic efficiency. Standard errors are computed using

the outer-product-of-the-gradient estimator of the (full) information matrix. In

particular, we assume that R is large and T is small and use the average of the

outer products of the market-specific gradients over markets, evaluated at θ̂.

The C++ code provides a full implementation of this three-step NFXP

procedure for specifications with and without covariates. It uses Knitro for the

optimization, with analytical gradients. We use the C++ code for the Monte

Carlo experiments in Section 5 and the empirical illustration in Section 6.

The Matlab code provides a more user friendly implementation of the NFXP

procedure. It only covers specifications without covariates. It also uses Knitro,

but with numerical derivatives. The Matlab code can be used as a sandbox for

testing variants of the specifications and procedures and for teaching.
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5 Monte Carlo Experiments

In this section we investigate the statistical properties and computational

performance of our estimation procedure. We set the maximum number of firms

sustainable in each market to ň = 5. Following the discussion of identification

in Section 4.3, we let the cost shocks be standard normally distributed and

normalize κ to one. We fix the discount factor ρ at 1
1.05 . Each Monte Carlo

experiment consists of 1,000 repetitions. We consider six different sample sizes,

each of them with ten time periods and between 25 and 1,000 markets. The

statistical process governing the demand state is assumed to be known and has

support on 200 grid points that are equally spaced on the logarithmic scale. We

compute the equilibrium and simulate the evolution of N , beginning with a draw

of (N,C) from the model’s ergodic distribution. We construct the likelihood

function as laid out in Section 4. We initialize each estimation procedure by

setting all the parameter values to the same randomly drawn number from a

uniform distribution on the interval [1,10]. Dubé, Fox, and Su (2012) caution

that a nested fixed point algorithm may falsely converge when the tolerance

criterion for the inner is set too loosely relative to that of the outer loop. We

fix the the tolerance criterion for the value function iteration at a value that is

multiple orders of magnitude smaller than that for the outer loop to avoid this

potential pitfall.9

We first simulate data from a model where the surplus function is

parameterized as πr(c, n) = (c�n)k, where k is set to 1.5, which means that

per consumer surplus is constant in the number of active firms. The sunk cost of

entry, ϕ, is fixed at 10. The top panel of Figure 2 shows the resulting distribution

of the number of firms per market. Table 1 reports the corresponding Monte

Carlo experiments’ results. The averages of the point estimates are on target

even for the smallest sample with only 25 markets. Also note that the means

of the asymptotic standard errors almost equal the standard deviations of the

estimates across the simulated data sets.

For our second set of simulations we parameterize the flow surplus

function as πr(c, n) = (c�n)k(n), where (k(1), k(2), k(3), k(4), k(5)) is set to

(1.8,1.4,1.2,1.0,0.9). This specification has the average surplus per consumer

decrease in the number of active firms. The bottom panel of Figure 2 displays

the distribution of firms per market implied by this model. Table 2 reports the

results of the corresponding Monte Carlo experiments. Again, all parameter

9We set the tolerance value to 10−10 for the inner loop and to 10−6 for the outer loop.
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Figure 2: Distribution of the number of active firms per market in the specification
with a single profit parameter (top panel) and in the specification with five profit
parameters (bottom panel).

estimates are essentially without bias. As the number of markets gets larger,

all differences between the profit parameterss k(1), ..., k(5) become statistically

significant.

Since our equilibrium computation algorithm finds fixed points to relatively

low dimensional contraction mappings, one would expect the estimation

procedure to be relatively fast. Table 3 shows that this in fact the case. Even

in the largest of our Monte Carlo samples, the average computation of the

maximum likelihood estimator does not take longer than twenty seconds in a

C++ implementation.

Su and Judd’s (2012) results suggest that we might be able to improve on the
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N=25 N=50 N=100 N=250 N=500 N=1000

means
Ek̂ = 1.5 1.5081 1.5018 1.5004 1.4991 1.4993 1.4988
Eϕ̂ = 10.0 10.3795 10.2146 10.0672 10.0330 10.0130 10.0022�

V (k̂) 0.0973 0.0684 0.0489 0.0302 0.0222 0.0153�
V (ϕ̂) 2.1358 1.4623 0.9890 0.6112 0.4443 0.3149

standard errors
ESE(k̂) 0.0979 0.0683 0.0480 0.0302 0.0213 0.0151
ESE(ϕ̂) 2.1204 1.4393 0.9906 0.6208 0.4372 0.3085�

V (ŜE(k)) 0.0117 0.0056 0.0027 0.0011 0.0005 0.0003�
V (ŜE(ϕ)) 0.6290 0.2866 0.1334 0.0512 0.0262 0.0131

root mean squared errors
RMSE(k̂) 0.0976 0.0684 0.0489 0.0302 0.0222 0.0153
RMSE(ϕ̂) 2.1682 1.4772 0.9907 0.6118 0.4442 0.3148

Table 1: Results of a Monte Carlo experiments using the NFXP estimator with 1,000
repetitions estimating the model with one profit parameter, k, and one entry cost
parameter, ϕ. Demand is discretized into 200 states.

already rapid performance of our estimation procedure by using a mathematical

programming with equilibrium constraints (MPEC) procedure in lieu of a nested

fixed point algorithm. The MPEC estimator treats the value functions as a vector

of nuisance parameters to be estimated subject to the equilibrium constraint

implied by the sequence of Bellman equations and thereby omits the inner loop.

Our implementation of the MPEC estimator uses analytical gradients of both the

objective function and the constraints, and we also passed sparsity patterns to the

optimizer. The MPEC estimator always yielded the same estimates as our NFXP

procedure, but we found it to be more than ten times slower than the NFXP

implementation.10 MPEC’s relatively poor performance reflects the computation

of the objective function’s gradients with respect to the nuisance parameters,

which requires computing and repeatedly retrieving information from very large

and relatively dense matrices.11

10We used the same starting values for both the NFXP and the MPEC algorithm. In
addition, we initialized the value functions for the MPEC such that the equilibrium constraint
is satisfied with equality.

11These computational challenges are not insurmountable and it may well be possible to
speed up the MPEC estimator. However, the code involves adjustments and careful handling
of very large matrices with up to 32 × 106 elements for the specification we consider in the
Monte Carlo simulation. None of this is required for the NFXP estimator, where all objects
are relatively low dimensional.

22



N=25 N=50 N=100 N=250 N=500 N=1000

means
Ek̂(1) = 1.8 1.8880 1.8309 1.8130 1.8048 1.8037 1.8013
Ek̂(2) = 1.4 1.4161 1.4068 1.3998 1.3998 1.4005 1.4004
Ek̂(3) = 1.2 1.1969 1.1960 1.1986 1.1996 1.1998 1.1998
Ek̂(4) = 1.0 0.9960 0.9983 0.9979 0.9984 0.9998 0.9998
Ek̂(5) = 0.9 0.8353 0.8680 0.8858 0.8969 0.8965 0.8981
Eϕ̂ = 10.0 10.3614 10.1936 10.0921 10.0455 10.0309 10.0121�

V (k̂(1)) 0.3217 0.1443 0.0909 0.0555 0.0378 0.0270�
V (k̂(2)) 0.1927 0.1353 0.0956 0.0591 0.0417 0.0292�
V (k̂(3)) 0.1521 0.1098 0.0752 0.0466 0.0333 0.0238�
V (k̂(4)) 0.1588 0.1075 0.0730 0.0477 0.0325 0.0229�
V (k̂(5)) 0.2441 0.1569 0.0897 0.0555 0.0394 0.0272�
V (ϕ̂) 2.7556 1.9171 1.2677 0.7794 0.5354 0.3719

standard errors
ESE(k̂(1)) 0.2928 0.1338 0.0867 0.0527 0.0369 0.0259
ESE(k̂(2)) 0.2488 0.1422 0.0947 0.0584 0.0410 0.0289
ESE(k̂(3)) 0.2108 0.1158 0.0783 0.0485 0.0341 0.0240
ESE(k̂(4)) 0.2332 0.1145 0.0747 0.0460 0.0323 0.0228
ESE(k̂(5)) 0.3411 0.1583 0.0914 0.0552 0.0388 0.0272
ESE(ϕ̂) 2.9538 1.8297 1.2272 0.7558 0.5301 0.3727�

V (ŜE(k(1))) 0.5456 0.0649 0.0159 0.0054 0.0026 0.0012�
V (ŜE(k(2))) 0.1834 0.0396 0.0121 0.0045 0.0023 0.0011�
V (ŜE(k(3))) 0.1897 0.0297 0.0121 0.0033 0.0016 0.0008�
V (ŜE(k(4))) 0.2777 0.0603 0.0099 0.0031 0.0016 0.0008�
V (ŜE(k(5))) 0.4763 0.1601 0.0231 0.0060 0.0030 0.0014�
V (ŜE(ϕ)) 1.4053 0.5067 0.2139 0.0783 0.0372 0.0180

root mean squared errors
RMSE(k̂(1)) 0.3334 0.1475 0.0918 0.0557 0.0379 0.0270
RMSE(k̂(2)) 0.1933 0.1354 0.0956 0.0591 0.0417 0.0292
RMSE(k̂(3)) 0.1521 0.1098 0.0752 0.0466 0.0333 0.0238
RMSE(k̂(4)) 0.1588 0.1074 0.0729 0.0477 0.0325 0.0229
RMSE(k̂(5)) 0.2524 0.1600 0.0907 0.0555 0.0396 0.0272
RMSE(ϕ̂) 2.7777 1.9259 1.2704 0.7803 0.5360 0.3719

Table 2: Results of a Monte Carlo experiments using the NFXP estimator with 1,000
repetitions estimating the model with five profit parameters k(1), k(2), ..., k(5) and
one entry cost parameter ϕ. Demand is discretized into 200 states.

