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1. Introduction

Since the classical papers of Hurwicz in the early seventies, a great deal of attention

has been devoted to the problem of implementing social choice rules when preferences

are state dependent (see, e.g. Jackson [2000] for a survey). In contrast, very few con-

tributions have dealt with the problem of implementing social choice rules when the set

of feasible outcomes is state dependent: Hurwicz et al., 1995, Tian (1993), Tian and Li

(1995), Hong (1995), (1996), (1998), Serrano and Vohra (1997) and Dagan et al. (1999).

In this case it is impossible to guarantee the feasibility of mechanisms (see, e.g. Hurwicz

et al. (1995)). Thus, we have to describe how society -and/or the planner- deals with

unfeasible allocations. All these papers design a state dependent mechanism in which

the planner can ex-post verify if players are exaggerating endowments or technological

capabilities (i.e. by asking to put endowments on the table). If infeasibility occurs,

players expect a serious punishment.

We have several reservations about this approach: The assumptions of ex-post ver-

ification of exaggeration only and a serious punishment if infeasibility arise are rather

extreme. Moreover, it is not clear how to proceed without them. This approach also

produces a curious asymmetry between mechanisms coping with state dependent pref-

erences (“demand”) and mechanisms coping with state dependent endowments (“sup-

ply”). The former are state independent but the latter are state dependent. Finally, the

implementing mechanisms are even hard to describe so it may be costly to used them.

In this paper we present a general model of implementation with renegotiation when

the set of feasible outcomes and preferences are state dependent. We model the social

process which transforms unfeasible allocations into feasible ones by means of a re-

version function. This concept originates in Maskin and Moore (1999) and has been

developed by Jackson and Palfrey (2001). In these papers the reversion function for-

malized the process of renegotiation by means of which agents trade the goods allocated
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by the mechanism or veto some feasible allocations. In our case the reversion function

represents the way in which society deals with unfeasible allocations: when facing in-

feasibility, agents just renegotiate case by case taking advantage of the information that

is available on the spot.1 Consequently, the properties that we impose on the reversion

function are very different from those assumed by the earlier literature.

We assume that agents know the reversion function and that they are interested

only in reverted allocations. So the reversion function induces new preferences on the

whole outcome set (this the ”translation principle” in Maskin and Moore [1999]). Such

preferences are state dependent even if primitive preferences are not. Thus, implemen-

tation when the feasible set is state dependent reduces to the case of implementation

when only preferences are state dependent. However as remarked by Maskin and Moore,

”results from the standard literature are too abstract to give a clear indication of how

serious a constraint renegotiation is...”. In our paper we study Nash implementation by

simplicity but our approach can be applied to other solution concepts.

We focus our attention in a class of reversion function in which should an infeasibility

arise at least one agent is made worse off. We call this a non-rewarding reversion

function. Reversion functions considered before do not fall into this class because they

assume that agents are made better off by renegotiating. The difference is explained by

the fact that in their case, renegotiation comes from the inability of the mechanism to

stop agents from reaching mutually beneficial trades. In our case renegotiation arises

from the physical impossibility to carry out the intended plans so somebody has to

make a sacrifice to achieve feasibility. An extreme case of a non-rewarding reversion

1Renegotiation may be channelled by institutions or may be totally free. A striking example is that

of a legal system. Once infractions are detected there are institutions designed to punish transgressors

and to restore feasibility. In our case we can think of the feasible set including not only the properly

feasible allocations but also all punishments and additional devices that can be administrated by the

designed institutions as well as the delays that may occur.
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function is when should an infeasibility arise, all agents are punished such that they

prefer any allocation without punishment to the situation in which they are punished.

This strong form of punishment -that we will call generalized severe resembles the one

assumed in the previous literature but in our case it only serves an instrumental role:

we show that in the class of non-rewarding reversion functions, the generalized severe

reversion function implements the largest class of social choice rules (Proposition 1).

An easy adaptation of the classical result shows that monotonicity when reverted

preferences are given by the generalized severe reversion function is a necessary and

almost sufficient condition of implementation in Nash equilibrium (Remark 1). Our

first task is to characterize this property. It is shown to be equivalent to a weak form

of unanimity and a generalized form of contraction consistency (Proposition 2). The

former property is satisfied by most social choice rules. The latter assumption is similar

to Nash’s independence of irrelevant alternatives but in our case the assumption refers

to the feasible set and not necessarily to the utility possibility set.

Next, we apply the previous result to several frameworks and compare our findings

with the earlier literature. In the case of exchange economies weak unanimity is trivially

satisfied by any individually rational social choice rule. We show that the Constrained

Walrasian rule satisfies generalized contraction consistency and thus it is implementable

in our set up (Proposition 3). However the individual rationality requirement which in

Hurwicz et al. (1995) is necessary and sufficient for feasible implementation is not suf-

ficient for implementation in our framework. The reason is that the previous literature

not only assumed that players never exaggerate their endowments but they never use

messages designed for different state of the world even such messages would lead to an

outcome which is feasible in the actual state of the world. We turn our attention to

bargaining problems. We show that if the disagreement point is not state dependent the

Nash Bargaining solution is implementable with a non-rewarding renegotiation function

(Proposition 4). This agrees with the findings of Serrano (1997) and Naeve (1999).
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We also show that the Kalai-Smorodinski solution is not implementable. Finally we

consider the taxation problem in which the mechanism has to collect a given amount

of taxes. We find a negative result, namely that a taxation method is implementable

if and only if it is a serial dictatorship, i.e. agents can be arranged such that the any

agent pays the minimal tax compatible with the following agents to be able to complete

the required amount. This negative result contrast with the permissive results obtained

by Dagan et al. (1999). The difference between our approaches is that in their case the

report sent by agents matters for the renegotiation and in our case it does not. Our

result serves to highlight the negative consequences of disregarding reports (i.e. a fiscal

amnesty) even if all agents show up the whole endowment.

2. The model

In this section we provide the main definitions. Let us first describe the environment.

