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Abstract

Successful innovators have become billionaires by generating breakthrough
technologies that are later widely adopted in the society. This paper proposes
a model of delegated expertise to explain why this is (constrained) efficient. To
develop intuition, I first study the optimal design of contracts when a princi-
pal delegates a decision to a single agent of whether to pursue a risky project
or a safe one. Before taking the decision, the agent can acquire unobservable
information about the risky project by exerting an unobservable effort that
determines the quality of the information. The optimal contract suggests that
the principal should reward the agent for outcomes that are significantly bet-
ter than the safe return to encourage more information acquisition and the
selection of the desired project by the principal. I then apply this structure to
study the problem faced by a population of agents who must decide between
two technologies and the acquired information becomes public, thus creating
incentives for free-riding. The optimal contract divides the team between non-
experimenters and a few experimenters, and splits the total returns among
experimenters when the unknown project yields significantly greater returns
than the safe project.
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1 Introduction

Recognized innovators such as Bill Gates and Steve Jobs have become billionaires
by creating breakthrough technologies that are later widely used in the society. Could
we achieve similar levels of innovation without having to pay them so much for
such new technologies? Why is it that other innovators who create more marginal
improvements are not paid as much? (Ebersberger et al., 2008; Marsili and Salter,
2005) This paper proposes a model of delegated expertise with multiple agents to

explain these features.

Models of delegated expertise were first proposed by Lambert (1986) and Demski
and Sappington (1987). In such models a principal must hire an agent to decide
between a risky and a safe project. Before taking the decision, the agent can acquire
unobservable information about the risky project by exerting unobservable effort.
This framework shares features of moral hazard and hidden information, and in-
centives must be used to motivate both information acquisition and the (partial)
revelation of the obtained information. Therefore, incentives in this scenario are po-
tentially different than the ones in standard moral hazard problems. I use this one
principal-one agent model to develop intuition on the results that are later obtained
for the team problem case. The first contribution of this paper is to characterize the

optimal contract in this simplified environment.

The studied setup is very general and the only restriction imposed is that signals
can be ordered as in Milgrom (1981). In contrast to the standard moral hazard
literature, the unobservable action taken by the agent determines the precision of a
privately observed signal and thus generates mean-preserving spreads on the ex-ante
distribution of the unknown return. Under limited liability for both individuals, the
optimal wages suggest that the agent should be rewarded with the return of the risky

project only if it is significantly better than the safe return.

The intuition why contracts reward experimenters only for extreme good out-
comes has two components. The moral hazard component suggests that we should

reward the agent whenever the observed outcome of the risky project is greater than



the safe return, since a greater effort reduces the probability of choosing the risky
project when in fact it is worse than the safe one. However, a higher effort does
not affect importantly the probability of adopting the risky project when the un-
known return is either close to the safe return or close to the maximum possible
return. Thus, the moral hazard alone suggests incentives should be low-powered for
outcomes close to the safe return or the highest possible return, and high powered

otherwise.

There is a second component associated with the adverse selection problem. The
principal must also provide incentives for the agent to choose the risky project when-
ever she observes a sufficiently high signal. Therefore, the higher the signal the agent
receives, the more the principal wants him to undertake the risky project. Since the
signal and the unknown return are positively correlated, the principal wants to in-

crease the reward for the agent when higher returns are realized.

Since the principal wants to pay the agent the least possible, she will pay nothing
to the agent for outcomes that are worse than the safe project. It will also pay
nothing for outcomes that are better but close enough to the safe return since the
moral hazard is not as strong in such region. As argued before, moral hazard is also
not as strong for extreme positive outcomes; however, that is the same region where
the adverse selection component suggests the strongest incentives must be provided
to encourage the choice of the risky project. Therefore, the optimal contract rewards
the agent with the whole output when the realized return is significantly better than
the safe one. Although this instrument is highly nonlinear, it is not enough to achieve

a first best since the effects of a greater precision are shown to be bounded.

I then use the structure to study optimal contracts in team environments where a
population of agents can produce public information about the unknown technology.
The acquired information then is used by every agent to chose between the risky
and the safe project. In this case, the public quality of the information creates
incentives for free-riding, thus decreasing the overall amount of available information
recollected. Agents prefer to wait until others incur in the cost of experimentation

since the next stage they will observe the relevant signals and take a more informed



decision. Hence, the probability of choosing a new and better technology decreases

importantly because of the underlying incentives.

The second contribution of this paper is to characterize optimal contracts that
increase the information in this economy. I solve for the optimal contracts that
maximize total welfare and satisfy budget balance, when the precision of the signals
and its content is not observed by the social planner. Contracts in this case will
specify a wage schedule for agents that are willing to experiment and a different wage
schedule for non-experimenters. The separation of the agents occurs endogenously

since a fixed cost of experimenting prevents everybody to become an experimenter.

Although the second setup seems quite different than the one principal-one agent
model, it is shown that the main tradeoffs are still the same ones. There is a moral
hazard and an adverse selection problem as before since the planner must increase
the amount of information gathered and encourage the agents to undertake the best
project. However, there is also a new component associated with the free riding
going in the opposite direction of the moral hazard effect. The planner has now
some pressure to reward experimenters for low returns since otherwise experimenters
will prefer to become non-experimenters, decreasing the amount of information in

the economy and increasing the probability of being rewarded for low outcomes.

As long as a regularity condition is satisfied or the size of the population is
large enough, it is shown that the last component is dominated by the moral hazard
one. In this case, the optimal contract should split among experimenters the total
output if the risky technology is chosen and its return is significantly better than the
return of the previous technology. On the other hand, output should be split among

nonexperimenters if the risky technology is not significantly better than the safe one.

The rationale is the same as in the case of one agent. Since agents can learn
more accurately about the risky technology by having more people experimenting
or by increasing the precision per experimenter, the planner also substitutes the
extensive margin by a greater intensive margin to provide more powerful incentives.

This constrained efficient outcome resembles the features exposed at the beginning



where a few successful innovators will get paid a large amount of money, whereas
not so successful entrepreneurs, and the rest of the society will not be paid as much.
Several comparative statics are derived throughout the paper related to the optimal

contract, the equilibrium, and the first best allocation.

The model applies to a variety of situations. The one principal one agent problem
is tightly connected to the optimal compensation of CEOs who must be motivated by
the shareholders to undertake risky projects that could potentially lead to higher re-
turns. In this scenario, the effort exerted by the CEO in learning about the portfolio
of projects and the learned information is usually never observed by the sharehold-
ers, only the project chosen and the realized returns are observed. In a managerial
environment, the optimal contract can be implemented using restricted stocks con-
ditional on a performance threshold. When the optimal contract is constrained to
be monotone as in Innes (1990), the optimal monotone contract is an option with

strike price greater than the return of the safe project.

