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Micro versus Macro Cointegration in Heterogeneous Panels

Abstract

We consider the issue of cross-sectional aggregation in nonstationary and hetero-
geneous panels where each unit cointegrates. We derive asymptotic properties of the
aggregate estimate, and necessary and sufficient conditions for cointegration to hold
in the aggregate relationship. We then analyze the case when cointegration does not
carry through the aggregation process, and we investigate whether the violation of
the formal conditions for perfect aggregation can still lead to an aggregate equation
that is observationally equivalent to a cointegrated relationship. We derive a mea-
sure of the degree of noncointegration of the aggregate relationship and we explore
its asymptotic properties. We propose a valid bootstrap approximation of the test.

A Monte Carlo exercise evaluates size and power properties of the bootstrap test.
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1 Introduction

The assumption of the existence of a representative agent in macroeconomics has
generated a huge body of literature on aggregation (see e.g. Granger 1990; Stoker,
1993; Pesaran, 2003). The main research question is of how well the aggregate re-
lationship approximates the properties of the individual components. This question
cannot be examined when only aggregate data are available. However, when data
are available at disaggregate level, it is quite well known that the features of micro
models may not be preserved at the macro level, and a crucial role is played by the
degree of heterogeneity amongst micro units. In a series of papers, Lippi and Forni
(see e.g. Lippi, 1988; Forni and Lippi 1997, 1998, 1999) show theoretically and em-
pirically that irrespective of the approach one chooses for macroeconomic analysis,
when heterogeneity across agents is allowed, the dynamic properties of aggregated
equations differ from those of micro equations, thereby leading to substantially dif-
ferent interpretations. Basic properties of the micro models describing the panel
units do not carry through aggregation, thus increasing ”the difficulties involved in
formulating a macro model” (Forni and Lippi, 1998). Examples are the introduction
of dynamics after aggregating static micro equations and of Granger causality among
aggregated variables when it is absent at the disaggregated level. This is a double-
edged sword: on the one hand, in Forni and Lippi’s (1998) words, ”existing models
which are at odds with aggregate data under the representative agent assumption
could be reconciled with empirical evidence”, on the other hand the exact opposite
can happen and macroeconomic relationship that are supposed to be valid would not
be verified by the data.

A classical example of a property that is shared by the micro equations, and
that is almost always wiped out after aggregation, is cointegration. Pesaran and
Smith (1995) show that aggregation of heterogeneous cointegrating equations does
not imply cointegration in the aggregate relationship unless some specific conditions

are satisfied. A crucial role is played by the number of units n in the panel. A



well known theoretical result (Phillips and Moon, 1999) is that when large panels
are available, i.e. under the (n,T) — oo case, the fact that n — oo entails that a
long-run average relationship between two nonstationary panel vectors exists even
when the single units do not cointegrate. On the other hand, with fixed n, Granger
(1993) considers a model where each equation is a cointegration relationship with
one explanatory variable, and finds that a necessary and sufficient condition for
cointegration to be maintained after aggregation is that the number of stochastic
common trends that generate the nonstationary variables is equal to one. The pres-
ence of a greater number of common trends therefore leads to a spurious regression
after aggregation. Gonzalo (1993) bases his analysis on a more complex multivariate
model and derives a sufficient condition for cointegration to hold after aggregation.
The conditions laid out by Granger (1993) and Gonzalo (1993) are very restrictive;
however, the existence of cointegration at macro level is a well established result.
Hence the need for a test that is capable of checking whether cointegration holds
after aggregation or not.

There are important empirical implications of the ability to determine whether
a macro model is observationally equivalent to a cointegration relationship. An illu-
minating example of the case where the information content of macro data clashes
with that of micro data has recently been provided by Hsiao, Shen and Fujiki (2005).
When using micro prefecture level data at an annual frequency, authors find coin-
tegrated money demand functions in Japan. Cointegration is no longer valid when
aggregated data at a quarterly frequency are used. Other potential applications that
may illustrate the relevance of aggregate cointegration are Campbell and Shiller’s
(1987) investigation of the relation between stock prices and dividends, Vuolteenaho’s
(2002) exploitation of cointegrating relationships between accounting variables (book
equity and market equity; dividend and market equity), and the firm-level cointe-
gration tests between trading strategies as investigated in Gatev, Goetzmann and

Rouwenhorst (2006).



Hypotheses of interest and the main results of this paper

In this paper we propose a test for aggregate cointegration that uses the infor-
mation contained in both the aggregate and the disaggregate data. Using micro
data in order to test the macro relationship also proves useful since, both under the
null hypothesis of aggregate cointegration and under the alternative, cointegration
holds in the micro relationships; thus, estimates derived from micro data are always
T-consistent, whether cointegration holds in the aggregate relationship or not.

The null hypothesis of our testing framework is presence of cointegration in the
aggregate relationship. Thus, the test developed here is similar in spirit to the sta-
tionarity test developed by Kwiatkowski, Phillips, Schmidt and Shin (1992) and
tests for cointegration developed thereafter, e.g. Shin (1994) and Xiao (1999), and
McCoskey and Kao (1998) for the case of panel data. Testing for the null of cointe-
gration is natural in our framework, since aggregate cointegration is the hypothesis
of relevance, also in light of the prior information that cointegration does hold in the
micro relationships.