Let I = {1, ..., n} be the set of agents. Let ωi be type of i and Ωi be agent i’s type
set. Let Ω ⊂Qn

i=1Ωi be the set of all possible states of the world. Each ω ∈ Ω is char-
acterized by a list of individual outcome sets (X1(ω), ...,Xn(ω)), a feasible set A(ω) ⊂Qn

i=1Xi(ω) ≡ X(ω) and a preference profile R(ω) = (R1(ω), ..., Rn(ω)). The outcome

set of i might include sanctions that can be charged to i and other constraints like indi-

vidual rationality, etc. A(ω) contains all feasible allocations including punishments that

arise in state ω. Set A ≡ Sω∈ΩA(ω). Let a = (a1, ..., an) ∈ A be an allocation also writ-

ten (ai, a−i). Let Ai(ω) = {ai ∈ Xi(ω) : ∃ a−i such that (ai, a−i) ∈ A(ω)} be agent i’s
feasibility constraint. Observe that A(ω) =

Tn
i=1 {a : ai ∈ Ai(ω)}. Ri(ω) is a preference

relation onXi(ω), a complete, reflexive and transitive binary relation onX(ω). Pi(ω) de-

notes the corresponding strict preference relation. Let Li(a, ω) = {x ∈ A(ω) : aRi(ω)x}
be agent i’s lower contour set of ai. Let <i ≡ ∪ωi∈ΩiRi(ωi) be the set of i’s admissi-

ble preferences relations. Set < = Qn
i=1<i. With abuse of notation, for every profile
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of preferences R ∈ < we will denote by R also the preference profile that R induces on A.

A correspondence F : Ω ³ A such that F (ω) ⊂ A(ω) for all ω ∈ Ω will be called a
Social Choice Rule (SCR for brevity).

Amechanism is a pair (M,g) whereM ≡Qn
1 Mi is themessage space and g :M → A

is the outcome function. Mi denotes agent i’s message space. Letm = (m1, ..,mn) ∈M ,

be a list of messages also written (mi,m−i). Given ω ∈ Ω, a mechanism (M,g) induces

a game (M,g,R(ω)).

A message profile m∗ ∈ M is a Nash equilibrium for (M,g,R(ω)) if, for all i ∈ I

g(m∗)Ri(ω)g(m
∗
−i,mi) for all mi ∈Mi.

NE(M,g,R(ω)) will denote the set of allocations that are yielded by all Nash equi-

libria for (M,g,R(ω)).

The mechanism (M,g) implements F in Nash equilibrium if, for all ω ∈ΩNE(M,g,R(ω)) =

F (ω).

3. Reversion functions

Since outcomes that are feasible in some state may be unfeasible in others, we have to

describe how society deals with unfeasible allocations. We assume that if an allocation

is unfeasible it is transformed into a feasible one by a process that might involve delays

(because renegotiation takes time), penalties to some individuals, etc. This systematic

way in which the reallocation process takes place will be called a reversion function.2

2The case in which there may be several renegotiation functions is studied by Amorós (2004)
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This reallocation may correspond to a “free-market renegotiation” or to a process where

the planner applies some kind of punishment or a bankruptcy rule. Formally:

Definition 1. A reversion function is a map h : A×Ω→ A such that for each ω ∈ Ω,
i) h(a, ω) ∈ A(ω) ∀a ∈ A and ii) If a ∈ A(ω), h(a, ω) = a.

A reversion function always yields feasible allocations (condition i) above) and it

is such that feasible allocations are not renegotiated (condition ii) above). The latter

condition is made in order to separate the issue of infeasibility from the issue of pure

renegotiation.3

If the reversion function can be chosen by the planner, under weak conditions any

single valued SCR can be implemented as the next example shows.

Example 1. Assume that there is a state of the world, say ω0, in which the feasible

set is larger than in any other state, i.e. A(ω) ⊂ A(ω0), any ω 6= ω0. Then, any

single-valued SCR such that F (ω0) ∈ A(ω0) \ S
ω0 6=ω

A(ω) can be implemented for some

reversion function: Take a constant mechanism g(m) = F (ω0), ∀m ∈M and a reversion

function h(F (ω0), ω) ≡ F (ω), ∀ω ∈ Ω. h fulfils the conditions for a reversion function
since F (ω0) is unfeasible at any state different than ω0 and by definition it provides the

desired allocations. Notice that implementation occurs in dominant strategies.

The previous example suggests that in order to obtain meaningful results is better

not to allow the designer of the mechanism to design the reversion function. This

requirement is also intuitively agreeable because it seems reasonable there are aspects

of the renegotiation that scape to the control of the mechanism designer.

To explain the main idea of the paper, consider the simplest possible example.

Assume that at states of the world ω and ω0 the preference profile, say R, is the same.
3A tautological interpretation of the latter condition is that A(ω) is the set of allocations that are

not renegotiated.
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Let a, b and c three allocations that are feasible at state ω. Assume that aPibPic for

some agent i. In state ω0 a is not feasible and is renegotiated to c and b is feasible. So,

even if the underlying preferences are the same in both states, player i prefers a to b

at state ω and b to a at ω0. To formalize and extend this idea we give the following

definition.

Definition 2. Given ω ∈ Ω and a reversion function h, the reversion of R(ω) on A(ω),

denoted by Rh(ω) is

aRh
i (ω)b⇔ h(a, ω)Ri(ω)h(b, ω), ∀ a, b ∈ A, i ∈ I.

With Lh
i (a, ω) = {b ∈ A : h(a, ω)Ri(ω)h(b, ω)} we will denote the lower contour set of

a at ω with respect to Rh(ω).

Then, when the reversion function is h, we can interpret that agents’ preferences

are the reverted preferences, i.e. they only care about reverted allocations. Next defin-

ition is a straightforward adaptation of the standard notion of implementation in Nash

equilibrium.

