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Abstract

This paper considers GLS estimation of linear panel models when
the innovation and the regressors can both contain a factor struc-
ture. A novel feature of this approach is that preliminary estimation
of the latent factor structure is not necessary. Under a set of regular-
ity conditions here provided, we establish consistency and asymptotic
normality of the feasible GLS estimator as both the cross-section and
time series dimensions diverge to infinity. Dependence, both cross-
sectional and temporal, of the idiosyncratic innovation is permitted.
Our results are presented separately for time regressions with unit-
specific coefficients and for cross-section regressions with time-specific
coefficients. Primitive conditions of our assumptions are established
for Andrews (2005) and Pesaran (2006) regression models, as partic-
ular cases of our set up. Monte Carlo experiments corroborate our
results.

Key Words: panel, factor model, heterogeneous coefficients, time-varying

coefficients, estimation, generalized least squares.

1 Introduction

Factor models represent one of the most popular and successful way to cap-
ture cross-sectional and temporal dependence, especially when facing a large
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number of units (N). However, a factor structure in the innovation of a lin-
ear regression model can make the ordinary least squares (henceforth OLS)
estimator invalid since it will no longer be consistent, in general, for the true
regression coefficients unless some restrictions are imposed. In a linear cross-
sectional regression with constant parameters Andrews (2005) shows that,
when the error and the regressors both have a factor structure, consistency
of the OLS estimator is preserved only with uncorrelated factor loadings. The
parameters estimate has a mixed normal asymptotic distribution, as N goes
to infinity. Within a linear regression across time (T ) with the innovation and
the regressors sharing a factor structure, when a panel of observations is avail-
able, Pesaran (2006) shows that individual-specific regression coefficients can
be consistently estimated by augmenting the regressors with cross-sectional
averages of the dependent variable and individual-specific regressors. Asymp-
totic normality is obtained, as both N, T go to infinity. Again, the essential
condition is a restriction on the joint distribution of the factors loadings
for the factor structure in the regressors and innovation, namely that their
(population) means must be linearly independent.

This paper considers cross-sectional regressions with time-specific param-
eters as well as time regressions with individual-specific parameters when the
innovation contains a factor structure and a panel of data is available. Both
cases are of independent interest. We show that the unfeasible generalized
least squares (henceforth UGLS) estimator, based on the presumption that
the covariance matrix of the factor structure is known, is consistent and
asymptotically normal distributed without any particular restriction on the
factor loadings nor on the common factors, in particular even if the inno-
vation and the regressors are mutually correlated. This is due to a form of
asymptotic orthogonality between the factor loadings and the inverse of the
factor structure covariance matrix. The difficulty arises when considering a
feasible version of the UGLS estimator. A natural approach would be, ex-
ploiting the panel dimension, to consider the sample covariance matrix of the
OLS residuals. Given the non-consistency of the OLS estimator, such sample
covariance matrix is also non-consistent for the true covariance matrix. How-
ever, the relevant result here is that, under suitable regularity conditions, the
limit of such sample covariance matrix leads to a matrix whose inverse is also
asymptotically orthogonal to the factor loadings. Indeed, there is an entire
class of matrices, rather than a unique matrix, that is asymptotically orthog-
onal to the factor loadings. As a consequence, we show that this feasible GLS
(henceforth GLS) estimator is consistent and asymptotically normal, as both
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N, T diverge to infinity, even under a set of conditions that make the OLS
invalid. However, the limit covariance matrix of the OLS residuals will be
in general different from the true covariance matrix of true innovations, and
thus such the GLS might not be as efficient as the UGLS. Efficiency gains
can be obtained, though, by an evaluating the GLS iteratively, as explained
below.

The GLS estimator exhibits two main desirable properties. First, it is
computationally easy to handle since it simply requires to perform a sequence
of linear regressions. Second, the GLS estimator does not require knowledge
of the number of factors nor of estimates of the factors themselves. Hence,
we do not need to make use of the recent advances in estimation of (dynamic)
factor models such as Forni, Hallin, Lippi, and Reichlin (2000), Bai and Ng
(2002) and Stock and Watson (2002) which in turn would require prelim-
inary testing of the number of factors (see Bai and Ng (2002) and Hallin
and Liska (2007), Onatski (2009) for tests designed for static and dynamic
factor models, respectively). In contrast to Andrews (2005), Pesaran (2006)
and our approach where estimation of the factor structure is not required,
Bai (2009) considers joint estimation of regression coefficients and of the in-
novation factor structure. Knowledge of, at least, an upper bound for the
exact number of factors is required. The regression coefficients estimator
is consistent although asymptotically biased, in general, but an asymptot-
ically valid bias-correction is established. The true regression coefficients,
though, have to be constant in Bai (2009) approach ruling out both unit-
and time-variation.

Panel with factor structure innovations have also been considered by
Holtz-Eakin, Newey, and Rosen (1988), Ahn, Hoon Lee, and Schmidt (2001),
Bai and Ng (2004) Phillips and Sul (2003), Moon and Perron (2003), Phillips
and Sul (2007) and Moon and Weidner (2009). Most of these papers are de-
fined within the context of dynamic panel models. In particular, Holtz-Eakin,
Newey, and Rosen (1988) note how the individual effects can be eliminated
by quasi-differencing although this induces time-variation to otherwise con-
stant regression coefficients. They consider the asymptotic properties of an
instrumental variable estimator for large N where the number of instruments
is of order O(T 2). Ahn, Hoon Lee, and Schmidt (2001) focus on generalized
method of moment estimation of cross-sectional regressions with independent
and identically distributed (i.i.d.) regressors for fixed T , ruling out dynamic
panel. For autoregressive panel models with possibly a time trend, Bai and
Ng (2004) study unit root tests that permit to identify whether the non-
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stationarity is associated with the factor structure part or with the idiosyn-
cratic part. They do not treat the factor structure as a nuisance parameter
but build their test on principal components estimates of common and id-
iosyncratic components, providing the asymptotic properties of the test for
large N, T . For the same models, Phillips and Sul (2003) focus on median
unbiased estimation of the autoregressive parameter, and related homogene-
ity and unit root tests. Their asymptotic theory holds for fixed N . Moon
and Perron (2003) propose unit root testing with respect to a similar class of
models, valid for both large N, T , based on de-factoring the data by means
of principal components estimation of the factor structure which if ignored,
would substantially reduce the power of the test. Their test has no power
when a linear trend with fixed effects is allowed for. For a larger class of
dynamic panels, that allows for exogenous regressors, Phillips and Sul (2007)
characterize the bias of the (pooled) OLS estimator for large N , in particular
showing that it converges to a random variable because of the substantial
degree of cross-sectional dependence associated with the factor structure in-
novation. Moon and Weidner (2009) consider a similar model and estimator
to Bai (2009) and established the limiting distribution of the likelihood ratio
and Lagrange multiplier test for the constant regression coefficients, under
weaker conditions on the observed regressors permitting dynamic panel.

This paper proceeds as follows. Section 2 illustrates the basic definitions
and the general assumptions required for estimation of regressions with unit-
specific parameters stating with a theorem the asymptotic properties of the
OLS, UGLS and GLS estimator as T , in the first two cases, and as N, T
in the last case, diverge to infinity. Section 2.3 then considers, as a special
case of our set-up, the regression model with unit-specific parameters of Pe-
saran (2006), establishing primitive conditions for our general assumptions.
In particular, we show how some, but not all, of these conditions are implied
by certain of Pesaran’s (2006) assumptions, summarizing the findings in a
proposition. Section 3 focuses on regression models with time-specific pa-
rameters, again presenting the basic definitions and the general assumptions,
summarizing the asymptotic properties of the OLS, UGLS and GLS as N and
N, T , respectively, diverge to infinity. Since Andrews (2005) cross-sectional
model represents a special case of this set-up, Section 3.3 investigates the
extent to which Andrew’s (2005) assumptions provide primite conditions for
at least some of our general assumptions. The full set of required primitive
conditions is then described in a proposition. Our theoretical results are
corroborated by a set of Monte Carlo experiments described in Section 4.
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Section 5 concludes. The proofs of both theorems are reported in the final
Appendix.

Hereafter we use the following notation: →p denotes convergence in prob-
ability and →d convergence in distribution. When A > 0 we mean that the
matrix A is positive definite, A ≥ 0 that A is positive semi definite, indicat-
ing by A

1
2 its square-root matrix, ∥A∥= (tr(AA′))

1
2 indicates the Euclidean

norm of the matrix A, �n is a n × 1 vector of ones, �ja is the limit in prob-
ability of �′naj/n (as n → ∞) for a sequence of n × 1 random vectors aj ,
the matrix ΣjA′CB is the limit in probability of A′

jCjBj/n (as n → ∞) for
sequences of random matrices Aj,Bj with n rows and a constant number of
columns and for the sequence of the random n × n matrices Cj , all possi-
bly indexed by j. When Cj equals the identity matrix In, we write ΣjA′B.
Clearly Σ′

jA′CB
= ΣjB′C′A. Note that �ja and ΣjA′CB can be, and will gener-

ally be, random. A sequence of random vectors of dimension n×1, normally
distributed with mean zero and identity covariance matrix, will be denoted
by �nj. We skip dependence on the index j from the above expressions when
not necessary.

2 Unit-Specific Parameters Model

2.1 Definitions and assumptions

Throughout this section, the observed variables obey a linear regression
model with a k × 1 vector of possible unit-specific regression coefficients
�i0. The model for the ith unit can be expressed, in matrix form, as

yi = Xi�i0 + ui, (1)

for an observed T × 1 vector yi = (yi1, ..., yit, ..., yiT )
′, an observed T × k

matrix Xi = (xi1, ...,xiT )
′ where either none, some or even all of the re-

gressors can be common across units, and an unobserved T × 1 vector ui =
(ui1, ..., uit, ..., uiT )

′. The innovation satisfy the factor structure

ui = Fbi + "i, (2)

for an unobserved m × 1 vector of factor loadings bi, an unobserved T ×m
matrix of common factors F = (f1, ..., fT )

′ and an unobserved T × 1 vector
of idiosyncratic innovations "i = ("i1, ..., "iT )

′. The maintained assumption
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here is that k and m do not vary with T and N . Although model (1) is
written as a regression across time for a given i, we assume that in fact a
panel of observations {y,X} = {y1, ...,yi, ...,yN ,X1, ...,Xi, ...,XN} is avail-
able. As pointed out in Pesaran (2006, section 2), several panel models, with
either constant or unit-specific regression coefficients, are encompassed by
his model, which in turn is a particular case of (1), including the traditional
fixed and random effects models.

We now specify a set of general assumptions required for the estimators
here considered, commenting on them through a series of remarks below.
We then state, in Theorem 1, the asymptotic properties of the OLS, UGLS
and GLS estimators for �i0. In the subsequent section we establish a set
of primitive conditions of our general assumptions for the particular case of
interest of model (1) given by Pesaran (2006) model.

Assumption 1.ℋ (factor loadings)
For every i, the bi are random vector of dimension m× 1 such that

E(bib
′

i
∣ Xi,F) = ℬi > 0,

N−1

N∑

i=1

ℬi →p ℬ > 0 as N → ∞.

Assumption 2.ℋ (idiosyncratic innovation)
For every i, "i = ("i1, ..., "it, ..., "iT )

′ satisfies

E("i ∣ bi, Xi,F) = 0, (3)

Hi = E("i"
′

i ∣ bi, Xi,F) > 0, (4)

N−1
N∑

i=1

Hi →p ℋT > 0 as N → ∞. (5)

Assumption 3.ℋ (regressors)
For every i, the T × k matrix Xi is full column rank.

Assumption 4.ℋ (basic limit conditions)
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All the limit matrices below, as T → ∞, are a.s. finite:

X′

iXi

T
→p ΣiX′X > 0,

X′

iHiXi

T
→p ΣiX′HX > 0,

X′

iF

T
→p ΣiX′F , (6)

X′

iH
−1
i Xi

T
→pΣiX′H−1X > 0,

F′H−1
i F

T
→pΣiF ′H−1F > 0,

X′

iH
−1
i F

T
→pΣiX′H−1F ,

(7)

such that a.s.

ΣiX′H−1X −ΣiX′H−1FΣiF ′H−1FΣ
′

iX′H−1F
> 0. (8)

Assumption 5.ℋ (limit conditions for GLS)
All the limit matrices below, as N → ∞ and arbitrary T , are a.s. finite:

N∑

i=1

XiΣ
−1
iX′X

ΣiX′Fbib
′

iΣ
′

iX′F
Σ−1

iX′X
X′

i

N
= A1T (1+op(1)),

N∑

i=1

XiΣ
−1
iX′X

ΣiX′Fbib
′

iF
′

N
= A2T (1+op(1)),

N∑

i=1

XiΣ
−1
iX′X

X′
i"i"

′
iXiΣ

−1
iX′X

X′
i

NT
= A3T (1 + op(1)),

N∑

i=1

XiΣ
−1
iX′X

X′
i"i"

′
i

N
= A4T (1 + op(1)),

N∑

i=1

bi"
′
i

N
1
2

= C1T (1 + op(1)),
N∑

i=1

XiΣ
−1
iX′X

ΣiX′Fbi"
′

i

N
1
2

= C2T (1 + op(1)), (9)

N∑

i=1

bi"
′

iXiΣ
−1
iX′X

X′

i

N
1
2T

1
2

= C3T (1 + op(1)),

N∑

i=1

XiΣ
−1
iX′X

ΣiX′Fbi"
′

iXiΣ
−1
iX′X

X′

i

N
1
2T

1
2

= C4T (1 + op(1)). (10)

Assumption 6.ℋ (distribution conditions for OLS and UGLS)
As T → ∞:

X′

i"i

T
1
2

→d (ΣiX′HX)
1
2 �ki, (11)

Z′

iH
−1
i "i

T
1
2

→d (ΣiZ′H−1Z)
1
2 �(k+m)i, (12)

setting
Zi = (Xi,F), (13)

where �ki, �(k+m)i are independent from ΣiX′HX,ΣiZ′H−1Z respectively.
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Assumption 7.ℋ (distribution and identification conditions for GLS)
Let D1T , ℰ1T be m ×m matrices and D2T , ℰ2T be T × T matrices satisfying
a.s.