Building on the measure of departure from aggregate cointegration developed in
Lazarova, Trapani and Urga (2007) for a simple bivariate model, in this contribu-
tion we consider a heterogeneous panel where each micro equation contains several
explanatory variables and several common stochastic trends. We propose a test
statistic for the null of cointegration in the aggregate relationship using the disag-
gregated data. We provide an estimation procedure based on Principal Components
when common trends are unobservable for the case of finite n, expanding the frame-
work in Bai (2004); thus, testing is feasible even in the presence of latent variables.
The test statistic D is shown to be O, (T~?) under the null. The test is shown to be
powerful versus local alternatives of order O, (T!) and to diverge at a rate O, (T?)
under global alternatives. Thus our test differs from those by e.g. Shin (1994) and
Xiao (1999), where consistency versus global alternatives is achieved at a slower rate

due to different rates of convergence of the estimators under the null and under the



alternative and to the need to employ nonparametric estimates of the long run vari-
ances. The advantage of our test is that it is calculated using estimates derived from
the micro relationships, where cointegration holds both under the null of cointegra-
tion in the aggregated relationship and under the alternative. Hence the "natural"
rate O, (T?) at which consistency is attained. These results hold for any T-consistent
estimator, and are robust to serial correlation and cross dependence. Since the test
simply requires T-consistent estimators, OLS can be applied even under weak en-
dogeneity. The asymptotic law of the test statistic is not nuisance free. Therefore,
we propose a bootstrap approximation for the critical values based on the methods
of sieves (see e.g. Chang, Park and Song, 2006). We prove the consistency of the
procedure and Monte Carlo simulations provide evidence of good size and power
properties of the testing framework. Last, though the focus of our paper is on the
case of fixed n, we study the case of aggregation with large panels, i.e. for n — oo,
investigating the conditions whereby cointegration is preserved after aggregation as
n — o0. In this respect, our paper complements the analysis of Phillips and Moon
(1999).

The paper is organized as follows. The theoretical framework is presented in
Section 2, where we set up a model for heterogeneous panels, present the aggregate
cointegration relationship and analyze the probabilistic structure of the ordinary least
squares (OLS) estimates of the aggregate model. Section 3 presents the conditions for
cointegration to carry through the aggregation process. We characterize the system’s
behavior when the conditions derived in the previous section are not satisfied and we
develop an asymptotic theory for assessing the deviation from the case of aggregate
cointegration. In Section 4 we propose a bootstrap approximation of the test. Monte
Carlo simulations, reported in Section 5, evaluate size and power properties of the
bootstrap test. Section 6 concludes.

A word on notation: integrals of Brownian motions W (r) such as fol W (r)dr are

denoted as [ W, 2, denotes convergence in probability and 2 denotes convergence



in distribution; ||-|| denotes the Euclidean norm, defined, for a matrix A, as ||A| =

itr (A'A).

2 Asymptotics for the Aggregate Relationship

Let us consider a system of n cointegrated micro relationships each with p explanatory

variables:
p
Yit = Z BriThit + Wit (1)
h=1
wheret =1,...,T, andi =1, ...,n. The covariates x; are I(1) processes that share
k common stochastic trends:
Thit = izt + Vhit, (2)

. ! . .
with z; = [214, ..., 1] & k-dimensional vector where

Zjt = Zjt—1 T €ty

with h=1,....,p, 7 =1,....k, and ay; is a k x 1 vector.

The model can also be rewritten in matrix form:

Yo = Ty + ua, (3)

Ty = TDize + vy, (4)

2t = Z—1 T €y (5)

where i = [T1it, -y Tpit) s B = (ﬁli,...,ﬁm)/ and T; = [y, ..., ap)'. The matrices

dimensions are respectively p x 1 and p X k. The trend vector is assumed to initiate

at zo = 0.

/

Let wy = [Uig, oy Ung)'s v = [Uys, s Ugl, € = [}, 0], €]

!/
coy Unt .

We assume that the

sequence of innovations satisfies the following assumption:



Assumption 1

(i) a functional central limit theorem (FCLT) holds for the partial sums of &4,

S = Z§=1 €13

(i1) € is independent of u; and vy and the trends z; have a unit long-run variance,

limy_, o Var(T*% Zthl &) = Ii.

Assumption 1 summarizes the requirements on the behaviour of the error term
e Assumption 1(7) allows €, to belong to a very general class of processes, among
which linear processes are just a special case. In particular, time dependence is
allowed for the process ¢; as long as it decays at an appropriate rate. Also, the
covariance structure of ¢, could be time-varying, as long as the FCLT holds.

The orthonormality requirement in Assumption 1(ii) makes the trends z; neutral
in the model so that the behavior of the system is fully described by the coefficients
B; and ap;. Therefore, the long run variance of the xys, limp o T71E (w2,
is given by II". Note that Assumption 1 ensures that for r = [0,1], T2 3 "]
& 5 W, (r), where W,(+) is the k-dimensional standard Brownian motion.

Assumption 1 does not make any requirement on the existence and extent of
cross sectional dependence, given that our analysis is conducted for fixed n, which
makes the cross-sectional dimension (and its features) irrelevant for the purpose of
asymptotic theory. We therefore allow for arbitrary contemporaneous and dynamic
correlation across units, including e.g. the presence of a factor structure in u; and
vi. Also, we do not need any restriction on the correlation between u; and v;, and
therefore we do not need to impose weak exogeneity in the cointegration equation
(3). The only restriction contained in Assumption 1 is that the idiosyncratic shock
¢; be statistically independent of {u;,v;}. This assumption, which is similar e.g.
to Assumption D in Bai (2004), rules out a dynamic factor representation, whereby
{yit, zi+} would depend on z; and lagged values of z;. As a consequence, the struc-

ture in (3)-(5) could be described as a "static factor model” with common factors



2. Assumption 1(7i) could be relaxed, since the main results of the paper (e.g. rate
of convergence of the test statistic, power under local alternatives, etc...) hold irre-
spective of it. We discuss the possibility of allowing for dependence between ¢; and

{wit, vy } after Proposition 3, thereby obtaining a ”dynamic factor model”.

Assumption 2

(i) the number of regressors in the cointegration equation (3), p, is not larger
than the number of common trends k, i.e. p < k. Also, rank (I';) = p, for

1=1,...,n.
(it) for T'=5"" T, rank (I') = min {p, k} = p.
(iii) k<n(p+1).

(iv) for all i, it holds that ||3;|| < oo and ||T;]| < occ.

