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offers. In a two-period case all equilibria with private offers have
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When designing an exchange venue or regulating markets, an important consid-
eration is to what extend sellers’ willingness to sell or buyers’ willingness to buy
are reflected in information available to other market participants. One natural
and important source of available information is previous offers that were not
accepted. For example, trading venues referred to as “dark pools” which now ac-
count for 20% of trading volume in the US hide information about the order book
while order books are visible in the NYSE. Similarly, Ebay, now allows buyers
and sellers to negotiate on the side without displaying those negotiations to other
prospective bidders. Importantly, transparency of information about unconsum-
mated offers changes the ability of a seller to endogenously signal her type by not
accepting a given offer. We analyze the consequences of this on trading dynamics
and welfare, within a dynamic market for lemons with deadlines.
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We consider a problem of an owner of an indivisible durable asset who suffers a
liquidity shock. Due to the liquidity shock, the seller’s present value of the good
drops to a lower level than the true value of the good. Hence, she would like to
sell the asset to a buyer who is not facing a liquidity shock. The problem is that
usually the owner of the asset is better informed about its quality. Thus, although
there are gains from trade, buyers face an adverse selection problem. As first
stressed by Akerlof (1970), if there is only one opportunity to trade, competitive
buyers are only willing to pay the expected valuation of the asset conditional on
the seller accepting to sell at the offered price. If the adverse selection problem is
sufficiently strong, in equilibrium, some types will choose not to sell. In Akerlof’s
model there is no further opportunity to sell the asset. In a dynamic setting, in
which sellers get several chances to sell their good, the alternative to not selling in
the current period is to sell in the future. Inefficiencies can, thus, arise from either
types not trading or types delaying their trades. When deciding whether to delay
trade or not, the seller considers the expected price in the next period. In turn, to
set prices, buyers must form beliefs about the type of seller they are facing. The
observability of past price offers clearly affects the available information they have
based on which to update their beliefs. Frequency of trade is also important. Any
effects on the future offers will be more relevant the closer the next opportunity to
trade is. We show that transparency only affects the amount of inefficient delay
whenever the time between price offers is small (Theorem 2).

By allowing for a fraction of surplus being lost at the deadline we capture an
additional notion of seller’s distress. For example, when the deadline is reached,
the opportunity to trade disappears or a profitable investment opportunity that
the seller wants to finance by the proceeds from the sale of the asset vanishes.
This can create a deadline effect in which the seller trades with a high probability
just at the deadline. Thereby we illustrate a novel difference between transparent
and opaque markets: With public offers (see Proposition 1), the deadline effect
endogenously leads to a trading impasse (illiquidity) before the deadline. In con-
trast (see Proposition 2), with private offers there cannot be a trading impasse
(i.e., there is trade with positive probability in every period). Thus, price trans-
parency is a particularly important issue if trade occurs frequently and if distress
at the deadline is present.

We analyze a two-period model with a long-lived, privately-informed seller and
a competitive market of buyers in every period (modeled as a number of short-
lived buyers competing in prices in every period). We consider two opposite
information structures: transparent (public offers), in which all buyers observe
past price offers and opaque (private offers), in which every period new buyers
make offers and they do not observe past rejected offers.

In this setup we analyze the welfare consequences of price transparency. First,
we show that in an opaque market there is more total trade with higher prices
in the second period. This implies that all seller types that would have traded in
the second period with a transparent market must be better off. If in addition
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there are also weakly higher prices in the first period, then the opaque market
Pareto dominates the transparent market. This is the case when not trading
by a deadline imposes an efficiency loss and trading offers are frequent. We ob-
tain a complete characterization of equilibria when gains from trade are linear
in valuation and the distribution of valuations is uniform. In that case, private
offers strictly Pareto dominate public offers if trade opportunities are sufficiently
frequent, even if missing the deadline would not additionally reduce welfare. If
discounting between two periods is large, the two information structures yield
the same equilibrium outcome. Only if discounting between offers is small, buy-
ers randomize between several price offers with private offers, such that price
realizations become volatile.

What makes the markets operate differently in these two information regimes?
In a transparent market, buyers can observe all previous price offers and thereby
learn about the quality of the good through two channels: the number of rejected
offers (time on the market) and the price levels that have been rejected by the
seller. By rejecting a high offer, the seller can send a strong signal to future
buyers that she is of a high type. For example, in transparent exchanges, sellers
try to influence prices by taking advantage of the observability of order books. In
contrast, in an opaque market, in which buyers cannot observe previously rejected
prices, the seller signals only via delay. Intuitively, private offers generate more
trade because the seller’s continuation value is independent of the current price
offer, while with public offers it increases in prices. Thus, sellers are more reticent
to accept public offers than to accept private offers (leading to less trade in the
transparent market). !

This intuition can also be formalized in a general multi-period setting that
pure-strategy Perfect Bayesian Equilibria (PBE) with public offers always exist
and that they coincide with PBE with private offers if the discounting between
two periods is large. However, there cannot be pure-strategy PBE in the game
with private offers, if the discounting between two periods is small. For this
reason, the two information structures result in different trading patterns only in
high-frequency markets.

Related Literature

The closest paper to ours in the economics literature is Horner and Vieille (2009)
(HV from now on). They are also interested in comparing trading dynamics in a
dynamic lemons market with public versus private offers. Our model differs from
theirs in that we allow for a deadline effect and we consider multiple buyers in

LComparing our paper to the existing literature yields that how price dynamics are affected by
transparency depend on the microstructure of the market. For example, the claim that any pure-strategy
equilibrium prices in a game with private offers are also supportable as equilibrium prices in a game with
public offers is true because we have assumed intra-period competition. In Kaya and Liu (2012) there is
one buyer per period and hence competition is only inter-period. In that case the games with private and
public offers have different pure-strategy equilibria. The reason for the difference is that a monopolistic
buyer would have a profitable deviation to a lower price if prices become transparent. In our model
intra-period competition implies that a lower-than-equilibrium price is rejected for sure.
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every period. The lack of intra-period competition in HV introduces Diamond
Paradox effects (Diamond (1971)) making it much more difficult to isolate the
effect of transparency and resulting in a quite “paradoxical” equilibrium with
public offers: the first offer is rejected with positive probability and all other
offers are rejected with probability 1. Instead, in our model, the equilibrium
with public offers trade occurs gradually over time. By eliminating the Diamond
Paradox effects and adding a deadline, we can derive additional welfare results.
Although HV show that private offers lead to more trade, in general it is not
obvious if their model would lead to an efficiency ranking. It is possible that
the endogenous trading impasse that arises with public offers in their model is
actually valuable since it serves as a commitment device, where sellers know
that they either trade in the first period or never again. Indeed, as shown in
Fuchs and Skrzypacz (2015), efficiency is actually enhanced when the privately
informed seller is exogenously restricted to only one opportunity to sell. Lastly,
due to the infinite horizon model there is no counterparts in their work to our
results regarding distress at the deadline.

Another interesting prior comparison between private and public offers goes
back to Swinkels (1999). He looks at a dynamic version of the Spence signal-
ing model where potential employers are allowed to make private offers to the
“students” at any time. Swinkels shows that in this case the unique equilibrium
outcome is a pooling equilibrium with all students being hired at time 0. This, he
points out, is in direct contrast to the result in Noldeke and Van Damme (1990),
who show that, with public offers, the unique equilibrium to survive the NWBR
refinement is a separating equilibrium where the high types go to school just long
enough to credibly separate themselves from the low types. The main difference
between both these papers and ours is similar to the difference between Spence
and Akerlof. In our model, the adverse selection problem is stronger and hence,
the buyers would not be willing to buy at the price necessary to get all sellers to
sell even if offers were private.?

Our result about non-existence of pure-strategy equilibria in the private offers
case is related to the result in Kremer and Skrzypacz (2007) who study a dynamic
version of the education signaling model with private offers, a finite horizon, and
the type being (partially or fully) revealed in the last period (which endogenously
creates adverse selection). They show that there do not exist fully separating
equilibria in a game with a continuum of types or with a finite number of types
if the length of periods is short enough. The intuition in their proof for why
separation is not possible is similar to our intuition why pure-strategy equilibria
do not exist. In particular, with private offers, sellers follow a reservation price
strategy and the reservation prices are equal to the continuation payoffs which
are independent of current prices. Kremer and Skrzypacz (2007) show that if
the equilibrium was separating, in continuous time the reservation prices would
have zero derivative at the lowest type resulting in a perfectly elastic supply.

2This is also what causes delays in trade in the bargaining model by Deneckere and Liang (2006).
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That in turn would lead to a profitable deviation for the buyers (who with a
very small price increase could attract strictly better types). In our discrete-
time model we show that if the candidate equilibrium of the game with private
offers is in pure strategies, and the discount factor is high enough (or periods are
short enough), then equilibrium supply is sufficiently elastic so to create similar
profitable deviation for the buyers.

More recently, Kim (2012) compares three different information structures in a
continuous time setting in which many sellers and buyers, who arrive over time at
a constant rate, match randomly. In every match, the buyer makes a price offer
that the seller can accept or reject. The type space of the seller is binary. Instead
of looking at observability of past offers, he compares steady state equilibria in
settings in which buyers do not observe any past histories to settings in which the
time on the market or the number of past matches can be observed by buyers. The
welfare ordering is not as clear cut as in our paper. It is shown that with small
frictions, it is optimal if only the time on the market is observable while with large
frictions the welfare ordering can be reversed. For repeated first-price auctions,
Bergemann and Hérner (2010) consider three different disclosure regimes and they
show that if bidders learn privately about their win, welfare is maximized and
information is eventually revealed.

Besides our contribution regarding the implications of transparency, our paper
also contributes to the literature on dynamic lemons markets in general. One of
the most recent works by Deneckere and Liang (2006) considers an infinite hori-
zon bargaining situation, i.e., one long-lived buyer and one long-lived seller, with
correlated valuations. They show that even in the limit as the discount factor
goes to one, there can be an inefficient delay of trade unlike predicted by the
Coase conjecture.? Janssen and Roy (2002) obtain similar results with a dynamic
competitive lemons market with discrete time, infinite horizon and a continuum
of buyers and sellers. While in their model both market sides compete, we assume
that there is only one seller. Unlike most previous papers that consider slightly
different market structures, we are able to provide a more complete characteriza-
tion of equilibria in mixed strategies with private offers. This makes it possible to
understand these kinds of equilibria in more detail. For example, we show that
"non-offers,” i.e. offers never accepted, are always part of an equilibrium in the
first period if offers are private and offers are frequent.