A1T − (A2T +A′

2T ) = FD1TF
′ +D2T

and (14)

A3T − (A4T +A′

4T ) = Fℰ1TF′ + ℰ2T .

Then

ℐ1T = D1T + T−1ℰ1T + ℬ, (non-singular symmetric m×m matrix),

ℐ2T = D2T + T−1ℰ2T +ℋT , (non-singular T × T matrix),

satisfy

F′ℐ−1
2T F

T
→p ΣF ′ℐ

−1
2 F (non-singular),

F′ℐ−1
2T Hiℐ−1

2T F

T
→p ΣiF ′ℐ−1ℋℐ

−1
2 F ,(15)

X′

iℐ−1
2T Xi

T
→p ΣiX′ℐ

−1
2 X (non-singular),

X′

iℐ−1
2T Hiℐ−1

2T Xi

T
→p ΣiX′ℐ

−1
2 Hℐ

−1
2 X ,

X′

iℐ−1
2T F

T
→p ΣiX′ℐ

−1
2 F ,

X′

iℐ−1
2T Hiℐ−1

2T F

T
→p ΣiX′ℐ

−1
2 Hℐ

−1
2 F ,

Z′

iℐ−1
2T "i

T
1
2

→d

(

ΣiZ′ℐ
−1
2 Hℐ

−1
2 Z

) 1
2
�(k+m)i, (16)

with �(k+m)i independent from ΣiZ′ℐ
−1
2 Hℐ

−1
2 Z , where Zi is defined in (13). All

the limits above hold as T → ∞ with a.s. finite limit matrices. Setting

ΣT = Fℐ1TF
′ + ℐ2T ,

for all i and some constants a, b, c, d > 0:

X′

iΣ
−1
T (FC1T + C′

1TF
′ + C2T + C′

2T )Σ
−1
T (Fbi + "i) = Op(T

a�k), (17)

X′

iΣ
−1
T (FC3T + C′

3TF
′ + C4T + C′

4T )Σ
−1
T (Fbi + "i) = Op(T

b�k), (18)

X′

iΣ
−1
T (FC1T + C′

1TF
′ + C2T + C′

2T )Σ
−1
T Xi = Op(T

c�k�
′

k), (19)

X′

iΣ
−1
T (FC3T + C′

3TF
′ + C4T + C′

4T )Σ
−1
T Xi = Op(T

d�k�
′

k). (20)

Remarks 1.We are assuming that the factor loadings bi are unobserved ran-
dom variables with a non-singular yet possibly heterogeneous distribution,
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varying with the index i. We do not necessarily require the bi to be mutu-
ally independent from the regressors and from the factors although mutual
independence is typically assumed.
2. The factors ft are assumed unobserved, whereas observed factors, if present,
will be simply part of the regressors Xi. Moreover, there is no restriction on
the time dependence of the ft, which can be autocorrelated. One of the suffi-
cient conditions for Assumption 7.ℋ will be, however, boundedness of ΣF ′F .
Hence the ft can satisfy for instance a stationary vector auto-regression.
3. The idiosyncratic innovation "i does not need to be i.i.d across i, nor needs
to be independent from either the factor loadings bi, the factors F and the
observed regressors Xi. Strong exogeneity, although not assumed here, of Xi

and mutual independence of bi, ft with �it imply (3). Note, however, that
this requirement only refers to the idiosyncratic part of the regression error.
Instead, Xi and the common component of the regression error, f ′tbi, are
allowed to, and in general will, be cross-correlated. Moreover, Hi can vary
with i and does not need to be diagonal, implying a substantial degree of both
heterogeneity as well as the possibility of time dependence time dependence.
4. Assuming full column rank of Xi for all i is required, given that com-
putationally the GLS estimator relies on the evaluation of a sequence of N
different OLS problems.
5. When ΣiX′X and ΣF ′F are finite, then the other limit matrices are also
finite by the CauchySchwarz inequality when, in addition, the maximum
eigenvalue of Hi is bounded and its minimum eigenvalue is bounded away
from zero, uniformly in T . Such assumptions are not stated explicitly since
here (a.s.) finiteness of the limit matrices suffices. As a simple example, when
Xi = �T (intercept only), then X′

iHiXi/T = �′THi�T/T . Its limit is certainly
finite (a.s) when the maximum eigenvalue of Hi is bounded but finiteness
can also be obtained when a finite number of eigenvalues of Hi grows slower
than O(T ). Bounded-ness of the maximum eigenvalue is implied when ui

satisfy an approximate factor structure (see Chamberlain (1983)).
6. Here ΣiX′F represents the cross-correlation (when EF = 0) between the
regressors Xi and the factors F and it determines the non-zero asymptotic
bias of the OLS estimator, except for the trivial case of no factor structure
(bi = 0). Under our assumptions, the regression innovation ui has covariance
matrix

Si = FℬiF
′ +Hi

and, as illustrated below (see (8)), the UGLS estimator of �i0 requires the
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limit of T−1X′

iS
−1
i Xi to be positive definite.

7. The limit matrices in Assumptions 5.ℋ and 7.ℋ arise when looking at the
probability limit of the sample covariance matrix of the OLS innovations.
8. The limiting distribution results stated in Assumptions 6.ℋ and 7.ℋ, are
required for OLS-UGLS and GLS respectively. Note that the possibility
of a factor structure in the regressors Xi implies mixed normal asymptotic
distributions unless the asymptotic covariance matrix turns out to be con-
stant. Conditional versions of the usual central limit theorems (CLT) will
be required (see for instance Andrews (2005, Theorem 4)). Since we aim
at providing general results, we do not specify here the primitive conditions
required for such conditional CLT. These conditions can be relatively easily
established when one considers particular cases of (1) such as for Pesaran
(2006)’s model, examined in Section 2.3.
9. As explained below, considering the GLS requires to consider ΣT in place
of Si. Therefore, the various conditions dictated by Assumption 7.ℋ on
ℐ1T , ℐ2T make sure that Σ−1

T will be asymptotically orthogonal to the matrix
of latent factors F. This is the essential property that guarantees that the
GLS estimator will have good asymptotic properties.
10. Conditions (17)-(20) determine the speed at which N and T have to di-
verge to infinity, possibly at different rates, to ensure that the GLS estimator
is consistent and asymptotically normal.

2.2 Estimators results

For estimation of parameters �i0, the OLS estimator yield

�̂OLS
i = (X′

iXi)
−1Xiyi,

The unfeasible generalized least squares (UGLS) estimator is

�̂UGLS
i = (X′

iS−1
i Xi)

−1XiS−1
i yi,

setting
Si = FℬiF

′ +Hi.

The feasible generalized least squares (GLS) estimator is

�̂GLS
i = (X′

iΣ̂
−1
T Xi)

−1XiΣ̂
−1
T yi,
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setting

Σ̂T = N−1
N∑

i=1

ûiû
′

i, ûi = yi −Xi�̂
OLS
i .

This requires at minimum N ≥ T . Note, however, that if the regressors
contain some observed factors, such as for instance when an intercept term is
allowed for, which can be written, without loss of generality, as Xi = (D,X∗

i )
for a T × k1 matrix D and a T × k2 matrix X∗

i , where k = k1 + k2, then
û′
iD = 0 for all i. As a consequence, Σ̂T will be at most of rank T − k1 < T ,

no matter how large N is. Therefore, to allow non-singularity we consider
instead the alternative definition

Σ̂T = N−1

N∑

i=1

ûiû
′

i + T−1DD′,

where the normalization by T−1 is imposed since, from our assumptions,
supT ∥Σ̂−1

T ∥= O(1) a.s. is required.

Theorem 1 (unit-specific parameters)

(i) (OLS) When Assumptions 3.ℋ, 4.ℋ.(6), 6.ℋ.(11) hold

T
1
2 (�̂OLS

i − �i0 − OLS
i ) →d (VOLS

i )
1
2 �ki as T → ∞,

setting OLS
i = Σ−1

iX′XΣiX′Fbi, VOLS
i = Σ−1

iX′XΣiX′HXΣ
−1
iX′X , where �ki and

VOLS
i are mutually independent.

(ii) (UGLS) When Assumptions 1.ℋ, 2.ℋ.(4), 3.ℋ, 4.ℋ.(7), 6.ℋ.(12)

T
1
2 (�̂UGLS

i − �i0) →d (VUGLS
i )

1
2 �ki as T → ∞,

where �ki and VUGLS
i are mutually independent, setting VUGLS

i = (ℳUGLS
i )−1N UGLS

i (ℳUGLS
i )−1

with ℳUGLS
i = plimT→∞ T−1(X′

iS−1
i Xi), N UGLS

i = plimT→∞ T−1X′
iS−1

i HiS−1
i Xi.

Moreover ℳUGLS
i = N UGLS

i .

(iii) (GLS) When Assumptions 1.ℋ, 2.ℋ.(5), 3.ℋ, 4.ℋ.(6) and (8), 5.ℋ,
7.ℋ

�̂GLS
i →p �i0 as

1

T
+

Tmax(a−1,b− 3
2
)

N
1
2

+
Tmax(c− 3

2
,d−2)

N
1
2

→ 0,

T
1
2 (�̂GLS

i − �i0) →d (VGLS
i )

1
2 �ki as

1

T
+

Tmax(a− 1
2
,b−1)

N
1
2

+
Tmax(c−1,d− 3

2
)

N
1
2

→ 0,
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where �ki and VGLS
i are mutually independent, setting VGLS

i = (ℳGLS
i )−1NGLS

i (ℳGLS
i )−1

with ℳGLS
i = plim(N,T )→∞ T−1(X′

iΣ̂
−1
T Xi), NGLS

i = plim(N,T )→∞ T−1X′

iΣ̂
−1
T HiΣ̂

−1
T Xi.

Remarks 1. The asymptotic bias of the OLS estimator is not simply ex-
pressed in terms an un-centered asymptotic distribution which would other-
wise still ensures consistency. Instead �OLS

i = �i0 + OLS
i + Op(T

−
1
2 ) where

OLS
i = Σ−1

iX′XΣiX′Fbi is, in general, a random variable. Consistency is
achieved if either bi = 0, meaning no factor structure, or ΣiX′F = 0, that is
zero cross-correlation between the regressors and the factors (assuming the
latter have mean zero).
2. It is well-known that the UGLS/GLS estimator improve efficiency with
respect the the OLS estimator for non-spherical innovations. Here we find
that UGLS/GLS exhibit a more profound property: they completely elimi-
nates the factor structure’s adverse effect on OLS of inducing an asymptotic
bias. Moreover, when the regressors contain a factor structure, an example of
which is Xi = DAi+FΓi+Vi, as in Pesaran’s (2006) model (see Section 2.3
below), then both VUGLS

i and VGLS
i will be (functionally) independent from

D and, in particular, from F yielding T
1
2 (�̂UGLS

i − �i0) →d N
(
0,VUGLS

i

)
as

T → ∞ and T
1
2 (�̂GLS

i − �i0) →d N
(
0,VGLS

i

)
as 1/T + Tmax(a− 1

2
,b−1)/N

1
2 +

Tmax(c−1,d− 3
2
)/N

1
2 → 0. Therefore, the UGLS/GLS estimators have the con-

ventional asymptotic normal distribution, unlike the OLS which has a mixed
normal asymptotic distribution. The possibility of a different, asymptotic,
behaviour of OLS and GLS has already been noted by Robinson and Hi-
dalgo (1997) in a time series regression context with possibly long memory
innovation and regressors.
3. The reason underlying this important property of the UGLS estimator
here uncovered is the asymptotic orthogonality between the inverse of the
factor structure covariance matrix S−1

i and the factor matrix F, formalized in
general terms in Lemma 1 in the Appendix. This result has been used, in the
different context of financial portfolio optimization, by Pesaran and Zaffaroni
(2009) who establish that mean-variance trading strategies do allow complete
diversification of both idiosyncratic and common shocks to asset returns.
4. The GLS estimator here proposed does not achieve in general the same
efficiency as the UGLS, as discussed below. Our estimator does, however,
exhibit the desired asymptotic properties, as N, T diverge jointly to infinity
at suitable rates, meaning that our result does not depend on the somewhat
restrictive approach of taking sequential limits. When a ≤ 1, b ≤ 3

2
, c ≤ 3

2
and

d ≤ 2 then consistency is achieved without the need to specify the relative
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speed at which N, T diverge to infinity. These conditions appear cumbersome
due to the generality of our approach, whereas they become much simpler
when looking at specific models such as Pesaran (2006), described in the next
section.

