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Abstract
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1 Introduction

Over the last ten years the New Keynesian framework has become predomi-
nant in the world of applied monetary policy analysis. There is not a unique
definition of the New Keynesian framework, but it is commonly characterized
by linear models with strong forward-looking elements and which can be ra-
tionalized as approximations to micro-founded dynamic equilibrium models.
The most common source of nominal rigidity in this framework is the Calvo
(1983) pricing model as described by Yun (1996). Yun’s version has price
indexation, while the version in King and Wolman (1996) has no indexation.
This paper investigates discretionary monetary policy in the Calvo model
without indexation.

In one respect, there is a vast literature studying aspects of discretionary
policy in New Keynesian models with Calvo pricing. But the typical prac-
tice in this literature, exemplified by Clarida, Gali and Gertler (1999) and
Woodford (2003), has been to work with linear models.1 In contrast, our
approach is to solve for discretionary equilibrium of the underlying nonlinear
model using a projection method. The solution is only approximate, but the
approximation can be made arbitrarily accurate by increasing the fineness of
the grid used to define the economy’s state. Because there is only one state
variable we are able to solve the model quite accurately (in principle).

A small number of papers have studied discretionary equilibrium in full-
blown nonlinear sticky price models, but not with Calvo pricing. A common
theme in those papers is multiple equilibria. Khan, King and Wolman (2001)
and King and Wolman (2004) show that in Taylor-style models with prices
set for three and two periods respectively, multiple equilibria naturally arise
under discretionary policy. This finding points to the possibility of expec-
tations traps, in which monetary policy can lead inflation expectations to
become self-fulfilling.2

1An exception is Yun (2005), who conducts a nonlinear analysis of the Calvo model.
But in his model a fiscal instrument for offsetting the markup distortion also eliminates
the time-consistency problem. Adam and Billi (2007) take into account the nonlinearity
arising from the zero bound on nominal interest rates.

2Siu (2008) extends King and Wolman’s (2004) analysis by incorporating elements
of state-dependent pricing and shows that Markov-perfect discretionary equilibrium is
unique. Those papers assume that monetary policy is conducted with a money supply
instrument. In contrast, Dotsey and Hornstein (2007) show that with an interest rate
instrument there is a unique Markov-perfect discretionary equilibrium in a Taylor model
with two-period pricing.
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One of our central concerns is whether the Calvo model also generates
multiple discretionary equilibria. For the examples we look at, the central
element generating multiplicity in the Taylor model is not present in the
Calvo model. The policy problem of choosing the money supply to maximize
welfare involves a tradeoff between the markup and a relative price distortion.
In the Taylor model, discretionary policy in the next period will adjust the
money supply proportionally with the price set by firms in the present period.
For price-setting firms in the current period, the expectation of this future
policy response generates a convex best-response function with multiple fixed
points. In the Calvo model, the future policymaker’s trade-off is influenced
by the inherited relative price distortion. The larger that distortion, the less
the future money supply accommodates increases in the current price level.
This generates a concave price-setting best response function with a unique
fixed point. The complementarity necessary for generating multiple equilibria
is broken because (i) the future policymaker chooses not to accommodate
arbitrarily high prices set by firms today as these raise the relative price
distortion, and (ii) given the existence of many cohorts of predetermined
prices, arbitrarily high prices set by firms today have only a small effect on
the current price level.

We find that discretionary equilibrium involves a steady state inflation
rate of greater than five percent under a standard calibration. This suggests
that the zero inflation approximation is inappropriate in the absence of a fis-
cal scheme to eliminate the monopoly distortion. Furthermore, the presence
of an endogenous state variable leads to a gradual transition of inflation if the
inherited relative price distortion deviates from its steady state value. In the
approximation around zero inflation the state variable is absent and inflation
jumps immediately to its steady state. In Yun’s (2005) analysis of optimal
monetary policy in a nonlinear Calvo model, the elimination of the monopoly
distortion via fiscal policy implies that in the steady state inflation is zero
and the relative price distortion also vanishes. The transition dynamics is
similarly affected by the state variable.

The paper proceeds as follows. Section 2 contains a description of the
Calvo and Taylor models – the latter with two-period pricing. At several
points in the paper we compare the Calvo and Taylor models, and there is
little cost to laying out a general framework that encompasses both models.
Section 3 concerns the state variables, showing that in the Taylor model
there are no real state variables whereas in the Calvo model the relevant
state can be summarized by the past relative price distortion. Section 4
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defines a discretionary equilibrium in the Calvo model. Section 5 presents
our numerical results, and section 6 compares those results to the Taylor
model, emphasizing the issue of (lack of) multiplicity. Section 7 concludes.