A number of recent papers work directly in continuous time and, rather than
modeling buyers as strategic, they assume there is some competitive equilibrium
price path. This paper is a complement to those papers. For example, one can
understand the No Deals Condition in Daley and Green (2012) as arising from
private offers and the Market Clearing condition in Fuchs and Skrzypacz (2015)
as arising in a setting with public offers.

The finance literature has also looked at transparency questions. In particu-

3See also Fuchs and Skrzypacz (2013b).
4We have benefited from discussions with Brett Green on these issues.
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lar, our model is more directly related to what is referred to as pre-trade trans-
parency. Most of the theoretical and empirical work has focused on order book
transparency.® The two main trade-offs regarding transparency within this lit-
erature are the “Advertising” and the “Information” effects. The former refers
to the notion that when the desire to trade is made public then it is beneficial
because more potential counter-parties become aware and might participate. The
latter effect refers to the information revealed about the underlying asset that the
poster of the offer has. Importantly it leads to less trade with a public order book
since traders do not want to reveal private information to the market. Neither of
these effects are present in our model since the size of the market is fixed and all
the information is on the hands of the seller who does not make any offers. This
allows us to highlight the novelty of the dynamic signaling effect we uncover in
our paper.

I. Model and Preliminaries
A.  General Setup

A seller has an asset that she values at ¢ which is her private information and
distributed on [0, 1] according to a cumulative distribution function F'. One can
think of the asset giving an expected cash flow each period and ¢ being its present
value for the seller.® There are two opportunities to trade with two short-lived
buyers arriving in each period ¢ € {1,2}.” They make simultaneous price offers
to purchase the asset.® The value of the asset for the buyers is given by wv(c)
with v'(¢) > 0, v(1) = 1, and gains from trade v (¢) — ¢ strictly positive for all
c € [0,1).2 The game ends as soon as the good is sold. If trade has not taken
place by the end of the second period, then the seller obtains a fraction of the
gains from trade: a(v(c) — ¢) with a € [0,1]. One can think of a as a measure
of distress at the deadline. If o = 1 there is no efficiency loss beyond delay from
reaching the deadline. If @ < 1 there is additional efficiency loss if trade does
not take place before the deadline. When there is no opportunity to trade after
period 2 we have a = 0.

The seller discounts payoffs between the two periods according to a discount
factor 6 € (0,1). All players are risk neutral. Given the seller’s type is ¢ and
agreement over a price p is reached in period t, the seller’s (period 1 present
value) payoff is (1 —d'~1)c+ 5"~ 1p; a buyer’s payoff is v(c) — p if he gets the good

5See for example Buti and Rindi (2011), Flood et al. (1999), Boehmer, Saar and Yu (2005), Madhavan,
Porter and Weaver (2005), Pancs (2011)

6 Alternatively, and mathematically equivalently, ¢ can be thought as the cost of producing the asset.

"In Section III we extended some results to more than two periods.

8The analysis is the same if there are more than two buyers since the buyers compete in a Bertrand
fashion.

9In most of the paper we assume v (1) = 1 to rule out the possibility of trade ending before the last
period. This allows us to avoid making assumptions about out-of-equilibrium-path beliefs if the seller
does not sell by ¢ even though in equilibrium she is supposed to. If v(1) > 1 but ¢ is small enough so
that not all types trade in equilibrium, our analysis still applies.
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and 0 otherwise. If there is no trade, the seller’s payoff is ¢ + §2a(v(c) — c).

Without loss of generality, we restrict prices to be in [0,v(1)], since it is a
dominant strategy for the seller to reject any negative price, and for any buyer it
is a dominated strategy to offer any price higher than v (1).

We explore two different information structures. In the public offers case, period
2 buyers observe rejected offers from period 1. In contrast, with private offers,
period 2 buyers are aware that the seller has rejected all offers in period 1 but do
not know what those offers actually were.

Period 2 buyers’ belief about the seller types they are facing, is characterized
by a cumulative distribution function (cdf) denoted by F (c¢). Without loss of
generality, we assume that the seller responses are independent of buyer identity.
That is, conditional on receiving the same price offer, she treats both buyers
equally.

B.  Equilibrium Notion

We are interested in characterizing perfect Bayesian equilibria (PBE) of the two
games. A PBE of a given game is given by (possibly mixed) pricing strategies for
the two buyers in each period, a sequence of acceptance rules of the seller, and
the buyers’ beliefs F5 at the beginning of period 2, satisfying the following three
conditions:

1) Any price offer in the support of a buyer’s strategy must maximize the buyer’s
payoff conditional on the seller’s acceptance rule, the other buyer’s strategy and
his belief F; (¢), where Fy(c) = F(c) is the common prior.

2) Buyers’ beliefs Fy are updated (whenever possible) according to Bayes’ rule
taking the seller’s and the other buyers’ strategies as given. In the public-offers
game beliefs are updated conditional on the offered prices in period 1.

3) The seller’s acceptance rule maximizes her profit taking into account the
impact of her choices on the agents’ updating and the future offers she can expect
to follow as a result.

In the game with private offers, equilibrium strategies and beliefs depend only
on the calendar time. In the game with public offers, period 2 strategies and beliefs
depend also on the publicly observed prices offered in period 1. With public offers,
deviations from equilibrium price offers are observed by future buyers and induce
different continuation play. With private offers, off-equilibrium price offers do not
change the continuation play.

C. Preliminaries

As in other similar dynamic games, in equilibrium, the seller’s acceptance rule
can be characterized by a cutoff strategy. More precisely, given any history and
maximal price offer p , there exists a cutoff k;(p) such that sellers with valuations
above a cutoff k;(p) reject a price offer p in period ¢ while sellers with valuations
less than k¢(p) accept it. In the bargaining literature, it is the better types that
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accept first and this property is known as the Skimming property. Since here it
is the worse types that trade first, we call it Reverse-skimming instead.

LEMMA 1: (Reverse-skimming property) In any continuation equilibrium with
either type of information structure, the following must hold: For any highest
price offer p in period t, there exists a cutoff type ki(p) so that a seller of type c
accepts p if ¢ < ki(p) and rejects p if ¢ > ki(p). 1©

See the Appendix for a formal proof. This lemma holds independently of the
information structure in place (although the cutoffs may differ). The intuition for
the lemma is straightforward. If a type-c seller is willing to accept a price that, if
rejected, would induce a given future price path, then all lower-type sellers would
also be willing to accept that price rather than wait for a price on that path
because their flow payoff from possessing the asset is smaller.

A buyer’s expected profit conditional on his offer being accepted is given by 1

Et(p)
1) I,(p; ) = /0 (v(c) — p) dFY(c).

Thanks to the Reverse-skimming property, if past prices are observed publicly,
the belief about the remaining seller types in period 2 is given by a single cutoff
k1(p). Therefore, with public offers, if p is the highest price offer observed in
period 1, then F; is just F truncated to [k1(p), 1]. In contrast, with private offers,
if period 1 buyers play mixed strategies, period 2 buyers have non-degenerate
beliefs over the possible cutoffs induced by period 1 prices. In that case, we
denote the cdf representing the distribution of cutoffs after period 1 from period
2 buyers’ point of view by Kj : [0,1] — [0,1]. The pdf of the equilibrium belief,
f2(c), is then by Bayes’ rule:

1 ~

fz(C):/O def(l(k)-

We make a regularity assumption that

) RELGRE
is strictly decreasing and that
(3) v”(e) > 0.

This implies that a one-shot game would have a unique equilibrium and that
a zero profit condition must be satisfied in both periods for both information

10Note that ko (p) is independent of the price history.
HThe expected profit of the buyer is the probability that he has the higher offer, or that he wins in
case of a tie, times IT¢(p; Fy).
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structures.!?
LEMMA 2: (Zero profit) In any equilibrium, buyers must make zero profits in
both periods with both information structures.

We prove this lemma together with the following lemma which shows that in
equilibrium each cutoff can only be induced by a single price.

LEMMA 3: (Inverse supply)
(i) (Private offers) With private offers, on equilibrium path, there exists a unique
price py(k) that results in a given cutoff seller type k. pi(-) = k; () is increasing
and continuous. It is given by

~——
utility from
continuation payoff keeping the good

@ k) = 6[(/;@(1%)%2(%))+K2<k>pz<k>]+ (- o)k

where Ko represents the cdf of the distribution of period 2 equilibrium cutoffs and
(5) p2(k) = dav(k) + (1 — ad)k.

(ii) (Public offers) Consider an equilibrium with public offers. After any history,
there is a unique price p;(k) at which the type-k seller is the highest type accepting
the price. Let ka(k) be the period 2 cutoff of the continuation equilibrium given
the period 1 cutoff is believed to be k (which we show is unique). Then, pi(k) is
increasing and given by

(6) pi(k) = dpa(r2(k)) + (1 - d)k
and
(7) p2(k) = dav(k) + (1 — ad)k.

The formal proof of the two lemma is presented in the Appendix, but we provide
some intuition here. From now on we call p;(-) the inverse supply function defined
in this lemma. It is derived from the seller’s indifference condition in each period
as described in this lemma.

In period 2, the unique price that results in cutoff type k is the same for both
information structures (since the seller continuation payoff is independent of the
history). However, in period 1, the seller’s strategy and hence, p; (k) are different
across information structures.

With private offers, period 1 prices do not affect F» or the continuation play.
As a result, the continuation payoff in (4) is independent of past cutoffs. The

121f o = 0, assumption (3) can be dropped.
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first part of the continuation payoff | kl pa2(ke)d K5 (k2) is nothing but the expected
price the seller can get if she sells the asset in period 2. po(k) is the expected
payoff that a type-k seller can expect if she does not sell tomorrow either, which
happens with probability Ky(k). (1 —9)k represents the payoff of a type-k seller if
she held on to the good for exactly one more period. This total expected benefit
from waiting must correspond to the payoff from selling today (at p;(k)).

With public offers, however, period 1 prices can affect period 2 price offers,
which makes the argument more evolved. We show that the period 2 cutoff of
the continuation game, given that period 2 buyers believe the cutoff type after
period 1 is k, increases in k. As a result, k;(p) is increasing and an inverse supply
function exists.