The model also reflects the environment when an expert must be hired to give
advice about a new technology that is available. The latter is the case of consultants
or specialized researchers who have been previously prepared for these tasks. The
principal who hires such agents usually does not have the expertise to understand

the information and that is why he must hire them.

The team problem resembles the technology adoption decision faced by farmers in
developing countries. Foster and Rosenzweig (1995) studied the adoption of HY Vs
in India and found that imperfect knowledge about the management of the new
seeds was a significant barrier to adoption. Moreover, they found that farmers learn
through their neighbors, but that they do not fully incorporate the social returns
of their experimentation. Hence, the rate of adoption was much slower than the
desired one. In this context the amount of trials performed by farmers as well as the
information gathered by them are usually unobservable to the social planner. The
optimal contract suggests that experimenting farmers should be subsidized when a
new seed is adopted and ends up very successful, otherwise they should be heavily

taxed.



The framework also resembles the problem faced by managers who must encour-
age innovation among her employees to increase the profits of the firm. Workers
have to divide their time between undertaking known tasks or exploring new ideas.
If a worker comes with a new innovation that improves the existing technology the
firm will adopt it and every worker will benefit from the adoption. However, inno-
vations are risky ventures with a high probability of failure, thus agents prefer to
put more effort on known tasks which returns are well known, while expecting that
other workers take the risky decision. Again issuing options and restricted stock to

experimenters are shown to be useful to encourage more risk-taking.

As a last example, the proposed framework also fits the situation of industries
with high levels of innovation such as pharmaceuticals. Pharmaceuticals must invest
in potential drugs which effectiveness is unknown. Once its effectiveness is proven,
other firms can replicate the drug as a generic without incurring in a significant cost.
In the absence of property rights, free-riding reduces innovation and the potential
discovery of new drugs. The investment chosen by firms in the earlier stage of
adoption of new technologies is usually not disclosed. Also R&D expenditures and
the processes of invention are typically hidden and can only be revealed after the
product is in the market and competitors can imitate it. Given these constraints,
the optimal contract suggests the use of patents only for breakthroughs and not

marginal innovations.
1.1 Literature Review

The structure used in the one principal and one agent model was first studied by
Lambert (1986) and Demski and Sappington (1987), who used a simplified environ-
ment with two or three possible outcomes. Similar models where later developed as
in Feess and Walzl (2004), Chade and Kovrijnykh (2011) and Gromb and Martimort
(2007). In contrast with these papers, I allow for a continuum of outcomes, which
permits a more complete characterization of optimal contracts. The closest structure
to my model is the one studied by Malcomson (2009) who focuses in optimal distor-

tions of the final decision as a mechanism to encourage more information acquisition.



This paper, on the other hand, characterizes the optimal contract as the incentive

mechanism.

The information structure used in this paper is similar to the one used in Szalay
(2009) and Persico (2000). However, the first model is used in a procurement envi-
ronment where the acquired information is induced to be completely revealed, this is
not the case in this paper. In the second one the agents acquire information to learn
about their value for an object, not the value for a principal as in our model. A sim-
ilar information structure is also used in Moscarini and Smith (2001). Nevertheless,
their model focus in the optimal actions of a single decision maker when information

can be acquired over time, and not in the strategic interaction.

The acquisition of information is also related to bandit problems where an agent
can learn about the return of a project by undertaking it as in Manso (2011) and
Ederer (2008). This paper departs from this framework by enriching the information
acquisition process and allowing agents to invest in the precision of their signals.
Bonatti and Horner (2011) study moral hazard in teams over time where the return
of a project is unknown and effort determines the rate of arrival of the return. Our
setup is different in that individuals invest one time on a signal before deciding to

undertake the risky project.

The next section introduces a principal agent setup with a single agent acquir-
ing private information to give intuition about the optimal contracts on a simplified
framework. The third section presents the model with multiple agents and charac-
terizes the equilibrium, the first best allocation, and the optimal contract when the
precision chosen by each agent is unobservable. In the next section I discuss how
to implement the contract in different real-world applications. In the last section I

conclude.

2 Principal-Agent Problem

Consider the case of a risk neutral principal who has to decide between a safe

project with known returns and a risky project with unknown returns. The principal



can hire a risk neutral agent to acquire information and recommend him which
project to pursue.! The amount of information gathered by the agent is unobservable
to the principal, as well as the realization of the signals acquired. Hence, this is a
problem that involves hidden actions and hidden information, and the contracts
designed by the principal can only be a function of the realized final outcome and

the chosen project. It is assumed that both individuals have limited liability.
2.1 Model

There are two available projects that cannot be pursued simultaneously. There is
a safe project with net return y; > 0. There is also a risky one whose return y, € [0, 7]
is unknown, with y > y,. Let both individuals have the same nondegenerate prior

belief ¢ (y,) over the unknown return with finite mean .

The agent can generate information about the risky project by acquiring a con-
tinuum of e independent signals at a cost C'(e); this cost can be associated with
R&D expenditures or the cost of running trials. Assume the cost function satisfies
C'(0) = 0, is increasing and is strictly convex in e. Moreover, assume there is a fixed

cost ¢ whenever the agent acquires information, that is only if e > 0.2

In other words, there is no cost if the there is no information acquisition; however,
if the principal decides to experiment, agent must first incur in a fixed cost, for
example setting up the lab. Alternatively, the fixed cost can be interpreted as if
there is a minimum number of signals that must be purchased when information is
acquired. The fixed cost is also observationally equivalent to the outside option of
an agent, and thus can be interpreted as the expected minimum wage to be paid to
the agent when the principal decides to hire him. In a context of bandit problems,

where signals are the same returns of the risky project, the fixed cost can also be

IThe individual can be in fact risk averse or risk lover, just let the returns perceived by the
agent be measured in utils and let the agent maximize a Von Neuman-Morgenstern utility function

2This last assumption is used in this section to derive comparative statics related to when an
agent must be hired, but is not crucial for the results obtained here. On the other hand, the
assumption is very important for the subsequent section with multiple agents to obtain a well
defined solution when the size of the population becomes very large.



thought as the ex ante expected return of the risky project, p,, and the individuals

are initially pessimistic about it.