2 Two Sticky Price Models

We describe two models in this section. Common elements are a represen-
tative household that values consumption and dislikes supplying labor, a
competitive labor market, a continuum of monopolistically competitive firms
producing goods for which households have constant elasticity of substitu-
tion preferences, a constant velocity money demand equation, and a mon-
etary authority that chooses the money supply. The models differ in their
assumptions about price setting, which is treated as exogenous. In the Calvo
model, each firm faces a constant probability of price adjustment. In the
Taylor model each firm sets its price for two periods. In both models we
assume the distribution of price adjustment is stationary, i.e. the fraction of
firms adjusting is constant over time.

2.1 Households

There is a large number of identical, infinitely lived households. They act
as price-takers in labor and product markets, and they own shares in the
economy’s monopolistically competitive goods-producing firms. Households’
preferences over consumption (ct) and labor input (nt) are given by

∞∑
j=0

βj [ln(ct+j) + χ (1− nt+j)] , β ∈ (0, 1) ,

where consumption is taken to be the Dixit-Stiglitz aggregate of a continuum
of differentiated goods

ct =

[∫ 1

0

ct(z)
ε−1

ε dz

] ε
ε−1

, ε > 1. (2.1)

The consumer’s flow budget constraint is

Ptwtnt + Rt−1Bt−1 ≥ Ptct + Bt +

∫ 1

0

dt (z) dz,
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where wt is the real wage, Rt is the one-period gross nominal interest rate,
Bt is the quantity of one-period nominal bonds purchased in period t, dt (z)
is the dividend paid by firm z, and Pt is the nominal price of a unit of
consumption. The aggregator (2.1) implies that the price index Pt is given
by

Pt =

[∫ 1

0

Pt(z)1−εdz

] 1
1−ε

.

From the consumer’s intratemporal problem, we have the efficiency con-
dition

χ =
wt

ct

, (2.2)

and from the intertemporal problem we have

1

ct

= βRt

(
1

ct+1

· 1

πt+1

)
,

where we have introduced the variable πt to denote the gross inflation rate
between periods t− 1 and t. That is

πt ≡ Pt

Pt−1

.

We assume that households hold money equal to the quantity of nominal
consumption:

Mt = Ptct. (2.3)

Finally, the aggregator (2.1) implies the demand functions for each good

ct (z) =

(
Pt (z)

Pt

)−ε

ct, (2.4)

where Pt (z) is the price of good z.

2.2 Firms

Each firm z produces using a technology that is linear in labor, the only
input, with a constant level of productivity that is normalized to unity:

yt (z) = nt (z) ,
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where yt (z) is firm’s z′s output in period t. The nominal profits in period t
of a firm charging price Xt are

d (Xt; Pt, ct, wt) = Xt

(
Xt

Pt

)−ε

ct − Ptwt

(
Xt

Pt

)−ε

ct.

When a firm adjusts its price, it chooses Xt to maximize the present dis-
counted value of profits, which we denote Vt. In the Calvo model, each firm
adjusts its price with constant probability η in any period, whereas in the
Taylor model each firm adjusts its price every two periods. In both models,
we assume that there is a stationary distribution of firms according to time
since last price adjustment. This assumption means that in the Calvo model
in any period t a fraction η of firms adjusts their prices, whereas in the Taylor
model in any period t one half of the firms adjust their prices.

In the Calvo model the value of a firm upon adjustment is given by

Vt = max
Xt

{ ∞∑
j=0

Qt,t+j (1− η)j d (Xt; Pt+j, ct+j, wt+j)

}
, (2.5)

where Qt,t+j is the j-period ahead discount factor for nominal cash flows.
With households owning firms, Qt,t+j is determined by the sequence of one-
period nominal interest rates,3

Qt,t+j =
1∏j

k=1 Rt−1+k

= βj

(
Pt

Pt+j

)(
ct

ct+j

)
.

The factor (1− η)j is the probability that a price set in period t will remain
in effect in period t+j. Note that Vt is the present value of profits associated
with charging the price Xt. When the firm has the opportunity to readjust,
it will reoptimize, and thus those states are not relevant for determining the
optimal price. The optimal price is determined by differentiating (2.5) with
respect to Xt. We will denote the profit-maximizing value of Xt by P0,t and
we will denote by p0,t the price P0,t normalized by the previous period’s price
level, which serves as an index of the predetermined prices in period t:

p0,t =
P0,t

Pt−1

.