As a consequence of Lemma 3, one can think of buyers essentially choosing
cutoffs instead of prices given the seller’s cutoff strategy k:(-). More precisely, we
can write a buyer’s expected profit conditional on his offer being accepted, if he
bids a price p = k; 1(k), and given that buyers believe that current cutoffs are
distributed according to a cdf K, as

k pc 1 N
® k)= [ K 000 - k) f(ede

If K has its entire mass on a singleton ¢ (which is always the case with public
offers), then we write m(k;¢) instead of m;(k; K), abusing notation slightly. In
particular, in period 1, m(k;0) = fok (v(c) — p1(k)) - f(c)de where p;(k) varies
across the two information structures.

II. Distress, Transparency, and Welfare

In this section we present all our main results. We are interested in two types
of questions. First, how do the two information structures compare in terms of
welfare (Theorems 1 and 4) and second, how do equilibria differ with the two
information structures (Theorems 2 and 3).

A. General Results

A full characterization of equilibria, in particular with private offers, is difficult
because, as we show, buyers play mixed strategies and the equilibrium is generally
not unique.!® Nevertheless, even without an explicit characterization of equilib-
ria with private and public offers, we can show that all equilibria with private
offers result in more trade than all equilibria with public offers. We also present
sufficient conditions under which the private offers regime Pareto-dominates the
public offers regime.

13 An explicit characterization of equilibria if valuations are linear and costs are uniformly distributed
is presented in Section II.C.
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THEOREM 1: Consider an arbitrary equilibrium with public offers and an equi-
librium with private offers. Then, the following hold:

(i) Expected second period prices are (weakly) higher and there is more total trade
with private offers.

(ii) All types that trade in the second period with public offers are (ex-ante, weakly)
better off when offers are made privately.

(iii) (a) For any given o < 1, there exists a 6™ («v), such that if 6 > 6**(«a) then
the private offers equilibrium Pareto dominates the public offers equilibrium.

(b) For ¢ ~ U[0,1] and linear v, the private offers equilibrium (weakly) Pareto
dominates the equilibrium with public offers for any o € [0,1] and § € [0, 1].

We present the proof of (i) and (ii) here and show the Pareto-ranking under the

premise that the expected price in the first period with private offers is weakly
higher than the expected price with public offers. We then show in Sections 11.B
and II.C, that the premise in (iii) (a) or (b) imply weakly higher expected prices
in period 1 with private offers.
PROOF. First, note that with public offers, we can restrict attention to pure-
strategy equilibria because for any mixed-strategy equilibrium, one can construct
a pure-strategy equilibrium that Pareto dominates it. Such pure-strategy equi-
librium can be constructed as follows. The period 1 price pj is the largest price
in the support of period 1 prices in the mixed-strategy equilibria and must also
result in the largest period 1 cutoff kf. By the regularity assumption that (2)
is decreasing and (3), there is only one price ps that satisfies the period 2 zero
profit condition, given the period 1 cutoff k1. Then, given any period 1 cutoff
k > k; profits are greater than zero at pp. Hence, the period 2 price p5 following
the period 1 cutoff £] must be the largest period 2 price that is chosen with pos-
itive probability in the mixed equilibrium. Hence, the pure-strategy equilibrium
given by price offers pj = p1(k}) and p5 = p2(k3) exists and Pareto-dominates
the mixed equilibrium.

Let us consider a public-offers equilibrium with cutoff types ki and k3. If
offered the equilibrium price p] in period 1, the continuation payoff of type c
after rejecting the offer is given by

V(e;pt) = d max{ps, p2(c)} + (1 — d)e.

Note that by definition V' (k};p}) = p;. In a private offers equilibrium, the con-
tinuation payoff of type c after rejecting an offer in period 1 is independent of the
price in period 1 and given by

W(e) = pi(c) = § [( / 1 pg(/%)df(g(ic)> + Kg(c)pg(c)] +(1-d)e.
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Assuming W (k%) < V(k%;p%) = p} can be shown to lead to a contradiction.!4
We can thus focus on the case W (k}) > V (k7; p}). In this case, for all ¢ < k3, since
the equilibrium with private offers might involve mixing in the second period and
might result in the seller deciding not to sell (if the second period realized offer
is low), the derivative of the continuation value with respect to type is higher:

QW(C) =1-6+6Ks(c)(1—ad+ad'(c) > 1-6=

0 .
5% V(e pi).

dc

Hence, all seller types k € [k}, k3] have a better outside option with private offers
when rejecting the period 1 price which implies that all types k € [k}, k3] are
better off with private offers. Sellers with £ > k3 wait until the deadline with
public offers. They always have this option with private offers as well and can
even be better off if they see a preferable price before. This proves (i). Note that
(ii) then follows as well since the buyers break even and surplus for the seller is
derived from trade. Thus, more surplus can only be achieved with more trade.
Given that the seller’s reservation price in the second period is independent of
information structure, more trade can only be achieved with higher average prices,
proving (iii). If expected period 1 prices are higher with private offers than with
public offers, then all seller types k < k] are also better off with private offers.
This proves (iv).

O

REMARK 1: A noteworthy consequence of Theorem 1 is that there can exist
at most one pure-strateqy equilibrium with private offers. This follows because
any private-offers pure-strateqy equilibrium corresponds to a public-offers pure-
strategy equilibrium and all public-offers pure-strategy equilibria can be ranked in
terms of the amount of trade. Hence, only the pure-strategy equilibrium with most
trade is a candidate for a private-offers equilibrium outcome.

We have shown that if equilibria differ in the two information structures, then
there is more trade with private offers. Next, we show that equilibria with private
and public offers do not always coincide. In particular, they must differ when the
seller discounts future periods only a little. A high discount factor can alterna-
tively be interpreted as frequent opportunities to trade as discussed in Section
III.A. We show that pure-strategy equilibria cease to exist with private offers.

THEOREM 2: (i) With public offers, a pure-strategy equilibrium always exist.
(ii) With private offers, there exists a 8* such that for all § > 6* no pure-strategy
equilibria exist.

14 A lower continuation value with private offers would imply acceptance by types higher than ki in
the first period, which in turn must imply higher prices in period 1 and , therefore also in period 2. This
would imply W (k) > V(k;p7).
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We present most of the proof here, but defer technical calculations to the Ap-
pendix. First, the existence of public offer equilibria follows by backward induc-
tion. A buyer’s expected period 2 profit conditional on his offer being accepted
is given by

mo (ko k1) =

1 k2
T{kl) /kl v(e) — (1 — 5)k2(—|—)5v(k2) f(e)de.
=pa (k2

Since in equilibrium buyers must make zero profits (Lemma 2), any equilibrium
cutoff of the continuation game (k1) must satisfy

(9) 7T2(I€2(k‘1);k‘1) ZO

Note that such a continuation cutoff ka(k;) always exists and is smaller than 1
because v(1) = 1. In order to attract a cutoff-type k; in the first period buyers
need to bid at least p; = (1 —9)k1 + dp2(ka(k1)). Hence, buyers’ profits in period
1 can be written as

k1
m1(k1;0) = /0 v(c) — ((1 = 0)ky + dp2(ka(k1))) | f(c)de.
p1(k1)

Then,
K = sup {k € [0, 1]|m1(k; 0) > 0}

(with kT = 0 if the set is empty) and k5 = ko2(k}) supports an equilibrium. From
now on we denote the equilibrium cutoffs in the game with public offers by £} .

What can we say about equilibria of the game with private offers? First, recall
that period-1 buyers’ profits with private offers

k1
m1(k1;0) = / (v(e) = (1 = 0)k1 + dp2(k3))) f(c)de
0
are differentiable in k; and the zero-profit condition

Ev(c)le € [0, k1]l = pr(k1)

must be satisfied for all k; in the support of the equilibrium strategy of period 1
buyers (Lemma 2). Similarly, profits must be equal to zero in period 2 and buyers
must have correct beliefs about the period 1 cutoff.

Suppose the game with private offers has a pure-strategy equilibrium that in-
duces the same cutoffs k; that we found in the game with public offers. Consider
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the incentives of buyers in the first period. With private offers, if buyers deviate
to a higher price, to induce a marginally higher cutoff than £}, we can compute
using (II.A) that the net marginal benefit (NMB) of that deviation is

9
Ok

9 \ 0
a0y = FO) - | GrEEle € 0kl = e
———

Ok
=1-0

Now, as 6 — 1, it follows from the seller’s indifference conditions that £} — 0.
When we consider the limit k] — 0, we can apply L’Hopital’s rule to obtain:

.0 v'(0)
,}IIE}O TI{HE[U(CNCG [0 klllk=r; = ——
Thus,
1 0 v'(0)
I (k13O e = —(1-4).
o TRy oy 1 Ol g (170

is strictly positive for large enough § as long as v/(0) > 0. Hence, there exists a
0* such that no pure-strategy equilibrium can be sustained with private offers for
all 6 > o*.

Intuitively, the difference in the two information structures can be seen as fol-
lows. With public offers, the seller has a stronger incentive to reject high price
offers in period 1 than if the offer had been made privately: Suppose one of the
buyers made an out-of-equilibrium high offer. With public offers the seller gains
additional reputation of her type being high by rejecting this offer, the strength
of her signal being endogenously determined by the amount of money she left on
the table. Consequently, her continuation value increases upon a rejection of the
higher price. Instead, with private offers, she cannot use the out-of-equilibrium
higher offer as a signal, so her continuation value remains constant. Thus, she
has stronger incentives to accept the higher offer if it is private. Formally, this
is reflected by different period 1 supply functions p;(k) in the two information
structures. In particular, for all k > kI, the price that makes k indifferent with
public offers is greater than the price with private offers:

(1 —0)k + dpa(ra(k)) > (1 —0)k + dpa(ksy) -

p1(k) with public offers p1 (k) with private offers

The effect is large enough to break down pure strategy equilibria with private
offers if the discount factor is large enough because the seller’s value of signaling
to future buyers is higher as the next period starts sooner.
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B. Distress and Market Breakdown

Recall that we assumed that if the seller rejects offers at ¢ = 2, she captures
a(v(c) — ¢) of the continuation surplus. « < 1 can be interpreted as a measure of
distress. In the following we discuss how it affects equilibria in the two information
regimes and show that for o < 1 and large enough discount factors it follows as a
corollary of Theorem 1 that private-offers equilibria Pareto-dominate all public-
offers equilibria.