Each independent signal zj is drawn from the distribution f (xy|y.), for each
k € [0,e]. We will refer to e as the precision of the information and denote by z a
sufficient statistic of the signals. Let the conditional pdf and cdf of x be denoted by
f (z|y,,e) and F (x|y,,e), respectively, with support [z,7].> Assume both functions
are twice differentiable in e and x. Note, however, that the prior distribution of ¥, is
independent of e. Let the sufficient statistics be ordered, following Milgrom (1981),
a signal x is more favorable than signal 2’ if the posterior distribution g (y,|z, e) first

order stochastically dominates the posterior distribution g (y,|2’,€).

It will be assumed that both the precision e and the sufficient statistic for the
signals, x, are privately observed by the agent. The only observable variables for
the principal are the chosen project and the final return of the project ys or y,.
Thus the principal designs the optimal wage to be paid to the agent as a function
of these variables, that is he chooses w (ys) = ws and w (y,). It will also be assumed
that individuals have a limited liability constraint. The wage for the agent cannot
be lower than 0 and the principal cannot pay more than the return he receives.
Formally, optimal wages must satisfy 0 < w(y) < y. Given that a project j is
chosen, the payoff for the principal is given by y; — w (y;) and the payoff for the
agent is w (y;) — C (e).

The game consists of two stages. In the first stage the principal designs a payment
schedule and makes a take it or leave it offer to the agent. The agent accepts or rejects
the contract. If she accepts the contract, she chooses to acquire e independent signals,
which are privately observed by her. In the second stage, the agent updates her beliefs

and chooses which project to pursue.? Finally a return y is realized and the principal

3 Alternatively, the acquisition of information can be modelled as the purchase of a signal x
with precision e defined in the Blackwell (1951) sense. That is experiment X is more precise than
experiment X’ if you can mimic signal X’ by adding noise to signal X. Formally, experiment
X is sufficient for (more precise than) experiment X' if for every 2’ € X’ there is a probability
distribution over X, g (z;2") where x € X, such that [ g (x;2') f (z|y) dz = f (2'|y) for any y.

40f course when e = 0 no information is acquired and the prior is not updated. In the Blackwell



pays to the agent the contracted wage w (y).
2.2 First Best

Suppose the precision chosen by the agent and the sufficient statistic are observed
by the principal, also assume there are no limited liability constraints. The principal

faces the following problem:®

max E,| max E, |y, —w(y; )|z, e
e,w(yr),w(ys) jz-E{SJ‘} Yjx [y]z (y]z) ’ ]

5.t By [Ey,, [w(y,) |z,e]] —C(e) 20
where j, is the project chosen by the principal when x is observed. The first best
can be obtained by either a constant payment from the principal to the agent equal
to the cost or by having the agent pay the principal for the returns of the project.

Either of the alternatives lead us to solve the following problem:

maxE, | max E, [y;,|z,e]| —C (e)
€ Jz€{s,r}

Since there are two stages, we proceed to solve the individual’s problem using
backward induction. That is, I will first determine which project is going to be
chosen given the information acquired. Second, I will determine the optimal wages
that implement a certain precision. Third, the optimal precision is found given the
principal decides to hire the agent. Finally, I will characterize when the principal

decides to hire an agent as a function of y, and c.

Without loss of generalization, let x = E,, [y,|z,e] be the posterior mean of the

formulation this is equivalent to the case where x and y, are independent.
5As noted before, we normalize the outside value for the agent to 0 since it is observationally
equivalent to the fixed cost ¢

10



risky project. The individual will choose the risky project if x > y,, thus the payoff

of the second period is given by max {x;ys}. Note this is a convex function of x.

Figure 1: Utility in second period
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The value of experimentation is defined as the ex ante expectation of the utility

in the second period, that is
U(e) =E, [max {z;ys}]
From the previous properties we can prove the following lemma:

Proposition 1. The value of experimentation U (e) is greater than max{iy;ys},

and 1s differentiable, strictly increasing, and bounded in e

The intuition of the proposition is as follows. The expected posterior mean E, [z]
is just the prior mean p,, which means that the learning process is a Martingale
and assures that with enough signals or with a sufficiently large precision we would
eventually learn. Therefore, as e approaches infinity, the sufficient statistic perfectly
reveals the unknown return, i.e it is a known transformation of the unknown return.
In other words, the limit conditional distribution lim._,, f (z|y., €) will be degenerate

at y,.. Hence, the unconditional distribution of the posterior mean converges to the

6Since signals are ordered, the posterior mean will be a monotone transformation of the signal.
Thus the distribution of the posterior mean will be a transformation of the distribution of the
sufficient statistic. Hence, we can let z =0and 7 =7

11



prior distribution. Moreover, the distribution f (z|e), second order stochastically
dominates the distribution f (z]e¢’), for all e < €’. Since the utility is convex in =z,

then the individual prefers a higher e.

If at time 0 the individual chooses to experiment, then she will choose precision

e to maximize:

max U (e) — C (e) (1)

e

Unfortunately we cannot assure this is a concave problem since U (e) may be
convex for low values of precision (Moscarini and Smith, 2002). However, since the
option value is bounded and the cost is strictly convex, we can assure the existence

of a solution to the problem. The next proposition characterizes the solution.

Proposition 2. A solution to problem (1) exists. If the solution is interior, the

optimal precision e* is characterized by

Ce (") = Ue (€7) (2)

Moreover, if foy F (z|e) dz is strictly concave in e, then condition (2) is also suf-

ficient and the maximum is unique.

The strict concavity condition implies that even though increasing the precision
generates a mean preserving spread on the distribution, such spread becomes smaller
as the precision becomes larger. Such condition was also suggested by Szalay (2009)
to motivate the use of the first order approach in a procurement problem. The next

lemma shows how the optimal precision depends on the prior belief.

Proposition 3. Suppose the principal decides to hire an agent to acquire informa-

tion. If [} F (x|e)dx is concave in e then the optimal precision e*
1. Achieves a unique mazimum when ys =
2. Is strictly increasing in ys as long as ys < py,

3. Is strictly decreasing in ys as long as ys > [i.

12



At the beginning of first period a precision will choose to hire an agent if

U (e") — C(e") > max {ys; o}

Let the maximized objective function of the principal be denoted by V (ys,c) =
max {U (e*) — C (€*) ;ys; tio}- The next proposition characterizes when the principal

decides to hire an agent.

Proposition 4. The function V (ys,c) is nondecreasing and convex in ys and the
principal decides to experiment, e* > 0, when ¢ < ¢ and ys € (a.,b.) C (0,7), where
Lo € (ae, b.). Moreover, such interval is decreasing in ¢, that is (a.,b.) C (ae,be) for

any ¢ < d < ¢, with (ag,by) = (0,7) and a;z = py = be.