3We adopt the convention that
∏0

k=1 Rt−1+k = 1.
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Thus, we write the first order condition from (2.5) as,

P0,t

Pt

=
p0,t

πt

=

(
ε

ε− 1

) ∑∞
j=0 (1− η)j βj

(
Pt+j

Pt

)ε

wt+j

∑∞
j=0 (1− η)j βj

(
Pt+j

Pt

)ε−1 . (2.6)

In the Taylor model, the value of a firm upon adjustment is given by

Ṽt = max
Xt

{d (Xt; Pt, ct, wt) + Qt,t+1d (Xt; Pt+1, ct+1, wt+1)} ,

and the optimal price satisfies the first order condition,

P0,t

Pt

=

(
ε

ε− 1

)
·
wt + β

(
Pt+1

Pt

)ε

wt+1

1 + β
(

Pt+1

Pt

)ε−1 .

Whereas in the Calvo model the index of predetermined prices was given
by Pt−1, in the Taylor model there is just one predetermined price, P0,t−1.
Normalizing the optimal price and the price index by P0,t−1 and using the
definitions p̃0,t ≡ P0,t/P0,t−1 and pt ≡ Pt/P0,t−1, we have

p̃0,t

pt

=

(
ε

ε− 1

)
·
wt + β

(
pt+1

pt
p̃0,t

)ε

wt+1

1 + β
(

pt+1

pt
p̃0,t

)ε−1 . (2.7)

With the constant elasticity aggregator (2.1) a firm’s optimal markup of
price over marginal cost is constant and equal to ε/ (ε− 1) . Because the firm
cannot adjust its price each period, if the wage (here equal to marginal cost)
or the inflation rate are not constant then the firm’s markup will vary over
time. The optimal pricing equations (2.6) and (2.7) indicate that the firm
chooses a constant markup over an appropriately defined weighted average of
current and future marginal cost. Note that economy-wide average markup is
simply the inverse of the real wage, because firm-level productivity is assumed
constant and equal to one.

2.3 Market clearing

Goods market clearing requires that the consumption demand for each indi-
vidual good is equal to the output of that good:

ct (z) = nt (z) ∀z, (2.8)
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and labor market clearing requires that the labor input into the production
of all goods equal the supply of labor by households:

∫ 1

0

nt(z)dz = nt.

In the Calvo model, the labor market clearing condition is

nt =
∞∑

j=0

η (1− η)j nj,t,

where nj,t is the labor input employed in period t by a firm that set its price in
period t− j. Combining this expression with the goods market clearing con-
dition (2.8), then using the demand curves (2.4) for each good, and dividing
the expression by the consumption aggregator yields

nt

ct

=
∞∑

j=0

η (1− η)j

(
P0,t−j

Pt

)−ε

,

which can be written recursively as

nt

ct

= ηπε
t

(
p−ε

0,t +

(
1− η

η

)
nt−1

ct−1

)
. (2.9)

Analogously, in the Taylor model the market clearing conditions give us

nt =
1

2

1∑
j=0

nj,t

nt

ct

=
1

2
pε

t

(
(p̃0,t)

−ε + 1
)
. (2.10)

It is instructive to compare the market clearing conditions in the Calvo and
Taylor models, (2.9) and (2.10). In both models, the average product of labor
(or its inverse) is related to relative prices. In the Calvo model however, the
lagged average product of labor also shows up in this expression. This will
be the source of the single real state variable in the Calvo model.
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2.4 Monetary Authority

The monetary authority chooses the money supply, Mt. In a discretionary
equilibrium the money supply will be chosen each period to maximize present
value welfare.

In both the Calvo and Taylor models, we assume the sequence of actions
within a period is as follows:

1. Predetermined prices (P0,t−j, j > 0) are known at the beginning of the
period.

2. The monetary authority chooses the money supply.

3. Firms that adjust in the current period set their prices, and simulta-
neously all other period-t variables are determined.

3 State Variables

Because we are interested in studying Markov-perfect equilibria (MPE) with
discretionary monetary policy, it is important to establish what are the rel-
evant state variables in the Taylor and Calvo models. It is clear that in
the Taylor model there is one predetermined nominal price (P0,t−1), whereas
in the Calvo model there are an infinite number of predetermined nominal
prices (P0,t−j, j = 1, 2, ...). However, for the MPE, a state variable is relevant
only if it affects the monetary authority’s set of feasible real outcomes. We
now show that according to this criterion there is a single state variable in
the Calvo model and there are no state variables in the Taylor model.