Assumption 2 refers to the model representation. The lower bound on k in As-
sumption 2(7) ensures that model (3)-(5) can embed both common and/or unit spe-
cific stochastic trends. A result that follows directly from this assumption is that
the x;s in equation (4) do not cointegrate among themselves for all . This is a
standard assumption from cointegration analysis and it is necessary to rule out the
degenerate cointegration case - see Phillips (1986) for discussion. Assumption 2(i7)
requires that also the sum of the I';s must have full rank. This condition will prove
useful in the analysis of the aggregate cointegration relationship properties. The
upper bound n(p 4+ 1) in Assumption 2(7i) is necessary for the estimation of the
factors and it prevents the number of unit specific factors from being too large, even
though it states that their number can grow linearly with the number of units. This
assumption plays a role when the z;s are not observable - see Section 3.3.1 below. In
such case, the coeflicients 3, and I'; are estimated applying the Principal Component

estimator to the n(p + 1)-dimensional panel {y;;, z;};_,. Assumption 2(iii) simply



states that the number of factors z; in {y, xit}?zl does not exceed the number of
units in the panel. Finally, the bounds on 3, and I'; in Assumption 2(iv) are stan-
dard in the literature when the z;s are not observable and estimation of 3, and I'; is

required - see e.g. Assumption B in Bai (2004).

2.1 The Aggregate Cointegration Relationship

Aggregation of equation (2) across units leads to the equation

k
Ty = E GpjZjt + Unt,
i=1

where h =1,...,p; t =1,....,T; Tpe = > iy Thit, Qnj = D1y Onij With ap; ; being the
7-th element in vector ay,; and vy, = Z?:l Unit. We assume there is at least one j for
which ap; # 0, so that T, is I(1).

For the dependent variable, cross sectional aggregation of equation (1) gives equa-
tion

k
yt = Z bjzjt + gt,
j=1

wheret = 1,.... T, G, = > Yie, bj = D51 D5y Bpicmig and 5, = 325 D70 B Vit
> i, ui. We assume there is at least one j for which b; # 0, so that 7, contains a
unit root.

Let now Z; = [Z14, Tot, ..., jspt]/ and b= >_"  T%8,. The aggregate forms of (3) and

(4) can be written in vector form as

7, = Dz + (6)

U, = bz+35 (7)

where t =1,...,T.
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2.2 Asymptotics for B

With respect to the aggregate relationship, let us consider the least-squares estimator

B of the slope coefficient in the linear regression of 7, on 7;

R T -1 /7
p = (thf2> (Z ftgt) :
=1 =1

We are going to evaluate the case of T' large and n finite, and the case of T" and

n large.

2.2.1 The Case of T' Large and n Finite.

In this case, when 7, and 7; are cointegrated, the estimator B is superconsistent
and converges in probability to a vector which is the true value of the aggregation
coefficient, 5. On the other hand, if the aggregate series are not cointegrated, the re-
gression y, = B/Tt +¢; is spurious and B converges in distribution to a non-degenerate
vector random variable.

The following proposition characterizes the limiting distribution of the estimator

3 for large T and finite n.

Proposition 1 Let Assumptions 1(i) and 2(i) hold. Then, in the OLS regression of

Y, on Ty, 3 converges to a non degenerate random variable S,
R —1
B4S= {r / szgr'] {r / WzWQb} . (8)

Proof. From equations (6) and (7) and standard asymptotic results, it follows

that .

T
B = [FZztng' + 0, (1)
=1

[FZztng—i—op(l)] :

In addition, Assumption 1 ensures that 7-23 % | 7z 5 [WW. =
For further details, see also Park and Phillips (1988). Note that the only require-

ment needed for Proposition 1 to hold is that the FCLT holds for &;; thus, (8) is valid
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for any degree of correlation (weak exogeneity and endogeneity) between z;; and u;
(and therefore between 7, and e;) and also between ¢, and {u;;, v;}.

As pointed out above in commenting Assumption 1, the presence of contempo-
raneous correlation among the panel units is not ruled out in our model. The use of
OLS is a valid choice under any arbitrary level of cross sectional dependence. This
is due to the fact that n is finite and therefore cross sectional dependence is neu-
tralized by aggregation. Assumptions 2(i) and 2(ii) are needed for the p x p term
I [ W,W!I" to be a nondegenerate Brownian motion - see a related discussion by
Phillips (1986). Since p < k and I' is a full rank matrix, it holds that the matrix
I [ W,W!I" is almost surely positive definite and the inverse [I' [ W,W/T"] ! exists
almost surely. Thus, assumption 2 (%) requires that not only the individual z;s, but
also their aggregate 7; does not cointegrate.

Note that Equations (1) and (2) could be extended to incorporate deterministic

terms, such as constant terms

/
Yie = Qyi + 25 3; + wi,

Ty = Qg+ ize + i
This would result in the aggregate relationships having a constant term as well, i.e.

Ty = C_Lx‘i‘PZt‘i‘Tjt

U, = Gyt gy + bz + 8,

where G, = Y 1 Gy, Gy = D 1y Gy and Ggy = Y | Gz0,. In this case, standard
cointegration theory entails that Proposition 1 still holds. If a deterministic term is

~/
considered in the aggregate cointegration relationship, such as y, = a + 5 7; + ¢,

then (8) should be modified as

—1
B34S = [r / szgr’] [F / szgb] ,



where W, is the demeaned Brownian motion associated to the zs, i.e. W, (r) =
W, (r) — fol W, (s)ds.
Proposition 1 is valid for large 7" and finite n. In the next section we present the

case of when both 7" and n are large.

2.2.2 The Case of T" and n Large.

Though our paper is focused on the fixed n case, it is interesting to study the case
(n,T) — oo to see where our framework fits within the large panels asymptotics
developed by Kao (1999) and Phillips and Moon (1999). Granger (1990) discusses
the consequences of n being large and Granger (1993) provides an interesting char-
acterization of n being large or small. The following proposition holds when 7" and

n are large.!