The reason behind the asymptotic properties of the GLS is that, although
Σ̂T is a non-consistent estimate of the true covariance matrix Si (in the sense
of element by element), the inverse of its limit ΣT = Fℐ1TF

′+ℐ2T belongs to
the space orthogonal to the factors F, under suitable regularity conditions.
On the other hand, the GLS estimator does not require to identify, let alone
to estimate, the factor structure within the innovation so that, for instance,
one does not need to know m, the true number of factors, as long as it is
finite. In the case of no factor structure (m = 0) our method continue to
work, without making use of this information which obviously suggests use
of OLS.
5. Since GLS delivers consistent parameter estimates, this suggests a multi-
step approach, achieving a more efficient estimator. The first step consists
of getting the GLS estimator �̂

(1)
i = �̂GLS

i as described above. Next, one can

evaluate Σ̂T (1) = N−1
∑N

i=1 û
(1)
i û

(1)′
i for û

(1)
i = yi −Xi�̂

(1)
i in order to get the

second-step GLS estimator �̂
(2)
i = (X′

iΣ̂
−1
T (1)Xi)

−1XiΣ̃
−1
T (1)yi. Given a further

set of conditions that build on Assumptions ℋ, one can show that �̂
(2)
i is also

consistent and asymptotically normal, as N, T diverge to infinity. Moreover,
it can be shown that Σ̂T (1) →p Si+T−1Ri(1), as N → ∞, for a T ×T matrix
Ri(1) satisfying supT ∥ T−1Ri(1) ∥= O(1) a.s. and where each element of

T−1Ri(1) goes to zero as T → ∞. Hence, Σ̂T (1) is closer to Si than Σ̂T , where
the approximation improves the larger N and T are. This suggests that a
certain efficiency improvements can already be achieved by using the two-step
GLS estimator �̂

(2)
i and, indeed, such improvement can be substantial when

N, T are both sizeable. Further gains are expected when the procedure is
iterated yielding, after J steps, �̂

(J)
i = (X′

iΣ̂
−1
T (J−1)Xi)

−1XiΣ̂
−1
T (J−1)yi where

Σ̃T (J−1) is based on �̂
(J−1)
i . Below we report some Monte Carlo results in

order to quantify the possible improvements of efficiency in finite samples
from using the multi-step GLS estimator with J = 4.
6. Consistent estimation of the GLS asymptotic covariance matrix VGLS

i can
be obtained using the nonparametric Newey and West (1987, Theorem 2)

13



approach yielding V̂GLS
i = (ℳ̂GLS

i )−1N̂GLS
i (ℳ̂GLS

i )−1 with

ℳ̂GLS
i =

1

T
(X′

iΣ̂
−1
T Xi), N̂GLS

i = Ωi0 +
n∑

ℎ=1

(1− ℎ
(n+1)

) (Ωiℎ +Ω′

iℎ) , (21)

setting Ωiℎ = 1
T

∑T

t=ℎ+1 ûitûit−ℎx̂itx̂
′

it−ℎ, ℎ = 0, 1, ...T − 1, where X̂i =

(x̂i1...x̂iT )
′ = Σ̂−1

T Xi and û
(1)
t = (û

(1)
i1 ...û

(1)
iT )

′ = yt − Xi�̂
GLS
i and the band-

width n = n(T,N) grows slowly with T,N . The same approach has been
used in Pesaran (2006, eq. (51) and (52)) and Bai (2009, Remark 8) to
obtain a consistent estimator of the asymptotic covariance matrix for their
estimators when correlation and heterokedasticity is allowed for.

Notice that, although û
(1)
t does contain the factor structure, since its

population counterpart is ut = Fbi+"i, pre-multiplication by Σ̂−1
T will make

(asymptotically) negligible the contribution to û
(1)
t of the common factors.

An alternative approach consists of estimating the idiosyncratic component
of û

(1)
t directly, for example by principal components, yielding "̂

(1)
t and then

replace Ωiℎ by T−1
∑T

t=ℎ+1 "̂it"̂it−ℎx̂itx̂
′

it−ℎ into (21). Preliminary testing for
the number of factors is required.

2.3 Particular model: Pesaran (2006)

The model is
yit = �′

0idt + � ′

0ixit + eit, (22)

where dt is a n× 1 vector of observed factors, xit is a k × 1 observed vector
satisfying

xit = A′

idt + Γ′

ift + vit (23)

where ft is the m×1 vector of unobserved factors, Ai, Γi are n×k and m×k
matrices of factor loadings, vit is the k × 1 vector of specific components of
the regressors xit. Finally

eit = f ′ti + "it, (24)

with "it independent of dt, xit and vit independent of dt, ft. With respect
to our notation, (23)-(24) imply F = (f1...ft...fT )

′, B = (1...i...N)
′, Xi =

(D,X∗

i ), where we set X∗

i = DAi +FΓi +Vi with D = (d1...dt...dT )
′, Vi =

(vi1...vit...viT )
′.

We now verify the extent to which the assumptions of Pesaran (2006)
imply our Theorem 1, part (iii). It turns out that some of our conditions
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are weaker and other are stronger than Pesaran (2006). Note that since
the model permits common observed factors, one will need to add the term
T−1DD′ to Σ̂T , in particular to its ℐ2T component.

Assumption 1.ℋ follows by the strong law of large numbers (LLN) and
Pesaran (2006, Assumption 3) where ℬi = ℬ equals to ′ + Ω� using Pe-
saran’s notation. We further require ℬ > 0. Assumption 2.ℋ is only in part
implied by Pesaran (2006, Assumption 2), in particular (4) is so, but we
also require N−1

∑N

i=1Hi →p ℋT > 0, not necessarily implied by Pesaran
(2006, eq. (10)). Assumption 3.ℋ is implied by Pesaran (2006, Assump-
tion 5a). Concerning Assumption 4.ℋ, (6) follows by strengthening Pesaran
(2006, Assumption 1 and 2) to fourth-order covariance stationarity with ab-
solute summable autocovariances, yielding

X′

iXi

T
→pΣiX′X ==

⎛

⎝

ΣD′D ΣD′DAi +ΣD′FΓi

A′

iΣD′D + Γ′

iΣF ′D ΣV ′V +A′

iΣD′DAi + Γ′

iΣF ′FΓi +A′

iΣD′FΓi + Γ′

iΣF ′DAi

⎞

⎠ ,

X′

iF

T
→p ΣiX′F =

(
ΣD′F

Γ′

iΣF ′F +A′

iΣD′F

)

,

since ΣF ′V and ΣD′V are both matrices of zeros by Pesaran (2006, Assump-
tion 1 and 2). By the same assumptions, ΣiX′X is bounded and, using the
block matrix decomposition (Magnus and Neudecker 1988), is non-singular
whenever both matricesΣD′D and ΣV ′V −Γ′

iΣ(F ′D)Γi are non-singular, where
we set

Σ(F ′D) = ΣF ′DΣ
−1
D′DΣD′F −ΣF ′F .

The latter requires ΣV ′V > 0, implied by Pesaran (2006, Assumption 2) who
defines it as Σi, since −Σ(F ′D) is positive semi definite, in fact at most 0 for
perfectly correlated ft, dt. However, here we require in addition ΣD′D > 0.
Expression for ΣiX′HX will depend on the adopted parameterization for the
ℎts,i, that is on the form of the moving average coefficients ail in Pesaran
(2006, Assumption 2). However, under summability of the moving average
coefficients ail, which implies the spectral density of the "it to be finite at all
frequencies, then boundedness of ΣiX′X implies, by the spectral decompo-
sition of positive definite matrices, boundedness of ΣiX′HX . Note, however,
that the UGLS estimator does need Hi > 0, as in Assumption 2.ℋ.(4), which
in turn requires the spectral density of the "it to be bounded away from
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zero, ensuring boundedness of ΣiX′H−1X , ΣiF ′H−1F , ΣiX′H−1F . Concerning
Assumption 5.ℋ, setting Ci = (Ai +Σ−1

D′DΣD′FΓi), one obtains

Σ−1
iX′X =

⎛

⎝

Σ−1
D′D +Ci(ΣV ′V − Γ′

iΣ(F ′D)Γi)
−1C′

i −Ci(ΣV ′V − Γ′
iΣ(F ′D)Γi)

−1

−(ΣV ′V − Γ′

iΣ(F ′D)Γi)
−1C′

i (ΣV ′V − Γ′

iΣ(F ′D)Γi)
−1

⎞

⎠

and

XiΣ
−1
iX′XΣiX′F = DΣ−1

D′DΣD′F+(DΣ−1
D′DΣD′FΓi−FΓi−Vi)(ΣV ′V−Γ′

iΣ(F ′D)Γi)
−1Γ′

iΣ(F ′D).

Further manipulations yield

A1T = DΣ−1
D′DΣD′FℬΣF ′DΣ

−1
D′DD

′ +DΣ−1
D′DΣD′FℬΣ(F ′D)P1TΣF ′DΣ

−1
D′DD

′

−DΣ−1
D′DΣD′FℬΣ(F ′D)P1TF

′ +DΣ−1
D′DΣD′FP1TΣ(F ′D)ℬΣF ′DΣ

−1
D′DD

′

+DΣ−1
D′DΣD′FP2TΣF ′DΣ

−1
D′DD

′ −DΣ−1
D′DΣD′FP2TF

′ − FP1TΣ(F ′D)ℬΣF ′DΣ
−1
D′DD

′

−FP2TΣF ′DΣ
−1
D′DD

′ + FP2TF
′ +P3T ,

setting

N−1

N∑

i=1

Γi(ΣV ′V − Γ′

iΣ(F ′D)Γi)
−1Γ′

i →p P1T ,

N−1
N∑

i=1

(
Γi(Σvv′ − Γ′

iΣ(F ′D)Γi)
−1Γ′

iΣ(F ′D)ℬΣ(F ′D)Γi(ΣV ′V − Γ′

iΣ(F ′D)Γi)
−1Γ′

i

)
→p P2T ,

N−1
N∑

i=1

(
Vi(ΣV ′V − Γ′

iΣ(F ′D)Γi)
−1Γ′

iΣ(F ′D)ℬΣ(F ′D)Γi(ΣV ′V − Γ′

iΣ(F ′D)Γi)
−1V′

i

)
→p P3T ,

N−1

N∑

i=1

Vi(ΣV ′V − Γ′

iΣ(F ′D)Γi)
−1V′

i →p P4T .

LikewiseA2T = DΣ−1
D′DΣD′FℬF′+DΣ−1

D′DΣD′FP1TΣ(fd′)ℬF′−FP1TΣ(F ′D)ℬF′.
Notice how the above expression are functionally independent fromAi. Hence,
whetherX∗

i is dependent or not fromD, is irrelevant for the sake of the deriva-
tion of A1T ,A2T whose existence is implied, using a strong LLN argument,
by Pesaran (2006, Assumptions 2 and 3). No additional moment conditions
on the Γi are required since sup

Γi
∥ Γi(Σvv′ − Γ′

iΣ(fd′)Γi)
−1Γ′

i ∥= O(1) a.s.
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and the Vi have bounded fourth moment by Pesaran (2006, Assumption 2).
By simple manipulations

XiΣ
−1
iX′XX

′

i = DΣ−1
dd′D

′ + [(DΣ−1
D′DΣD′F − F)Γi −Vi](ΣV ′V − Γ′

iΣ(F ′D)Γ
′

i)
−1

×[Γ′

i(DΣ−1
D′DΣD′F − F)′ −V′

i],

where all the terms involving Ai drop out. Although closed-form expressions
for A3T , A4T , require to specify the parameterization of the Hi, existence of
the limit follows by Pesaran (2006, Assumptions 2 and 3). Conditions (9) and
(10) follow by direct use of the CLT which holds under suitable regularity
assumptions. For instance, when E ∥bi∥2+�< ∞ and E ∣ "it ∣2+�< ∞, some
� > 0, and Pesaran (2006, Assumption 2) hold with in addition i.i.d.-ness
of the "it across i, then a conditional version of the Lyapunov condition

holds and the t-th column of C1T satisfies C
1
2
1tT �mt where the standard normal

distributed m × 1 vector �1t is independent of C1tT . The latter is obtained
as the probability limit of N−1

∑N
i,j=1 bi"it"jtb

′

j whose existence is implied
by the previously made assumptions. Cross-sectional independence of the
"it can be relaxed to a limited degree of dependence of the "it such that,
in particular, Ht = [ℎij,t]

N
i,j=1 = E("t"

′

t ∣ ft,Xt,B) (see (30) below) has
bounded maximum eigenvalue, that is supN ∥Ht∥= O(1) a.s. (see Pesaran
and Tosetti (2007) for a general definition cross-sectional weak dependence).
Likewise, under the same conditions, for the tth column of C2T one gets

C
1
2
2tT �Tt, where boundedness of C2tT requires E ∥D+F+Vi∥2+�< ∞. Similar

results apply to (10) where now the Lyapunov condition require, in addition,
E ∥D+ F+Vi∥6+�< ∞.

Assumption 6.ℋ is not required by the GLS estimator and will not be
considered here. Concerning Assumption 7.ℋ, (14) follows for

D1T = P2T +P1TΣ(F ′D)ℬ + ℬΣ(F ′D)P1T ,

D2T = − F (C1T + ℬ)ΣF ′DΣ
−1
D′DD

′ −DΣ−1
D′DΣD′F (C1T + ℬ)F′

+ DΣ−1
D′DΣD′F (C1T + ℬ)ΣF ′DΣ

−1
D′DD

′ +P3T .