Even if beliefs are relatively pessimistic the individual decides to acquire infor-
mation because of the potential gain represented by the value of experimentation.
Indeed the precision chosen is increasing in the beliefs when they are pessimistic
and achieves a maximum when ex ante the two projects have the same expected
mean. When beliefs start to be optimistic, precision decreases, until a point where
the agent does not have any more incentives to acquire information. The lower is
the fixed cost ¢, the greater is the interval over which the principal decides to hire
the agent. Furthermore, if there is no fixed cost, the principal will always decide to

hire an agent to collect information.
2.3 Constrained Efficiency

Now suppose the principal does not observe the precision, nor the information
gathered by the individual. Also assume individuals have limited liability as de-
scribed before. In this context a fixed wage will not induce any effort from the agent.
Therefore the principal must provide incentives to the agent by imposing more risk
in her payoff, and by making sure he chooses the project that is more convenient to
the principal. The first best is no longer obtained since the payoff for the principal is

no longer convex and thus it will not require as much effort as before, thus there will

13



be less acquired information in the second best. The constrained efficient problem

for the principal can be stated as

sl B | max By, (g, —w(ys) |z el (3)
subject to

Es By, [w(y;.) |z e]] —C(e) >0 (4)

e € argmaxE, [E, [w(y;,)]|z,e]] —C (e) (5)

By, [0 (53,) [o,¢] > B, [w(y_;,)|a,e] for all o (6)

0<wiy) <y forj=rs (7)

Equation (4) is the same individual rationality constraint of before. Equation
(5) is the incentive compatibility constraint that ensures the agent will choose the
suggested precision. Equation (6) is another incentive compatibility constraint to
make sure the agent chooses the project that is more convenient to the principal,
where y_;, denotes the project the individual has not chosen. The last equation

represents the limited liability constraint.

This problem is hard to solve because each incentive compatibility constraint
involves a continuum of restrictions. However, the second incentive constraint can
be reduced to only one constraint when optimal wages for the risky project are
monotone nondecreasing. Since signals are ordered, a posterior implied by a signal
first order stochastically dominates any posterior generated by any less favorable
signal. Therefore a less favorable signal implies that the expected wage is lower.
Since distributions are continuous in x, there must exists a cutoff z. such that the
expected wage when the risky project is chosen given such signal is equal to the wage
when the safe project is chosen. Any more (less) favorable signal than z. implies the

agent will choose the risky (safe) project and that the constraint will not be binding.

14



The first incentive constraint can also be reduced to one equation using the first
order approach, as it is traditional in the contract theory literature. That is, provided
some conditions that assure the concavity of the agents payoff with respect to the
precision, we can replace the constraint (5) for its first order condition. Let us for
now assume that wages are nondecresing, and in the next proposition I will prove

that is the case. Following Rogerson (1985), the doubly relaxed program is given by:

max / / ) £ (2, 9le) dynde + (g — w (9)) F (ze)  (8)

e,Ze,w(Yr),w
subject to

f (@ yrle) dyrdx +w (ys) F (zcle) — C'(e) =2 0 (9)

[[

/ / w () fo (2, yre) dyrd +w () F (le) — Ca (€) > 0 (10)

\@\

<|

/ "0 () £ (grles ) dyr = w (3) (1)

0<wl(y;) <y;, forj=r-s (12)

Equation (10) is the incentive compatibility constraint using the first order ap-
proach. The inequality assures the multiplier associated with it is positive when the
constraint is binding. Equation (11) is the constraint that makes sure the agent takes
the desired decision of the principal. Let A, d, and ¢ be the Lagrange multipliers
for the first three constraints. Since the problem is linear on the wages, the opti-
mal wages are determined by a bang-bang solution that is bounded by the limited

liability constraint. After rearranging the derivative with respect to wages we obtain

Fe (zelyre) 5 [ (@elyr,e)
— F(xclyre) (1= F(xclyr,€)) f(xcle)

~L4 A= b (13)
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Whenever this condition is positive, the wage will be set to the upper bound;
if it is negative, then the optimal wage is zero. Using the structure of the signals
and the latter equation we can indeed prove the that wages are nondecreasing in the

following proposition.

Proposition 5. The optimal wage schedule w (y,.) is monotone and is characterized
by a cutoff z such that

w(yr):{ Yr if Y > 2, (14)

0 otherwise.

Figure 2: Optimal Contract
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The cutoff z is given by the value of g, such that condition (13) is equal to
zero. Wages are thus monotone if for any greater (lower) y, the derivative is positive
(negative). Thus showing that the derivative satisfies the single crossing condition
implies that wages are monotone. The intuition for the proof has two components

that work in the same direction.

As it is common in moral hazard problems, the first component is a likelihood

% However, this ratio is particular to this problem since it describes
c yTae)

the probability of undertaking the project when the individual increases the precision

ratio

of the signal. Given the properties of the distribution, the numerator is zero in the
interior only if z. = y, and positive (negative) if y, is greater (smaller) than x..

Hence the ratio satisfies the single crossing property.

16



% which is characteristic of
- yTve)

hidden information problems. Given the MLRP condition of the signals with respect

The second component is the hazard ratio

to the return, this hazard ratio is monotone decreasing with respect to the return
(see Athey (2002)). This in turn implies that the conditional truncated distribution
of the signals first order stochastically dominates truncated distributions conditional
on lower returns. Thus the observation of a higher return suggests it was more likely

the agent observed a signal greater than the cutoff.

Recall that higher effort induces a second order stochastically dominated uncon-
ditional distribution, that is a distribution with more weight in the tails. Therefore,
by rewarding the agent only for high returns, the principal is encouraging her to
exert a greater effort. On the other hand, higher returns increase the probability of
the realization of more favorable signals. Thus the optimal wage schedule creates
the incentive for the agent to adopt the risky technology after observing favorable

signals.

Given that wages were proved to be monotone nondecreasing, we are ready to
show that the first order approach is valid. In other to do that, we first need to prove
that the agent’s utility is concave in effort, and thus the first order condition yields
the effort that maximizes such utility. Then, we need to show that constraint (10)

is indeed binding.

Proposition 6. Let (e*,z},w*) be the solution to the doubly relazed problem, if
F (z|y, e) is convex in e then (e*, x*, w*) is also a solution for the constrained efficient

problem.