Definition 3. A social choice rule F is h-implementable in Nash Equilibrium if there

exists a game form (M,g) such that for all ω ∈ Ω

F (ω) = h(NE(M,g,Rh(ω)))

In words, F is h-implementable in Nash equilibrium if and only if it is implementable

in Nash equilibrium when for each ω ∈ Ω the correspondent preference profile is Rh(ω).

In other words, once we consider that agents’ preferences are those induced by the

reversion function, we can deal with h-implementation exactly in the same way as done

in the classical implementation problem.

In the study of the restrictions that a state dependent feasible set imposes on im-

plementation we concentrate on monotonicity (or Maskin-monotonicity). As observed
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by Jackson (2001), monotonicity is the most important obstacle to implementation in

Nash equilibrium. For instance it is not generally satisfied by the Walrasian social

choice rule. Monotonicity is, necessary, and almost sufficient condition for a SCR to be

implementable in Nash equilibrium (see Maskin (1999) or Repullo (1987)). So it is the

first condition to deal with.

A SCR satisfies monotonicity whenever an alternative is chosen at an state of the

world and it rises in each agent’s preference ranking at another state of the world, then

it must be chosen also at this state. Now we restate the definition of monotonicity in

terms of reverted preferences. Let h be a reversion function.

Definition 4. A social choice rule F is h-monotonic if for any ω, ω0 ∈ Ω and a such

that h(a, ω) ∈ F (ω) such that Lh
i (a, ω) ⊂ Lh

i (a, ω
0) for all agents i then h(a, ω0) ∈ F (ω0).

The importance of h-monotonicity is highlighted by the following remark whose

proof is an straightforward adaptation of an standard result and, therefore, is omitted:

Remark 1. If a social choice rule is h-implementable in Nash equilibrium, it is h-

monotonic. Moreover in economic environments with #I > 2 if a social choice rule is

h-monotonic, it is h-implementable in Nash equilibrium.4

4. Non-Rewarding Reversion Functions: Basic Results

In this section, we restrict our attention to a class of reversion functions where

renegotiation is not advantageous for all players. We will call them Non-Rewarding.

We will show that inside this class a particular renegotiation function -that we will call

Generalized Severe- implements the maximal set of SCR. Then, we will characterize the

SCR that can be implemented under generalized severe renegotiation functions.

4An economic environment is one in which no two agents agree on the top allocation on their

preference rankings.
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Let us start by defining the following class of reversion functions:

Definition 5. A reversion function is non-rewarding if for a ∈ A(ω) either there exists

i ∈ I and c ∈ A(ω0) such that aRi(ω)h(c, ω) with cPi(ω0)h(a, ω0) or Lh
j (a, ω) ⊂ Lh

j (a, ω
0)

for all j.

Consider the case where the feasible set is constant and only preferences change.

In this case the first condition in the definition postulates the existence of a pair of

allocations for which there is a preference reversal.5 In the case where preferences are

fixed and the feasible set varies, the idea is that when agents renegotiate something bad

happens -delays, punishments engineered from the designer, etc.- and this what it causes

the inversion of the ranking of a and c in the reverted preferences. The alternative in the

definition considers the case where a has improved in everybody ranking when passing

from ω to ω0. It takes care of the case where A(ω0) ⊂ A(ω) because if a ∈ A(ω0) no

feasible reversal around a can take place.

Consider now an specific reversion function which belongs to the class of non-

rewarding ones. Suppose that should an infeasibility arise, players are redirected to

what they consider to be the worst possible allocation. This reversion function re-

sembles the assumption made in previous papers that agents do not choose unfeasible

messages because the planner detects infeasibility and imposes a punishment in such a

way that agents prefer any other feasible allocation to this punishment. However our

interest in this particular renegotiation function arises from the fact it allows to find the

maximal set of SCR that can be implemented under non-rewarding renegotiation (see

Proposition 1 below).

Let G ∈ A(ω), ∀ω ∈ Ω be such that for all i, aPi(ω)G with a 6= G and a ∈ A(ω). G

will be called the “generalized punishment point”. The reversion function with h(a, ω) =

5This condition was emphsized by Maskin and Moore (1991): ”The other problem that renegotiation

poses is that interferes with ”preference reversal” .
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G if a /∈ A(ω) will be called generalized severe and the induced preferences Rh(ω) will

be called the saturation of R(ω) on A(ω) defined by the following properties.

For all i ∈ I:

(1) If a, b ∈ A(ω) then aRh
i (ω)b if and only if aRi(ω)b

(2) If a ∈ A(ω) and b /∈ A(ω) then aP h
i (ω)b

(3) If a, b /∈ A(ω) then aIhi (ω)b

We show that generalized severe renegotiation implements the largest set of social

choice rules among the class of non-rewarding reversion functions.

Proposition 1. Let F be a SCR which is h−implementable in Nash Equilibrium with

a non rewarding reversion function. Then F is implementable in Nash Equilibrium with

a generalized severe reversion function.

Proof Let (M,g) implementing F with reversion function h.

Let a ∈ F (ω). Let m(ω, a) be a Nash equilibrium of
©
M,g;Rh(ω)

ª
such that

g(m(ω, a)) = a.

Let Bi(ω, a) = g(Mi × {m−i(ω, a)}) be the attainable set of i.
Set Bh

i (ω, a) =
S
ω0∈Ω{c ∈ A(ω0) : aRi(ω)h(c, ω), cPi(ω0)h(a, ω0) if for some b ∈

Bi(ω, a), aRi(ω)h(b, ω), h(b, ω0)Pi(ω0)h(a, ω0)}
Set Bh = Im g ∪ (Sω,ω0∈Ω

i∈I
{c ∈ A(ω0) : aRi(ω)h(c, ω), aPi(ω0)h(c, ω0) if for some

b ∈ Bi(ω, a), aRi(ω)h(b, ω), h(b, ω0)Pi(ω0)h(a, ω0)}).
Observe that for all ω ∈ Ω, a ∈ F (ω), and i, Bh

i (ω, a) ⊂ Bh. Thus:

-Bh
i (ω, a) ∩A(ω) ⊂ Bi(ω, a) ∩A(ω) for all ω

-aRh
i (ω)x for all x ∈ Bi(ω, a) and for all i ∈ I

-if aRi(ω
0)x for all i ∈ I , x ∈ Bh

i (ω, a) ∩ A(ω0) then a ∈ F (ω0). Otherwise there

would exist j ∈ I and b ∈ Bj(ω, a) such that h(b, ω0)Pi(ω0)h(a, ω0). h is non-

rewarding so there exists c ∈ A(ω0) such that aRj(ω)h(c, ω), cPj(ω0)h(a, ω0). By

definition such a c belongs to Bh
j (ω, a).