For A3T ,A4T , as said, closed-form expressions required to parameterize Hi

so, for instance, assuming for simplicity Hi = IT yields

ℰ1T = −P1T ,

ℰ2T = −D(Σ−1
D′D +Σ−1

D′DΣdf ′P1TΣF ′DΣ
−1
D′D)D

′ −P4T

+DΣ−1
D′DΣD′FP1TF

′ + FP1TΣF ′DΣ
−1
D′DD

′.
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Since ℐ1T = D1T + T−1ℰ1T + ℬ, one requires

ℬ +P2T +P1TΣ(F ′D)ℬ + ℬΣ(F ′D)P1T − T−1P1T non-singular. (25)

Given Σ(F ′D) = −ΣF ′F and, by taking into consideration the definitions of
P1T ,P2T , ℐ1T can then be expressed as the limit of

N−1
N∑

i=1

(
Γi(ΣV ′V + Γ′

iΣF ′FΓi)
−1Γ′

iΣF ′F − Im
)
ℬ
(
Γi(ΣV ′V + Γ′

iΣF ′FΓi)
−1Γ′

iΣF ′F − Im
)′

−T−1N−1

N∑

i=1

Γi(ΣV ′V + Γ′

iΣF ′FΓi)
−1Γ′

i (26)

Hence, a sufficient condition for non-singularity of the limit of (26) is non-
singularity of (Γi(ΣV ′V + Γ′

iΣF ′FΓi)
−1Γ′

iΣF ′F − Im) for any i but in fact a
milder condition might suffice. Set, as an example, ΣF ′F = ℬ = Im and
ΣV ′V = Ik. For m > k = 1, non-singularity of the limit of (26) is equivalent
to obtain a non-singular limit of

N−1
N∑

i=1

(

Im − (2 + Γ′

iΓi)

(1 + Γ′
iΓi)2

ΓiΓ
′

i

)

− T−1N−1
N∑

i=1

ΓiΓ
′

i

(1 + Γ′
iΓi)

which can be obtained under mild conditions on the Γi since each
(

Im − (2+Γ
′

iΓi)

(1+Γ′

iΓi)2
ΓiΓ

′

i

)

is non-singular for all i. Instead, when k > m = 1 then a non-singular limit
of (26) is equivalent to a non-zero limit of

N−1
N∑

i=1

(
1− Γi(Ik + Γ′

iΓi)
−1Γ′

i

)2 − T−1N−1
N∑

i=1

Γi(Ik + Γ′

iΓi)
−1Γ′

i,

where it easily follows that each of the addenda is non-zero. Similar argu-
ments follow for the case m = k. Finally, notice that ΣV ′V > 0 is strictly
required, ruling out the possibility that the regressors xit obey a pure factor
structure xit = A′

idt + Γ′

ift, otherwise (8) fails.
For (15), given

ℐ2T = ℋT +P3T − T−1(D(Σ−1
D′D − In)D

′ +P4t)

+(F−DΣ−1
D′DΣD′F )ℐ1T (F

′ −ΣF ′DΣ
−1
D′DD

′)− Fℐ1TF
′,
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one needs
ΣF ′D = 0 (27)

for otherwise T−1F′ℐ−1
2T F →p 0 by Lemma 1(C, F,−ℐ1T , T ), setting

C = ℋT+P3T−T−1(D(Σ−1
D′D−In)D

′+P4t)+(F−DΣ−1
D′DΣD′F )ℐ1T (F

′−ΣF ′DΣ
−1
D′DD

′).

Sufficient conditions for (27) are �f = 0 and {ft,dt} contemporaneously
uncorrelated. Uncorrelatedness follow simply when dt is deterministic, in-
cluding intercept term, trends or seasonal dummies. Hence, under (27)

ℐ2T = ℋT +P3T − T−1(D(Σ−1
D′D − In)D

′ +P4t) > 0.

Closed-form expressions forΣiX′ℐ
−1
2 X , ΣiX′ℐ

−1
2 ℋℐ

−1
2 X , ΣiF ′ℐ

−1
2 ℋℐ

−1
2 F , ΣiX′ℐ

−1
2 F ,

ΣiX′ℐ
−1
2 ℋℐ

−1
2 F , required for the verification of the CLT condition (16), would

depend on the adopted parameterization for the ℎts,i, and thus for the ail
of Pesaran (2006, Assumption 2). We conclude investigating the condi-
tions required for (17)-(20). Under the assumptions made C1T is a ran-
dom, mean zero, matrix of dimension m × T , whose rows are uncorre-
lated with each "i, Xi and with each row of Σ−1

T . In addition, denoting
by C1Tj the jth row of C1T , we will require supT ∥ EC′

1TjC1Tj ∥= O(1)
for all 1 ≤ j ≤ m. The same assumptions are required for all the zero
mean random matrices introduced below. Hence, by standard arguments,
X′

iΣ
−1
T C′

1T = Op(T
1
2 �n+k�

′
m), C1TΣ−1

T "i = Op(T
1
2 �m) and, by repeated use of

Lemma 2, F′Σ−1
T "i = Op(T

−
1
2 �m),F

′Σ−1
T C′

1T = Op(T
−

1
2 �m�

′

m), F
′Σ−1

T Xi =
Op(�n+k�

′

m), F
′Σ−1

T F = Op(�m�
′

m) yielding

X′

iΣ
−1
T (FC1T + C′

1TF
′)Σ−1

T Xi = Op(T
1
2 �n+k�

′

n+k),

X′

iΣ
−1
T (FC1T + C′

1TF
′)Σ−1

T (Fbi + "i) = Op(T
1
2 �n+k).

Similarly, since under (27),XiΣ
−1
iX′XΣiX′F = (FΓi+Vi)(ΣV ′V+Γ′

iΣF ′FΓi)
−1Γ′

iΣF ′F ,
one gets C2T = FC21T +C22T for zero mean random matrices of dimension m×
T and T × T respectively. The previous bounds apply substituting C1T with
C21T and when, in addition, X′

iΣ
−1
T C22TΣ−1

T F = Op(�n+k�
′
m), X

′
iΣ

−1
T C22TΣ−1

T "i =

Op(T
1
2 �n+k) then

X′

iΣ
−1
T (C2T + C′

2T )Σ
−1
T Xi = Op(T �n+k�

′

n+k),

X′

iΣ
−1
T (C2T + C′

2T )Σ
−1
T (Fbi + "i) = Op(T

1
2 �n+k).
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Under (27)

XiΣ
−1
iX′XX

′

i = DΣ−1
D′DD

′ + (FΓi +Vi)(ΣV ′V + Γ′

iΣF ′FΓ
′

i)
−1(Γ′

iF
′ +V′

i)

yielding C3T = T−
1
2C1TDΣ−1

D′DD
′+C31TF′+C32T for zero mean randomm×m

matrix C31T and a m × T matrix C32T . Again, the previous bounds apply
substituting C1T by C32T and X′

iΣ
−1
T D = Op(T �n+k�

′

d), C1TD = Op(T
1
2 �m�

′

d)
yielding

X′

iΣ
−1
T (FC3T + C′

3TF
′)Σ−1

T Xi = Op(T �n+k�
′

n+k),

X′

iΣ
−1
T (FC3T + C′

3TF
′)Σ−1

T (Fbi + "i) = Op(T �n+k).

Finally C4T = T−
1
2C2TDΣ−1

dd′D
′ + FC41TF′ + FC42T + C43TF′ + C44T for zero

mean randomm×m matrix C41T , m×T matrices C42T , C′

43T and T×T matrix
C44T yielding

X′

iΣ
−1
T (C4T + C′

4T )Σ
−1
T Xi = Op(T

3
2 �n+k�

′

n+k),

X′

iΣ
−1
T (C4T + C′

4T )Σ
−1
T (Fbi + "i) = Op(T

3
2 �n+k).

Hence, (17),(18),(19),(20) hold with a = 1/2, b = 1, c = 3/2, d = 3/2. No
assumption of Pesaran (2006) would imply (25), (27) nor any of the other
conditions in 7.ℋ but, as discussed, primitive conditions can be readily found.

We summarize the result of this section as follows:

Proposition 1 Assume that Pesaran (2006, Assumptions 1, 2, 3 and 5a)
hold and, in addition, N−1

∑N
i=1Hi →p ℋT > 0 as N → ∞, the (n+m)×1

vector (d′

t, f
′

t)
′ is fourth-order covariance stationarity with absolute summable

autocovariances, bounded (6+�)th moment and ΣD′D > 0, the bi have bounded
(2+�)th moment with ℬ > 0, the vit have bounded (6+�)th moment and the "it
have bounded (2+�)th moment and are i.i.d. across i. Finally let Assumption
7.ℋ hold.

Then Theorem 1,(iii) applies to the GLS estimator for (�′

0, �
′

0)
′ of model

(22)-(23)-(24) when
1

T
+

1

N
→ 0

for consistency and
1

T
+

T

N
→ 0

for asymptotic normality.
No other conditions of Pesaran (2006) is required, such as in particular

the m×(k+1) matrix E (bi Γi) to be full row rank m.
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The bias term of the OLS for �i0 is, from Theorem 1 (i), OLS
i = Σ−1

iX′XΣiX′Fbi

which is zero only if bi = 0 a.s. (no factor structure in the regression error)
or, alternatively, if ΣiX′F = Oi = 0 a.s. This latter condition requires both
Γi = 0 a.s. and ΣF ′D = 0. The GLS estimator does not require Γi = 0 a.s.
and thus allows the unit-specific regressors X∗

i to be cross-correlated with
the unobserved factors F.

3 Time-Specific Parameters Model

This section mirrors the previous section but we prefer to present it in full,
in order to avoid a the risk of confusion in notation.

3.1 Definitions and assumptions

Consider linear regression models with possibly time-specific parameters,
such that for the tth time period

yt = Xt�t0 + ut, (28)

for an observed N × 1 vector yt = (y1t, ..., yit, ..., yNt)
′ and an observed

N × k matrix Xt = (x1t, ...,xit, ...,xNt)
′ related by a k × 1 vector of pos-

sibly time-specific regression coefficients �t0. The unobserved N × 1 vector
ut = (u1t, ..., uit, ..., uNt)

′ obeys the same factor structure described previ-
ously which, staking the uit across units i, can be expressed as

ut = Bft + "t.

As before, ft denotes an unobserved m×1 vector of factors, B = (b1, ...,bN)
′

is an unobserved N × m matrix of factor loadings and "t = ("1t, ..., "Nt)
′ is

the unobserved N × 1 vector of idiosyncratic innovations. Cross-sectional
regressions with constant regression coefficients, such as Andrews (2005), or
time-specific coefficients, are particular cases of (57).

A set of general assumptions required for the estimators here considered
are introduced below, and commented subsequently. Theorem 2 states the
asymptotic properties of the OLS, UGLS and GLS estimators for �t0. Sec-
tion 3.3 discusses a set of primitive conditions for our general assumptions
with respect to a particular case of interest of model (57), namely Andrews
(2005)’s model.
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Assumption 1.T (common factors)
For every t, the ft are random vector of dimension m× 1 such that

E(ftf
′

t
∣ Xt,B) = ℱt > 0,

T−1
T∑

t=1

ℱt →p ℱ > 0 as T → ∞.

Assumption 2.T (idiosyncratic innovation)
For every t, "t = ("1t, ..., "it, ..., "Nt)

′ satisfies

E("t ∣ ft, Xt,B) = 0, (29)

Ht = E("t"
′

t ∣ ft, Xt,B) > 0, (30)

T−1
T∑

t=1

Ht →p ℋN > 0 as T → ∞. (31)

Assumption 3.T (regressors)
For every t, the N × k matrix Xt is full column rank.

Assumption 4.T (basic limit conditions)
All the limit matrices below, as N → ∞, are a.s. finite:

X′

tXt

N
→p ΣtX′X > 0,

X′

tHtXt

N
→p ΣtX′HX > 0,

X′

tB

N
→p ΣtX′B, (32)

X′

tH
−1
t Xt

N
→pΣtX′H−1X > 0,

B′H−1
t B

N
→pΣtB′H−1B > 0,

X′

tH
−1
t B

N
→pΣtX′H−1B

(33)

such that a.s.

ΣtX′H−1X −ΣtX′H−1BΣtB′H−1BΣ
′

tX′H−1B > 0. (34)

Assumption 5.T (limit conditions for GLS)
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All the limit matrices below, as T → ∞ and arbitrary N , are a.s. finite:

T∑

t=1

XtΣ
−1
tX′XΣtX′Bftf

′
tΣ

′

tX′BΣ
−1
tX′XX

′
t

T
= A1N(1+op(1)),

T∑

t=1

XtΣ
−1
tX′XΣtX′Bftf

′
tB

′

T
= A2N(1+op(1)),

T∑

t=1

XtΣ
−1
tX′XX

′

t"t"
′

tXtΣ
−1
tX′XX

′

t

NT
= A3N(1+op(1)),

T∑

t=1

XtΣ
−1
tX′XX

′

t"t"
′

t

T
= A4N (1+op(1)),

T∑

t=1

ft"
′

t

T
1
2

= C1N (1 + op(1)),
T∑

t=1

XtΣ
−1
tX′XΣtX′Bft"

′

t

T
1
2

= C2N (1 + op(1)), (35)

T∑

t=1

ft"
′

tXtΣ
−1
tX′XX

′

t

T
1
2N

1
2

= C3N (1+op(1)),
T∑

t=1

XtΣ
−1
tX′XΣtX′Bft"

′

tXtΣ
−1
tX′XX

′

t

T
1
2N

1
2

= C4N (1+op(1)). (36)

Assumption 6.T (distribution conditions for OLS and UGLS)
As N → ∞:

X′

t"t

N
1
2

→d (ΣtX′HX)
1
2 �kt, (37)

Z′

tH
−1
t "t

N
1
2

→d (ΣtZ′H−1Z)
1
2 �(k+m)t, (38)

setting
Zt = (Xt,B), (39)

where �kt, �(k+m)t are independent from ΣtX′HX,ΣtZ′H−1Z respectively.

Assumption 7.T (distribution and identification conditions for GLS)
Let D1N , ℰ1N be m×m matrices and D2N , ℰ2N be N ×N matrices satisfying

A1N − (A2N +A′

2N) = BD1NB
′ +D2N

and (40)

A3N − (A4N +A′

4N) = Bℰ1NB′ + ℰ2N .