3.1 Calvo model

In the Calvo model the equations describing private sector equilibrium are as
follows. The labor supply equation (2.2) and money demand equation (2.3)
are unchanged, although we write the money demand equation normalizing
by the lagged price level:

mt ≡ Mt

Pt−1

= πtct. (3.1)
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The price index is an infinite sum,

Pt =

( ∞∑
j=0

η (1− η)j P 1−ε
0,t−j

)1/(1−ε)

,

but it can be simplified, first writing it recursively,

Pt =
(
ηP 1−ε

0,t + (1− η) P 1−ε
t−1

) 1
1−ε ,

and then dividing by the lagged price level:

πt =
(
ηp1−ε

0,t + (1− η)
) 1

1−ε . (3.2)

No predetermined variables show up in this transformed version of the price
index.

The optimal pricing condition and the market clearing condition start
out as infinite sums. The optimal pricing condition (2.6) can be written
recursively by defining two new variables, Nt and Dt :

p0,t =

(
ε

ε− 1

)
Nt

Dt

(3.3)

Nt = πε
t (wt + β (1− η) Nt+1) (3.4)

Dt = πε−1
t (1 + β (1− η) Dt+1) . (3.5)

The market clearing condition has already been written recursively in (2.9).
The equations (2.2), (2.9), (3.1)−(3.5) and future policy implicitly deter-

mine the values for wt, ct, nt, πt, p0,t, Nt and Dt attainable by the current
period’s monetary authority (choosing mt). Predetermined variables appear
in the private sector equilibrium conditions. Specifically, lagged n and c ap-
pear in the market clearing condition (2.9). Because it is only the ratio of
those lagged variables that matters, we can reduce the number of state vari-
ables to one by defining a new variable ∆ which will serve as the single state
variable:

∆t ≡ nt−1/ct−1. (3.6)

We will sometimes refer to ∆t as the lagged relative price distortion. The
market clearing condition can now be written as

∆t+1 = ηπε
t

(
p−ε

0,t +

(
1− η

η

)
∆t

)
. (3.7)

In an MPE of the Calvo model, the normalized money supply will be a
function of the state, ∆t.

10



3.2 Taylor model

In the Taylor model an analogous set of five equations characterizes private
sector equilibrium. Labor supply is given by equation (2.2). Money demand
(2.3) is normalized by the lagged optimal price instead of by the lagged price
level

m̃t ≡ Mt

P0,t−1

= ptct. (3.8)

We eliminate the predetermined variable from the price index,

Pt =

(
1

2
P 1−ε

0,t +
1

2
P 1−ε

0,t−1

) 1
1−ε

,

by dividing by the lagged optimal price:

pt =

(
1

2
p̃1−ε

0,t +
1

2

) 1
1−ε

. (3.9)

Optimal pricing is given by (2.7) and market clearing satisfies (2.10).
The five equations (2.2), (2.7), (2.10), (3.8) and (3.9), together with the

behavior of future policymakers, implicitly define the set of feasible values
for wt, ct, nt, pt and p̃0,t attainable by the current period’s monetary author-
ity. The current period monetary authority chooses the money supply, or
equivalently m̃t, the money supply normalized by the predetermined price
P0,t−1. This normalization is incorporated in (3.8). Unlike the Calvo model,
no predetermined variables appear in the private sector equilibrium condi-
tions, thus no state variables constrain the monetary authority in an MPE.
The lagged optimal price P0,t−1 matters for the levels of nominal variables,
but is irrelevant for the determination of real allocations. Of course, one
could imagine some monetary policy rules that would make real allocations
depend on P0,t−1 by making m̃t depend on P0,t−1, but that will not occur in
an MPE, because it would mean introducing an extraneous state variable.
In an MPE of the Taylor model, the normalized money supply m̃t will be
constant.

4 Discretionary Equilibrium in Calvo Model

Discretionary equilibrium is a mapping from the state to the (normalized)
money supply such that, if private agents and the current-period monetary
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authority believe that all future periods will be described by a stationary
equilibrium governed by that mapping, then the current period monetary
authority chooses the same mapping from the state to the money supply.