This condition over the conditional cdf of the sufficient statistic is a particular case
of the condition found by Sinclair-Desgagné (1994) in the context of contracts with
multisignals. Although our contract only depends directly on the return, it indirectly
depends on the sufficient statistic since the risky project will only be chosen if the
unobserved signal is greater than a cutoff. Thus his conditions apply to our case.
Jointly with the condition stated in Proposition 5, it requires that such probability

is decreasing in the number of signals but at an increasing rate.
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2.4 Optimal Monotone Contract

The optimal contract found in the previous subsection is not continuous. In
particular, the payment for the principal is not monotone since any return greater
than the threshold will yield him zero profit. As argued by Innes (1990), this type of
contracts could be manipulated by either the principal or the agent if any of them can
affect the return before the contract is paid. For example, the principal would have
incentive to sabotage the risky project by burning profits in excess of the threshold.
Similarly, the agent would have an incentive to inflate profits by borrowing money

and "revealing" a higher apparent profit to the principal.

In order to prevent this behavior, a monotonicity constraint must be imposed,

thus modifying the limited liability constraint:

w(yr—€) <w(y,) <w(y—e) +e

The same argument in the preceding section applies, and the optimal monotone

contract will be option like, with an strike price zy greater than the safe return:

w (yr) = max {07y7’ - ZO} (15)

Figure 3: Optimal Monotone Contract
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3 Team Problem with Multiple Agents

Now suppose there is a population of N risk neutral agents who must choose
between a risky project and a safe project. Let the agents appropriate the whole
return of the project they choose. All agents share the same prior beliefs and can
acquire information about the risky project by exerting costly effort. Assume the
information gathered becomes public and other agents can use it to update beliefs.
Since information is now a public good there will be free-riding in equilibrium and
there will be less information than in the first best. The purpose of this section is to
derive the optimal contract designed by a social planner who does not observed the
precision chosen by each agent, nor the information gathered by the agents. Assume

also that contracts must satisfy budget balance and that agents have limited liability.
3.1 Model

The utility functions for each agent and the returns for each project are given as
before. Of particular importance will be the fixed cost incur by experimenters since
it will generate a natural partition of the population between experimenters and
non-experimenters. The fixed cost will also assure the existence of an equilibrium

when the size of the population goes to infinity.

Assume that the sufficient statistic obtained from the information acquisition of
all agents is publicly observed by the agents but not observed (or understood) by the
principal. In this scenario agents decide whether to experiment and obtain costly
extra signals or use the available signals from others. Thus, the outside option is no

longer zero.

I consider again the case of two stages. In the first stage the individuals decide
simultaneously whether to acquire information or not. If an agent ¢ decides to exper-
iment, she must also choose how many signals to acquire, e; at a cost C' (e;). Assume
signals acquired by different individuals are independent and identically distributed
with pdf f (x|y.). At the end of the period each individual i observes the overall
sufficient statistic z with pdf given by f <x|y7., Z;VZI ei>. At the beginning of the
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second stage each agent updates her beliefs and decides which project to pursue.
Since all signals are public, in equilibrium everybody will take the same decision in

the final period.
3.2 Equilibrium

Suppose first that each agent appropriates the return from the chosen project and
thus the payoff for agent i is given by y — C'(e;). In order to simplify the analysis I
will focus on equilibria where experimenters choose the same level of precision. Let
the number of experimenters be denoted by n. It is important to note that not every
agent will be necessarily an experimenter in equilibrium, a nonexperimenter will set
e; = 0. Let e_; be the sum of precision chosen by all individuals except . Therefore

each agent is willing to solve the following problem:

max E, { max E,. [y |z, e + el-]} —C (&)
€i Ja€{sr} -

Following the analysis of the previous section, we will define an option value of
experimentation for an agent ¢ that this time will depend on the overall precision

chosen by all the experimenters:

Ule;+e;) =E, { max B, [y;, |z, e + e_i]}

Je€{sr}

Therefore, the ex-ante utility for a non-experimenter is given by U (e_;). On the
other hand, the ex-ante utility for experimenters is given by max,, {U (e; + e_;) — C (e;)}.
Assume first that agents also observe the overall precision, hence the appropriate con-
cept for equilibrium is a Subgame Perfect Nash equilibrium (SPE).” The number of

equilibria depends on the properties of the cost function and the distribution of the

" Alternatively we can assume that the overall precision is unobservable, then the appropriate
concept is a Perfect Bayesian Nash equilibrium (PBE). However, there exists a PBE with the same
payoffs and actions on the equilibrium path as the ones in the SPE we are interested in. Thus we
use this equilibrium concept for the sake of simplicity.
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posterior expected mean. Assume for the rest of the paper that foy F(x|e; +e_;) dx

is strictly concave to obtain a unique solution (recall Proposition (2)).

Definition 7. A experimenter-symmetric SPE is defined by the number of people

*

experimenting, n*, and the symmetric precision of the signals e*, such that nobody

has incentives to deviate, that is

e Non-experimenters do not want to deviate:

Un*e*) > U(e;+n*e”) — C(e;) for any e;

e Fxperimenters do not want to deviate:
Une)—Ce)>U((n"—1)e")

and
e" =argmax {U (e; + (n" —1)e*) — C (e;)}

In this experimenter-symmetric equilibrium the overall precision will be n*e*.
These two variables will play the same role in the learning process since an increase
in either one will have the same effect (in terms of elasticities) on the value of
experimentation. In fact, this function will have the same properties with respect

the overall precision ne as the ones described in the previous section.

As before, we will use backward induction to solve for the agent’s behavior. In a
symmetric equilibrium where n people experiment in the first period, an experimenter

will choose the optimal precision e* such that

Ce(e")=U,, (e;+ (n"—1)e")

The optimal precision inherits the same properties as the ones found in the pre-
vious section. However, we now have an interesting relationship between precision,

overall precision, and the number of experimenters as summarized in the following
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lemma.

Lemma 8. The optimal precision e* is decreasing in n, but the overall precision ne*

1S 1ncreasing in n.

The intuition behind this lemma is that although n and e have the same relative
effect on the value of experimentation, the convexity of the cost induces an imperfect
complementarity between the two components of the overall precision. If the cost
of the precision were to be linear, the overall precision would remain unchanged
since an increase in the number of signals will be exactly offset by the decrease in
the precision. The convexity of the cost function implies that effort becomes less

responsive to changes in n.