23



N=25 N=50 N=100 N=250 N=500 N=1000

one entry cost parameter, five profit parameters
time per run (in seconds) 1.89 2.08 2.47 3.57 5.39 9.08
iterations 13.54 13.43 13.44 13.50 13.50 13.60

five profit parameters, one entry cost parameter
time per run (in seconds) 4.82 5.13 5.94 8.35 11.91 18.83
iterations 27.60 27.27 27.58 27.96 27.46 26.66

Table 3: Average computational performance of the NFXP estimators in the Monte
Carlo samples. The estimators is implemented in C++ and Knitro and runs as a single
thread on a 3GhZ Intel Xeon CPU.
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6 Empirical Illustration

This section illustrates the empirical application of our model and its estimator

with observations from the Motion Picture Theaters industry (NAICS code:

512131). The observations of producer counts come from the County Business

Patterns dataset from 2000 through 2009. We restrict our analysis to

Micropolitan Statistical Areas (µSAs), a set of geographic entities defined by

the Office of Management and Budget consisting of 574 areas in the United

States based around an urban core of at least 10,000 but less than 50,000

inhabitants.12 The 574 µSAs account for about ten percent of the United States

population.13 By definition, µSAs are approximately geographically isolated

from other urban centers and thus represent a convenient market definition

for the study of industry dynamics. The Census Bureau publishes annual µSA

population estimates, and we use these as the demand indicator, C. For each

market we include a set of covariates taken from the 2010 wave of the American

Community Survey. These include the proportion of the population aged 65

and older, the proportion of the population employed, the proportion of the

population employed in agriculture and related industries, median household

income, and the median value of owner-occupied housing. Given the short panel,

we treat these market characteristics as time-invariant. Table 4 reports their

descriptive statistics.

In the first step, we need to estimate the empirical analog of the transition

density of the demand process, gC (Cr,t � Cr,t−1;Xr, θC). We discretize the demand

state into 200 grid points and denote the grid by {C[1], C[2], ..., C[200]}. The grid
points are chosen such that they are equally spaced on the logarithmic scale

with distance d. We then follow Tauchen (1986) and specify the probability of

transitioning from C[j] to C[i] for any i = 2, ...,199 and j = 1, ..., J , by

Pr(C[i]�C[j]) = Φ� logC[i] − logC[j] +
d
2 − µ

σ
� −Φ�

logC[i] − logC[j] − d
2 − µ

σ
� ,

where Φ refers to the standard normal cumulative distribution function.

The probabilities of transitioning to one of the end points of the grid

12The classification of Micropolitan Statistical Areas has been subject to several revisions in
the past years. We use the release of the “Annual Estimates of the Population of Metropolitan
and Micropolitan Statistical Areas from April 1, 2000 to July 1, 2009” from the US Census
Bureau as baseline for our analysis, which includes information on 574 µSAs.

13For the purpose of this paper, we dropped the µSA “The Villages, FL”, because its
population almost doubled during the time horizon of this study making it very different from
the other markets that we consider.
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Figure 3: Distribution of log population and log population differences for 573
Micropolitan Statistical Areas from 2000 through to 2009.
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mean median st. dev. max min

establishments
number of movie theaters 1.2837 1 1.0898 9 0

covariates
population 52019 43629 29461 197912 11011
employed 25722 21068 15508 107531 4381
65 and older (%) 15.38 15.21 3.39 36.71 6.16
employed in agriculture (%) 2.25 1.63 2.09 18.15 0.07
median income in USD 42117 41288 8450 103643 22881
median house value in USD 126221 103300 71649 614600 31400

Table 4: Number of movie theaters for 573 Micropolitan Statistical Area (µSAs)
from the County Business Patterns from 2000 to 2009 and descriptive statistics of
the covariates from the 2010 American Community Survey. Population in agriculture
refers to the share of population employed in agriculture, forestry, fishing, hunting,
and mining.

are given by Pr(C[1]�C[j]) = Φ�
logC[1]−logC[j]+ d

2
−µ

σ � and Pr(C[200]�C[j]) = 1 −

Φ�
logC[200]−logC[j]− d

2
−µ

σ � respectively. We then estimate the parameters µ and σ

with maximum likelihood. The standard deviation, σ, of the underlying normal

distribution is equal to about 1.2%. The drift parameter, µ, is equal to about

0.3%.