Proposition 2 Let Assumptions 1 and 2(i)-(ii)-(iv) hold, and let the regression
coefficients 3; and I'; be i.i.d. random wvariables across i, independent of ;. Let
E(B;) =B, E(I;) =T and E(I}3;) = I" (B+¢) with ¢ a p x 1 vector. Then, as
(n,T) — o0

BB+ (9)
Proof. See Appendix. m

Proposition 2 states that, as (n,7) — oo, B is a consistent estimator of the
long run average (3 if and only if the 3,5 and the I';s are uncorrelated, i.e. if
E [(Fl — f)/ (52‘ — B)} = E(IB,) —T'B = I'c = 0. In this case, as reported in
the proof, consistency is achieved at a rate \/n, a finding in line with the large panel
literature when units are described by a spurious regression - see Kao (1999) and
Phillips and Moon (1999). Thus, the OLS estimate picks the long-run average rela-
tionship between 7 and each of the Z,s, regardless of the existence of a cointegration
relationship. When the 3;s and the I';s are correlated such that I'c # 0, then B is in-

consistent. In this case, (9) is a counterexample to the ”classical” result that n — oo

!'We wish to thank a referee whose question led to this result.
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entails consistent estimates, irrespective of whether the panel is a cointegrated one
or not - see Phillips and Moon (1999).

Proposition 2 is valid for any degree of contemporaneous correlation, and therefore
the presence of e.g. a factor structure in u; and/or v; is allowed for. However,
statistical independence between ¢, and {u;,v;} as in Assumption 1(7) is needed.
Note that under the more restrictive assumption of no cross-sectional dependence
among units, the OLS estimator B is asymptotically equivalent to the pooled-OLS
estimator in Phillips and Moon (1999).

As a final remark, equation (9) has been proved using a joint limit argument.
Phillips and Moon (1999) provide joint limit theory for panels with independent
units. In this paper, instead, we deal with strong cross sectional dependence across
units. Our joint limits are obtained by using a cross-sectional CLT for martingale
difference sequences (MDS), using the approach developed by Kao, Trapani and Urga
(2008). As in Phillips and Moon (1999), no restrictions are required on the rate of

expansion between n and T as they approach infinity when proving consistency.

3 Aggregate Cointegration: Validity and Testing

Proposition 2 states that, for large n, the consistency (or lack thereof) of B does not
depend on the existence of cointegration in the aggregate relationship. We henceforth
restrict our analysis to the case of large T and finite n only. We develop an estimation
theory for both aggregate and disaggregate models. We first discuss the formal
requirements under which cointegration holds in the aggregate relationship 7, =
Blft + ¢, laying out a necessary and sufficient condition in order for cointegration to
be maintained after aggregation. Second, we explore the consequences of a failure of

this condition to hold though cointegration can still be present in the data.
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3.1 Cointegration in the Aggregate Relationship

The results in this section are based on superconsistency of the OLS estimates when
cointegration is present. In this case, B 2. 3. In order to have aggregate cointegra-
tion, S in equation (8) must degenerate to a vector of constants rather than a vector

of random variables. Given that b # 0 by assumption, this means that
'3 =1b. (10)

In this case,

[ fue] o]

= [P/szgr']_l {F/WZW;F’l B =5, (11)

and cointegration holds. Another consequence of superconsistency is that the linear

system (10) has a unique solution
B = (IT") "' Tb. (12)

Note that b must be a linear combination of the rows of I" for equation (10) to admit
non trivial solutions, and this holds if and only if rank (T') = rank (I" | b) = p.

Thus, the following results hold:

Theorem 1 Let Assumptions 1(i) and 2(i)-(ii) hold. Cointegration in the aggregate

relationship §, = Blft + € holds if and only if rank (I | b) = p.

Corollary 1 Let Assumptions 1(i) and 2(i)-(ii) hold. If the number of regressors in
the cointegration equations (1) equals the number of stochastic trends (i.e. if p = k),

then the aggregate relationship y, = B,ft + €; is cointegrated.

When the number of common stochastic trends is limited, i.e. when the amount

of cointegration in the single units is large enough, then aggregation does not have
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a completely destructive effect on cointegration in the aggregate relationship. It
should be noted that when the number of common trends k is large with respect to
the number of covariates p, rank (I | b) is more likely to be equal to p+1, and hence
aggregated cointegration is unlikely to hold.

Theorem 1 always holds when I is a k x k£ matrix. Assumption 2 (7i) ensures that
rank (I') = k and therefore rank (I'" | b) = k as well. Corollary 1 is an alternative
formulation of Theorem 1 in Gonzalo (1993) when the common trends in the disag-
gregate system are the same across all is. Note that Theorem 1 contains a different
formulation of the conditions for aggregate cointegration with respect to Lemma 1
in Hsiao, Shen and Fujiki (2005). The difference is due to the presence of common
stochastic trends in the DGP of the x;s in (4), which is not assumed in Hsiao et al.

(2005).

3.2 Measuring Departure from Cointegration

When the formal conditions for aggregate cointegration are violated, we can still
have ”some degree of cointegration” in the aggregate relationship if the requirements
in Theorem 1 are only ”mildly violated”, as pointed out by Granger (1993). In
what follows, we derive a statistical measure of departure from cointegration when
Theorem 1 does not hold, and therefore, strictly speaking, equation 7, = B,ft + e

represents a spurious relationship. The testing framework we derive is based on

Hy : presence of aggregate cointegration,

H, : spurious aggregate regression.

A natural way to address the issue of testing is to consider the statistical prop-

erties of the limiting distribution of B, S. From equation (11), we know that

S = [F/WZWZ’F’} B [T/WZWZ’I)} .

16



Denote P = [, — I'(I'T")"'I" and M = I"(I'T)"'T, and writing b = Mb + Pb,

equation (11) becomes

-1 -1
S = [F / WZW;F’} [F / WZWQMb} n lI‘ / szgr'] ll‘ / WZWZ’Pb] (13)
or
-1
S—g+ {F/WZWZ’F'} [F/WZW/;PZ)} , (14)
using (12). To analyse the second term of the right hand side of (14), define W (r) =
W, (r) and W¥(r) = ¥/ PW,(r). By construction, we have

E[W'W?] =TE [W.(r)W.(r)] Pb=T(rl;)Pb = 0.

Thus, W¥(r) and W¥(r) are independent. Hence the expected value of the random

variable S is

E(S) =5,

and the variance of S is equal to

Var () = Var{{r / szgr’] B {F / szgpb] }

Therefore, we have aggregate cointegration if the second term on the right hand

side of (14), [T [ W.W.I"] - [ [ W.W!Pb] , degenerates to a zero constant, i.e.