To this end, consider a game with public offers. We show that trade in period 1
can break down if o < 1 and 9§ is large. If some surplus is lost after the deadline,
there is an extra incentive to trade in period 2, right before the deadline. The
lower the «, the more types trade at the deadline. This leads to quiet period (i.e.,
no trade) in period 1 if § is high. In search of a contradiction, suppose there was
trade in period 1 and let us denote the largest seller type trading in period 1 by k.
The highest price at which he could possibly be trading is v(l;:) Since the mass
of types trading in period 2 is uniformly bounded from below for all §, the price
at t = 2 must be strictly greater than v(k). Thus, if ¢ is close to 1, the cost of
waiting in order to trade at the higher price the next period is negligible relative
to the benefit and thus k should not trade. Formally:

PROPOSITION 1: (Quiet Period) With public offers, for any o < 1 there exists
a 6" <1 such that if § > 0™ in equilibrium there is no trade in the first period.

This logic can be extended to multiple periods as we show in the Appendix
in Proposition 6. The reason this logic does not apply when o = 1 is that in
that case as § increases to 1, while probability of trade in period 2 is positive, it
is not uniformly bounded away from zero. In fact, it converges to zero and the
period 2 price converges to v(k) and there can be trade in both periods along the
sequence, as we have shown in the previous section. Thus, in contrast to HV who
find that with public offers there is trade only in the first period, we find that
without distress with public offers there is trade in every period and with distress
there is no trade in the first period.

In contrast, with private offers, an equilibrium cannot have quiet periods (i.e.
periods with zero probability of trade). To see this, suppose that in the current
period there was to be no trade but in the next period there would be some trade
at a price p. The buyers could offer a price p in the current period attracting all
sellers and some higher types that would have accepted p in the next period. They
accept because the offer is private and thus, does not change the continuation
game for the seller if she were to reject it. Such a deviation is profitable for
buyers because buyers in the next period would have made non-positive profit.
Thus there cannot be quiet periods in equilibrium. We summarize this observation
as:

PROPOSITION 2: (No Quiet Periods) With private offers, for all o and 0 there
must be a strictly positive probability of trade in every period.
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In particular, in period 1 there must be a positive probability of trade. This
establishes another important difference in the equilibrium behavior across infor-
mation structures. This difference allows us to easily argue that when a < 1 for
high § the opaque environment Pareto-dominates the transparent one because
we already know from Theorem 1 that all types that would sell in period 2 with
public offers are better off with the private information structure. This concludes
the first part of Theorem 1 (iii).

C. The Linear and Uniform Case

With linear valuation v(c) = Ac+ B, o = 1, and ¢ being uniformly distributed
on [0,1], we can fully characterize the set of private-offers equilibria and use this
in order to show that the private information structure Pareto-dominates the
public one. To this end, we first present a stronger version of Theorem 2 in the
linear-uniform environment.

THEOREM 3: Let v(c) = Ac+ B be linear, o = 1 and ¢ uniformly distributed
on [0, 1].
(i) With public offers, there is a unique equilibrium which is in pure strategies.
(i) With private offers, there exists a

= 1-% €(0,1)

such that the following hold:

1) For all § < 6*, the equilibrium is unique and the equilibrium outcome coin-
cides with the equilibrium outcome with public offers.

2) For all § > 6* no pure-strategy equilibria exist. Instead, there are multiple
miz-strateqy equilibria. For any equilibrium with private offers, the expected
price in the first period is strictly higher than the expected price with public

offers.

In the following, we present most of the proof and the intuition of Theorem
3. The proofs of Propositions 3 and 4, as well as the construction of a mixed-
equilibrium with private offers (which conclude the proof of Theorem 3 part (ii)
2) are deferred to the Appendix.

The unique public offer equilibrium can be calculated using backward induction.
It is given by the period 1 cutoff

. 2B - (1-96)%(2—A)
(10) =20 S (1 A) (A6 -2+ 2) 1 A2

and the period 2 cutoff

. 2B-(2(1-6)%2+ A5(1-9))
(1) "= o6y (1 A) (A5 25 12) + AT
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This fails to be an equilibrium with private offers if

0 A
— 1 (k1; p=ki-(=—-(1-9¢
8]{17‘-1( 1)0)‘k1—k‘1 1 (2 ( )) >0
otk (k1)
Hence, for high discount factors, § > * = 1 — %, it is profitable for a buyers

to deviate to higher prices. The reason is that by rejecting a higher price, the
seller cannot send such a strong signal to tomorrow’s buyers about her type, and
hence she would accept such a price. Consequently, there is no pure-strategy
equilibrium with private offers if 6 > 6*. If 6 <1 — % = §*, then buyers in period
1 do not have an incentive to deviate because their profit

A
m1(k1;0) = kg - (2k1 + B —pl(k1)>

is a quadratic function with a null at ky = 0 and k; = k] and negative slope at

The discussion above establishes that if 6 > 0* there can be only mixed-strategy
equilibria in the game with private offers. We further claim that if § < 6* the
private-offers game has only a pure-strategy equilibrium with outcome that coin-
cides with the public equilibrium outcome, no mixed-strategy equilibrium exists.
To establish this result, we fist argue that mixing cannot occur in period 1. Pe-
riod 1 prices p1(k) with private offers are given by (4) (and allows for mixing in
period 2). Substituting (4), we get that 71 (k1;0) is piece-wise quadratic and the
coefficient in front of the quadratic component k2 is always smaller than g— 149.
For 0 < 0* this is negative and hence buyers in period 1 must play a pure-strategy
in equilibrium. Consequently, buyers in period 2 must have a degenerate belief
K5 and by the arguments in the public-offers case, the continuation equilibrium
is unique and in pure strategies.

Mixed-strategy equilibria for 6 > §* =1 — g are characterized by the following
proposition.

PROPOSITION 3:  Suppose § > §* =1 — %. In any mized-strategy equilibrium
with private offers, the following hold:

(i) In period 2, buyers mix between exactly two prices that result in the two cutoffs
given by

B(1 - 9) . B(1 —4?)

T A -s+1-4 P AR 1A

2

A_(1_
where ky is chosen with probability g2 = %.

(ii) In period 1, buyers miz between prices that induce cutoffs 0 and cutoffs that lie
in (ko, ka). Cutoff 0 is induced on the equilibrium path with a positive probability.
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How does the mixing help resolve the problem of non-existence of equilibrium?
Consider any cutoff k; > 0 consistent with the equilibrium outcome in period 1.
It must be that 7;(k;0) = 0 and %m(k;O) < 0 at that cutoff. As we argued
above, the sign of %m(kz;O) depends on the sign of %(E[v(cﬂc < k] — p1(k)).
Mixing in period 2 changes the derivative of p;(k). In particular, if k; trades in
period 2 if the price offer is high and does not trade in period 2 if the offer is low
then pi(k) = dE[max{pa(k),p2(k)}] + (1 — d)k where pa(k) (defined in equation
(5)) is the seller’s continuation payoff if she rejects period 2 prices and k is the
equilibrium period 2 cutoff distributed according to Ks. Mixing in period 2 makes
the seller’s continuation payoff in period 1 more sensitive to her type and hence
the supply function p; (k) becomes less elastic. If the probability of k1 not trading
in period 2 is high enough, then period 1 buyers have no incentive to increase
prices.

In equilibrium buyers must mix over period 1 offers for two reasons. First, if the
posterior belief in period 2 were a truncation of the uniform prior, there would be
a unique continuation equilibrium price. Mixing in period 1 is needed to induce
a posterior such that mixing in period 2 is indeed a continuation equilibrium.
Second, and more generally, note that the lowest type in the support of F5 trades
in period 2 for sure (recall v(c) > ¢). If the lowest cutoff induced in period 1
were strictly positive then for that type %pl(k‘) = 1—9. As discussed above,
that would imply %m(k; 0) > 0 for § > 0* and buyers would have a profitable
deviation. Therefore in equilibrium buyers in period 1 must make with positive
probability a non-offer, i.e. offer a low price that is rejected by all types.'® At
the same time, it cannot be that no type trades in period 1. If so, buyers could
deviate to the highest price offered in equilibrium in period 2 and make a strictly
positive profit (since that price would be accepted by types better than those that
trade in period 2).

Even though the private-offers equilibrium strategy in period 1 is not unique,
all equilibrium strategies have some properties in common. In particular, the
expected cutoff type is constant across equilibria and on average higher than
with public offers:

LEMMA 4: Ifé > 6%, the following holds:
(i) The expected cutoff in period 1 is constant across all equilibria with private

offers.
(ii) Denoting the expected equilibrium cutoff in period 1 with private offers by

EX1[ky], it is higher than the equilibrium cutoff with public offers:
EX (k] > k.

15In equilibrium the lowest on-path period 1 cutoff is k; = 0. While at that cutoff {%(E[v(cﬂc <
k] — p1(k)) > 0, the reservation prices of the low types are sufficiently high so that for all cutoffs
k € (0,ky), m1(k;0) < 0. In particular, p;(0) > v(0).
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This Lemma concludes the proof of Theorem 1. Because the expected period 1
cutoff is constant across equilibria, we can simply calculate the expected period 1
cutoff with private offers and show that it is greater than kj. Hence, the reserve
price of any type that trades in period 1 is at least:

p1(7€) > (1 _ 5)k + 5EPrivate[p2]

because that type has the option not to sell in period 2. Integrating the reserve
prices over the equilibrium distribution of the period 1 cutoff types we get the
average transaction price in period 1:16

—_———
>p2(k3)

1 1
EPrwate[pl] E/O pl(k‘)dKl(k) > (1 . 5)/0 del(kj) +5Evaate[pZ]
>k}

where K; is the cdf of the equilibrium distribution of period 1 cutoffs with
private offers. This is greater than the period 1 public offer price pi(k}) =
(1 — &)k + 0p2(k3) because the average cutoff in period 1 is higher (as we show
in the Appendix) and the average price in period 2 is also higher (as we showed
in Theorem 1). Thus, all seller types ¢ < kj are better off with private offers
- they either sell in the first period at a higher expected price or choose to sell
in the second period which must give them higher profits by revealed preference.
Consequently, we have established the Pareto ranking of equilibria, i.e., all seller
types are ex-ante better off with the private information structure than with the
public information structure.

For the uniform-linear case, we can also calculate numerically some equilibria
for different levels of distress cutoffs and prices as the level of distress « changes
and they are illustrated in Figure 1.

Indeed there is more trade the more distress is faced at the deadline (i.e., as
a decreases). However, trade breaks down in period 1 with high level of distress
(i.e., a less than ~ 0.63) if offers are public. In contrast, this effect is almost
completely alleviated with private offers. Hence, if distress is a severe issue, the
benefit of opaque environments is potentially even higher than without distress
at the deadline.