The monotonic response of the overall precision to n implies that U (n*e*) >
U ((n* — 1) e*) since the value of experimentation is monotone increasing in the over-
all precision. However, these increments will become smaller after some threshold
because of the concavity of such function. Therefore, the equilibrium number of

experimenters n* is given by the equation®

U(n*e)—C(e")>U((n"—1)e")

Lemma 9. In a experimenter-symmetric SPE, every agent will experiment if N < N,

and the number of experimenters will be independent of N as long as N > N

The concavity and boundedness of the option value of experimentation jointly
with the fixed cost of experimentation implies that the number of experimenters will
be finite in equilibrium even as the size of the population goes to infinity. On the
other hand, the optimal precision is set such that its marginal cost is greater than the
average cost. However, as the total amount of signals acquired increases (the total

number of experimenters increase), the optimal precision converges to the minimum

8In differentiable terms this condition is equivalent to C (e*) > U,, (n*e*), with equality if n > 0
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efficient scale, which ensures its finiteness. Note the similarity of the problem solved

by a firm facing perfect competition with fixed costs.
3.3 First Best

Suppose now that there exists a social planner who wants to maximize the ex-
ante total welfare of this economy. Given that n agents are experimenting, ex-ante

total welfare is then defined as:

n

W =NU (Z@) —iC’(ei)

=1

Note that in the aggregate, the number of experimenters are associated with a
linear cost, whereas the precision of the signals have a convex one. Note also that the
social planner must consider the externality generated by the signals by multiplying
the value of experimentation by the number of agents in the economy. Given a

number of experimenter n, the social planner chooses ef? such that
C. (eFB) = NU, (neFB)

The social planner will also increase the number of experimenters n?

9

as long

as

C (eFB) S N [U (TLFBGFB) U ((TLFB . 1) €FB)}

Lemma 10. In the first best, the number of experimenters goes to infinity as N goes
to infinity, but its proportion % goes to zero. The first best precision remains finite

and converges to the minimum efficient scale.

Note again how N increases the marginal value of experimentation, this implies

91n differentiable terms this condition is equivalent to C (eF B ) > NU, (nF BekB ), with equality
if nfB >0
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that in the first best there is more experimentation n than in equilibrium. Moreover,
the number of experimenters grows without bound as the size of the population goes
to infinity. However, n does not increase as fast as N because of the concavity and
boundedness of U (-). Note also that the central limit theorem implies that the speed
of convergence of the learning process is y/ne and thus is not optimal to increase n

as fast as V.

On the other hand, while an increase in N has a direct positive effect on e pushing
it to infinity, there is also an indirect effect of N coming through n which is growing
bigger and decreases e. It turns out that these effects approximately offset and the
first best precision converges to the point where average cost is minimized, which is

close to the same precision chosen in equilibrium.!°

Because of the greater marginal benefit and the linearity of the costs associated
to the number of experimenters, a social planner decides to choose a greater n than
the one obtained in equilibrium. On the other hand, because of the convexity of
the cost associated to the precision, the optimal precision remains finite and close
to the equilibrium one. In other words, the social planner decides to increase n and
maintain fixed e since their relative effect on the option value of experimentation is

the same but is more costly to increase e.

The first best can be implemented under budget balance if the individual pre-
cision is observed. For example, by distributing the surplus from adopting the new
technology among the experimenters when they choose the first best precision, but
not when they deviate, the first best is implemented. To see this note that if exper-

imenters follow the suggested first best precision their payoff is given by

H%U (TLFBGFB) —C (GFB)

whereas the payoff for nonexperimenters or experimenters that deviate from the

first best precision is 0. From the conditions obtained for the first best we know that

10The discreteness of n is what prevents them to be equal, but as N grows large the choice of n
resembles the case of a continuum number of experimenters.
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the payoff for obedient experimenters will be greater than 0 and thus they will not
want to deviate. Note also that because the suggested wages are nondecreasing the

agents will be willing to adopt the best technology.
3.4 Constrained Efficiency

Suppose there exists a social planner that wants to maximize ex-ante total wel-
fare as before. Assume that the principal does not observe the precision chosen by
experimenters, nor the aggregate statistic. Although the first assumption is natu-
ral, the second is not given that agents can observe the statistic. However, one can
interpret this assumption as if agents are experts who can interpret the signals and
relate them to the returns, whereas the principal lacks such degree of expertise. This
is observed in scenarios such as CEQOs hiring chemists to develop a new product, and

that is the main reason why principals must hire an agent for this purpose.

In addition assume both agents have limited liability as before and that there must
be budget balance. Under this restriction, the wages suggested in the last subsection
do not implement the first best since agents would have incentives to choose a lower
precision because they do not internalize the social gains since they are split among
all the experimenters. Assume that the social planner only observes the final output
and designs a wage schedule for experimenters and nonexperimenters as a function
of the observed returns. Let w (y) and v (y) be the wages for an experimenter and a

nonexperimenter when the observed return is y.

The timing is as follows. First the social planner offers the menu of contracts.
Then each agent chooses a contract. Agents who decided to experiment then choose
the precision of their signals. At the end of the stage every agent observes the aggre-
gate sufficient statistic. Then agents update beliefs given the reported information
on how many people experimented, their precision, and the observed signals. Then
agents take a definitive decision over which technology to use. After the final output

is realized the social planner pays the promised contract.

The planner solves the following problem:
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n:{ei}?:l 7w(yT)»w(yS)7”(yT)’v Ys

max o NU (Zn: ei> - ic (e) (16)
subject to h h
B, [By, [0 (y) lei + ] = C(e) > By [By,, [0 (y5,) o] (17)
E, [Ey, [0 (us) le<]) > Ex [By,, [ (g.) e +eo]] —C () forany e (18)

e € argmaxE, [E,, [w(y;,)le+e_]] — C(e) (19)

0 TORIES o7 ECHN FVRRIES o) T ERC
=1 i

I i=1

Ey,, |v(y;) |, Z ei| 2Ky, |v(y-;) |z, Z ei] for all = (21)
i=1 L i=1

w(y;),v(y;) >0for j=rs (22)

nw (y;) + (N —n)v(y;) < Ny, for j =r,s (23)

Constraint (17) is the individual rationality constraint for experimenters that
prevents them from not exerting any effort and free ride the public information.
Constraint (18) is the individual rationality constraint for the nonexperimenter and
it states that the individual is better off by not investing in information rather than
acquiring a costly extra signal. The incentive compatibility constraint (19) assures

the individual is willing to invest in the prescribed precision.

Lemma 11. If (17) and (19) are satisfied, then (18) is satisfied.