Then

ℐ1N = D1N +N−1ℰ1N + ℱ(non-singular symmetric m×m matrix),

ℐ2N = D2N +N−1ℰ2N +ℋN(non-singular T × T matrix),
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satisfy

B′ℐ−1
2NB

N
→p ΣB′ℐ

−1
2 B(non-singular),

B′ℐ−1
2NHtℐ−1

2NB

N
→p ΣtB′ℐ

−1
2 Hℐ

−1
2 B,(41)

X′

tℐ−1
2NXt

N
→p ΣtX′ℐ

−1
2 X (non-singular),

X′

tℐ−1
2NHtℐ−1

2NXt

N
→p ΣtX′ℐ

−1
2 Hℐ

−1
2 X ,

X′

tℐ−1
2NB

N
→p ΣtX′ℐ

−1
2 B,

X′

tℐ−1
2NHtℐ−1

2NB

N
→p ΣtX′ℐ

−1
2 Hℐ

−1
2 B,

Z′

tℐ−1
2N"t

N
1
2

→d (ΣtZ′ℐ
−1
2 Hℐ

−1
2 Z)

1
2 �(k+m)t, (42)

with �(k+m)t independent from ΣtZ′ℐ
−1
2 Hℐ

−1
2 Z , where Zt is defined in (39). All

the limits above hold as N → ∞ with a.s. finite limit matrices. Setting

ΣN = Bℐ1NB
′ + ℐ2N ,

for all t, and some constants a, b, c, d > 0:

X′

tΣ
−1
N (BC1N + C′

1NB
′ + C2N + C′

2N )Σ
−1
N (Bft + "t) = Op(N

a�k), (43)

X′

tΣ
−1
N (BC3N + C′

3NB
′ + C4N + C′

4N )Σ
−1
N (Bft + "t) = Op(N

b�k), (44)

X′

tΣ
−1
N (BC1N + C′

1NB
′ + C2N + C′

2N )Σ
−1
N Xt = Op(N

c�k�
′

k), (45)

X′

tΣ
−1
N (BC3N + C′

3NB
′ + C4N + C′

4N )Σ
−1
N Xt = Op(N

d�k�
′

k). (46)

Remark: The comments made to Assumptions 1.ℋ-7.ℋ apply now but
replacing T, F,bi,Xi, "i,Hi,ui with N, B, ft,Xt, "t,Ht,ut, respectively.

3.2 Estimators results

The ordinary least squares (OLS) estimator is

�̂OLS
t = (X′

tXt)
−1Xtyt,

The unfeasible generalized least squares estimator (UGLS) is

�̂UGLS
t = (X′

tS−1
t Xt)

−1XtS−1
t yt,

setting
St = BℱtB

′ +Ht.
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The feasible generalized least squares estimator (GLS) estimator estimator
is

�̂GLS
t = (X′

tΣ̂
−1
N Xt)

−1XtΣ̂
−1
N yt,

setting

Σ̂N = T−1
T∑

t=1

ûtû
′

t, ût = yt −Xt�̂
OLS
t ,

which requires T ≥ N . Again, if Xt = (D,X∗

t ) for a N × k1 matrix D and
a N × k2 matrix X∗

t , where k = k1 + k2, such as when an intercept term is
allowed for, then in order to allow non-singularity we consider

Σ̂N = T−1

T∑

t=1

ûtû
′

t +N−1DD′.

Theorem 2 (time-specific parameters)

(i) (OLS) When Assumptions 3.T , 4.T .(32), 6.T .(37) hold

N
1
2 (�̂OLS

t − �t0 − OLS
t ) →d (VOLS

t )
1
2 �kt as N → ∞,

setting OLS
t = Σ−1

tX′XΣtX′Bft, VOLS
t = Σ−1

tX′XΣ
−1
tX′HXΣ

−1
tX′X , where �kt and

VOLS
t are mutually independent.

(ii) (UGLS) When Assumptions 1.T , 2.T .(30), 3.T , 4.T .(33), 6.T .(38)

N
1
2 (�̂UGLS

t − �t0) →d Nk(VUGLS
t )

1
2 �kt as N → ∞,

where �kt and VUGLS
t are mutually independent, setting VUGLS

t = (ℳUGLS
t )−1N UGLS

t (ℳUGLS
t )−1

with ℳUGLS
t = plimN→∞N−1(X′

tS−1
t Xt), N UGLS

t = plimN→∞N−1X′

tS−1
t HtS−1

t Xt.
Moreover (ℳUGLS

t ) = N UGLS
t .

(iii) (GLS)
When Assumptions 1.T , 2.T .(31), 3.T , 4.T .(32) and (34), 5.T , 7.T

�̂GLS
t →p �t0 as

1

N
+

Nmax(a−1,b− 3
2
)

T
1
2

+
Nmax(c− 3

2
,d−2)

T
1
2

→ 0,

N
1
2 (�̂GLS

t − �t0) →d (VGLS
t )

1
2 �kt as

1

N
+

Nmax(a− 1
2
,b−1)

T
1
2

+
Nmax(c−1,d− 3

2
)

T
1
2

→ 0,

where �kt and VGLS
t are mutually independent, setting VGLS

t = (ℳGLS
t )−1NGLS

t (ℳGLS
t )−1

with ℳGLS
t = plim(N,T )→∞N−1(X′

tΣ̂
−1
N Xt), NGLS

t = plim(N,T )→∞ N−1X′

tΣ̂
−1
N HtΣ̂

−1
N Xt.
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Remarks 1. Most of the comments to Theorem 1 apply here and will not be
repeated. Now �OLS

t = �t0 + OLS
t + Op(N

−
1
2 ) where OLS

t = Σ−1
tX′XΣ

−1
tX′Bft

which is a random variable. Consistency is achieved if either ft = 0 (no
factors) or Σ−1

tX′B = 0, implied by no cross-correlation between the regressors
and the factors (assuming the latter have mean zero or, alternatively, when
Xt contains an vector of ones).
2. The GLS uses Σ̂N which, although a non-consistent estimate of the true
covariance matrix St = BℱtB

′+Ht (in the sense of element by element), has
limitΣN = Bℐ1NB

′+ℐ2N which, once taking the inverse, belongs to the space
orthogonal to the factor loadings B under suitable regularity conditions.

3.3 Particular model: Andrews (2005)

The model is
yit = � ′

0t(1x
′

it)
′ + uit, (47)

where (yit,xit) are assumed i.i.d. across units conditional on c1t, C2t by An-
drews (2005, Assumption 1), with

uit = c′1tu
∗

i + "it, (48)

xit = C2tx
∗

i + vit, (49)

with c1t, u
∗

i are d1 × 1 random vectors and C2t, x
∗

i respectively a random
matrix of dimension k × d2, with d2 ≥ k, and a random vector of dimen-
sion d2 × 1 and "it and vit are i.i.d. innovations across i and t, respectively
scalar and k × 1, with zero mean and variances ℎii,t and ΣtV ′V . We focus
on Andrews (2005)’s standard factor structure, spelled out in his Assump-
tion SF1, here slightly extended to allow for an idiosyncratic component in
both the regression error uit and the regressors xit as well as time-variation
in parameters, common factors and covariance matrices. The first exten-
sion is compulsory since when "it = 0 a.s. our theory does not apply. Let
as start assuming ΣtV ′V = 0 implying vit = 0 a.s. as in Andrews (2005),
although this is not necessary for our arguments to go through. (48)-(49)
imply F = (c11...c1t...c1T )

′, B = (u∗

1...u
∗

N )
′, Xt = (�N ,X

∗C′

2t), where we set
X∗ = (x∗

1...x
∗

i ...x
∗

N )
′. We do not consider here Andrew’s other, more general,

forms cross-sectional dependence named heterogeneous and functional factor
structures.

We now verify the extent to which the assumptions of Andrews (2005)
imply our Theorem 2, part (iii). We are able to relax some of his assumptions,
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although here more conditions need to be made here with respect to the time-
series properties of c1t,C2t, "t, un-necessary to Andrews (2005) since all his
results hold conditional on the �-field C induced by {c1t,C2t}.

Assumptions 1.T and 2.T do not follow from any of Andrews (2005)’s
assumptions although, when imposing iidness conditional on C, Ht = �2

t IN .
We also require plimT−1

∑T

t=1 �
2
t = �2 > 0 yielding ℋN = �IN . Assumption

3.T is implied by Andrews (2005, Assumption 2d). Concerning Assumption
4.T

X′

tXt =

⎛

⎝

N
∑N

i=1 x
∗′

i C
′

2t

C2t

∑N

i=1 x
∗
i C2t

∑N

i=1 x
∗
ix

∗′
i C

′
2t

⎞

⎠ , X′

tHtXt = �2
tX

′

tXt,

X′

tH
−1
t Xt = �−2

t X′

tXt, B
′H−1

t B = �−2
t

N∑

i=1

u∗

iu
∗′

i ,

X′

tB =

( ∑N
i=1 u

∗′

i

C2t

∑N
i=1 x

∗

iu
∗′

i

)

, X′

tH
−1
t B = �−2

t X′

tB.

and the limits are well defined by Andrews (2005, Assumptions 1, 2 and
3(a)). Then

ΣtX′X =

(
1 �x

′C2t
′

C2t�x C2tΣxx′C2t
′

)

> 0, ΣtX′B =

(
�′

u

C2tΣxu′

)

,

with non-singularity ensured by Andrews (2005, Assumption 2(d)), where
throughout this section �x = Ex∗

i , Σxx′ = Ex∗

ix
∗′

i , Σuu′ = Eu∗

iu
∗′

i , �u =
Eu∗

i , Σxu′ = Ex∗

iu
∗′

i . Using the block matrix decomposition (Magnus and
Neudecker 1988) one gets

Σ−1
tX′X =

⎛

⎝

q−1
t −q−1

t �′

xC2t
′(C2tΣxx′C2t

′)−1

−q−1
t (C2tΣxx′C2t

′)−1C2t�x (C2tΣxx′C2t
′)−1(Ik + q−1

t C2t�x�
′

xC2t
′(C2tΣxx′C2t

′)−1)

⎞

⎠ ,

where qt = 1− �′

xC2t
′(C2tΣxx′C2t

′)−1C2t�x > 0, a.s. since the xit = C2tx
∗

i

have an non-singular distribution. In fact, for any non-degenerate random
vector x one gets Exx′ > ExEx′, equivalent to Ex′(Exx′)−1Ex < 1. For-
mulae for ΣtX′HX ,ΣtX′H−1X , ΣtB′H−1B,ΣtX′H−1B easily follows. Concerning
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Assumption 5.T , the expression for A1N , A2N follows by using

XtΣ
−1
tX′XΣtX′B =

[
X∗C2t

′(C2tΣxx′C2t
′)−1C2tΣxu′

+q−1
t (�N −X∗C2t

′(C2tΣxx′C2t
′)−1C2t�x)(�

′

u − �′

xC2t
′(C2tΣxx′C2t

′)−1C2tΣxu′)
]
.

By Greville (1965), setting A+ to be the Moore-Penrose of a matrix A,

(C2tΣxx′C2t
′)−1 = (C2t

′)+Σ−1
xx′(C2t)

+ = (C2tC2t
′)−1C2tΣ

−1
xx′C2t

′(C2tC2t
′)−1,

where the last equality follows since C2t is assumed full row rank. Substi-
tuting the last expression into XtΣ

−1
tX′XΣtX′BℱtΣ

′

tX′BΣ
−1
tX′XX

′

t yields many
terms likeC2t

′(C2tC2t
′)−1C2t. Now the matrixM2t = Ik−C2t

′(C2tC2t
′)−1C2t

is idempotent positive semi-definite, implying

C2t
′(C2tC2t

′)−1C2t = Ik −M2t ≤ Ik. (50)

This implies ∥ XtΣ
−1
tX′XΣtX′BℱtΣ

′

tX′BΣ
−1
tX′XX

′

t ∥= O(∥ ℱt ∥) a.s. Similarly,
for A2N and A3N one uses ∥ XtΣ

−1
tX′XΣtX′Bℱt ∥= O(∥ ℱt ∥) a.s. and ∥

XtΣ
−1
tX′XΣtX′HXΣ

−1
tX′XX

′
t ∥= O(�2

t ) a.s., respectively. Notice that A4N =
A3N since Ht is diagonal, where

XtΣ
−1
tX′XX

′

t =

q−1
t �N �

′

N − q−1
t X∗C′

2t(C2tΣxx′C′

2t)
−1C2t�x�

′

N − q−1
t �N�

′

xC
′

2t(C2tΣxx′C′

2t)
−1C2tX

∗′

+X∗C′

2t(C2tΣxx′C′

2t)
−1[Ik + q−1

t C2t�x�
′

xC
′

2t(C2tΣxx′C′

2t)
−1]C2tX

∗′.

Hence boundedness does not require any moment conditions in C2t.
For (35) and (36), they follow by using the martingale CLT (see Brown

(1971)) if we assume that, for each i, the "it can be written as linear pro-
cesses of a martingale difference sequence with absolute summable coeffi-
cients. In turn, this is implied when Hi = [ℎts,i]

T
t,s=1 (defined in (4)) has

bounded maximum eigenvalue. Then for the ith column of C1N one gets

T−
1
2

∑T

t=1 ft"it = C
1
2
1iN�mi(1 + op(1)) when T−1

∑T

t,s=1 ftℎts,if
′
t →p C1iN and

E ∥ft∥2+�< ∞, E∣"it∣2+� < ∞. Likewise, the ith column of C2N can be written

as C
1
2
2iN�Ni where no additional moment conditions are required because of

(50). The same results apply for (36). Unless ΣtV ′V = 0, one also needs
E ∥vi,t∥6+�< ∞.