III. Robustness and Generalizations

A. More than two periods

We now generalize Theorem 2 by allowing more opportunities to trade before
the deadline with each period {0, A, ..., 1— A} having length A and the discount

16Recall that in the private offers equilibrium buyers make a non-offer with positive probability. That
price is unbounded from below, but the equilibrium payoffs of all types can be computed as if the price
offered in that case is equal to the reserve price of the lowest type, as we do in this expression.
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FIGURE 1. ROLE OF DISTRESS

rate being r, i.e., § = e "2,

The proof of Lemma 3 can be extended by induction to show that an inverse
supply function exists in every period even with more opportunities to trade,
albeit it does not have to be defined on the entire cutoff space. The following
analysis is independent of what happens at the deadline and therefore holds true
for all a € [0, 1].

THEOREM 4: (i) With public offers, there exists a pure-strategy equilibrium. for
all0 <6 < 1.

(i) Equilibrium cutoffs (and prices) in any pure-strategy equilibrium with private
offers correspond to equilibrium cutoffs (and prices) in a pure strategy equilibrium
with public offers.

(iii) There exists a A* < 1 such that if A < A* there is no pure-strategy equilib-
rium with private offers.

We discuss the main steps of the proof here and provide additional details in
the Appendix. The existence of a pure-strategy equilibrium with public offers
can be shown by construction in two steps. First, we define for each period a
mapping that maps today’s cutoff to tomorrow’s cutoff by backward induction.
Then, the cutoff in the first period is this function realized at cutoff zero and all
other cutoffs can inductively found (for formal construction see the Appendix).
In general, multiple pure-strategy equilibria can coexist.

Figure 2 illustrates prices at which different seller types trade for v(c) = 0.5 +
0.5¢, r = 0.5, and A € {%, %}, as well as A — 0. p; denotes the price and k;
denotes the equilibrium cutoff in period t.

With private offers, there must be trade with positive probability in each period
because buyers can always mimic the strategies of future buyers as we have already
discussed in Proposition 2. Hence, in any pure-strategy equilibrium with cutoffs
(kA,--.,kj_A), the zero-profit condition

(12) E[v(c)le € [ki_a, ki1l = pe(k7)
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must be satisfied for all t. Moreover, a buyer’s expected period 1 profit conditional
on having the higher bid is given by
o (k;0) = F(k) - [E[v(c)|c € [0, k]] — po(K)] .

(13)
=0 at k=k;

Analogously to Theorem 2, one can show that the NMB of a deviation is given
by:

(19 GmlsOheyy = FO) | ZER@e € 0 Kllkek; — srrolt)
N——

=1-§

By the same argument we used to provide intuition for Theorem 2, it follows that
for large § (i.e., small A), period 1 buyers can profitably deviate by offering a
higher price, establishing part (iii) of Theorem 4.

B.  Gap at the top v(1) > 1

Throughout the paper, we have assumed that v(1) = 1. This assumption
together with continuity and monotonicity of v(c) guarantees that in any equi-
librium, a positive mass of high type sellers do not trade before the deadline.
The reason is that the expected value of buyers is always smaller than 1, so that
the highest type ¢ = 1 never trades before information is revealed. Hence, we
did not have to worry about off-equilibrium beliefs of buyers if they see a seller
rejecting even though on equilibrium path all sellers should have traded. The
freedom in choice of off-equilibrium beliefs could lead to additional multiplicities
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of equilibria.

Nevertheless, all results can easily be generalized to settings with v(1) > 1 if
we assume that the lemons problem is severe enough so that trade does not end
before the deadline or if we make some out-of-equilibrium belief assumptions. For
example, if buyers’ beliefs remain unchanged (or become more pessimistic) after
the last period of trade, the game can still be solved by backward induction and
the same arguments can be applied as in the proofs of the theorems.

C. No Gap at the bottom (v(0) =0)

We made the assumption that v(0) > 0 to make sure that there is always some
trade before time 1. If we have no gap at the bottom then it is possible for
trade to completely unravel in all periods if the lemons condition is satisfied. For
v(c) = Ac + B, the lemons condition is A%B < 1.

PROPOSITION 4: If B = 0 and A < 2, there always exists a pure-strategy
equilibrium with private and public offers. In that equilibrium, there is no trade
before the deadline.

D. Two types

Several of the recent papers that look at dynamic adverse selection consider only
two possible types (e.g., Daley and Green (2012), Camargo and Lester (2011),
and Noldeke and Van Damme (1990)) or use the two type case as examples (e.g.,
Swinkels (1999), HV, and Deneckere and Liang (2006)). Hence it is interesting
to explore equilibria of our games with two types. In order to be closer to the
HV setup we assume there is no opportunity of trade after the last period (i.e.,
a=0).

Consider a situation with vy > ey and vy, > ¢, = 0 where the seller’s cost is
cy, with probability ¢. Let ¢ satisfy the static lemons condition:

ovr, + (1 — qb)UH < cy.
Then, we show that equilibria in both information structures coincide.

PROPOSITION 5. With two seller types and two opportunities to trade, equi-
libria with private and public offers coincide for every 9.

This points out that in a dynamic setup it can be important to have a rich
enough type space. The differences in results are driven by the inability of sellers
to have a rich signal space because Bertrand competition only allows for two prices
that make one of the two seller types indifferent between selling and waiting. The
formal analysis can be found in the Appendix.
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IV. Conclusion

The Pareto ranking of information structures, suggests that when designing
policy it might be worth considering if it is possible to obtain some of the other
benefits from price transparency while limiting its negative effects, in particular
when trade takes place frequently. Our analysis also shows that when thinking
about policy and how to best resolve these trade-offs the details of the market
structure, such as the timing of competition, and the level of distress are likely
to play an important role.

REFERENCES

Akerlof, George A. 1970. “The market for” lemons”: Quality uncertainty and
the market mechanism.” The quarterly journal of economics, 488-500.

Bergemann, Dirk, and Johannes Ho6rner. 2010. “Should Auctions Be Trans-
parent?” Cowles Discussion Paper, Yale University.

Boehmer, E., G. Saar, and L. Yu. 2005. “Lifting the Veil: An Analysis of
Pre-trade Transparency at the NYSE.” The Journal of Financial Economics.

Buti, Sabrina, and Barbara Rindi. 2011. “Undisclosed orders and optimal
submission strategies in a dynamic limit order market.” Journal of Financial
Economics, forthcoming.

Camargo, Braz, and Benjamin Lester. 2011. “Trading dynamics in decen-
tralized markets with adverse selection.” Unpublished Manuscript.

Daley, B., and B. Green. 2012. “Waiting for News in the Market for Lemons.”
Econometrica, 80(4): 1433-1504.

Deneckere, Raymond, and Meng-Yu Liang. 2006. “Bargaining with inter-
dependent values.” Econometrica, 74(5): 1309-1364.

Diamond, Peter A. 1971. “A model of price adjustment.” Journal of economic
theory, 3(2): 156-168.

Flood, Mark D, Ronald Huisman, Kees G Koedijk, and Ronald J
Mahieu. 1999. “Quote disclosure and price discovery in multiple-dealer fi-
nancial markets.” Review of Financial Studies, 12(1): 37-59.

Fuchs, William, and Andrzej Skrzypacz. 2013a. “Bargaining with dead-
lines and private information.” American Economic Journal: Microeconomics,

5(4): 219-243.

Fuchs, William, and Andrzej Skrzypacz. 20135. “Bridging the gap: Bargain-
ing with interdependent values.” Journal of Economic Theory, 148(3): 1226—
1236.



TRANSPARENCY AND DISTRESSED SALES 24

Fuchs, William, and Andrzej Skrzypacz. 2015. “Government Interventions
in a Dynamic Market with Adverse Selection.” Journal of Economic Theory
(forthcoming).

Horner, Johannes, and Nicolas Vieille. 2009. “Public vs. private offers in
the market for lemons.” Econometrica, 77(1): 29-69.

Janssen, Maarten C.W., and Santanu Roy. 2002. “Dynamic Trading in a
Durable Good Market with Asymmetric Information.” International Economic
Review, 43(1): 257-282.

Kaya, Ayca, and Quingmin Liu. 2012. “Transparency and Price Formation.”
working paper.

Kim, K. 2012. “Information about Sellers Past Behavior in the Market for
Lemons.” University of Iowa, Unpublished Manuscript.

Kremer, I., and A. Skrzypacz. 2007. “Dynamic signaling and market break-
down.” Journal of Economic Theory, 133(1): 58-82.

Madhavan, Ananth, David Porter, and Daniel Weaver. 2005. “Should
securities markets be transparent?” Journal of Financial Markets, 8(3): 265—
287.

Noldeke, Georg, and Eric Van Damme. 1990. “Signalling in a dynamic
labour market.” The Review of Economic Studies, 57(1): 1-23.

Pancs, R. 2011. “Designing Order” Book Transparency in Electronic Commu-
nication Networks.” working paper.

Swinkels, Jeroen M. 1999. “Education signalling with preemptive offers.” The
Review of Economic Studies, 66(4): 949-970.



TRANSPARENCY AND DISTRESSED SALES 25

APPENDIX
PRrROOFS: MODEL AND PRELIMINARIES

Proof of Lemma 1.

In both information structures, the seller accepts a price ps if and only if po — ¢
is greater than ¢ - a(v(c) — ¢). Since da < 1, if a seller type ¢ weakly prefers
to accept pa, then all types ¢ < c strictly prefer to accept the it. Similarly, in
period 1, py is accepted by the seller if and only if p; — ¢ is higher than the payoff
from accepting the period 2 price given by 6 - (E[p2] — ¢) and than waiting for
the deadline §%a(v(c) — ). po is independent of c. Since the derivative of the
continuation payoff with respect to c is less than 1, again if a seller type ¢ prefers
to accepts pp, then all types ¢ < ¢ strictly prefer to accept it. (Note that it is
irrelevant that, with public offers, ps is a function of p;.)

Generalization of this logic to more than two periods is straightforward.

O

Proof of Lemma 2 and 3.

(i) (Private offers) With private offers, beliefs of buyers are independent of price
histories. Hence, the continuation game in an equilibrium is unaffected by past
offers. We argue by backward induction.

In period 2, a seller of type ¢ accepts an offer p if and only if p > adv(c) + (1 —
ad)c = pa(c). po is increasing and continuous. Consequently, pa(k) = ky (k) is
the unique price that results in a cutoff k in period 2.