Constraints (20) and (21) are similar to constraint (6) and assures both experi-
menters and nonexperimenters will choose the project chosen by the principal. Fi-
nally, constraints (22) and (23) are the limited liability and budget balance con-
straints. The latter constraint will be binding since we are maximizing total welfare,
Nyj];vz:(yj)‘ Using

this expression and constraints (20) and (21), all agents will choose the risky project

thus we can substitute the wage for a nonexperimenter by v (y;) =
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if:

0<E,

w (yr) |%Z€i] —w (ys) < % (Eyr

i=1

n
eSS eil - y)
i=1

Therefore, assuming wages are monotone nondecreasing, there is no distortion
in the chosen optimal project and the constraint will only bind at an x. such that
E,, [yr|xc, €] = ys. This means the cutoff is such that the posterior mean of the risky
project is equal to the return of the safe project. Using (23) into the remaining con-
straints and substituting (19) by the first order approach,!' the principal’s problem
is simplified to:

max NU e | — C (e; 24

8, () - 2
subject to

Ty

/ / w () f (@amles + ) dyrde +w (y) F (zole +e_) — C(e) >

Yy N — N B
/ / y?“ nw yr) (ﬂ'),yr|€_z‘) dyrd.f—’— ySN ﬁi(yS)F<xc|€_1) (25)

/ x / " w ) fo (s gples + e dyede + w () F (aoles + o) — Cu(e) 20 (26)
e Jy

Eyr w (yr) |‘Tc7 Z ei] =w (ys) (27)
i=1
N .
0 < w(y) < Yy tor j = s.r (2%)

Let A, 0, and ¢ be the Lagrange multipliers for the first three constraints. The

HThe first order approach is again valid if F (z|y,,e) is convex in e and wages are monotone
nondecresing, see Proposition 6
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problem is again linear on the wages. Rearranging the derivative with respect to

wages we obtain

n—1 1-F ($c|yra e—i)
L (N—n—l—l) (1 —F(xc|yr,ei+e_i)>
Y ( Fei (x0|yraei + 671') ) . o ( f (130’3/7"761' + €*i> ) (29>

1 — F (z|yr e +e_;) A\1I-—F (elyr, €i + )

A

A

As mentioned in the previous section, the last two components of the equation are
increasing in y, and represent a monotone likelihood ratio and a monotone hazard

ratio. But this time there is another component that is decreasing in y,. The ratio

1—F(zc|yr,e—i)
I_F(wclymei‘i‘e—i)

decreasing given that the numerator has a lower precision. The rationale for having

is the same likelihood ratio but expressed in discrete terms, and is

an element decreasing in the returns is that by rewarding the experimenter for ex-
treme outcomes, the experimenter is having incentives to become a nonexperimenter
by reducing the overall precision and increasing the probability of being rewarded.
The next proposition gives plausible sufficient conditions to obtain monotone wages
by

Lemma 12. If 1 —F (z|y,,e) is at least as logconcave as 1 — F (z|e) ine, or N > N,

then optimal wages w (y,.) are characterized by a cutoff z such that

w () :{ Ny ifyr > 2, (30)

0 otherwise.

Given such conditions, the optimal contract suggests that the experimenter is
encouraged to increase the variance of the posterior mean by increasing her payoff
in realizations that are much better than the returns from the safe project. On
the contrary, the total output will be split among non-experimenters when the risky
return is not significantly better than the safe return. The intuition for having the

logconcavity condition is that if the rate at which the conditional survival function
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decreases is lower than the one of the unconditional distribution, then the effect of
the discrete rate is always smaller than the effect of the marginal rate by concavity.
On the other hand, as the population grows, the relative effect decreases since the
ratio of experimenters decreases and thus their relative reward is bigger compared to
the one for nonexperimenters. Therefore the incentives to become nonexperimenters

disappear.

4 Implementation

The analyzed problem can be understood from the perspective of optimal taxation
when individuals generate information externalities. The contract suggests that the
planner should subsidize experimenters when new projects are adopted and generate

sufficiently high returns, otherwise they should be heavily taxed.

In the context of technology adoption, the existence of farmer cooperatives can
be used to implement this contract. For example, National Cereal Boards play an
important role on the coordination of farmers within a country. In Kenya this organ-
ism has played the role of creditors, promoters of research and market development,
and regulators (Raikes, 1994). Although in recent decades their policies have been
oriented towards a free market, the board used to lobby in the government for the
determination of prices. An institution like this one could potentially reward farmers

differently according to their willingness to try new technologies.

Another example of such organizations is the National Federation of Coffee Grow-
ers of Colombia.'? The federation groups more than 500 thousand colombian families
that produce coffee. Its mission is to represent the interests of coffee growers, cre-
ate social programs to improve the quality of life of the producers, investment in
research and knowledge transfer as well as in promotion and advertising, and the

commercialization of coffee.

Within this last objective is what is considered by them their most significant

service called the Purchase Guarantee Policy. This policy involves the setting of a

P2http:/ /www.federaciondecafeteros.org/particulares/en /
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minimum price at which the coffee should be sold. If no buyers are willing to acquire
the product at this price, they commit to purchasing it. This price is public and
constitutes a reference point for the market. Hence, the federation’s role could be
used to differentiate the price paid to experimenting growers who increase the speed

of adoption of new technologies given this is in its interests.

The proposed contract can also be implemented within firms. The level of innova-
tion or the adoption of better technologies or practices are reflected in the value of the
firm. Therefore stock options and profit sharing strategies posses similar properties

as our contract.

Stock option programs give workers the right to buy company’s shares at a fixed
price for a given period of time. These will be only exercised if the market price is
higher than the strike price originally agreed to. Usually stock options are used as a
long- term motivator and the employee is constrained on exercising the option after
certain time. Similarly, the firm could constrain the option exercise until the market

price crosses a threshold, and thus implementing the proposed contract.

Likewise, profit sharing is also used as a long-term motivator where individuals
are entitled to a percentage of the profits of a firm after a given period. To implement
the contract the firm could set a threshold on the profits such that the workers can

only claim her share if profits are greater than such level.

The optimal contract might be also interpreted as a patent policy to encourage
innovation. It suggests that patents should only be given if it is shown that the new
technology is significantly better than the previous one, and not for marginal im-
provements. However, this result cannot be interpreted as a restriction on the use of
new technology as often happens with patents. In other words, the optimal contract
does not allocate the property rights of the new technology. On the contrary, it en-
courages the adoption of the new technology by all the population, while rewarding

innovators with the surplus they generated, suggesting an optimal pricing policy.
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5 Conclusions

I first studied the problem faced by a principal who must hire an agent that can
acquire information about a new project and must also take the decision of whether
to pursue it or not. I show how the optimal contract resembles restricted stock.
When the optimal contract is constrained to be continuous then it resembles an

option with a strike price greater than the return of the safe project.