11



Using the assumption that h is non-rewarding we can prove, exactly as above:

-if b ∈ Bh
i (ω, a) for some i ∈ I is such that for some ω0 ∈ Ω, bRi(ω

0)x for all

x ∈ Bh
i (ω, a) ∩ A(ω0), and if bRh

j (ω
0)x for all x ∈ Bh ∩ A(ω0) for each j 6= i then

b ∈ F (ω0).

-if b ∈ Bh is such that for some ω0 ∈ Ω, bRh
i (ω

0)x ∀ x ∈ B fore all i, then b ∈ F (ω0)

For all i set M 0
i = {(ω, a); a ∈ F (ω)} × Bh ×N, where N is the set of integers.

Let M 0 =
QN
1 M 0

i , and g0 :M 0 −→ A such that:

a) g0(m) = a if mi = (ω, a, b, n) ∀i.
b) If there exists a unique i such that for all j 6= i mj = (ω, a, b, n) and mi =

(ωi, ai, bi, ni) is such that (ω, a, b, n) 6= (ωi, ai, bi, ni) then set g0(m) = b if bi ∈
Bh
i (ω, a), otherwise set g

0(m) = a.

c) Otherwise set g0(m) = bi where i = min argmaxj{nj ;mj = (ωj , aj , bj , nj)}.
This is the canonical mechanism in Nash implementation. It is immediate to prove

that(M 0, g0) implements F by generalized severe punishment.

In words, generalized severe renegotiation implements any SCR implementable with

non-rewarding reversion functions.6 , 7 The rest of this section will be devoted to study
6Proposition 1 can be proved under the following assumption that generalizes that of a non-rewarding

reversion function: whenever there exists i ∈ I with aRi(ω)h(b, ω) and h(b, ω0)Pi(ω0)h(a, ω0) a ∈ A(ω)

then there exists j and c ∈ A(ω0) such that: i) aRj(ω)h(b, ω) and h(b, ω0)Pj(ω0)h(a, ω0) and ii)

aRj(ω)h(c, ω) with cPj(ω
0)h(a, ω0). This says that at least one agent suffers as a consequence of un-

feasibility in a way that could have been made through a feasible allocation. For instance, the agent

who is deemed responsible for the unfeasibility is punished and there is an agent who does not get the

bundle she consumed at the other state but what she consumes is feasible.
7The assumption of no rewarding is necessary for Proposition1 to hold. Let Ω = {ω, ω0}, A(ω) =

{a, b, c,G} and A(ω0) = {a, b,G}. Let n = 2 and Ri(ω) = Ri(ω
0) = R for i = 1, 2 where bPaPc. Let

F (ω) = a and F (ω0) = b. Let h(c, ω0) = b. h does not satisfies the non rewarding assumption at c. F

is h-implementable in NE by the simple mechanism which leaves agent 1(or 2) choose among a and c.

But it cannot be implemented by severe generalized punishment because F ( ) it is not monotonic with

respect to saturated preferences.
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the former. According to Remark 1 this leads us to study h-monotonicity under satu-

rated preferences.

We now introduce two properties that are necessary and sufficient for h-monotonicity

under generalized severe renegotiation.

Definition 6. F satisfies weak unanimity if for all ω,ω0 ∈ Ω such that A(ω0) ⊂ A(ω)

and for all a ∈ A(ω)\A(ω0) such that Li(a, ω)∩A(ω0) ⊂ Li(a, ω
0) for all i ∈ I, a /∈ F (ω).

When preferences are fixed, Weak Unanimity says that if all alternatives available

at ω0 are also available at ω, the SCR will not select at ω an alternative which is

available at ω but not at ω0 if all players prefer any allocation available at ω0 to it.

If this condition is not satisfied, when the actual economy is A(ω) all agents have

incentives to underrepresent the economy and implement the decision intended for state

ω0. Weak unanimity is equivalent to the following condition: if A(ω0) ⊂ A(ω) and

a ∈ F (ω)\A(ω0) then there exists b ∈ A(ω0), b 6= G such that aRib for some i ∈ I.

Definition 7. F satisfies generalized contraction consistency (GCC) if, for ω, ω0 ∈ Ω,
and for a ∈ F (ω)∩A(ω0) such that Li(a, ω)∩A(ω)∩A(ω0) ⊂ Li(a, ω

0) and A(ω0)\A(ω) ⊂
Li(a, ω

0).for all i ∈ I, a ∈ F (ω0).

In the case preferences are fixed and A(ω0) ⊂ A(ω), A(ω0)\A(ω) = ∅ ⊂ Li(a, ω) for

all i. In such a case GCC prescribes to choose at state ω0 any feasible allocation we

have chosen at state ω. Thus GCC is a weak version of Nash Independence of Irrelevant

Alternatives (see Roemer [1996], p. 55). GCC says that if a is selected at state ω, and

is feasible also at ω0 and no better alternatives are available in A(ω0)\A(ω), then a must
be selected also at state ω0.

Proposition 2. A feasible F is monotonic under generalized severe punishment if and

only if it satisfies generalized contraction consistency and weak unanimity.
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Proof Let h to denote the generalized severe punishment reversion function.

We begin by proving the necessity of weak unanimity and GCC. Let F be h-

monotonic.