Notice that when d2 = k, C2t is a square full rank matrix and both
XtΣ

−1
tX′XΣtX′B and XtΣ

−1
tX′XX

′
t are not time-varying, simplifying the above

results.
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We do not verify Assumption 6.T since not required by the GLS estima-
tor. For Assumption 7.T , in particular (40), set

D = X∗Σ−1
xx′Σxu′ + q−1(�N −X∗Σ−1

xx′�x)(�
′

u − �′

xΣ
−1
xx′Σxu′),

E = �2q−1
(
�N �

′

N −X∗Σ−1
xx′�x�

′

N − �N�
′

xΣ
−1
xx′X

∗′ +X∗Σ−1
xx′[qIk + �x�

′

xΣ
−1
xx′]X

∗′
)
,

q = 1− �′

xΣ
−1
xx′�x.

It follows that

A1N −A2N −A′

2N = (D−B)ℱ(D−B)′ −BℱB′,

A3N −A4N −A′

4N = −E,

Σxu′ = 0, �u = 0 (51)

which in turn is implied when x∗

i and u∗

i are uncorrelated with �u = 0.
When k < d2 which implies full row rank C2t, then obviously (40) is

satisfied when (51) hold. However, now it is also possible that x∗

i and u∗

i are
correlated, for instance even perfectly correlated such as

x∗

i = Au∗

i , �u = 0, ΣtV ′V > 0, (52)

for a non-random full row rank matrix A. As an example, set for simplicity
d2 = d1 > k, A = Id1 yielding Σxx′ = Σxu′ = Id1 . Notice that now we
require ΣtV ′V = Evitv

′
it > 0, to ensure (34) holds, and also vit and u∗

i to
be mutually independent. The previous derivations still apply by replacing
(C2tΣxx′C′

2t)
−1 by (C2tΣxx′C′

2t+ΣtV ′V )
−1 and Xt = (�N ,X

∗C′

2t+Vt). Then

T−1

T∑

t=1

(Id1 −C′

2t(C2tC
′

2t +ΣtV ′V )
−1C2t)ℱ(Id1 −C′

2t(C2tC
′

2t +ΣtV ′V )
−1C2t)

−N−1T−1
T∑

t=1

�2
tC

′

2t(C2tC
′

2t +ΣtV ′V )
−1C2t →p D1N + ℱ +N−1ℰ1N = ℐ1N ,

and non-singularity of ℐ1N follows under mild conditions on C2t and ΣtV ′V .
Moreover, given D2N = 0, ℰ2N = −�2�N �

′

N one obtains

ℐ2N = �2IN −N−1�2�N �
′

N +N−1�N �
′

N

where ℐ2N is non-singular for all values of �2 < ∞. Then, by the Sherman-
Morrison-Woodbury formula (reported in the Appendix),

ΣtX′ℐ
−1
2 X =

⎛

⎝

1 �x
′C2t

′

C2t�x �−2C2t(Σxx′ + (�2 − 1)�x�
′
x)C2t

′

⎞

⎠ .
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Similar calculations lead toΣtX′ℐ
−1
2 Hℐ

−1
2 X , ΣtB′ℐ

−1
2 Hℐ

−1
2 B, ΣtX′ℐ

−1
2 X , ΣtX′ℐ

−1
2 Hℐ

−1
2 B.

It remains to verify (43)-(46). Under the assumptions made C1N is a ran-
dom, mean zero, matrix of dimension m × N , whose are uncorrelated with
each "t, Xt and with each row of Σ−1

N . In addition, denoting by C1Nj the jth
row of C1N , we will require supN E ∥C′

1NjC1Nj ∥= O(1) for all 1 ≤ j ≤ m.
The same assumptions are required for all the zero mean random matrices
introduced below. Thus, for all t, X′

tΣ
−1
N C′

1N = Op(N
1
2 �1+k�

′

m), C1NΣ−1
N "t =

Op(N
1
2 �m) and, by Lemma 2,B′Σ−1

N "t = Op(N
−

1
2 �m), B

′Σ−1
N C′

1N = Op(N
−

1
2 �m�

′
m),

X′

tΣ
−1
N B = Op(�1+k�

′

m), B
′Σ−1

N B = Op(�m�
′

m) yielding

X′

tΣ
−1
N (BC1N + C′

1NB
′)Σ−1

N Xt = Op(N
1
2 �1+k�

′

1+k),

X′

tΣ
−1
N (BC1N + C′

1NB
′)Σ−1

N (Bft + "t) = Op(N
1
2 �1+k).

We discuss only the case when (52) hold, since case (51) is much simpler.
Setting for simplicity d2 = d1 > k, A = Id1 yields XtΣ

−1
tX′XΣtX′B = (BC2t

′+
Vt)(C2tC2t

′ +ΣtV ′V )
−1C2t and, in turn, one gets C2N = BC21N + C22N for

a.s. random, mean zero, matrixes of dimension m × N and N × N respec-
tively. The previous bounds apply substituting C1N with C21N . Moreover,
X′

tΣ
−1
N C22NΣ−1

N B = Op(�1+k�
′

m), X
′

tΣ
−1
N C22NΣ−1

N "t = Op(N
1
2 �1+k) then

X′

tΣ
−1
N (C2N + C′

2N )Σ
−1
N Xt = Op(N�1+k�

′

1+k),

X′

tΣ
−1
N (C2N + C′

2N )Σ
−1
N (Bft + "t) = Op(N

1
2 �1+k).

Again, when (52) holds

XtΣ
−1
tX′XX

′

t = q−1
t �N �

′

N − q−1
t (BC′

2t +Vt)(C2tΣxx′C′

2t +ΣtV ′V )
−1C2t�x�

′

N

−q−1
t �N�

′

xC
′

2t(C2tΣxx′C′

2t +ΣtV ′V )
−1(C2tX

∗′ +V′

t)

+(X∗C′

2t+Vt)(C2tΣxx′C′

2t+ΣtV ′V )
−1[Ik+q

−1
t C2t�x�

′

xC
′

2t(C2tΣxx′C′

2t+ΣtV ′V )
−1](C2tX

∗′+V′

t),

yielding C3N = C31N �′N + C32NB′ + C33N for a m × 1 matrix C31N ,a m ×
d1 matrix C32N and a m × T matrix C33N , all zero mean random. Using
the previous bounds, with C33N in place of C1N , as well as X′

tΣ
−1
N �N =

Op(N�1+k), B
′Σ−1

N �N = Op(�m), "
′

tΣ
−1
N �N = Op(N

1
2 ) yields

X′

tΣ
−1
N (BC3N + C′

3NB
′)Σ−1

N Xt = Op(N�1+k�
′

1+k),

X′

tΣ
−1
N (BC3N + C′

3NB
′)Σ−1

N (Bft + "t) = Op(N�1+k).

Finally C4N = BC41N �′N + BC42NB′ + C43N �′N + C44NB′ + C45N for a m × 1
matrix A41N , a m×m matrix C42N , a N×1 matrix C43N , a N×m matrix C44N
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and a N × N matrix C45N , all zero mean random. Thus using the previous
bounds, with C43N , C44N in place of C1N and C45N in place of C22N yields

X′

tΣ
−1
N (C4N + C′

4N )Σ
−1
N Xt = Op(N

3
2 �1+k�

′

1+k),

X′

tΣ
−1
N (C4N + C′

4N )Σ
−1
N (Bft + "t) = Op(N

3
2 �1+k).

Hence, (43), (44), (45), (46) hold with a = 1/2, b = 1, c = 3/2, d = 3/2.
Therefore, primitive conditions for Assumption 7.T can be found, in partic-
ular such as (52).

We summarize the result of this section as follows:

Proposition 2 Assume that Andrews (2005, Assumptions 1, 2, 3) hold and,
in addition, for any i the "i,t have bounded (2 + �)th moment and are linear
processes of a martingale difference innovation with summable coefficients,
the ft have bounded (2+�)th moment, the vi,t have bounded (6+�)th moment.
Finally let Assumptions 1.T , 2.T , and 7.T hold.

Then Theorem 2,(iii) applies to the GLS estimator for �0t of model (47)-
(48)-(49) when

1

N
+

1

T
→ 0

for consistency and
1

N
+

N

T
→ 0

for asymptotic normality.
No other conditions of Andrews (2005) is required, such as uncorrelat-

edness between the x∗

i and the u∗

i . Moreover, we do not require moment
conditions for the C2t.

Notice that the bias term of the OLS for �0t is, from Theorem 2 (i),
OLS
t = Σ−1

tX′XΣ
−1
tX′Bft which is zero only if ft = 0 a.s. (no factor struc-

ture in the regression error) or, alternatively, if Σ−1
tX′XΣtX′B = 0 a.s. The

first row of the latter matrix, corresponding to the intercept parameter, is
precisely equal to q−1

t (�′
u − �′

xC
′
2t(C2tΣxx′C′

2t)
−1C2tΣxu′), simplifying to �′

u

under Andrews (2005, Condition SF2), that is when Σxu′ = �x�
′

u holds.
Therefore zero bias for the OLS estimator of the intercept also requires his
condition SF3, viz. �u = 0. However, as noted by Andrews (2005), consis-
tency of the regression parameters only (the last k entries of �t0) requires
just zero correlation between the x∗

i and the u∗
i (his condition SF2). In

fact the sub-matrix made from the second to the last row of Σ−1
tX′XΣtX′B is
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(C2tΣxx′C2t
′)−1 [C2t�x�

′

xC2t
′(C2tΣxx′C2t

′)−1 − �′

xC2t
′(C2tΣxx′C2t

′)−1C2t�xIk]×
C2tΣxu′(C2tΣxx′C2t

′)−1C2t(Σxu′ − �x�
′

u) which, when Σxu′ = �x�
′

u holds,
equals �′

xC2t
′(C2tΣxx′C2t

′)−1C2t�x(C2tΣxx′C2t
′)−1(C2t�x −C2t�x)�u′+

(C2tΣxx′C2t
′)−1C2t(�x�

′

u − �x�
′

u), that is a matrix of zeros, independently
from whether �u is zero or not.

4 Monte Carlo

We conduct a set of Monte Carlo experiments to appreciate the relevance of
our asymptotic results for the GLS estimator in finite samples. We consider
both the case of time regression with unit-specific coefficients as well as cross-
sectional regression with time-specific coefficients.

4.1 Design

For the time regression case the data generating process is

yit = �i0 + �i0xit + bi10f1t + bi20f2t + "it, (53)

where the single regressor satisfies

xit = 0.5 + �i10f1t + �i30f3t + vit. (54)

Note that the model implies an observed common factor equal to 1 for all
observations. The single regressor is allowed to be contemporaneously corre-
lated with the innovation through one of the latent common factors (when-
ever bi10�i10 ∕= 0 a.s.). The factor loadings are normally distributed random
variables, i.i.d. across unit:

(
bi10
bi20

)

∼ NID

((
1
0

)

,

(
0.2 0
0 0.2

))

, (55)

(
�i10
�i30

)

∼ NID

((
0.5
0

)

,

(
0.5 0
0 0.5

))

, (56)

and the latent common factors and the idiosyncratic components are station-
ary stochastic processes, mutually independent to each other, satisfying

fj,t = 0.5fj,t−1 +
√
0.5�jf,t, j = 1, 2, 3,
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where each �jf,t ∼ NID(0, 1), mutually independent for j = 1, 2, 3, and

"it = �i""it−1 + �i",t, �i",t ∼ NID(0, �2
i (1− �2i")), i = 1, ..., N,

vit = �ivvit−1 + �iv,t, �iv,t ∼ NID(0, (1− �2iv)), i = 1, ..., N,

with �i" ∼ UID(0.05, 0.95), �iv ∼ UID(0.05, 0.95), �2
i" ∼ UID(0.5, 1.5) where

NID,UID means iid normally and uniformly distributed respectively. Fi-
nally, the parameters of interest are constant across replications and equal
to �i0 = 1, i0 = 0.5 and, assuming N even,

�i0 =

{
1 for i = 1, ..., N

2
,

3 for i = N
2
+ 1, ..., N.

This Monte Carlo design is a simplified version of Pesaran (2006), designed
in such a way that (through (56)) the rank condition in Pesaran (2006, eq.
(21)) is not satisfied. Pesaran (2006) shows that under this circumstance his
individual specific estimator for �i0 is invalid whereas his pooled estimators
for �0 = E�i0 remain consistent.

For the cross-sectional regression case we consider

yit = �t0 + �t0xit + bi10f1t + bi20f2t + "it. (57)

The regressor xit, the factors fj,t, j = 1, 2, 3 and the idiosyncratic innovations
"it, i = 1, ..., N are obtained as in the previous case. The parameters of
interest are constant across replications and equal to �t0 = 1 and, assuming
T even,

�t0 =

{
1 for i = 1, ..., T

2
,

2 for i = T
2
+ 1, ..., T.

Finally,

(
bi10
bi20

)

∼ NID(

(
0
0

)

,

(
0.2 0
0 0.2

)

), (58)

(
�i10
�i30

)

=

(
bi10
bi20

)

. (59)

implying that the factor loadings pertinent to the innovation of (57) are
(perfectly) correlated with the factor loadings corresponding to the regressor
xit. Under this condition Andrews (2005) shows that the OLS estimator of
the regression parameters �t0, �t0 is non consistent.
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We consider 2000 Monte Carlo replications with sample sizes (N, T ) ∈
{60, 200, 600} × {30, 100, 300}, with N > T , for the time regression and
(N, T ) ∈ {30, 100, 300} × {60, 200, 600}, with N < T , for the cross-sectional
regression.