4.1 Equilibrium for arbitrary monetary policy

As a preliminary to studying discretionary equilibrium, it is useful to consider
stationary equilibrium for arbitrary monetary policy – that is, for arbitrary
functions m = Γ (∆). To describe equilibrium for arbitrary policy we use
recursive notation, eliminating time subscripts and using a prime to denote
a variable in the next period. The nine variables which need to be determined
in equilibrium are N , D, p0, π, ∆′, w, c, m and n, and the nine equations are (i
and ii) the laws of motion for N (3.4) and for D (3.5); (iii) the optimal pricing
condition (3.3); (iv) the price index (3.2); (v) the market clearing condition
or law of motion for the relative price distortion (3.7); (vi) the labor supply
(2.2); (vii) the money demand (3.1); (viii) the policy rule m = Γ (∆); and
(ix) the definition of the relative price distortion (3.6).

A stationary equilibrium can be expressed as two functions of the endoge-
nous state variable ∆. The two functions N (∆) and D (∆) must satisfy the
two functional equations

N (∆) = πε [w + β (1− η) N (∆′)] , (4.1)

D (∆) = πε−1 [1 + β (1− η) D (∆′)] . (4.2)

The other variables can be substituted out as functions of N , D and ∆:

p0 =

(
ε

ε− 1

)
· N (∆)

D (∆)
, (4.3)

π =
(
ηp1−ε

0 + (1− η)
)1/(1−ε)

(4.4)

∆′ = πε
(
ηp−ε

0 + (1− η) ∆
)
, (4.5)

w = χc, (4.6)

c = m/π, (4.7)

m = Γ (∆) , (4.8)

n = ∆′c. (4.9)
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4.2 Discretionary equilibrium defined

A discretionary equilibrium is a mapping from the state to the money supply,
Γ∗ (∆), such that, if the current-period policymaker and the current-period
private agents take as given that all future periods will be described by a
stationary equilibrium governed by Γ∗ (∆), then the current period monetary
authority chooses m = Γ∗ (∆) for every ∆.

More formally, a discretionary equilibrium is a policy function Γ∗ (∆) and
a value function v∗ (∆) that satisfy

v∗ (∆) = max
m
{ln c + χ (1− n) + βv (∆′)} (4.10)

Γ∗ (∆) = arg max
m
{ln c + χ (1− n) + βv (∆′)}

when v () = v∗ (). The maximization is subject to the price index (4.4),
market clearing (4.5), labor supply (4.6), money demand (4.7), the definition
of the state variable (4.9), and optimal pricing by adjusting firms,

p0 =

(
ε

ε− 1

)
· Ñ

D̃

Ñ = πε
[
χ

m

π
+ β (1− η) N (∆′)

]

D̃ = πε−1 [1 + β (1− η) D (∆′)] ,

where the functions N (∆) and D (∆) satisfy (4.1) and (4.2) in the stationary
equilibrium associated with Γ∗ (∆).

4.3 Computing a discretionary equilibrium

Our computational method involves selecting a grid of N points for the state
variable (∆n, n = 1, 2, ..., N) and then searching for values of v∗n and Γ∗n,
n = 1, ..., N that solve (4.10) at the grid points ∆n. The value function and
the expressions for N and D require evaluating functions away from the grid
points, and we use linear interpolation to do this. As an initial guess we
use the discretionary equilibrium for the static model – the final period of
a finite horizon model – and then solve the optimization problem (4.10). If
the value function and policy function that solve the optimization problem
are identical to our guesses, then we have found an equilibrium. If not, we
update the starting values by pushing out our initial guess one period into
the future, and assuming the one-period ahead policy and value functions
are given by our “temporary equilibrium.”

13



5 Properties of Discretionary Equilibrium

There are three levels to a complete description of a discretionary equilib-
rium. At the highest level is the equilibrium transition function for the
state variable (∆′ (∆)), and the associated policy function (m = Γ∗ (∆)),
value function (v∗ (∆)) and equilibrium functions for all other endogenous
variables as functions of the state. Next is the objective function for the pol-
icymaker: for a given value of the state variable, how does welfare vary with
the policy instrument m, and what are the trade-offs that drive the shape
of the objective function? Finally, for given values of the state variable and
the policy instrument, what is the nature of the private sector equilibrium?
In this section we will concentrate on the first two levels, equilibrium as a
function of the state and the policymaker’s objective function. Comparing
the Calvo and Taylor results in section 6 will take us into the details of the
private sector equilibrium.