-1
{F/WszT'] {F/WzW;Pb} =0 a.s.

This holds if and only if Pb = 0, which implies that Var (S) = 0 if we have aggregate
cointegration, while Var (S) > 0 if the aggregated relationship is not cointegrated.
Thus, for testing purposes, we can define the following indicator:

WP

D .
b'b

(15)

17



Under the null hypothesis of cointegration in the aggregate relationship D = 0,
whilst D > 0 under the alternative hypothesis that aggregation eliminates cointe-
gration. Note that, given that M and P are idempotent, (15) can be rewritten
as

D = sin® (b, Mb) . (16)

From (16), the indicator D depends on the angle between the two vectors b and
Mb. The smaller the angle between the two vectors, the smaller the distance from
the case of aggregate cointegration. The aggregate cointegration occurs when the
two vectors b and Mb are parallel. This condition is met when b, which gives the
response of 7; to the stochastic trends z;, can be fully represented in terms of the
basis associated to the column space of I', which represents the response of Z; to
the common stochastic trends. Algebraically, this means that we have cointegration
when b is a linear combination of the columns of I'.

The definition of D illustrates possible sources of the violation of the neces-
sary and sufficient condition for cointegration in the aggregate relationship. When
rank (I" | b) > p, cointegration is not preserved under aggregation. Nonetheless, if
the stochastic trends in the error term in the aggregate relationship are relatively
unimportant then Var (S) is small and the degree of departure from aggregate coin-

tegration is not large.

3.3 Testing for Cointegration

The hypotheses of interest are as follows

Hy: D=0
, (17)
H :D>0

where the null hypothesis Hj is the presence of cointegration in the aggregate rela-

tionship. To test the null hypothesis in (17), b and I" need to be estimated.
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3.3.1 Estimation of b and I'

The estimation of b and I' depends crucially on whether the z;s are observable or

unobservable. When the z;s are observable, estimates of b and I' can be obtained by

OLS and are given by
A T -1/
bOrs = (Z Zt%i) (Z Zt?jt)
T -1 7
oL — (Z ztzft) (Z z@%) :

(18)

(19)

Since equations (6) and (7) are cointegrating relationship, OLS estimators in (18)-

(19) are superconsistent, i.e. letting © = [b|T']" we have

0 —0=0,(T).

In the more likely case that the common trends z; are not observable, another

approach should be considered. Let us express model (3)-(4) as

Yit = Béfizt + Bivit + it

Ty = Dz +vy.
/
. Yit _ Bl W Bivit + Ui
Writing W;; = , o = ,and e] =
Lt I (%7

we have

- w
Wit = ;% + €t s

19



and by stacking W, it holds

_ w
Wlt —] elt
- w
Wgt =9 62t _ W
Wt = = 2 + ==z + [CH (20)
= w
Wnt fumi?9 ent

Consistent estimator of = can be obtained by principal component. More specifically,
consider the n(p + 1) x n(p + 1) matrix 3./ W,W/. The principal component

C

estimator of =, say =PC s given by /n times the k eigenvectors corresponding to

the largest eigenvalues of 23:1 W, W/ subject to the normalization

T
=her § WW,EPC = nT?1,.

t=1

The procedure we propose is based on Bai (2004) but extended to our case of n finite
and T large. It is also known that =; and z; are not directly identifiable but they are
identifiable up to a transformation defined by a rotation matrix H. For our setup,
knowing =; H is as good as knowing =, since the test statistic D does not depend on
H. For the purpose of notational simplicity, we assume H being an identity matrix

in this paper. The following proposition ensures consistency of the estimates =P,

Proposition 3 Let Assumptions 1(i)-(ii) and 2 hold. Further, assume that E ||e,||*™
0o for some § > 0, F|uy|® < oo, E|vy]|® < oo and ZtT:lEHerVngH < oo for all

(1,7,8). Then, as T — oo,
EPC-2=0,(T). (21)

Proof. See Appendix. m

Proposition 3 states that the "loadings” = in (20) can be estimated consistently
even for fixed n. This result has been derived by Bai (2004) for the case of nonsta-

tionary panel factor models, and it is in contrast with the stationary case whereby
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the order of magnitude of the loadings estimation error is min (1 /n,1/ \/T) and
therefore both n and 7" need to be large - see Theorem 2 in Bai (2003).
Assumption 1(7i) is not strictly necessary for (21) to hold, even though it simplifies
the asymptotics of =ZPC. If the idiosyncratic shock ¢, in the DGP of the z;s were
allowed to be correlated with {u;, v;:}, then a static factor model like (20) would no
longer be an adequate representation for W; and (20) would have to be modified as
a dynamic factor model in order to allow W; to depend upon z; and lagged values
thereof. However, as proved in Theorem 6 in Bai (2004), the loadings Z; could still
be estimated consistently, even though their asymptotic law would be different to
the static factor case. We refer to Bai (2004) for a comprehensive discussion of the

asymptotics for nonstationary static factor models.
The principal component estimator of © is given by

APC oo — - PC
oY = A = = (22)
rre i=1

and from Proposition 3

o’ -e=0,(T").

Therefore, even when the z;s are unobservable, we have a T-consistent estimate for
0.
Henceforth, we shall also use the following matrix notation. Defining the [n (p + 1)]x

(p+ 1) matrix F by stacking n (p + 1)-dimensional identity matrices, i.e. as
F= [IP+17 sty [P+1], ) (23)

©PC can also be defined as ©FC = [/=ZPC. Letting the (p 4 1)-dimensional vector
i, = [1,0,...,0] and the p x (p + 1) matrix ir = [0]],] we also have Ve = =P0

and PPC = irF’EPC.
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3.3.2 Testing

Let

A AA

/
p=
b'b

A A A~ L 4 A A
where P = [, — T" (FF ! ) I and b, I" are estimators of b, I'. The following theorem

characterizes the rate of convergence of D under the null hypothesis of cointegration.