The results are summarized in Tables 1 to 4, where we report the sam-
ple mean and the root mean square error for the estimates of the param-
eter �i0, �i0 and �t0, �t0 for time and cross-sectional regression respectively,
averaged across the Monte Carlo iterations. We consider four estimators
which corresponds to four panels of each table: the GLS, the multi-step
GLS (described Remark 5 to Theorem 1) where the iteration is carried out
J = 4 times, the OLS and the UGLS estimators. In particular, regarding
the time regression results reported in Tables 1-2, for each of these four es-
timators, we report the average across all N units of the sample mean (mean)

M−1
∑M

m=1 �̂
m
i and of the root mean square error (rmse)

(

M−1
∑M

m=1(�̂
m
i − 1)2

) 1
2

and the average across the units i = N/2 + 1, ..., N of M−1
∑M

m=1 �̂
m
i and

(

M−1
∑M

m=1(�̂
m
i − 3)2

) 1
2

with M = 2, 000. Recall that we assumed that the

true intercept coefficients are constant across units whereas the regression
coefficients take two different values for the first half and second half of the
N units. Here �̂m

i and �̂m
i denote, respectively, the estimates of the intercept

and regression coefficients corresponding to the mth Monte Carlo iteration
for a generic estimator. The same description applies to the cross-sectional
regression results although now Tables 3 and 4 report, respectively, for each of
these four estimators, the average across all T periods of M−1

∑M
m=1 �̂

m
t and

(

M−1
∑M

m=1(�̂
m
t − 1)2

) 1
2
and the average across the periods t = T/2+1, ..., T

of M−1
∑M

m=1 �̂
m
t and

(

M−1
∑M

m=1(�̂
m
t − 2)2

) 1
2
with M = 2, 000. (The re-

sults for the regression coefficients corresponding to the units i = 1, ..., N/2,
for time regression, and to periods t = 1, ..., T/2, for cross-sectional regres-
sion, are not reported but are available.)

4.2 Results

We start by looking the estimation results for time regression with unit-
specific intercept term (Table 1) and regression coefficient (Table 2), respec-
tively. Since the GLS and multi-step GLS estimators requires N ≥ T , each
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panel is made by a lower triangular matrix. Obviously, the OLS and the
UGLS estimator do not require this constraint since they can be also evalu-
ated when N < T but we did not report the results for this case. The upper
left panel describes the GLS results. One can see how the bias diminishes
as both N, T grow or when N increases for a given T . This is because the
inverse of the pseudo-covariance matrix Σ−1

T is better estimated in these cir-
cumstances. In contrast, although still negligible in absolute terms, the bias,
if any, tends to increase when T grows for a given N . Instead, as expected,
the rmse always diminishes when T increases for a given N or when they
both increase. The rmse of the regression coefficient estimates (Table 2) di-
minishes also when N increases for given T . In general terms these results
suggest that the bias of the estimates varies mainly with N and their variance
varies with T . The same pattern is observed with respect to the multi-step
GLS results, reported in the upper right panel. The only difference is that
now the bias and the rmse are always much smaller than the GLS case. The
lower right panel reports the results for the UGLS which is unfeasible in
practice since it involves the true covariance matrix Si. As a consequence,
the results do not depend on N but only on T . The bias is negligible even for
small samples and, for larger sample sizes, it is remarkably comparable to the
iterated GLS although the latter exhibit a slightly larger rmse. Finally, the
lower left panel reports the OLS results which also do not depend on N , as
expected. Under our design, the OLS estimator is non-consistent obtaining
a bias which is much larger than for any other estimators and, more impor-
tantly, only marginally varying as N or T increases. The rmse diminishes
suggesting that the variance of the OLS estimator is converging to zero with
the squared bias converging to (OLS

i )2.
The cross-section regression results are in Tables 3 and 4. Now the GLS

and iterated GLS estimators requires N ≤ T and thus each panel is made by
an upper triangular matrix. The results are specular to the ones obtained for
the time regression case. Regarding the GLS results in the upper left panel,
the bias diminishes as both N, T grow or when T increases for a given N
whereas it does not necessarily decreases when N grows for a given T since in
this latter circumstance Σ−1

N is more poorly estimated. The rmse diminishes
when either T increases for a given N or when they both increase and, for
for the regression coefficient case (Table 3) when N increases for given T as
well. The performance of the iterated GLS and of the UGLS, respectively
reported in the upper and lower right panels, is remarkably similar, except
perhaps when N, T are either both very small or very large. Obviously, UGLS
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carries the best results especially in terms of rmse where, as expected, the
figures do not depend on T but vary only with N . The OLS estimator, whose
results are in the lower left panel, is non-consistent under our design, with a
sizeable bias only marginally varying with either N and T . Again, the rmse
diminishes as N increases indicating that the OLS will eventually converge
to the sum of the true parameter value and the non-zero bias. Although the
results have not been reported for easy reference, the OLS and the UGLS
estimators can be evaluated also for N > T .

5 Concluding remarks

This paper proposes a feasible GLS estimator for linear panel with common
factor structure in both the regressors and the innovation. We develop our
results separately for time regressions with unit-specific coefficients as well
as for cross-section regressions with time varying coefficients. The GLS esti-
mator is consistent and asymptotically normal, when both the cross-section
N and time series T dimensions diverge to infinity, under circumstances that
make the OLS non-consistent, hence providing more than an efficiency gain.
Noticeably, the GLS estimator does not require preliminary estimation of
the latent factors nor of their dimension. It uses all the panel data infor-
mation but computationally it only requires to estimate N+1 time or T+1
cross-sectional regressions, respectively. We provide a set of general regular-
ity assumptions which allows both temporal and cross-sectional dependence
of the idiosyncratic innovation. We then derive primitive conditions of our
general assumptions for the specific models investigated by Andrews (2005)
and Pesaran (2006). Our results are corroborated by a set of Monte Carlo
experiments. Several other issues appear of interest. For one, estimation
of the regression coefficients mean E�i or E�t, depending on whether one
considers unit- or time-specific coefficients, attracted a great deal of inter-
est. Another interesting topic would be to develop joint testing procedures
of all the �i, i = 1, ..., N or the �t, t = 1, ..., T . Also, the effect of trending
regressors and, more in general, nonstationarity would be of great interest.
These issues will be the focus of future research.
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6 Mathematical Appendix

For random matrices A non-singular of dimension m1 ×m1, B of dimension
m1 ×m2, C non-singular of dimension m2 ×m2, D of dimension m1 ×m3,
with m1 ≥ m2 and any m3, we present the well-known Sherman-Morrison-
Woodbury formula, followed by two lemmas whose proofs are reported in
the Supplementary Material. Note that Lemma 1 is basically reproducing
Lemma B in Pesaran and Zaffaroni (2009). Throughout the paper we will
refer to the lemmas without reference to the matrixes A,B,C,D when there
is no risk of ambiguity.

Sherman-Morrison-Woodbury formula.

(BCB′ +A)−1 = A−1 −A−1B(C−1 +B′A−1B)−1B′A−1 a.s.

Lemma 1(A, B, C, m1). Set E = BCB′ +A a.s. Let G a random positive
definitive matrix such that as m1 → ∞:

B′A−1B

m1
→a.s. G non-singular. (60)

Then

E−1B = A−1B(
C−1

m1
+

B′A−1B

m1
)−1C

−1

m1
(61)

and, denoting by e
(i)
m1 the i-th column of the identity matrix Im1, then for any

1 ≤ i ≤ m1:

e(i)′m1
E−1b(j) →p 0, 1 ≤ j ≤ m2, as m1 → ∞, (62)

where b(j) = Be
(j)
m2 is the jth column of B.

When (60) and
B′A−1′A−1B

m1
→a.s. L ≥ 0, (63)

for some a.s. finite random positive semi-definite matrix L, then

∥ E−1B ∥2= Op(m
−1
1 ) as m1 → ∞. (64)

Lemma 2(A, B, C, D, m1). Set E = BCB′ +A a.s. When (60) andD′A−1′B =
Op(m1 �m3�

′

m2
) then

D′E−1B = Op(�m3�
′

m2
) as m1 → ∞. (65)
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When (60) and D′A−1′B = Op(m
1
2
1 �m3�

′

m2
) then

D′E−1B = Op(m
−

1
2

1 �m3�
′

m2
) as m1 → ∞. (66)

Proof of Theorem 1. (i) All the limits below hold as T → ∞. The results
follow since �̂OLS

i −�i0 = (X′
iXi)

−1X′
iui can be written as �̂OLS

i −�i0−̂OLS
i =

T−
1
2 (

X′

iXi

T
)−1T−

1
2X′

i"i. setting ̂OLS
i = (X′

iXi)
−1X′

iFbi. The result then
easily follows by our assumptions.
(ii) All the limits below hold as T → ∞. Simple manipulations yield

�̂UGLS
i − �i0 = (X′

iS−1
i Xi)

−1X′

iS−1
i (Fbi + "i)

= (X′

iS−1
i Xi)

−1X′

i

(
H−1

i −H−1
i F(ℬ−1

i + F′H−1
i F)−1F′H−1

i

)
Fbi + (X′

iS−1
i Xi)

−1X′

iS−1
i "i

= (X′

iS−1
i Xi)

−1X′

iH
−1
i F(ℬ−1

i + F′H−1
i F)−1ℬ−1

i bi + (X′

iS−1
i Xi)

−1X′

iS−1
i "i

= (
X′

iS−1
i Xi

T
)−1X

′

iH
−1
i F

T
(
ℬ−1
i

T
+

F′H−1
i F

T
)−1ℬ−1

i

T
bi + T−

1
2 (
X′

iS−1
i Xi

T
)−1X

′

iS−1
i "i

T
1
2

= ̂UGLS
i + T−

1
2 (
X′

iS−1
i Xi

T
)−1X

′

iS−1
i "i

T
1
2

,

where ̂UGLS
i denote the first term on the right hand side of the second

last equality sign. The first equality is warranted by the Sherman-Morrison-
Woodbury (hereafter SMW) formula and the fourth equality makes use of
the Lemma 1(Hi,F,ℬi, T ). Using the SMW formula again

X′

iS−1
i Xi

T
=

X′

iH
−1
i Xi

T
− X′

iH
−1
i F

T
(
ℬ−1
i

T
+

F′H−1
i F

T
)−1F

′H−1
i Xi

T
,

implying (X′

iS−1
i Xi/T )

−1 =
(
ΣiX′H−1X −ΣiX′H−1FΣ

−1
iF ′H−1F

Σ′

iX′H−1F

)−1
(1+

op(1)), yielding T
1
2 ̂UGLS

i = Op(T
−

1
2 �k). For the second (dominant) term of

the right hand side of T
1
2 (�̂UGLS

i − �i0) we start verifying that

X′

iS−1
i "i

T
1
2

→d

(
ΣiX′H−1X −ΣiX′H−1FΣ

−1
tF ′H−1F

Σ′

tX′H−1F

) 1
2 �ki, (67)

where �ki the zero mean, unit covariance matrix, normally distributed vector
is independent from ΣiX′H−1X ,ΣiX′H−1F ,ΣtF ′H−1F . In fact,

X′

iS−1
i "i

T
1
2

=
(

Ik,−Σ̂iX′H−1F Σ̂
−1
iF ′H−1F

) Z′

iℋ−1
i "i

T
1
2

(1 + op(1)),
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setting Σ̂iX′H−1F = T−1X′

iℋ−1
i F and Σ̂iX′H−1F = T−1F′ℋ−1

i F, where the
op(1) arises since T−1(B−1

i + F′ℋ−1
i F) = Σ̂iX′H−1F + op(�m�

′

m). Under our
assumptions

X′
iS−1

i "i

T
1
2

→d

(
Ik,−ΣiX′H−1FΣ

−1
iF ′H−1F

)
(ΣiZ′H−1Z)

1
2 �(k+m)i.

Given that the (conditional) normal distribution is uniquely defined by the
first two (conditional) moments, the left hand side is equal, in distribution, to
(67), since

(
Ik,−ΣiX′H−1FΣ

−1
iF ′H−1F

)
ΣiZ′H−1Z

(
Ik,−ΣiX′H−1FΣ

−1
iF ′H−1F

)′
=

(
ΣiX′H−1X −ΣiX′H−1FΣ

−1
tF ′H−1F

Σ′

tX′H−1F

)
. Combining terms concludes.

(iii) All the limits below hold as (N, T ) → ∞. We must assume N ≥ T
and, with no loss of generality, that there are no observed common factors
implying that Σ̂T = N−1

∑N
i=1 ûiû

′

i where ûi = (IT − Mi)ui setting Mi =
Xi(X

′

iXi)
−1X′

i. Then

ûiû
′

i =
Fbib

′

iF
′

︸ ︷︷ ︸

I

+
(IT −Mi)"i"

′

i(IT −Mi)
︸ ︷︷ ︸

II

+
MiFbib

′

iF
′Mi

︸ ︷︷ ︸

III

+
(Fbi"

′

i(IT −Mi) + (IT −Mi)"ib
′

iF
′)

︸ ︷︷ ︸

IV

−
((IT −Mi)"ib

′

iF
′Mi +MiFbi"

′

i(IT −Mi))
︸ ︷︷ ︸

V

−
(MiFbib

′

iF
′ + Fbib

′

iF
′Mi)

︸ ︷︷ ︸

V I

.