Then F must satisfy weak unanimity. Let ω,ω0 ∈ Ω, let A(ω0) ⊂ A(ω) and let

a ∈ A(ω)\A(ω0) such that Li(a, ω)∩A(ω0) ⊂ Li(a, ω
0) and i ∈ I. By contradiction,

let a ∈ F (ω). Then Lh
i (a, ω) = (Li(a, ω) ∩A(ω)) ∪A\A(ω) = (Li(a, ω) ∩A(ω0))∪

(Li(a, ω)∩A(ω)\A(ω0))∪A\A(ω) ⊂ (Li(a, ω
0)∩A(ω0))∪A\A(ω0) = Lh

i (a, ω
0) for

all i ∈ I. Then h-monotonicity implies that a ∈ F (ω0), which is a contradiction

as F (ω0) ⊂ A(ω0).

Now we consider GCC. Let a ∈ F (ω)∩A(ω0) such that Li(a, ω)∩A(ω)∩A(ω0) ⊂
Li(a, ω

0) and A(ω0)\A(ω) ⊂ Li(a, ω
0) for all i ∈ I.

Lh
i (a, ω) = (Li(a, ω) ∩A(ω) ∩A(ω0)) ∪ (Li(a, ω) ∩A(ω)\A(ω0))∪

(A(ω0)\A(ω)) ∪ ((A\A(ω))\A(ω0)) ⊂ (Li(a, ω
0) ∩A(ω) ∩A(ω0))∪

(Li(a, ω
0) ∩A(ω0)) ∪A\A(ω0) = Lh

i (a, ω
0). h-monotonicity implies a ∈ F (ω0).

We next show the sufficiency of weak unanimity and GCC for F to be h-monotonic.

Let ω,ω0 ∈ Ω, and let a ∈ F (ω) such that Lh
i (a, ω) ⊂ Lh

i (a, ω
0) for all i. Consider

the following three cases.

i) A(ω) ∩A(ω0) = {G}

ii).A(ω) ∩A(ω0) 6= {G} and a /∈ A(ω0)

iii) A(ω) ∩A(ω0) 6= {G} and a ∈ A(ω0)

i) It is not possible. In such a case or no i ∈ I Lh
i (a, ω) ⊂ Lh

i (a, ω
0), since, from the

definition of saturated preferences it follows that aP h
i (ω)b and bP

h
i (ω

0)a for all b ∈ A(ω0).

ii) It must be the case that A(ω0) ⊂ A(ω). Otherwise from the definition of saturated

preferences for all b ∈ A(ω0)\A(ω): aP h
i (ω)b and bP

h
i (ω

0)a for all i. Then we must have
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Li(a, ω) ∩A(ω0) ⊂ Li(a, ω
0) for all i ∈ I Otherwise for some i ∈ I,. b ∈ A(ω0): aRi(ω)b

and bPi(ω0)a. But from weak unanimity it would follow that a /∈ F (ω), a contradiction.

iii) It must be the case that Li(a, ω) ∩A(ω) ∩A(ω0) ⊂ Li(a, ω
0) and

A(ω0)\A(ω) ⊂ Li(a, ω
0) for all i ∈ I. Otherwise either there exists b ∈ A(ω) ∩A(ω0)

such that aRi(ω)b and bPi(ω0)a for some i ∈ I or there exists b ∈ A(ω0)\A(ω) such that
aP h

i (ω)b and bPi(ω
0)a for some i ∈ I. Then GCC implies that a ∈ F (ω0).

So F is monotonic. .

5. Non-Rewarding Reversion Functions: Applications

In this section we apply the findings of previous sections to several set ups. We begin

by considering pure exchange economies. In such environment with more than two

agents, h-monotonicity is necessary and sufficient for F to be h-implementable in Nash

equilibrium.

5.1. Consumption as allocation

Let Xi = RK
+ be i’s consumption set. We assume that agents’ preferences and con-

sumption sets do not vary but endowments do. Let ui be an increasing and con-

cave utility function representing agent i’s preferences. Let Ωi ⊂ RK
+ be the set

of agent i’s possible endowments. For ω = (ω1, ..., ωn) ∈ Ω set ω =
Pn

i=1 ωi. Set

A(ω) =
©
x ∈ RKn

+ :
P

xi = ω
ª ∪ {G} the set of fully balanced consumption bundles

plus the generalized punishment point.8 Here feasibility refers just to balancedness. A

representation for saturated preferences is:

uwi (x) = ui(xi), x ∈ A(ω)\ {G}
uwi (G) = ui(0)− ε, ε > 0.

8The same result holds if we consider the feasible set as A(ω) =
©
x ∈ RKn

+ :
P

xi ≤ ω
ª ∪ {G}.
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Observe that A(ω0) = A(ω) if and only if ω0 = ω. Otherwise A(ω0) ∩A(ω) = ∅.
Weak unanimity is satisfied because if A(ω0) ⊂ A(ω) then ω0 = ω and A(ω0) = A(ω).

Then for all x ∈ F (ω), x ∈ A(ω0)

GCC is binding only when ω0 = ω, too. In such a case GCC prescribes that F (ω) =

F (ω0) because agents’ lower contour sets do no vary. It follows that a SCR can be

implemented in Nash equilibrium if and only if it can be written as function of the

aggregate endowment F (ω) = F (ω). This is a strong condition that is not satisfied by

any SCR picking up individually rational allocations. However this condition is satisfied

by SCR which embody just an idea of fairness, like envy-free allocations.

5.2. Net transfers as allocations

We assume preferences on consumptions bundles are known and satisfy the same con-

ditions as above. We consider that the planner can only transfer goods among players.

Then the allocation set contains the set of the balanced net transfers and the generalized

punishment point, A = {x ∈ RK×n :
PK

s=1 xs = 0}∪ {G}. For all ω ∈ Ω the feasible set
is A(ω) = {x ∈ A : xi + ωi ≥ 0 for i = 1, ..., n} ∪ {G}. Then A(ω0) ⊂ A(ω) if and only

if ω0 ≤ ω.