The presence of a state variable in the Calvo model means that our re-
sults are primarily numerical. Unless otherwise stated we use the following
parameterization: ε = 10, β = 0.99, η = 0.5, χ = 4.5. Some of these parame-
ters are typical values used in the applied monetary policy literature. With
ε = 10 the steady state markup is approximately 11 percent at low rates
of inflation. Prices adjust with probability η = 0.5, which means that the
expected duration of a price is two quarters. With χ = 4.5, agents spend
about twenty percent of their unit time endowment working. With β = 0.99
in our quarterly model the annualized real interest rate is 4.1 percent.

5.1 Equilibrium as a function of the state

Figure 1.A plots the transition function for the state variable as well as the
function mapping from the state to the inflation rate in a discretionary equi-
librium. The first thing to note about the figure is that there is a unique
steady state inflation rate of approximately 5.4 percent annually. Two natu-
ral benchmarks against which to compare the steady state of the discretionary
equilibrium are the inflation rate with highest steady state welfare and the
inflation rate in the long run under optimal policy with commitment. Fol-
lowing King and Wolman (1999), we refer to these benchmarks as the golden
rule and the modified golden rule respectively. For our parameterization,
the golden rule inflation rate is just barely positive (less than one tenth of
a percent) and the modified golden rule inflation rate is zero. There is no
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widespread agreement on the value of η in the monetary policy literature.
Figure 2 therefore displays the steady state annual inflation rate for higher
degrees of price stickiness, ranging from our baseline value of η = 0.5 to
η = 0.3, in which case a firm’s price remains unchanged for three and one
third quarters. In that case the steady state inflation rate takes it highest
value of 10.5 percent.4

A second feature of Figure 1.A is that the dynamics for the state variable
display monotonic convergence to the steady state. This means that a pol-
icymaker inheriting a relative price distortion that is large (small) relative
to steady state finds it optimal to bequeath a smaller (larger) relative price
distortion to her successor. Together with the monotone downward-sloping
equilibrium function for inflation, this implies that the inflation dynamics in
the transition from a steady state with a larger (smaller) relative price dis-
tortion and inflation rate involves an initial decrease (increase) of inflation
and a subsequent gradual rise (fall) to the steady state.5

Figure 1.B displays the policy variable m and welfare as function of the
state variable in the discretionary equilibrium (m is indicated on the left
scale and welfare on the right scale). Both functions are downward sloping.
Intuition for the welfare function’s downward slope is straightforward. From
(3.6) we have that the current relative price distortion represents average
productivity. But the current relative price distortion is also a summary
statistic for the dispersion in relative prices. The higher is the lagged relative
price distortion, the higher is the inherited dispersion in relative prices, and
through (3.7) this contributes to a higher dispersion in current relative prices.
Higher dispersion in current relative prices in turn hurts current productivity,
reducing welfare.

It is less straightforward to understand the downward sloping policy func-
tion, m = Γ∗ (∆). At a superficial level, it seems consistent with the state
transition function for Γ∗ () to be downward sloping: if equilibrium involves
the relative price distortion declining from a high level, then a large lagged
relative price distortion ought to be met with a relatively low normalized
money supply, so that newly adjusting firms do not exacerbate the relative

4The solutions underlying Figure 2 were generated with varying fineness of the grid for
the state variable. We are still working on solutions based on a finer grid.

5Yun’s (2005) analysis displays similar transition dynamics of inflation. But in his
model, the steady state inflation rate under optimal policy is zero, so the transition from
a steady state with positive inflation inevitably involves a period of deflation.
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price distortion.6 However, in order to develop the intuition for Γ∗ (∆) more
fully it is necessary to examine the nature of the policy problem in equilib-
rium.

5.2 Policymaker’s objective function

Figure 3 displays the policymaker’s objective function (Panel A) and the
current period component of the objective function (Panel B) for two values
of the state variable (1 and 1.005). Both panels display functions that are
concave, and the unique maximum is achieved with lower values of m for
the higher value of the state. We do not plot the future component of value,
βv (∆′) in (4.10), but it is decreasing in m for all values of ∆. From Figure
3 then, the fact that m is a decreasing function of ∆ seems to be associated
with the state variable’s influence on the current utility component of wel-
fare. As discussed in King and Wolman (1999, 2004), real effects of monetary
policy in models such as this one work through the relative price distortion
(∆′) and the average markup of price over marginal cost (1/w here). Thus,
to understand why the current component of the objective function is maxi-
mized with a lower m the higher is ∆ requires us to look at the behavior of
these two distortions.