Theorem 2 Let Assumptions 1 and 2 hold, and assume that b and I' are T-
consistent estimators of b and I'.  Under the null hypothesis of cointegration, we
have D =0 and

D=0,(T™?). (24)

Proof. See Appendix. =

Theorem 2 asserts that rate of convergence of D is of order T2 irrespective of
whether the z;s are observable or not and of the type of estimation technique em-
ployed to derive b and f‘, as long as they are T-consistent estimators of b and I,
e.g. the OLS or the Principal Component estimators. This result is reinforced and

generalised by the following corollary.

Corollary 2 Under the assumptions of Theorem 2, let 6 > 0 and consider two
estimators 55 and f‘(g such that b—b = O, (T*‘S) andT—T = O, (T*‘S). Then, under

the null hypothesis of cointegration, we have D =0 and
D=0, (T,

Proof. See Appendix. =

From Theorem 2 and Corollary 2, the rate of convergence of D is the square
power of the rate of convergence of the estimators b and I'. The intuition behind this
result is that under the null, the angle between b and Mb is equal to zero. Recalling
the definition of D in (16), the function sin” (+) is an even function in a neighborhood

of zero, i.e. the odd powers of its Taylor expansion have coefficients equal to zero.
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When the z;s are observable, the limiting distribution of Dis given in the following

theorem.

Theorem 3 Let Assumptions 1(i) and 2 hold and consider the OLS estimators of b,
T, say b°FS and TOLS respectively, defined in (18)-(19). Under the null of aggregate

cointegration
1 bt/
WQI {[ k ] Q, (25)

7D % - —
16]]

where

Q = (M_Ik)Qb+

[F’ (CT) ™ Qp — T (CT) "' QL (TT) ™' T — I (')~ QulY (ITY) ™' T+ Q) (TTY) F] b,

and Qy = (JW.W!) ™' [W.dWs, Qr = ([ W.W)) ™" ([ W.dW?), with Wy and Wy
Brownian motion processes associated with the partial sums of the processes v, and

5¢ in (6) and (7) respectively.
Proof. See Appendix. =

The following theorem gives the limiting distribution of D when 28 are not, ob-

servable.

Theorem 4 Let the assumptions of Proposition 3 hold, and consider the PC' estima-

tors of b, I', say bPC and ['FC respectively. Under the null of aggregate cointegration
~ 1 bt/
T2D i _||b||2QpC/ |:]/€ - ||b||2:| QPC’ (26)

where
QY = (M —I,) Q¥ + | (PIY) ' Q¥ — I'TQM'T — I'QYI'T 4+ Q2 (IT) ' T'| b,
DC

QY = 'y, QF = irll, and II is the limiting distribution of O, the principal
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component estimator of © defined in (22), given in Proposition 4 below - see equation

(27).
Proof. See Appendix. =

The following proposition provides the limiting distribution of the principal com-

ponent estimator of ©.

Proposition 4 Let W, be the Wiener process associated to the partial sums of e}’
in equation (20) and define Q. = E (e["e/"’) and B = [W.W.. Then under the

assumptions of Theorem 4

T (67 =0) % F' [luper) — n 'EBZ] ( / dWeWZ’) B!

—n e < / aw, W’) =

+n ' F Ly — 2n'EBE | Q.E =11 (27)

Proof. See Appendix. =

To evaluate the capability of our statistic to reject local alternatives, we consider

the following sequence of local alternatives
H :b=T'8+ 6, (28)

where the k-dimensional vector d7 is orthogonal to I' and is chosen to be limy_, o, Td7r =
§ # 0. The orthogonality condition 07" = 0 means that the response of 7; to the
stochastic trends z; also contains a component d7z; which cannot be explained in
terms of the Z;s, and therefore the possibility that 7, and Z; cointegrate is ruled
out. Therefore, under the sequence of local alternatives H!, D > 0. The following
theorem shows that the statistic D has non-trivial power versus such a sequence of

local alternatives.
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Theorem 5 Let b and I’ be T-consistent estimators of b and I respectively. Under

the alternative hypothesis H!, we have

1

D4 —
1ol

bob!
{II5|!2 L [fk - H;OH%] Q- 26'@*}, (29)

where by = I3, Q* is equal to either Q or Q¢ depending on whether the z;s are
observable or unobservable. The definitions of () and QP° are in Theorems 3 and 4.

In either case, £ [Q*] = 0.
Proof. See Appendix. =

Theorem 5 shows that the test has nontrivial power against local alternatives of
order O (T~!'). This result too holds irrespective of whether the zs are observable
or not as long as b and I are superconsistent estimators of b and I', such as e.g. the

OLS or the PC estimators.

Finally, to evaluate the consistency of our test, we will study the asymptotic
behaviour of 72D under the alternative hypothesis H; : D > 0. The following

theorem shows that the test based on D is consistent against fixed alternatives.

Theorem 6 Let ZS, I’ be T-consistent estimators of b, I'. Then under the alternative

hypothesis Hy : D > 0 it holds that, as T — oo
D=D+0,(T™), (30)

and therefore, under H,, the statistic 72D % .

Proof. See Appendix. =

Theorem 6 shows that 72D diverges under the global alternative H;. Conse-

quently, the probability of rejecting the null hypothesis when the alternative H;
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holds is asymptotically equal to one. This means that the test based on T 2D is
consistent.

The rate of divergence of the test statistic is O, (T?), thereby faster than existent
tests for the null of cointegration based on the Lagrange Multiplier approach (see
e.g. Shin, 1994, and Xiao, 1999). As already discussed in the introduction, the
estimates upon which these tests are calculated have different asymptotics under
the null and the alternative; in addition, non parametric estimation of long run
variance is required. Our test statistic is constructed employing estimates of the
parameters in the micro equations, which cointegrate under both the null and the
alternative hypothesis, thereby having the same asymptotics in both cases. This
ensures consistency at rate O, (T?). Note that our results are robust to the cases of
weak endogeneity in the micro equations, since the OLS estimator is T-consistent.