In order to describe preferences on net transfers we need to make them state dependent

because the utility agent i gets from transfer xi when her endowment is ωi is ui(xi+ωi).

For each ω and for all x ∈ A(ω) for all i set ui(x, ω) ≡ ui(xi + ωi).

Saturated preferences can be represented by the following utility functions.

uωi (x) = ui(x, ω) x ∈ A(ω)\ {G}
uωi (G) = ui(0)− ε, ε > 0.

Let us consider first weak unanimity. It is easily seen that it suffices to consider only

endowments ω, ω0 such that ω0 ≤ ω. Then weak unanimity amounts to the following

condition:
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Condition α : For all ω, ω0 ∈ Ω such that ω0 ≤ ω, if a ∈ F (ω)\A(ω0) there exists i
such that ui(ωi + ai) ≥ ui(ωi − ω0i).

Observe that if (0, ωi) ⊂ Ωi for all i then Condition α requires simply the SCR to

be individually rational for at least one agent. It is a very weak requirement and it is

obviously satisfied by many SCR, e.g., any Pareto efficient or any individually rational

SCR.

Stronger requirements are imposed by GCC. Also in this case it suffices to consider

only endowments ω, ω0 ∈ Ω such that ω0 ≤ ω. GCC is satisfied if and only if the

following condition holds:

Condition β. For all ω, ω0 ∈ Ω such that ω0 ≤ ω, if a ∈ F (ω)∩A(ω0) and a /∈ F (ω0)

there exists i and x ∈ A(ω0) such that

ui (ωi + ai) ≥ ui (ωi + xi)

ui
¡
ω0i + ai

¢
< ui

¡
ω0i + xi

¢
Let us now analyze the possibility of implementing the Constrained Walrasian So-

cial Choice Rule (CWC) by generalized severe punishment. a is a Constrained Wal-

rasian Allocation (CWA) at ω iff there exists p ∈ RK
+ such that, for all i = 1, ..., n

a ∈ argmax {ui(ωi + xi) : pxi ≤ 0, x ∈ A(ω)}. p is said to be an equilibrium price sup-

porting a at ω. Let CWC(ω) denote the set of CWA at ω.

Proposition 3. Let preferences be increasing, continuous and strictly convex and let

Ωi = (0, ωi) for all i for some ωi ∈ (0,∞). Then the Constrained Walrasian social choice
rule is implementable in Nash Equilibrium by generalized severe punishment.

Proof Under our assumptions CWC(ω) is not empty for all ω ∈ Ω. To prove the
claim it suffices to show that CWC satisfies Condition β. Let ω0 ≤ ω, a ∈
CWC(ω)∩A(ω0) and a /∈ CWC(ω0). Let p an equilibrium price at ω. Then there

exists x ∈ A(ω0) with ui(ω
0 + xi) > ui(ω

0 + ai) and pxi ≤ 0 some i. A(ω0) ⊂ A(ω)
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so x ∈ {pxi ≤ 0, x ∈ A(ω)} . From the definition of CWC it follows ui (ωi + ai) ≥
ui (ωi + xi). Then CWC satisfies Condition β.9

Let us compare our results with Hong (1998). She showed that a SCR is imple-

mentable by a collection of state dependent mechanisms if and only if the following

condition is satisfied

ui(ωi + fi(ω)) ≥ ui(ωi − ω0i) for all i (H)

Our Condition (α) is weaker than condition (H): If x ∈ A(ω0) then ui(ωi+xi) ≥ ui(ωi−
ω0i) for all i as all ui are increasing. Then if f(ω) ∈ A(ω0), ui(ωi + fi(ω)) ≥ ui(ωi − ω0i)

for all i. So for ω,ω0 with f(ω) ∈ A(ω0) condition (H) holds. Notice that our condition

depends on the fact that each agent cannot simply retain part of her endowment, but

it has to do it compatible with other agents’ messages.

But our Condition (β) is not implied by Condition (H). Assume for instance that

f(ω) ∈ A(ω0) then (H) imposes no restrictions on f(ω0). If the translations by ω−ω0 of

all agents’ indifference curves through ω0 + f(ω) are strictly above all agents’ indiffer-

ences curves through ω + f(ω) then condition (β) implies f(ω) = f(ω0). Formally if for

all y ∈ {y : ui(ω0i + fi(ω))) = ui(yi) for all i} we have ui(yi + ωi − ω0i) > ui(ωi + fi(ω))

for all i, condition (β) imposes that f(ω) = f(ω0).

The difference between our conditions and Hong’s is explained by the fact that her goal

is to design one feasible mechanism (M(ω), g(ω)) for each possible endowments ω, in

a way such that the larger the feasible set, the larger the message space. Two of her

assumptions make our approaches different:

i) Hong assumes that players can not exaggerate their endowment and that they can be

punished by the message they send not only for the allocation they intend to obtain, if
9The Walrasian Correspondence WC defined by WC(ω) = argmax {ui(ωi + xi) : pxi ≤ 0} is not

implementable in Nash Equilibrium by generalized severe punishment. An example is available from

the authors under request but intuitively is clear that in our case preferences vary so we are back to the

classical framework where such a problem is well known.
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such an allocation is not feasible.

ii) Hong gives to each player the power of retaining part of her endowments. In our

framework we assume that players can collectively cheat the planner through the mecha-

nism by asking a feasible allocation in which some agents retain a part of her endowment.

5.3. Bargaining with unknown utility possibility set

We now consider the non-cooperative implementation of cooperative solution concepts

(Dagan and Serrano [1998]).

A bargaining problem is a pair (U, v) where U ⊂ Rn
+ is the utility possibility set and

v ∈ U is the disagreement point. We assume that U is convex, closed, with a non empty

interior and comprehensive (i.e. u ∈ U and u0 ≤ u, u0 ∈ Rn
+ implies u

0 ∈ U). For each

bargaining problem, (U, v) let Uv = {u ∈ U : u ≥ v} be bounded. The Nash Bargaining
Solution (NBS) is defined as NBS(U, v) = argmaxu∈Uv

Qn
i=1(ui − vi). It is completely

characterized by the following properties: strong efficiency, individual rationality, scale

covariance, symmetry and independence of irrelevant alternatives. Let NBS(U, v)i be

the utility received by i.