Figure 4 plots the markup distortion (Panel A) and the relative price
distortion (Panel B) as a function of m for the same two values of the state
variable. In both cases higher values of m correspond to a lower markup
and a higher relative price distortion. This feature is the essential short-run
policy trade-off in the Calvo or Taylor model: a higher money supply will
bring down the markup at the cost of increasing the relative price distortion.
From Figures 3 and 4 it is apparent that as the state variable increases,
the trade-off shifts in favor of the relative price distortion. That is, the
policymaker chooses lower m at higher values of ∆ because the decrease in
the markup that would come from holding m fixed at higher ∆ is more than
offset by welfare costs of a higher relative price distortion ∆′.

What is the intuition for increased sensitivity of the relative price distor-
tion to m at higher levels of inherited relative price dispersion (∆)? Although
we cannot explicitly solve for the relationship between the relative price dis-
tortion and the money supply, we can study the relationship between the

6Note that this intuition relies on the inflation rate being generally positive: if the
inflation rate were generally negative, then reducing the relative price distortion over time
would mean making firms set relatively high prices.
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relative price distortion and the relative price chosen by adjusting firms. As-
suming (correctly) a positive relationship between equilibrium p0 and m, this
relationship is informative for understanding why the relative price distortion
can be viewed as driving the shape of the policy function.

Combining the market clearing condition (4.5) with the transformed price
index (4.4), we have

∆′ =
ηp−ε

0 + (1− η) ∆(
(1− η) + ηp1−ε

0

)ε/(ε−1)
. (5.1)

From this expression it follows that the sensitivity of the relative price dis-
tortion to the relative price of adjusters is increasing in the state:

∂2∆′

∂p0∂∆
=

εη (1− η) p−ε
0(

(1− η) + ηp1−ε
0

)1+[ε/(ε−1)]
> 0. (5.2)

Figure 5 illustrates this relationship: the current relative price distortion is
a locally convex function of the relative price set by adjusting firms.7 If
there is no inherited relative price dispersion (∆ = 1) then the relative price
distortion is minimized at p0 = 1, whereas for higher inherited dispersion the
relative price distortion is minimized at a lower value of p0. As (5.2) states,
higher ∆ also corresponds to a steeper relative price distortion with respect
to ∆. Summarizing our argument then: as the state variable increases, the
current policymaker would incur increasing welfare losses due to relative price
distortions if she did not react by choosing m so that price setters set a lower
relative price. We have not plotted the relationship between m and p0, but in
a discretionary equilibrium it is positive and nearly linear. So this reasoning
leads to a policy that sets m as a decreasing function of ∆.

6 Properties of Private Sector Equilibrium

Our discussion thus far has involved explaining the nature of the policy prob-
lem in equilibrium and how the state variable shifts the policy problem and
thus its solution. In this section we turn to the private sector equilibrium.

7The relative price distortion as a function of p0 becomes flat and thus concave at high
values of p0; for high enough p0 customers have negligible demand for the goods sold by
adjusters, and additional price increases have no effect on the relative price distortion.
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Understanding the private sector equilibrium is central to understanding why
we do not find multiple equilibria, in contrast to what King and Wolman
(2004) find for the Taylor model.

6.1 Background results from Taylor model

We have seen above that in a discretionary equilibrium of the Taylor model
m̃ will be constant. King and Wolman (2004) use a price-setting firm’s
best response function to study discretionary equilibria in the Taylor model.
The best response function describes an individual firm’s optimal price as
a function of the price set by other adjusting firms. That function is the
optimal pricing condition (2.7) rewritten so that the right hand side is in
terms of current and future m̃ and current and future p̃0. To derive the best
response function, first use the labor supply equation (2.2) to write the real
wage in terms of consumption in the optimal pricing condition. Next use the
money demand equation (3.8) to eliminate consumption. And finally use the
price index (3.9) to write p as a function of p̃0, resulting in the best response
function,

p̃0 =

(
εχ

ε− 1

)
· ((1− θ′) m̃ + θ′m̃′p̃0) , (6.1)

where

θ′ ≡
β

(
p(p̃′0)
p(p̃0)

p̃0

)ε−1

1 + β

(
p(p̃′0)
p(p̃0)

p̃0

)ε−1 (6.2)

Generically, for any value of m̃, King and Wolman show that for fixed
m̃′ and p̃′0 the best response function is monotonically increasing and strictly
convex with two fixed points or no fixed points. The presence of two fixed
points for arbitrary m̃ means that there are multiple discretionary equilibria,
indexed by the distribution over the two fixed points of the best response
function (these fixed points vary with the distribution). In a discretionary
equilibrium there are endogenous fluctuations over these two fixed points.