In period 1, the continuation payoff of a seller ¢ who rejects is given by

W) = o ! (pg(zé) —c) dK (k) +0 - Ka(c) - a- (v(c) — ¢) + ¢
=5 [( IS pg(ié)dKz(z%)) + Kg(c)pQ(c)} +(1-0)e

Since po is increasing, W (c) is increasing and continuous. pi(c) = W (c) defines
the inverse supply function. Note that p;(k) is the unique price that results in a
cutoff £ and hence p; =k, L

An analogous argument with backward induction can be made for more than
two periods.

In period 2, the profits must be zero because, buyers’ continuation profits are
continuous in period 2 prices (and cutoffs). Since in equilibrium, period 2 prices
are not affected by period 1 prices, period 1 profits are also continuous in period
1 prices and hence, the zero profit condition must hold.

(ii) (Public offers) With public offers, it follows analogously to the private offers
case that pa(k) = adv(k)+(1—ad)k. Hence, period 2 profits of buyers (conditional
on offering the highest price) are given by

k
malkibn) = Ty - | (vl = palk)(@)e

1
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which is continuous. Hence, by the Bertrand-competition logic, any period 2 cut-
off in a continuation equilibrium k2 (k) must satisfy the zero profit condition and
for all k > ko(k1) it must hold that ma(k; k1) < 0. Moreover, the assumption that
(2) is decreasing and (3) guarantees that x2(k1) is unique because the assumption
implies that the first order condition defining r2(k1) which can be written as

Fe)-(1— ad) - i};(((;)) (v(c) - ¢) — (‘i“sf/fg + 1> - <1 - 127((’11)))} = 0

has a unique solution. Thus, by continuity of w5 (+; -), k2(+) must be continuous. By
the zero profit condition, for ky > kf, ka(k1) > ko(k}) because for all k > ra(k1),
mo(k; k1) < 0 and therefore the same must hold for all k; > k}. Hence, ka(-) must
be increasing and

pi(k) =06 -k+ (1 =9) - pa(ra(k))

is increasing, well defined, and continuous. Finally, the zero profit condition must
be satisfied in period 1 because profits of buyers

k
71 (k;0) = / (v(c) — pr (k) F(c)de

are continuous in k.

PrROOFS: DISTRESS, TRANSPARENCY, AND WELFARE

Proof of Theorem 2. See the more general proof of Theorem 4.

Proof of Theorem 3 and Proposition 3.

Before we do the actual construction of equilibrium cutoffs, we need to show
some properties about the type of mixing that can occur in an equilibrium. In
Lemma 6 and 7 we show that for § < §* buyers at most mix between countably
many prices and that with § > §* there is only countable mixing after the first
period. In order to prove these statements the following lemma is useful.

LEMMA 5:  With private offers, p1(k) is differentiable almost everywhere and
differentiable from the right everywhere. The derivative

0

G (k) =1-0- 5K (k) (1 — A) (> 0)

s nondecreasing.
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The proof of this lemma follows immediately from the fact that Ks is a cdf. It
is worth noting that this lemma generalizes to a multi-period setup by induction.

LEMMA 6: If§d < 1 — %, buyers in period 1 mix at most between countably
many cutoffs. If 6 > 1 — g and ezpected period 1 profit m(k;0) = 0 for all
k € (a,b), then any k € (a,b) cannot be in the support of Ko since it must hold

s—1+4
that KQ(]{:) == 63—11)2(1) .

Proof of Lemma 6. In period 1, expected buyers’ profits are given by
A
m(k;0) =k - [Qk + B —pl(k‘)} .

If buyers mix between all cutoffs k € (a,b) at time 0, then they must make zero
profits for all such cutoffs, i.e., for all k& € (a, b)

) (/kpo(if)dKQ(/;}) + KQ(k)Zh(k)) +k(1-9)= gk + B

or equivalently

5<Azh@meb+Jmexm)=<5—<1—§>>k+3.

Note that the left hand side of the identity must be nondecreasing in k, so if § <
1— é, then there cannot be mixing on (a,b) in the first period. If § > 1 — %, then
the left hand side is differentiable, so the right hand side must be differentiable,
so that

_6-(1-3)

k) 52 pa(k)

on k € (a,b). Since K3 is a cdf, %pg(k’) cannot be increasing on (a,b), so that
by Lemma 5 %pg(k) must be constant on (a,b). This implies that the support
of K is disjoint from (a,b) and because %pg(k) must be constant on (a,b).

0

LEMMA 7: With private offers and if § > 6, all mized-strategy equilibria must
satisfy the following properties.

(i) In period 2, buyers mix between at most countably many prices.

(ii) If buyers in period 1 miz continuously between prices that result in cutoffs in
an interval (a,b), then buyers in periods 2 never choose a price that results in a

cutoff in (a,b).
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Proof of Lemma 7. Assume there exists and interval (a,b) such that buyers
in period 2 mix between all cutoffs, i.e., for all k£ € (a,b)

k? K1 / / ~dK1 )(ACJrB*pt(k}))dCZO

After applying integration by parts and setting

/ <//0 1_~dK1 )d:c)dc,

one can see that this is equivalent to the ordinal differential equation

AH'(k)k — AH(k) = H'(k) (pa(k) — B) .

Thus, we can conclude that

F 1
/<//0 1_~dK1 )dx)dc = const-exp(/o z—m(ZA)BdZ)

and by Fubini’s Theorem H (k) = fok

i
2(1-F)
everywhere on (a,b). Hence, if buyers mix on (a,b) in period 2, then they must
mix in period 1 which is a contradiction by Lemma 6. Hence, there cannot be
mixing on an interval in period 2.

2(1—k)
> 0 for 0 < k < k. Thus, the cdf K, -) must be strictly increasing

kR 1(k) which is increasing because
(

O

Now, the proof of Proposition 3 follows in three steps. First, we show in step 1
that buyers in period 2 mix between exactly two prices and we show the first part
of (ii). Step 2 discusses the second part of (ii), i.e. that there must be non-offers
with positive probability in period 1. Finally, in step 3 we can pin down the exact
values of k, and ko.

Step 1: In period 2, buyers mix between exactly two prices resulting in cutoffs
ko, ko and period 1 cutoffs must be in {0} U [k, ko] .

First, note that buyers in both periods must mix between at least two cutoffs.
The reason is that if buyers in period 1 would play pure strategies, then there is a
unique price at which period 2 buyers make zero profits, i.e. the unique Bertrand
equilibrium in that period contains only pure strategies of the buyers. If period
2 buyers played pure strategies in equilibrium, then the same argument holds for
expected profits in period 1. Since we have already established in Theorem 2 that
if § > 1 — 4 there cannot be pure-strategy equilibria, there must be mixing in

2
both periods.
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Let us first consider the continuation game in period 2 given beliefs about the
current cutoffs represented by the cdf K. Buyers’ profits are then given by

ko c 5
71'2(]?2;[(1) = /0 (/0 ] i ];:dKl(k')> (AC+ (1 — 5)B — ]{32((514 +1- 5))dc

7o is continuous and at the smallest element k1 < 1 in the support of K7, for all
€ small enough we have

Oko 1-%

_/:+€ </0 1 i l%dKo(l%)> de(A5 +1—6)

k1+e 1 B
> /0 ];dKl(k‘) .
[<

ki+e 1 N
%2 (oas )y, = /D ARV (R)(1 = 8) (B + (k1 + €)(A — 1))

1_
1-0) | B+ki(A—1) | —e(2(A5 +1 - 5) — A)
N——
=—B
> 0,

so in equilibrium, buyers in period 2 do not choose prices that result in a cutoff
type smaller or equal to k1 with positive probability since if they did increasing
the price a little bit would be a profitable deviation for any buyer. In particular,
in any equilibrium, seller types close to zero trade in period 2, so that Ky(ks) =0
for small k5.

By Proposition 7, the support of K is discrete and pi(-) is piecewise linear,
continuous and by Lemma 5, it is also weakly convex. Hence, buyers’ expected
profit in period 1

71 (k: 0) = k- gk +B- <5 [</kop2(zé)df<2(zé)> + Kz(k:)pg(k:)] + (- 5))

p1(k)

is continuous, piecewise quadratic and at any cutoff in the support of Ko it
has a “downward” kink (that is the slope is dropping discontinuously) because
of the convexity of p;. Hence, in equilibrium, expected period 1 profits must
qualitatively look like one of the graphs in figure B1. Note that for small F,
pi(k) = 5fkl p2(k)dKs(k) + k(1 — 0) because Ky(k) = 0 for small k. Hence, the
parabola most to the left must be open above because 4 — (1 — ) > 0. We
have already argued that buyers must mix between at least two prices in every
period, so we can exclude the possibility of the expected profit function in period
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1 having a shape as in figure B1 (c). Hence, there exist cutoffs 0 < ky < kg < 1
such that period 1 buyers choose only prices with positive probability that are in
{0} U [y, ka.

-0.05

(a) Mixing between two cut- (b) Mixing on an interval (¢) No mixing
offs

FIGURE B1l. POSSIBLE SHAPES OF BUYERS’ PROFITS IN PERIOD 1

Using these insights about 71, we can conclude that ma(+; k1) is piecewise
quadratic on [0, 1]\ [k, k2] where the coefficient in front of the quadratic term is
negative as a multiple of % — (1 —=10) —dA < 0. Hence, all pieces of my are open
below. At every cutoff that is chosen with positive probability in period 1, w9 has
a kink. Hence, period 2 expected profits are qualitatively as in figure B2. Note
however, that 72 does not have to be piecewise quadratic in [k, ko] as in figure
B2.

-0.05
-0.10

-0.15

-0.20

FIGURE B2. QUALITATIVE SHAPES OF BUYERS’ EXPECTED PROFITS IN PERIOD 2

Next, we argue that m; must look like in figure B1 (b). Let us first assume
that none of the pieces of 7y is constant and equal to zero as is the case in figure
B1 (a). Then, in a mixed-strategy equilibrium, buyers in period 1 mix between
exactly two prices that result in cutoff types 0 and k; = ko = ko, respectively.
Moreover, k1 must be a cutoff type in period 2, because it corresponds to a kink
of 1. We can conclude 71 (ky) = m2(k2) = 0 and ma(k) < 0 for all k > ko. In
addition, 79 has its only kink at ks, so buyers do not mix between prices in period
2, but choose a price with probability one that results in a cutoff ky. This cannot
be an equilibrium as argued before. Hence, there cannot be an equilibrium where
none of the pieces of m; is constant and equal to zero.