We consider here non rewarding renegotiation function more suited to the situation.

We say that a reversion function is Not Severe if for all a ∈ A and ω ∈ Ω h(a, ω) 6= G.

We consider Uv as feasible set of (U, v) and we assume that unfeasible allocations

are renegotiated to the disagreement point. Let h to denote such renegotiation function.

Clearly h is Non Rewarding. Agent i’s reverted preferences at (U, v) are described by

uhi (u(U, v))) = ui if u ∈ Uv

uhi (u(U, v)) = vi otherwise.10

10Naeve (1999) defines preferences on the utility set as they was the reverted preferences. with the

unique differences that utility vector in U\Uv are not renegotiated. A renegotiation consistent with this
view would not alter our results.
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If the disagreement point is not known by the planner, NBS fails to satisfy GCC

and, according to Proposition 1, is not implementable in NE by any non-rewarding

renegotiation function.11 Let n = 2 and let U =
©
x ∈ R2+ : x21 + x22 ≤ 1

ª
. Let v =

(0, 0) and let v0 =
³
(12)

1
2 , 0
´
. Then NBS(U, v) =

³¡
1
2

¢ 1
2 ,
¡
1
2

¢ 1
2

´
∈ Uv0 ⊂ Uv but

NBS(U, v) 6= NBS(U, v0).

The Kalai-Smorodinski solution does not satisfy GCC even with fixed disagreement

point. Then Proposition 1 implies that it cannot be implemented in NE by any non

rewarding renegotiation function.

Instead, when the disagreement point is known the NBS satisfies both GCC and

weak unanimity as the reader can easily check. However Proposition 2 cannot be used

to conclude that the NBS is implementable by generalized severe punishment because

Maskin Theorem requires at least three agents.12

We proof the result directly by using the characterizations by Moore and Repullo

(1990).

11This result agrees with the findings of Serrano (1997). A different interpretation of preferences on

the utility possibility set may lead to more permissive results. One can interpret them as they were a

measure of agents’ satisfaction with respect to the disagreement point. A representation consistent with

this view is ui(u, (U, v)) = ui − vi. Then the preferences that h induces in this case are

uhi (u, (U, v)) = ui − vi if u ∈ Uv

uhi (u, (U, v)) = 0 otherwise

Observe that uhi (u, (U, v)) = uhi (u−v, (U −v, 0)). The reader can easily check that from the translation

invariance property of the NBS the analysis of the problem with unknown endowments amounts to the

previous situation with the endowment fixed and known at 0. In this case applying Proposition 4 below

yields a positive result.

12NBS does not satisfy no-veto power either. As an example consider U =©
x ∈ R3

+ : max {x1, x2} ≤ 1,max {x1 + x3, x2 + x3} ≤ 1
ª
and let v = (0, 0, 0). Agent 1 and agent 2

prefer u = (1, 1, 0) ∈ U to any other allocation, under saturated preferences but NBS(U, v) = ( 2
3
, 2
3
, 1
3
).
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Proposition 4. Let n ≥ 2. The Nash Bargaining Solution is h-implementable in Nash
Equilibrium with a Non-Severe h if the disagreement point v is known.

Proof Let x = NBS(U, v). Let i ∈ I and let (U 0, v) be a bargaining problem. Let

u ∈ Lh
i (x, (U, v)) such that, at (U

0, v) and with reverted preferences u is maximal

for i in Lh
i (x, (U

0, v)) and u is maximal in Rn
+ for all agents different from i.

We first prove that u = NBS(U 0, v). Observe that it must be the case that u

is feasible at U 0 otherwise all agents different from i would prefer some point in

the interior of U 0v and that uj = max
n
u0j : u

0 = (u0j , u
0
−j) ∈ U 0v

o
for all j 6= i. In

particular u lies on the boundary of U 0. If u 6= NBS(U 0, v) then NBS(U 0, v)i >

ui. If NBS(U 0, v) /∈ Uv u is not maximal in Lh
i (x, (U, v)) for i when preference

are reverted at (U 0, v), a contradiction. Finally consider the case NBS(U 0, v) ∈
Uv. NBS(U 0, v) 6= NBS(U, v) and NBS (U, v) /∈ U 0v0 otherwise u would not be

maximal in Lh
i (x, (U, v)) for i under reverted preferences. Consider the segment

joining NBS(U 0, v) and u. Such a segment lies in U 0v because U 0v is convex and it

intersects {u0 ∈ Uv : NBS(U, v)i ≥ u0i } because Uv is convex and NBS (U, v) /∈
U 0v. All along the segment the coordinate i increases from u0i to NBS(U 0, v)i. Then

there exists a point in {u0 ∈ Uv : NBS(U, v)i ≥ u0i } which has the i-th coordinate
strictly greater than ui, a contradiction. Let u be maximal in Rn

+ for all agents

when preferences reverted at (U 0, v) then uj = max
n
u0j : u

0 = (u0j , u
0
−j) ∈ U 0v

o
for

all j. From efficiency it follows that u = NBS(U 0, v).