With the first step estimates in hand, we proceed by estimating four

specifications of our model. The maximum number of movie theaters sustainable

is fixed at ten, which is above the maximum number of theaters observed in our

data, nine (see Table 4). We maximize the likelihood following the procedure

described in Section 4. The covariates from the 2010 American Community

Survey enter market r’s flow surplus through πr(c, n) = (c�n)k(n) exp(Xrβ),

where Xr is a vector of covariates for market r and β is a vector of coefficients.

All covariates are demeaned and included in logs. The per consumer surplus

k(n) is constrained to be weakly decreasing with the number of firms which is

stronger than required by the assumptions in Section 2. Table 5 reports the

results.

The first specification that we estimate, reported in the first column, holds

k(n) constant and includes no covariates. The sunk cost of entry is 7.5 times the

fixed cost. The surplus from serving 10,000 people is only 47% of the fixed cost.

The specification reported in the second column includes a vector of covariates.

Although three of the five covariates have statistically significant coefficients, our

estimates for k and ϕ do not meaningfully change. For the third specification we
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constant profits varying profits

k(1) 0.4694 0.5014 0.4763 0.5138
(0.0061) (0.0071) (0.0070) (0.0083)

k(2) 0.4454 0.4671
(0.0081) (0.0093)

k(3) 0.4454 0.4671
(0.0113) (0.0126)

k(4) 0.4413 0.4533
(0.0145) (0.0165)

k(5, ...,10) 0.4100 0.4066
(0.0189) (0.0210)

ϕ 7.5150 7.4387 6.9138 6.6211
(0.2566) (0.2625) (0.2591) (0.2587)

Population aged 65 and older -0.0554 -0.0457
(0.0543) (0.0556)

Population Employed 0.7575 0.8094
(0.1485) (0.1518)

Population Employed in Agriculture 0.2124 0.2039
(0.0159) (0.0162)

log(Median Income) 0.1384 0.1802
(0.0997) (0.1013)

log(Median Housing) 0.0801 0.1203
(0.0348) (0.0373)

−L 3561.93 3427.18 3553.19 3411.51

Table 5: Coefficient estimates for the NFXP estimator for 573 µSAs from 2000 to
2009. The first step is estimated using the Tauchen approximation. Standard errors
are in parentheses. Standard errors are not adjusted for the first step estimation.

allow producers’ surplus per customer to decline with the number of producers.

The surplus per customer is freely parameterized for the first four firms in a

market and held constant from the fifth entrant onwards. We reject the null that

per consumer surplus is constant in the number of active firms. The specification

reported in the fourth column adds covariates to this. By taking log ratios of

the estimates for k(n), we find that adding a single firm to a monopoly market

lowers profits per customer by 10 percent. Adding a third or fourth firm lowers

profits only little, while the fifth firm reduces profits by an additional 13 percent.
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7 Conclusion

We have demonstrated uniqueness of our model’s symmetric Markov-perfect

equilibrium, provided an algorithm for its fast calculation, shown that its

parameters can be identified from observations on the joint evolution of demand

and the number of active firms, provided a nested fixed-point algorithm for its

maximum-likelihood estimation, evaluated the estimator’s statistical properties

and computational burden with Monte Carlo experiments, and applied all of

these tools to estimate the toughness of competition between Motion Picture

Theaters in U.S µSAs. That this relatively complete development and application

of a dynamic oligopoly model was feasible validates our title’s assertion that our

model’s dynamics are “Very Simple.”

We anticipate three applications of our model and its maximum-likelihood

estimator. First, they can be used to estimate the impact of observable cross-

market heterogeneity on the primitive determinants of industry dynamics. For

example, one might speculate that differences in zoning create an economic

barrier to entry that protects incumbent firms and allow measurable aspects

of zoning to influence the sunk costs of entry by including them in x. Second,

our model is simple enough for inclusion as a moving part in general equilibrium

models with entry, exit, and endogenous markups, such as Jaimovich’s (2007).

Third, the estimated model can serve as a point of departure for an analysis

with a more computationally and theoretically demanding model. For example,

in a trade context a potential entrant might choose between two imperfectly

integrated markets. By estimating our model first, one can gain familiarity

with the industry’s dynamics and obtain starting values for homotopy-based

estimation and equilibrium calculation.
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