TRANSPARENCY AND DISTRESSED SALES 31

Finally, period 2 buyers must mix between exactly two cutoffs {ks, k2}. This
can be seen as follows: One can infer directly from Lemma 7 (ii) that period 2
buyers do not choose prices that result in cutoffs in (ky, ko). Moreover, because
71(k;0) = 0 on {0} U [k, k2] only, 72 can have kinks in that region only. Hence,
ma(ky) = ma(ka) = 0, ma(k; k1) < 0 for k > ky and the fact that 7o is piece-
wise quadratic on [0, ky] U [k2, 1] with parabolas that are open below imply that
ma(k) > 0 for k € (0,ky) and ma(k; k1) < O for k € (ko, 1].

Thus, in any equilibrium the support of K; is a subset of {0} U [k, k2] and the
support of K is {ky, ko} for some ky, ko € (0,1]. Let Ka(ky) = a2 and K1(0) = q1,

noting that we already know from Lemma 6 that q; = 5((1 i_; ) #0.

Step 2: In any mized-strategy equilibrium, there must be non-offers with positive
probability in period 1, i.e. q1 > 0.

Let us assume ¢; = 0 and let us denote the smallest element in the support of
K1 by k < 1. Note that Ak+(1—90)B—k(6A+(1-9))=(1—-06)(k(A-1)+B) >
(1—9)B(1— k) which is strictly positive for B > 0 and k < 1. Hence, there exists
an € > 0 such that Ak+(1—90)B—(k+¢€)(0A+(1—6)) > 0. Then, ma(k+¢€) >0
which is a contradiction to ks < k being in the support of K.

1-6 B(1-42
Step 3: ky = oty andhy = gtla

In equilibrium, it must hold that ma(ky; k1) = 0, that is
ko
/ Ac+ (1 -0)B — ky(0A+1—6)dec =
0
A
ko - <2k2 +(1—-0)B—ky(6A+1— 5)) =

B(1-4)

m. For ks, we use that 7'['1(]{:2;0) = 0 since

which is equivalent to ky =

this is equivalent to

ko - (?kg +(1—-6)B—-0(0(A—1)+1Dko— (1 — 5)k2> =0

_ T BO=)
because K(kg) = 1. Hence, ko = A2—§241-4

Using the insights from Proposition 3, we can construct an equilibrium in which
buyers in period 1 mix between exactly two cutoffs which completes the proof of
Theorem 2.

If period 1 buyers mix between exactly two cutoffs 0 and k; with K1(0) = ¢1
and K1(k1) =1 — ¢ for some q; € (0,1). Then the expected profit in period 2 is
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given by
k- (2k+(1-6)B—k(1—6+064)) if b < k1
(@1 —1) 2 (Ak1+ 1-8)B—k(1—6+4A))
mo(k; k1) = —|—k( k+ 1 §)B — k(1—5+5A)) if k> k.
<Q1+17H - 1))

Note that both parts are quadratic in k and that mo is continuous everywhere.
Moreover, in both parts the coefficient in front of k2 is negative. The first part is
B(1-9)

T 1-6+5A—4
in equilibrium, i.e., it must hold that the discriminant is zero.

equal to zero if k € {0 } and the second part must only have one zero

[(1—5) <Q1+ (1—Q1)) (@ —1) 1= k1(1—5+5A)} =

(24 — 4+ 46(1 — A)) (q1 + (- q1)> (01— 1) 15 (4F1+ (1 0)B)

and the null must be at

(=8B (r+ 2= -a)) = (@ - 1) {5 (1- 5+ 64)
(A=2+26(1 - 4)) (& + =01 —q1>)

Fa=

We can solve these two equations for k1, ¢ and get

T 2B(1—0)(—28° + 2634+ 462 A — 20 + 26 — A+ 2)
DT (2202 £ 2024 + 20A — A+ 2)(—26% + 2024 + 2 — A)

such that 0 < ky < k1 < ko < 1.

Figure B3 illustrates for v(c) = the expected profit functions 7m; and w2 in
the equilibrium. It highlights how cutoffs in period 1 must correspond to kinks
of mo and cutoffs in the second period must correspond to kinks of m1. Other
equilibria, in which period 1 buyers 1 mix between {0} and several prices in
(ky, k2), can coexist.

1+c
2

O

Proof of Theorem 4.
We first show that the expected cutoffs in period 1 are constant across all
mixed-strategy equilibria with private offers and equal to

(B1)

o _ B (1 —k3) ko o
Rk () = ( 1+5 ) n 1+ 25k 1
0 1T (1+8)(1-6+A48)— 4 1+0
T2 TAH0)(1—0+A9)
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7y and 7,
0.001 |- P
5 k — * —
kl _2 k1 k2 k2
1 1 1 \. L L 1 1 L k
0.1 0.2
—-0.001
i ™
—0.002 -
—0.003 -

FIGURE B3. BUYER’S PROFIT IN PERIOD 1 AND 2 ON EQUILIBRIUM PATH

Moreover, the following must hold

k2 - 1
B2 —dK1(k) = .
(B2) /0 - 1(k) A e O
27 T+ (1—6+A0)

To prove this, note that in any equilibrium it must hold that o (ko; K1) = 0 and
for all d > kig, Wg(ki;Kl) <0, i.e.,

/kz /C 1 1 ~d}'(l(if)(AAC—i-B — ((1 —_ 5+A5)E2 +5B))dc: 0
0 _

//1dK1 )(Ac+B— (1 -6+ A8)d+6B))dc <0 V¥ d > ko.
01—
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Let us first simplify the ﬁrst equahty By applylng Fublnl s Theorem and then,

noting that k2 k =1+ k2 and k%_k =1+k+= = k , we can deduce
Ko _
/ / ~dK1 (Ac+B (1 =0+ Ad)ks + 0B))dc
k‘2 k k? _ EZ E . ];: ~
_ / 2 =R kL) + ((1—6)B—(1—6+A5)k2)/ LIV
2 Jo 1—k o 1—k

A A
- 2+(1—5)B—(1—5+A5)k2+2/ kd £ (F)
0

+/0k2 1 1 CdE (R) ((k§ - 1) g (ks —1)((1-0)B—(1—6+ Ad)k2)>

A 1426 koo Lo s -\ [ 1 -
= 2-(1 1+5k2+/ del(k)+(k21)(11+6k2)/0 1_%dK1(ki)>.

Thus, in equilibrium, the following must hold

1420 R _ 5 -\ [P o1 .
B3) 1- ——k kdKq(k) =(1—k 1-— k =dK; (k).
B3 1- T [ = -k (1- k) [Tl

In order to simplify the second inequality, we can use that my (k2; k1) = 0, and see
that for d > ko

/ / CdEG (F) (e + B(1 - 5) — (1= 5+ AB)d)de

/k/ I (R)de(Fy — d)(1— 5+ A5)

ko ~
+/kg / 1— JZ;dKl(k)<AC+B(1 —0) — (1 =6+ Ad)d)de

= (d—k:g)/ L ak (R §k2+B(1—5)—(1—5+A6—§)d
0

>0

ko
/ / ~dK1 dc(l—5+A(5)

is quadratic in d and the parabola is open below. The parabola has a zero at ko
and we will show in the following that it cannot have another zero. If wo(k'; k1) = 0
for a k' > ko, then my is positive on (ke, k') which cannot hold in equilibrium.




TRANSPARENCY AND DISTRESSED SALES 35

If the parabola (if it was extended to values smaller than ]{32) has a zero at a
k' < ko and if the support of K; does not contain (k:2 — € kz) for a € > 0, then
ma(k; k1) > 0 for k € (ko — €, k2) which leads to a contradiction. Finally, if there
is continuous mixing on some (k2 — €, k), then since the slope from the right of
o is negative at my, the slope from the left must also be negative because

0 h2
smalin) = 6k2 /01_~dK1(k)(Ac—(1—5+A5)k2+B(1—5))d

ko -
:/ 11%61;@(;{;)( — 8)(Aky — ks + B)

ko
1—(5+A5/ / ~dK1 d

and k2(A — 1) + B > 0. This again cannot hold in equilibrium. As a result, the
parabola can only have one zero ky and it follows from by plugging in the value
of ko calculated in Proposition 3 that

fokz 11]~€ (]:v,) (%E2 + B(l - (5)) N 0k2 fgc ﬁdKl(I;:)dc(l -9 + A(S) E
_ . = k2

Jo? SdKy (R)(1 =0+ A5 — 4)

e 2 fe A A (K)de(1 — 6 + Ad)

& §k2+B(1—6)— = -
Jo? K (k)
B(1—0%) (1-6—4 + A9)

(1—02— 4+ As?)

. 5
& (1-0)B 7 _ b o (ke
(1-02— g + A8?) (1 — 6 + Ad) ff"’ ﬁdlﬁ(l})
; A 1+ (By — 1) f3? 2odE (R)
& ko - k.
1-62+ A AS2 k 1.
62 + Ad + Ao Jo? K (k)
R q 1
/O AR =

- 52+A6+A52 — k241

This proves (B2). Plugging (B2) into (B3), shows (B1).
We can now easily calculate the difference between the expected period 1 cutoff
with private offers and the period 1 cutoff with public offer using (10), (11),
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Proposition 4 and Proposition 3 and see that it is positive:

B
/ Fdiy(F) — k=
0
(1— B(1-42) )(1- _§__ B(1-§)
A2 52412 145 A2—5%+1—-4 1+20  B(1-6?

1 _F, . 1r)-0+A40)—5 140 As2 —624+1-4
— N2 TIEs)(1—5+49) 2

2B - (A6 —20+2—A)-(1-06)
2(1 —6)(1 — A)(AS — 26 +2) + A2
(1—A)(1—08)(—4+4A — A% +85 — 6AS + 2425 — 462 + 2A6% + 2A%6?)
(2— A—202 +2A45%)(4 — 4A + A2 — 85 + 1046 — 2A25 + 46% — 6452 + 2A25%)
1— 241 -0)— (A—1)2(1 = 6)2 —3(1 —6)%2+6%4
27T (A= 4A T A2)(1— 25 + 0%) + 245 — 2452 + A2 ~

1z (1-6)2—(A-1)%2(1-0)*+5%A .

272 (A= 4A+ A%)(1— 25 1 02) + 240 — 2482 + A252 ~
f0r5>1—§andA+B:1.

0

PROOFS: ROBUSTNESS AND (GENERALIZATIONS

Proof of Theorem 4.