NBS satisfies Individual Rationality, Pareto efficiency and GCC, too. Then, when

n ≥ 3 the family of sets ©Lh(x, (U, v))
ª
x=NBS(U,v)

satisfies condition µ in Moore

and Repullo (1990). When n = 2 it satisfies condition µ1 in the same paper,

because of the disagreement point. Then the application of Theorems 1 and 2

there, respectively lead to the claim.
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5.4. Taxation

A taxation problem, is a pair (x, T ) ∈ Rn
+ × R+ where x is the vector of taxable in-

comes and T is the total amount to be collected such that
Pn

i=1 xi ≥ T (Dagan

et alia [1999]). A tax allocation t is a vector of Rn
+ and it is feasible for the tax-

ation problem (x, T ) if t ≤ x and
Pn

i=1 ti = T . A taxation method is a function

f which associates to each taxation problem a tax allocation. We assume that the

planner knows the amount to be collected, T but she does not know the taxable vec-

tor x. Let Sn(T ) =
©
t ∈ Rn

+ :
Pn

i=1 ti = T
ª
be the set of tax allocations that collect

T . Let Ωn(T ) =
©
x ∈ Rn

+ :
Pn

i=1 xi ≥ T
ª
be the set of the states of the world. Let

Tn(x) = Tn(x, T ) =
©
t ∈ Rn

+ : 0 ≤ t ≤ x,
Pn

i=1 ti = T
ª
be the tax allocations that are

feasible at x. Each agent’s preferences only depend on her after tax income and are

strictly increasing. Then we can assume ui(t, x) = xi − ti for each x ∈ Ωn(T ) and
for each t ∈ Tn(x, T ). Assume that only income exaggeration can be detected. In

such a case no punishment is administrated. Then the reversion function is non severe.

Observe that h satisfies the hypothesis of Proposition ??. Then if a taxation method

feasible f is h- implementable in NE it is implementable under non-rewarding reversion

function.

Let σ : I → I be a permutation or ranking on the agents. Set (i) = σ−1(i). Set f (σ)

to be the following feasible taxation method.

fσ(1)(x) = min
©
t(1) : t ∈ Tn(x, T )

ª
fσ(j)(x) = min

(
t(j) : t ∈ Tn−j+1(x−{(1),...,(j−1)}, T −

j−1X
i=1

fσ(n−i)(x))

)
j = 1, .., n

The first agent (1) pays her last feasible amount. The second agent pays her last

feasible amount given (1) payment and so on. Each agent is a dictator with respect to

the following players. for this reason fσ will be called the σ-serial dictatorship.
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An equivalent definition for fσ is

fσ(n)(x) = min
©
x(n), T

ª
fσ(n−j)(x) = min

(
x(n−j), T −

n−j+1X
i=n

fσ(n−i)(x)

)
j = 1, .., n− 1

In words, player (n) pays all amount to be collect if she has enough income. Otherwise

what is left is paid by player (n− 1) if she has enough income and so on.

Proposition 5. Let h be a non rewarding reversion function and let f be a continuous

feasible taxation method. If f is h−implementable in then it is a serial dictatorship. If
f is a serial dictatorship then it is h-implementable for any non rewarding h.

Proof Let x0 ≤ x. In such a case T (x0) ⊂ T (x). Let f(x) ∈ T (x0), which is f(x) ≤ x0

then

Li(t, x) ∩ T (x) ∩ T (x0) ⊂ Li(t, x
0). If x0 ≤ x and f(x) ≤ x0 then GCC prescribes

that f(x0) = f(x). In particular f(x) = f(y) for all f(x) ≤ y ≤ x.

Set I(t, x) = {y ∈ V (x) : t ≤ y ≤ x}. Then f(I(f(x), x) = {f(x)} for all x. Ob-
serve that I(f(x), x) ∩ I(f(x0), x0) 6= ∅ implies f(x) = f(x0).

Let f be not a serial dictatorship. Then exists x,i, j such that 0 < fi(x) < xi

and 0 < fj(x) < xj . Then f(x) is in the relative interior of T (x) and I(f(x), x)

is full dimensional. Let y ≥ x. We show that f(y) = f(x). There is no loss of

generality in assuming that f(z) 6= f(x) in all z on the segment joining y and x.

From GCC it follows that for all such z, f(z) /∈ T (x). Let z → x on this segment

then f(z) 9 f(x) but if f(z) converges then f(z) → t where t belongs to the

relative boundary of T (x) which contradicts continuity.

Let x∗ = (T, ..., T ). It follows that f(y) = f(x) for all y ≥ f(x). If y ¤ f(x) then

f(y) = fσ(y) for some σ, because otherwise. I(f(y), y) ∩ I(f(x∗), x∗) 6= ∅ and

23



f(x∗) = f(x) is not feasible at y. But in such a case f would not be continuous..

A contradiction.

The second part of the claim can be proved as in Proposition 4.

Example 2. There are also discontinuous feasible taxation methods that are

h−implementable in Nash equilibrium as the proof of the previous result suggests.
Let x∗ = (T, ..., T ), let t ∈ Ω(T ) and let σ be a permutation on I.

f(x) = (
T

n
, ...,

T

n
) for all x ≥ (T

n
, ...,

T

n
)

f(x) = fσ(x) otherwise

It is not difficult to prove that f is implementable in NE through generalized severe

punishment.

6. Conclusions

In this paper we have presented a new approach to deal with the implementation prob-

lem based on the idea that agents renegotiate unfeasible allocations into feasible ones.

We have presented a class of renegotiation functions that are suited to our problem and

we have found necessary and sufficient conditions for implementation when renegoti-

ation takes this form. Finally we have used our characterization results to study the

implementation in Nash equilibrium of social choice rules in exchange economies, bar-

gaining problems and taxation methods and we have compared our results with those

obtained by the earlier literature.

An unnatural feature of the traditional approach of implementation when feasible

sets are state dependent is that requires a collection of state dependent mechanisms,

contrarily to the case when preferences are state dependent. This distinction contrast
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vividly with our intuition on how markets cope with unfeasible allocations, namely

that the sign of excess demand determines entirely the adjustment irrespectively of the

cause of infeasibility.13 Thus our approach may offer a better understanding of market

mechanisms than the traditional one. But on the other hand the traditional approach is

better suited to deal with topics like withholding of endowments -in our case the state

of the world, and thus endowments, is common knowledge- or tax evasion given the

importance of reports in the renegotiation. Actually our approach can be generalized

to cope with this cases by introducing uncertainty in the renegotiation process or the

mechanism as an argument in the renegotiation function. These two extensions are easy

to write but require completely new analytical methods. Thus they are left for future

research.
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