King and Wolman stress that the complementarity necessary for multiple
fixed points is associated with the fact that under discretion, the policymaker
in the next period is certain to raise the nominal money supply proportionally
with the price set by firms in the current period. An individual firm in the
current period responds positively to the price set by other firms, in order
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to avoid being stuck with high demand and a nominal price that is low
relative to nominal costs in the future. In the Taylor model, this effect is
relatively weak at low values of p0 and relatively strong at high values of
p0. Another way to view the complementarity is between future policy and
expected future policy: if firms expect a higher nominal money supply in the
future, they will set a higher price today, and the future policymaker will
accommodate with a higher money supply.

6.2 Comparing Calvo and Taylor

Our computational approach with the Calvo model has led to finding a single
MPE, in which allocations are determined by fundamentals alone. In sec-
tion 5 we discussed some of the properties of the equilibrium for one set of
parameters. Although we have not proved that the equilibrium is unique, in
the example studied in this paper we have found no evidence of multiplicity.
This is in stark contrast to the Taylor model with two period price setting, in
which King and Wolman (2004) proved the existence of multiple equilibria,
with sunspot fluctuations in most equilibria. To understand why multiplicity
is less apparent in the Calvo model, we turn to the object King and Wolman
use to study multiplicity, the best response function for price-setting firms.8

As stated above, the best response function in the Taylor two-period-
pricing model is upward sloping, strictly convex and generically has either
two fixed points or no fixed points. In Figure 6 we plot a typical best response
function in a discretionary equilibrium of the Calvo model, using the same
parameters as above. It is concave with a unique fixed point. Equation (5.1)
implies that for low values of p0 the future state is decreasing in p0, holding
fixed the current state:

∂∆′

∂p0

=
εη (1− η) p−ε−1

0(
(1− η) + ηp1−ε

0

)1+[ε/(ε−1)]
(∆p0 − 1) .

Therefore, given that the equilibrium policy function is decreasing, future
m is increasing in p0. Other things equal a higher future normalized money
supply makes an individual firm want to set a higher price, so the best re-
sponse function is increasing for low p0. At high values of p0 this relationship
is reversed: increases in p0 raise the future state, and the policymaker would

8We write “multiplicity is less apparent” because we have not proved uniqueness.
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respond by reducing future m, which would reduce the firm’s optimal price
today.

Complementary intuition comes from imagining (counterfactually) that
the future policymaker set a fixed m, raising the nominal money supply in
proportion to the index of predetermined prices (the lagged price level). For
low p0, the price level is very sensitive to p0 and hence future nominal money
would rise steeply with p0 with a corresponding effect on an individual firm’s
optimal price. For high p0 the price level eventually becomes fixed with
respect to further increases in p0 and thus the future money supply does not
respond, making an individual firm indifferent to the higher prices set by
other firms.

Both of our attempts at intuition rely on the fact that there are many
cohorts of firms with predetermined prices in the Calvo model. The first
attempt relies on the presence of a real state variable in the Calvo model,
whereas the second attempt relies on the fact that tomorrow’s nominal state
is not entirely determined by the actions of current period price setters. In
the Taylor model with two-period pricing, there is no real state variable, and
tomorrow’s nominal state is identical to the price set by firms today.

7 Conclusion

The Calvo model linearized around a zero inflation steady state yields the
New Keynesian Phillips curve, which has become the leading framework for
applied monetary policy analysis. While there have been numerous analyses
of discretionary monetary policy using the NKPC, little attention has been
devoted to understanding discretionary equilibrium in the underlying (non-
linear) Calvo model. This paper has aimed to further such understanding.
We have found that the complementarity inherent in the Taylor model with
two-period pricing (King and Wolman, 2004) does not arise in the Calvo
model when firms set their prices for two periods on average. Discretionary
equilibrium involves a steady state inflation rate of greater than five per-
cent, suggesting that the zero inflation approximation is inappropriate in the
absence of a fiscal scheme to eliminate the monopoly distortion.
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Figure 1: Equilibrium as a function of the state
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Figure 2: Steady state inflation rate
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Figure 3: Policymaker’s objective function
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Figure 4: Distortions as functions of m
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Figure 5: Relative price distortion as function of p0
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Figure 6: Pricing best response function: State = 1.0025, m = 0.2022
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