For I one gets F(N−1
∑N

i=1 bib
′

i)F
′ = FℬF′(1 + op(1)). For II

N−1

N∑

i=1

(IT −Mi)"i"
′

i(IT −Mi) = N−1

N∑

i=1

"i"
′

i

+

(

N−1T−2
N∑

i=1

XiΣ
−1
iX′XX

′

i"i"
′

iXiΣ
−1
iX′XX

′

i

)

(1 + op(1))

−
(

N−1T−1
N∑

i=1

(
XiΣ

−1
iX′XX

′

i"i"
′

i + "i"
′

iXiΣ
−1
iX′XX

′

i

)

)

(1 + op(1)),

yieldingN−1
∑N

i=1(IT −Mi)"i"
′

i(IT −Mi) = (ℋT + T−1(A3T − (A4T +A′

4T ))) (1+

op(1)). For III one gets N−1
∑N

i=1MiFbib
′

iF
′Mi = A1T (1 + op(1)). For

IV N−
1
2

∑N

i=1Fbi"
′

i = FC1T (1 + op(1)), T
1
2N−

1
2

∑N

i=1Fbi"
′

iMi = FC3T (1 +
op(1)). Combining the above results yield N−1

∑N
i=1Fbi"

′

i(IT − Mi) =
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N−
1
2F
(

C1T − T−
1
2C3T

)

(1 + op(1)). For V using the same arguments one

gets N−1
∑N

i=1MiFbi"
′

i(IT − Mi) = N−
1
2

(

C2T − T−
1
2C4T

)

(1 + op(1)). For

V I one gets N−1
∑N

i=1MiFbib
′

iF
′ = A2T (1 + op(1)). Summarizing:

Σ̂T =
[
FℬF′ +ℋT +A1T −A2T −A′

2T + T−1(A3T −A4T −A′

4T ) +DN,T

]
(1 + op(1))

= [Fℐ1TF
′ + ℐ2T +DN,T ] (1 + op(1)) = [ΣT +DN,T ] (1 + op(1))

settingDN,T = N−
1
2 (FC1T + C′

1TF
′ + C2T + C′

2T )−(NT )−
1
2 (FC3T + C′

3TF
′ + C4T + C′

4T ).

Since for generic non-singular matrices A, Â one has Â−1 = A−1ÂA−1(1 +
op(1)) whenever Â →p A, one obtains

(�̂GLS
i − �i0) = (X′

iΣ
−1
T Xi)

−1X′

iΣ
−1
T (Fbi + "i)(1 + op(1))

+ (X′

iΣ
−1
T Xi)

−1X′

iΣ
−1
T DN,TΣ

−1
T (Fbi + "i)(1 + op(1))

+ (X′

iΣ
−1
T Xi)

−1(X′

iΣ
−1
T DN,TΣ

−1
T Xi)(X

′

iΣ
−1
T Xi)

−1X′

iΣ
−1
T (Fbi + "i)(1 + op(1))

+ (X′

iΣ
−1
T Xi)

−1(X′

iΣ
−1
T DN,TΣ

−1
T Xi)(X

′

iΣ
−1
T Xi)

−1X′

iΣ
−1
T DN,TΣ

−1
T (Fbi + "i)(1 + op(1)).

Regarding the first term on the right hand side of (�̂GLS
i − �i0), one follows

precisely the same steps of part (ii) but replacing Si, ℬi, Hi by ΣT , ℐ1T , ℐ2T

respectively. By Lemma 1(ℐ2T ,F, ℐ1T , T )

T
1
2 (X′

iΣ
−1
T Xi)

−1X′

iΣ
−1
T (Fbi + "i) →d

(
VGLS
i

) 1
2 �ki as T → ∞

with VGLS
i = (ℳGLS

i )−1NGLS
i (ℳGLS

i )−1 where

NGLS
i = Σ−1

i,X′ℐ
−1
2 ℋℐ

−1
2 X

+ΣiX′ℐ
−1
2 FΣ

−1

iF ′ℐ
−1
2 F

ΣiF ′ℐ
−1
2 ℋℐ

−1
2 FΣ

−1

iF ′ℐ
−1
2 F

Σ′

iX′ℐ
−1
2 F

−
(

ΣiX′ℐ
−1
2 ℋℐ

−1
2 FΣ

−1

iF ′ℐ
−1
2 F

Σ′

iX′ℐ
−1
2 F

+ΣiX′ℐ
−1
2 FΣ

−1

iF ′ℐ
−1
2 F

Σ′

iX′ℐ
−1
2 ℋℐ

−1
2 F

)

and ℳGLS
i = ΣiX′ℐ

−1
2 X − ΣiX′ℐ

−1
2 FΣiF ′ℐ

−1
2 FΣ

′

iX′ℐ
−1
2 F

. For the second and

third term, using (17)-(18) and (19)-(20) respectively,

(X′

iΣ
−1
T Xi)

−1X′

iΣ
−1
T DN,TΣ

−1
T (Fbi + "i) = Op(N

−
1
2T−1(T a + T b− 1

2 )),

(X′

iΣ
−1
T Xi)

−1(X′

iΣ
−1
T DN,TΣ

−1
T Xi)(X

′

iΣ
−1
T Xi)

−1X′

iΣ
−1
T (Fbi + "i) = Op(N

−
1
2T−

3
2 (T c + T d− 1

2 )),

whereas the fourth can be easily seen to beOp

(

T−2N−1(T c + T d− 1
2 )(T a + T b− 1

2 )
)

.
□

Proof of Theorem 2. This follows precisely the proof of Theorem 1 and is
reported in the Supplementary Material.
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Table 1: time regression with unit-specific coefficients

intercept term �i0 = 1, i = 1, ..., N.

GLS GLS (multi-step)
mean rmse mean rmse

(N, T ) 30 100 300 30 100 300 30 100 300 30 100 300

60 0.944 − − 0.523 − − 0.976 − − 0.531 − −
200 0.967 0.951 − 0.518 0.315 − 0.986 0.987 − 0.527 0.309 −
600 0.981 0.982 0.955 0.524 0.308 0.200 0.994 0.998 0.991 0.531 0.310 0.184

OLS UGLS
mean rmse mean rmse

(N, T ) 30 100 300 30 100 300 30 100 300 30 100 300

60 0.897 − − 0.560 − − 0.993 − − 0.369 − −
200 0.892 0.901 − 0.563 0.361 − 0.993 0.999 − 0.368 0.221 −
600 0.898 0.902 0.904 0.567 0.363 0.261 0.994 0.998 0.999 0.369 0.222 0.134

Note to Table 1: data are generated according to model

yit = �i0 + �i0xit + bi10f1t + bi20f2t + "it

with regressor xit = i0 + �i10f1t + �i30f3t + vit. Factor loadings are normally dis-
tributed random variables, iid across units and mutually independent, satisfying bi10 ∼
NID(1, 0.2), bi20 ∼ NID(0, 0.2), �i10 ∼ NID(0.5, 0.5), �i30 ∼ NID(0, 0.5). Latent
common factors are fj,t = 0.5fj,t−1 +

√
0.5�jf,t, with �jf,t ∼ NID(0, 1), mutually inde-

pendent for j = 1, 2, 3, and idiosyncratic innovation are "it = �i""it−1 +�i",t with �i",t
∼ NID(0, �2

i (1 − �2i")), vit = �ivvit−1 + �iv,t, with �iv,t ∼ NID(0, (1 − �2iv)), with �i"
∼ UID(0.05, 0.95), �iv ∼ UID(0.05, 0.95), �2

i" ∼ UID(0.5, 1.5), iid across i = 1, ..., N and
mutually independent.
Parameters of interest are constant across replications and equal to �i0 = 1, i0 = 0.5 and,
assuming N even, �i0 = 1 for i = 1, ..., N/2 and �i0 = 3 for i = N/2 + 1, ..., N.

Panels headed by mean and rmse report, respectively, N−1
∑N

i=1

(

M−1
∑M

m=1
�̂m
i

)

and

N−1
∑N

i=1

(

M−1
∑M

m=1
(�̂m

i − 1)2
) 1

2

with M = 2, 000. Here �̂m
i denotes the estimate,

based on either the GLS (top left panel), multi-step GLS with J = 4 steps (top right
panel), OLS (bottom left panel) and UGLS (bottom right panel) of �i0 for the m Monte
Carlo iteration.
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Table 3: cross-sectional regression with time-specific coefficients

intercept term �t0 = 1, t = 1, ..., T.

GLS GLS (multi-step)
mean rmse mean rmse

(N, T ) 60 200 600 60 200 600 60 200 600 60 200 600

30 0.953 0.968 0.973 0.242 0.238 0.237 0.971 0.984 0.985 0.244 0.238 0.237
100 − 0.959 0.977 − 0.141 0.130 − 0.983 0.995 − 0.132 0.128
300 − − 0.967 − − 0.095 − − 0.987 − − 0.076

OLS UGLS
mean rmse mean rmse

(N, T ) 60 200 600 60 200 600 60 200 600 60 200 600

30 0.938 0.939 0.939 0.257 0.258 0.258 0.985 0.986 0.986 0.206 0.207 0.207
100 − 0.939 0.939 − 0.167 0.167 − 0.995 0.996 − 0.109 0.108
300 − − 0.939 − − 0.131 − − 0.998 − − 0.062

Note to Table 3: data are generated according to model

yit = �t0 + �t0xit + bi10f1t + bi20f2t + "it,

with regressor xit = i0 + �i10f1t + �i30f3t + vit. Factor loadings are normally distributed
random variables, iid across time and mutually independent, satisfying bi10 ∼ NID(0, 0.2),
bi20 ∼ NID(0, 0.2), �i10 = �i10, �i30 = �i20. Latent common factors are fj,t = 0.5fj,t−1

+
√
0.5�jf,t, with �jf,t ∼ NID(0, 1), mutually independent for j = 1, 2, 3, and idiosyncratic

innovation are "it = �i""it−1 +�i",t with �i",t ∼ NID(0, �2
i (1−�2i")), vit = �ivvit−1+ �iv,t,

with �iv,t ∼ NID(0, (1 − �2iv)), with �i" ∼ UID(0.05, 0.95), �iv ∼ UID(0.05, 0.95), �2
i"

∼ UID(0.5, 1.5), iid across i = 1, ..., N and mutually independent.
Parameters of interest are constant across replications and equal to �t0 = 1, t0 = 0.5 and,
assuming T even, �t0 = 1 for t = 1, ..., T/2 and �t0 = 2 for t = T/2 + 1, ..., T.

Panels headed by mean and rmse report, respectively, T−1
∑T

i=1

(

M−1
∑M

m=1
�̂m
t

)

and

T−1
∑T

i=1

(

M−1
∑M

m=1
(�̂m

t − 1)2
) 1

2

with M = 2, 000. Here �̂m
t denotes the estimate,

based on either the GLS (top left panel), multi-step GLS with J = 4 steps (top right
panel), OLS (bottom left panel) and UGLS (bottom right panel) of �t0 for the m Monte
Carlo iteration.
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Table 2: time regression with unit-specific coefficients

regression coefficient �i0 = 3, i = N/2 + 1, ..., N.

GLS GLS (multi-step)
mean rmse mean rmse

(N, T ) 30 100 300 30 100 300 30 100 300 30 100 300

60 3.105 − − 0.314 − − 3.041 − − 0.277 − −
200 3.053 3.095 − 0.228 0.227 − 3.013 3.024 − 0.215 0.146 −
600 3.034 3.037 3.091 0.209 0.133 0.198 3.012 3.004 3.019 0.200 0.111 0.090

OLS UGLS
mean rmse mean rmse

(N, T ) 30 100 300 30 100 300 30 100 300 30 100 300

60 3.201 − − 0.488 − − 3.013 − − 0.181 − −
200 3.204 3.196 − 0.490 0.415 − 3.012 3.003 − 0.180 0.090 −
600 3.204 3.197 3.193 0.492 0.417 0.389 3.012 3.003 3.001 0.180 0.090 0.051
Note to Table 2: data are generated according to the same model described in Table 1.

Panels headed by mean and rmse report, respectively, (N/2)−1
∑N

i=N/2+1

(

M−1
∑M

m=1
�̂m
i

)

and (N/2)−1
∑N

i=N/2+1

(

M−1
∑M

m=1
(�̂m

i − 3)2
) 1

2

with M = 2, 000. Here �̂m
i denotes the

estimate, based on either the GLS (top left panel), multi-step GLS with J = 4 steps
(top right panel), OLS (bottom left panel) and UGLS (bottom right panel) of �i0 for the
mth Monte Carlo iteration.

Table 4: cross-sectional regression with time-specific coefficients

regression coefficient �t0 = 2, t = T/2 + 1, ..., T.

GLS GLS (multi-step)
mean rmse mean rmse

(N, T ) 60 200 600 60 200 600 60 200 600 60 200 600

30 2.093 2.065 2.054 0.235 0.208 0.201 2.058 2.032 2.031 0.229 0.198 0.192
100 − 2.082 2.045 − 0.167 0.116 − 2.033 2.010 − 0.118 0.101
300 − − 2.078 − − 0.135 − − 2.025 − − 0.070

OLS UGLS
mean rmse mean rmse

(N, T ) 60 200 600 60 200 600 60 200 600 60 200 600

30 2.121 2.121 2.122 0.292 0.291 0.291 2.028 2.027 2.028 0.190 0.189 0.190
100 − 2.120 2.120 − 0.241 0.240 − 2.001 2.009 − 0.099 0.098
300 − − 2.121 − − 0.225 − − 2.003 − − 0.056
Note to Table 4: data are generated according to the same model described in Table 3.

Panels headed by mean and rmse report, respectively, (T/2)−1
∑N

t=T/2+1

(

M−1
∑M

m=1
�̂m
t

)

and (T/2)−1
∑N

t=T/2+1

(

M−1
∑M

m=1
(�̂m

t − 2)2
) 1

2

with M = 2, 000. Here �̂m
t denotes the

estimate, based on either the GLS (top left panel), multi-step GLS with J = 4 steps
(top right panel), OLS (bottom left panel) and UGLS (bottom right panel) of �i0 for the
mth Monte Carlo iteration.
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