An ancillary result is that under H;, when D is no longer equal to zero, the
remainder term in the asymptotic expansion of D around D is no longer O, (T2),
but O, (T~'). An explanation of this result is that while the function sin’(-) is an
even function in a neighborhood of zero, this is not the case around other values of
its argument, whence the presence of the term of order O, (T~!) in the expansion of
D around D # 0. Last, it could be proved, along the same lines as for Corollary 2,
that when using T®-consistent estimators 135 and ﬁ;, under the alternative H; : D > 0

it holds that D = D + O, (77°) and thus T%D % oo.

4 Bootstrap Approximation of Critical Values

In this section, we propose a bootstrap procedure to obtain critical values.
Since our model does not rule out the possibility of serial correlation in the
error terms, we employ a procedure which is similar to the sieve bootstrap approach

employed by Chang, Park and Song (2006) for cointegrating regressions.
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For the purposes of bootstrapping, we rewrite model (6)-(7) as follows

= V_Vt = @Zt + €. (31)

We propose the following bootstrap algorithm:

Step 1.(1.1)

(1.2)

Step 2.(2.1)

Estimate © in equation (31) consistently, via OLS if z;s are observable, or
via principal component if zs are unobservable. We obtain © = OO9LS and
6 = 6rc respectively. Project the estimator of b, b= <Z;OLS or b C) onto
the column space of the estimated I', I' = T'OL5 or I = I'PC respectively,

obtaining b = (BOLS or b C) defined as

Let ©OLS — [gommom/} ,and OFC — [BPC’fPC/]/.

Compute the residuals &, = W, — O9L5z or & = W, — OFY%;, where
p t t t t t t

A . . . ~ ~ !

Z; is the principal component estimator of z;. Define w; = [é}, Az}]" and
~ ~ yau

Wy = [et> Azt] :

Compute the statistics D as

Sieve estimation. For the case observable z;s, compute the sieve estimates

of the VAR

q
Wy = Z Wy + Nqt (32)

=1
where, following Chang, Park and Song (2006), the choice of ¢ can be done
via an information criterion such as AIC or BIC. Let ¥, and M, denote

the OLS estimates and residuals from equation (32), respectively.
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(2.2) Resampling. Draw (with replacement) 7" values from the centered resid-

uals 1 . -
= zﬁqt}
{ r t=1 t=1

to obtain {77;: }tT:r

(2.3) Construct recursively w; as

q
Ak T Ak *
Wy = E :\Dlwt—l+nqt>

=1
e oy N .
using initialization (@f, ..., w;_,) = (o, ..., W1—q)-

When z:s are unobservable, steps (2.1)-(2.3) can be applied to @w; to obtain

{ﬁ;t}il and wy.

Step 3.(3.1) Integrate the last k elements of w; or w; to obtain z; as

or
t
2y = 2o + Z ’lf};(z)
j=1
where @ ¥ and @;®) refer to the last k elements of @} and @} respectively.

(3.2) Generate W; as

Wy =99 1 ér, (33)

or

Wy =0z e (34)

(3.3) Estimate © from either equation (33) or (34) using OLS. Denote the

estimator as O*.
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(3.4) Compute the bootstrap counterpart of the test statistics, say ZAD*, using
o

The resampling scheme we propose is based on sieve estimation and follows the
same lines as in the approach of Chang, Park and Song (2006). Note that projecting
the estimates of b onto the column space of I' means that resampling is performed
under the null hypothesis. As it is illustrated below, this ensures the validity of the
bootstrap under the null and the alternative hypothesis.

Denote now the null limiting distribution of T2D as Zy and the bootstrap prob-
ability conditional on the sample as P*. The form of Z; is given by Theorems 3 and
4 for z;s observable and unobservable, respectively. To prove that the bootstrap pro-
cedure is valid, two conditions need to be satisfied. First, we need to show that both

under the null hypothesis Hy and under the local alternatives H!, the conditional

T
t=1’

distribution of T2D* given {Wt} consistently estimates the limiting distribution
of T2D, that is

P [T@* < v} P p{Zy <w},

for each v which is a continuity point of the distribution function of T2D. More
~ B

compactly, this statement will be referred to as T?D* 4 Zy. Second, under the al-

ternative hypothesis H; the bootstrap statistic T2D* must be bounded in probability,

or even possibly converge to Z.
Consider the following Assumption which we need to prove the bootstrap validity.
Assumption 3

(i) Let e, Az]]' = ®(L)n, where ® (L) = Y oo, ®, L. The sequence 7, is i.i.d.
with E (n,) = 0, E (n,n;) > 0, finite fourth moment and such that |® (2)| # 0

for all |z| <1 and 2, k| |®,;| < oo for some ¢ > 1;

(it) In equation (32), let ¢ — oo and q = o (T"?) as T — oc.
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Assumption 3(7) ensures that both central limit theorem and invariance principle
hold, and it is essentially the same as in Chang, Park and Song (2006). Assumption
3(ii) is required to ensure the consistency of the estimates ¥,. Assumption 3 is a
stronger version of Assumption 1(7), since it requires that ¢; be a stationary linear
process. This is needed in order to apply sieve bootstrap and to prove its validity

using the methods employed in Park (2002).

The following theorem asserts the validity of the bootstrap procedure.

Theorem 7 Under Assumptions 1-3, we have that, under the null hypothesis Hy,

the alternative hypothesis Hy and the local alternatives H!
2 3 48
T°D* % Z, (35)

where Zy is the null limit distribution which is Zy = ||b]| > Q' (1, — 1]~ (bb')] Q for
observable zs and Zy = ||b|| > Q" [, — 2 (bb')] QP° for unobservable zs.

Proof. See Appendix. m

Theorem 7 extends the sieve bootstrap algorithm proposed by Chang, Park and
Song (2006) to the case of principal component estimates. The validity of our boot-
strap procedure is ensured by equation (35), which shows that under the null and
the local alternatives the bootstrap consistently approximates the asymptotic distri-
bution of 72D and under the alternative the bootstrap statistic 72D* has the same
distribution as the null. This is a consequence of the resampling algorithm being
implemented under the null hypothesis.