I also analyzed the problem faced by innovators who can acquire costly infor-
mation before choosing between a known project and an unknown one, but such
information is also observed but others for free. In this context, information is a
public good and thus a free-riding problem arises. In equilibrium there will be less
experimenters than in the first best since agents do not internalize the social benefits

of experimentation.

The first best level of experimentation can be implemented when the number of
signals acquired by the agents is observed; however, this is not necessarily the case
when such investment is not observed. I derive the optimal contract when the amount
or precision of the revealed information is unobserved and experimentation cannot
be enforced. The optimal contract suggest that experimenters should be given the
whole surplus if new technology is significantly better that the previous one. The
intuition for this result is that experimenters must increase the number of signals

acquired to increase the probability of being rewarded with the surplus.

The conclusions of the model are robust when there is a finite set of possible
projects. However, the same framework does not apply when the decision belongs to
a continuum as in Malcomson (2009) since the principal will not be able to offer a
contract contingent on the chosen project. An interesting extension of the proposed
model is to assume that individuals in the society only observe whether the firms
decide to undertake the project or not. The observability of such an action is a noisy
signal of the acquired information by each agent. In this context herding behavior

may arise and the provision of incentives potentially differs to the one proposed here.
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A Appendix

Proof for Proposition 1. First, to show that U (e) > max {1, ys} integrate by parts

the value of experimentation to obtain

Ue) = ys+/y<1—F<x|e>>da:

Ys

_ ys+/0y(1—F(a:\e))dx—/oys(1—F(x]e))dx

= u0+/0ysF(x|e) dx (31)

Thus the value of experimentation is greater than max {x,ys}. The value of
experimentation is also differentiable because the conditional distribution f (z|y,,€)
is assumed differentiable. To prove that is strictly increasing in the precision, I
will prove that the distribution f (z]e) second order stochastically dominates the
distribution f (z|e’) whenever e < €’. Let x, 2’ and z” be the sufficient statistics
for the first e signals, the €’ signals, and the additional ¢ — e signals, respectively.
Note that by independence f (z'le') = f (z]e) f (z"]e/ — e). Define the corresponding

conditional means as:

uz/o yf (ylz,e)dy

g
p= / yf (yla',e’) dy
0
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First note that by the law of iterated expectations

E; [2] = py = Eo [2]

Therefore the sequence of posterior means is a Martingale. Now, using indepen-

dence we know that

E, [o']z] = / / uf (W' ) f (2"]€ — €) dyda”

Yy Yy
= / / yf (y,2"|z, ') dydz"
0 0

= /0 yf (ylz,e)dy

= T

Therefore 2’ is a mean preserving spread of u. Rothschild and Stiglitz (1970)

show that this is equivalent to having

/OaF(x|e) dz < /OQF(;@@’) dx

for all a € [0,7].

Using (31) we obtain U (e) < U (¢’). On the other hand, the fact that the pos-
teriors are Martingale imply that when the number of independent signals becomes
large enough, the posterior mean will converge almost surely to the true y, (Doob,
1953). Formally, we have that lim.,, f (z|y.,e) = 1 if x = y, and 0 otherwise. Thus

the limit unconditional distribution of the posterior is given by
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lim f(zle) = lm [ f(2|y,e)g(y.)dy,

e— 00 e— 00 0

_ / lim f (2lyns€) g () dyr

e— 00

= g(x)

where the second line is obtained using uniform convergence, which in turn is
obtained from the almost surely convergence and the differentiability of the dis-
tribution (Ascoli’s theorem). Thus the value of experimentation is bounded by
po + Jo" G (y) dy < o0 O

Proof for Proposition 2. Define a compact domain for e where the upper and lower
bound are given by the largest and the smallest e such that C'(e) = U (e), re-
spectively. If there is no such e, the individual is better off by not experimenting
(e = 0). Since the objective function is differentiable we know a maximum exists
using Weierstrass Theorem. Moreover, using the Intermediate Value Theorem we

know an interior optimum is characterized by

Uc(e) = Ce(e) =0

The latter condition is also sufficient if the problem is concave, which is the case
when U (e) = [)* Fec)zle)dz < 0 since the cost is convex by assumption. The

maximum is unique if the latter inequality is strict. ]

Proof for Proposition 3. Suppose the agent decides to experiment, and thus is in an

interior solution. Using the implicit function theorem we know

Oe* F. (ysle)

s [T Foo(zle)dz — Ce. (e)
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The numerator is strictly negative, then the sign of the derivative will be deter-
mined by the denominator. The ordering of the signals implies that the conditional
distribution f (z|y., e) is logsupermodular, thus the unconditional cdf F' (x|e) is also
logsupermodular (see Athey (2002)). Therefore for every e, all the unconditional
cdfs will cross uniquely at p,. To see this just consider the case when e = 0 and
the distribution is degenerate at p,. Hence, F, (uyle) = 0. Also note that by the
second order stochastic dominance F, (ys|e) > 0 whenever ys < p,, and F, (ys|le) < 0
whenever y, > 1,. Hence the optimal effort achieves a maximum when y, = ,, and

is increasing (decreasing) for smaller (greater) ys.

Proof for Proposition 4. Using the envelope theorem we obtain

0
0Ys

(U (e") = C(e") = F (ysle”) = 0

which implies that the value is nondecreasing in y, since the other alternatives

are also nondecreasing in ys. The second derivative is given by

o (U(€) = Ce) = F(le?) + F. () 51

The first element is always positive since it is a density function. The second
term is also positive by the single crossing property and Proposition (3). Thus the
function is strictly convex in ys. Since the other alternatives are also convex in s,

then the maximum of convex functions is also convex.

In the presence of fixed costs, U (e*) — C (e*) as a function of y, will cross at most
once each of the outside options. It could cross once the constant p, from below
since U (e*) — C' (e) is increasing in y,. It could cross once y, from above since its
first derivative with respect to y, are between 0 and 1. When there is no fixed cost,
c=0,U(e) = puy and e* = 0 at y; = 0. On the other hand, when y; = 7, then
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U (e) = ys and again e* = 0. Therefore the principal always prefers to hire an agent

for any interior ;.

Since U (e*) — C' (e*) is linear in ¢, there exists a ¢ such that U (e*) — C'(e*) =
to = Ys. Thus, for any ¢ < ¢, there exists a., b. € (0,7) such that U (e*) — C (e) > py
for any ys > a., and U (e*) — C(e) > y, for any ys < b.. Obviously it must be
the case that p, € (a.,b.). Note that a. and b, are increasing and decreasing in c,
respectively, precisely because the function crosses from below and above each of the
corresponding outside options. Finally, for any ¢ > ¢, the interval is empty and the

principal never experiments.
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