(i): We show that, if all buyers choose pricing strategies that result in a
cutoff seller k;(ki—a) (defined below) given they believe the current cutoff is
ki—a, this constitutes an equilibrium. To this end, define x:(-) inductively for
t =0,A,...,1 — A as follows. First, using p1_a(k) = adv(k) + (1 — ad)k, it
follows that

Ki-a(ki—2a) =

CY p {k € [k1_aa, 1]‘% JE () = proa(k) f(e)de > o} .

is left-continuous (we define x1_a(k1—2a) = k124 if the set over which we com-
pute the sup is empty). Then,
pi—2a(k) = opi—a(ci—a(ki—2a)) + (1 =)k

is left-continuous.
Next, we show that given left-continuous k1A (k), it follows that for t <1 — A
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and py(k) = oprya(kera(k)) + (1 =)k,

Kt(k?th) =

(G2) sup {k € [kr—2a, 1]‘% fkkam (v(c) = pe(k)) f(c)de > 0}
(with sup @ = ki) is left-continuous.

Step 1: If mi(k; ki—n) is left-continuous in k, then k; is increasing
Because of left-continuity of my(-; ki), we either have my(k¢(kt—na), kt—a) > 0 or
mi(Ke(ki—a), ki—a) = 0. Moreover, note that m;(k; k—a) is always differentiable
in k;_A. Let us consider an arbitrary k;_ A and an infinitesimal increase in k;_a.
If mi(ke(ki—n), ki—a) > 0, there exists an € > 0 so that m (k¢ (ki—a), ke—an+7) >0
for all v < e. Hence, k¢(ki—a + ) > ke(ki—a) for all v < e. On the other hand,
if ﬂt(ﬁt(kt—A)a kt—A) = 0, then

0

Ty PRI
__Sea)
1— F(kn)
1 wot(ke—a)
1— Fkn) /k (v(c) = pe(se(ke—n))) f(e)de — (v(ke—n) — pe(ci (ki-a)))
_%(U(kt—ﬂ — pe(ke(ki—n))) > 0.

This is the case because if we had v(ki—a)—pi(ke(ki—a)) > 0, then flzt_(it*A) (v(c)—

pe(Ke(ki—n))) f(c)de > 0 v being increasing. This is a contradiction to the zero-

profit assumption m¢(ke(ki—a), kt—a) = 0. Hence, k¢(-) is increasing at k;_a.
Step 2: ki(+), pi(+) and m (-5 ki—n) are left-continuous

We argue by backward induction in t. p;_a(-) is left-continuous because v is

continuous and hence, m1_a(k1_2a; k) is left-continuous in k. (It is even contin-

uous.) Let kﬁ)QA 1 k1_aa. Then, "ﬁfA(kYz)QA) < Ki1-a(k1—2a) for all n and

K1_ A(kﬁ)Q A) is an increasing sequence by step 1. Hence, lim, o £7_ A(kyi)z A)

exists. We will show next that lim,, .o lsl,A(kgiéA) = k1-A(k1—2a). Therefore,

consider an arbitrary sequence k(m) 1 Kk1—A(k1—2a) such that
7T1_A(k‘(m); k1—9a) > 0 (which must exist by definition of kK1_a). Then, for any m,

there exists an n(m) such that m_a (k™); kﬁ)zA) > 0 for all n > n(m) because

m1-a(k;-) is continuous for all k. Hence, E(m) < m_A(kﬁ(;nA))) < Ki-a(k1-on) =

limy,—s00 k™. Hence, lim,_so0 m_A(kﬁ)QA) = lim,;,—o00 m_A(kﬁgnA))) = /il_A(kl_QA)I

and thus, k1_A(+), p1—2a(-) and 71 _2a(+; k1—3A) are left-continuous.
Let now assume that c;ya(+), pi(-) and 7 (-; ks—a) are left-continuous. Hence,
kt(+) is increasing by step 1. The rest of the argument works analogously to above,
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so that k¢(+), pr—a(+) and m_A(; ki—2a) are left-continuous for all ¢.
Hence, buyers do not make negative expected profits because

1 k
k= T= Flhn) /’M (v(c) = (Opey1(Kera(k)) + (1 = 6)k)) f(c)de

is left-continuous. The equilibrium cutoffs (g, ..., kj_,) are then, given by k§ =
k0(0),...,k1—A = kK1—A(kK1—2A(...k0(0))). None of the buyers has an incentive to
deviate from this equilibrium, since by increasing the price offer, buyers will either
make zero or negative expected profits by definition of k:(-) and by decreasing
the price they will not receive the good and make zero expected profits. Note
that for some v(c) and F} there could be multiple equilibria because there can be
several prices that result in zero expected profits for the buyers.
(ii) and (iii) are proven in the main part of the paper.

Proof of Proposition 4.
Let B =0 and A < 2. The zero-profit condition implies that the cutoff at time
0 must satisfy

Moreover, it must hold that
po > (1 —08)ko + dp1 > ko.

However, this can never hold simultaneously for A < 2 except if kg = 0. Hence,
in the unique pure-strategy equilibrium (with private and public offers), there is
no trade before the deadline.

O

Proof of Proposition 5.
Consider a situation with vy > ¢ and vy, > ¢;, = 0 where the seller’s valuation
is vy, with probability ¢. The static lemon’s condition (LC) is satisfied if

ovr + (1 — ¢)vy < cq.

Finally, denote the fraction of vy-sellers such that the lemons condition is just
satisfied by ¢*, i.e.,

¢ v + (1 — "oy = cpy.
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We solve the game by backward induction. Given the belief ¢o about the
fraction of vy-sellers in the market, buyers’ expected period 2 profits are given by

povr, + (1 —2)vg —p ifp>ch
ma(p) =< vL —p ifep <p<ecy
0 otherwise

if they sell at a price p. Since buyers compete in a Bertrand fashion, the equilib-
rium price is

povr, + (1 — d2)vm if ¢o < ¢*
P3(p2) = ¢ {dovr + (1 — ¢2)vE,vr}  if o = ¢* .
UL, if ¢2 > ¢*

If (LC) is satisfied with ¢2, only low types trade and p; = vy.
The price in the continuation equilibrium is as in figure C1. If (LC) is satisfied,

.......................................
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Ficure C1. PERIOD 2 PRICE

then the period 1 price is always p1 = vy. Moreover, the following holds:

1) If 0 < :—;, then all vy-sellers trade in period 1 and py = vgy.

2) If J& <6 < ¢&, then in period 1 enough v -sellers trade such that in period
2

v
pavr + (1 — ¢2)vp = FL
Note that ¢o < ¢, such that in period 2, ps = ¢ovy + (1 — p2)vy.

3) If g—z < 6, then in period 1 enough vp-sellers trade such that in period
2 ¢9 = ¢*, such that in period 2, buyers are indifferent between bidding
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cyg = ¢*vp + (1 — ¢*)vyg and vy,. They mix between the two such that

UL

E[m] = i

These are by construction all equilibria with both private and public offers.

THE ROLE OF DISTRESS WITH MANY PERIODS

The role of distress (o < 1) can also be generalized in a setup with more than
two trading opportunities with linear valuations and uniformly distributed costs.
In particular, we can show that even as A — 0, there must be a positive mass of
trade at the deadline. This is formalized in the following lemma.

LEMMA 8: For any o < 1, with public offers, as A — 0, trade at time 1 — A s
strictly bounded away from zero.

Proof of Lemma 8.
At time 1 — A, prices are given by

pi-a(k) = (1 - ad) k_ +adv(k)
<v(k)

Thus, there must be positive trade at time 1 — A because

k1_on+te
Ti—a(ki—oa + € k1-2A) = /k (v(c) = pi—a(ki—2a +€)) f(c)dc

1-2A

and for small e,
lim v(k1—2a) — p1—a(ki—2a +€) > 0.
A—0

Consequently, trade in period 1 — A is bounded away from zero as A — 0. This
shows that with public offers, as A — 0, trade at time 1 — A is strictly bounded
away from zero.

O

PROPOSITION 6: (Quiet Periods) With public offers, for any o < 1 there exists
a 6** < 1 such that if 6 > 0** there will be no trade in at least one period preceding
the deadline, and possibly no period but the last period.

Proof of Proposition 6. By Lemma 8, pj_a(ki—a) is greater and bounded
away from v(kij_oa). If there was trade in period 1 — 2A, then the highest type
trading in that period kj_aa can at most get a price v(kj—2a). On the other
hand, the period after, he can buy at a price p;_a(k1—a) which is strictly greater
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than and bounded away (for all A) from v(k1_2a). Hence, for small enough A,
there cannot be trade in period 1 — 2A. In other words, for large ¢, there must
be a quiet period before the deadline.

By the same logic, for a given fixed N, when 6% is large, there will be N quiet
periods before the deadline.

g

Note that this is in stark contrast to the no trade result in HV. Recall they
have trade only in the first period with public offers while potentially we have
no trade but in the last period. The differences in outcomes are caused by two
differences in the models: first, we have intra- and inter-period competition while
HV have only the latter; second we have a short horizon with a destruction of
continuation surplus at the deadline.

price
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(a) Prices as a function of seller types (b) Prices and cutoffs over time for A € {i, %
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FIGURE D1. PURE-STRATEGY EQUILIBRIA WITH 7 = 0.5, v(c) = 6*2'1, a=0..8

In Figure D1 we plot the unique pure-strategy equilibria with public offers using
v(c) = % for A € {0,%,% , 7 = 0.5, and a = 0.8.7 Indeed, in the limit, as
A — 0, with public offers, there is a mass of trade at time 1 and some “quiet
periods” in which no trade takes place. In particular, in the last period it must

hold that
p1= (1 — )k + av(kr) = E[v(c)|[k1—, k1]

where at time 1 the mass of seller types [k1_, k1] trades (where k;_ is the limiting
cutoff as time approaches 1 from the left). Moreover, before the quiet period,

17See Figure 2 for a comparison when o = 1.
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there must be continuous trading over time. In particular, for A = B = 0.5 the
cutoff is given by

kt =1- 67”.

Finally, the condition that seller k;_ must be indifferent between buying just
before the quiet period starts and waiting until time 1 pins down the evolution
of cutoffs over time. It turns out the quiet period before deadline is caused not
only by distress but also by the market structure. In particular, we can contrast
equilibrium dynamics in our model with intra- and inter-period competition to a
monopoly case. As shown in Fuchs and Skrzypacz (2013a), in a model with one
long-lived buyer the distress at deadline also induces an atom of trade at the end,
but the quiet period does not arise there.