It is worth noting that whilst the estimation technique employed to estimate
) necessarily differs (i.e. we use OLS when the zs are observable and principal
component when zs are not observable), the bootstrap estimator ©* is computed

via OLS irrespective of the method employed to derive o.
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5 Monte Carlo Results

In this section, we present an assessment, via a small Monte Carlo exercise, of the
power and size of the bootstrap testing procedure we propose.

The data generating process for the Monte Carlo exercise is described by equa-
tions (6) and (7) . We generate the k stochastic trends z; as random walks according
to Assumption 1. Let v, = [v, 5], we consider the following processes for v;: a
white noise process, an AR(1) model with autoregressive root equal to 0.75, an
MA(1) process with root equal to 0.75. These choices allow to check for robustness
and efficiency of our procedure under alternative error dynamics. Under the alterna-
tive hypothesis, we generate 7, using specification (28).We also consider alternative
size of T = {20, 35, 50,100,200} and of the number of trends k = {2,3,4,5}. The
number of Monte Carlo and bootstrap replications is 5000 and 1000, respectively.

The results are reported in Table 1.
[Insert Table 1 somewhere here]

The main finding is that the bootstrap test shows good size and power and its
performance is affected by the number of trends considered.

In particular, there is a strong impact of the number of factors k£ on the size
of the test. When the error term 7; has no dynamics, which is the baseline case,
the size decreases as k increases. This happens uniformly in 7', and the size tends,
asymptotically, to its nominal value. The test exhibits a good performance when
the error term is white noise even for small samples. When AR(1) and MA(1)
processes are present, the impact of k still leads to size decrease as the number of
stochastic trends increase. Note though that now the test is oversized for small
samples, especially when AR dynamics is present. This effect tends to be wiped out
asymptotically, when irrespective of the error dynamics and for the large k (4,5)
cases, there is a slight undersize tendency of the test.

The power too is affected by k. Though small sample performance seems to be
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very good, especially in the white noise case, irrespective of k, however, for all cases,
as k increases, the power slightly decreases. Nonetheless, asymptotically the power
approaches one irrespective of the error dynamics and of the number of stochastic

trends.

6 Conclusions

In nonstationary heterogeneous panels where each unit cointegrates, the aggregate
relationship in general does not cointegrate unless a large number of conditions is
satisfied. However, the aggregate equation may be observationally equivalent to a
cointegrating relationship even when the conditions for perfect aggregation are vio-
lated. How well the aggregate relationship approximates the properties of individual
components cannot be tested when only aggregate data are available. When data are
available at disaggregate level, as in the case of panels, one can test whether features
of micro relationships are preserved after aggregation.

This paper addresses the issue of micro versus macro cointegration by considering
nonstationary heterogenous panels with a fixed number of units and a large number
of time observations. Our results can be viewed as complementary to the analysis in
Phillips and Moon (1999) of the case when (n,7") — oco. No restrictions are placed
regarding the existence of the degree of contemporaneous correlation between units
and between regressors and error terms in the cointegration regressions.

We derive the test statistic D = sin® (b, Mb) for the null hypothesis of cointegra-
tion, building upon the formal conditions for cointegration valid at micro level to
hold after aggregation. The test is powerful against local alternatives and consistent.
We propose a valid bootstrap approximation and Monte Carlo evidence suggests that
the test exhibits good size and power properties.

The test under the null is of asymptotic order O, (T~2). This property has
important implications for empirical applications of the test procedure. For instance,

macro data may be available at monthly /quarterly frequency but micro data could

32



be available at lower frequency (e.g. census data). In that case, the T? convergence
might be an important asset given the short length of each micro series.

Our asymptotics has been derived for panels with fixed n. Thus, it is also em-
pirically relevant to see how our method performs in simulations in comparison with
the Phillips and Moon (1999) asymptotics.

A comprehensive set of empirical applications and an extensive simulation exer-

cise are beyond the scope of the present paper but are subject of separate studies.
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Appendix

Proof of Proposition 2. Assumption 2(7v) and the iid-ness of 3, and I'; entail
that a LLN holds and thus n=' 3" T, BT, n 'S0 8, B Band n™' Y0 T8, 2
I (B + c).

Consider the following Assumption:

Assumption 1*. Assumption 1 holds and

246

(iii) €; is a linear process with FE ||&| < M < oo for some § > 0 and some

constant M;

(iv) a Beveridge-Nelson decomposition holds for z; and v; such that z; = 27 + R,
and v, = v}, + Ry, where 2/ is a random walk with unit long run covariance
matrix, v, is an iid I (0) process whose long run variance is the same as that

of vy, and R,; and R,; are the remainders of the BN decomposition;

(v) {ui} and {v;} are independent across ¢ and it holds that Zthl 151> = O, (nT)

and 3.1, @2 = O, (nT) for @, = 31, us.
Consider 3; since U =T+ U+ >, (ﬂi — B)/ x;, and recalling the definition

of 7;, it holds that

b= B+

T T T T -1
r Z 2"+ T Z 20, + Z (UEAMES Z 1‘)@2] X
t=1 t=1 t=1 t=1
T n T B
t=1

i=1 t=1

Consider first the denominator of (36). Since I' = O, (n), Assumption 1(i) en-
sures that I'3." 22" = O, (n*T?). In order to find the order of magnitude of
r ZtT:l 205, we will use the joint limit theory developed in Kao, Trapani and Urga
(2008), based on showing that a CLT for martingale difference sequences (MDS)
holds for 3_/_, 2@ This involves proving that: (1) Y/, z, is an MDS and (2) a

Liapunov condition holds jointly as (n,T) — oo. Let &7 = T71 Zthl 20}, Then
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Er = Ep + Rip, where & = T-' Y00 2*0% and Ryp is the remainder in the BN
decomposition. Following similar arguments as in Phillips and Moon (1999), it can
be shown that Rir = O, (T‘l/Q); thus, TY " | Rir = O, (nﬁ) As far as the
order of magnitude of £}, is concerned, let C' be the o-field generated by the zs.
Then E [£;r| C] = 0 and, conditional on C, ¢ is an independent sequence due to
Assumption 1*(v). Define I; as the o-field generated by C' and by {QT};:ﬁ then
{&r, I;} is a martingale difference sequence since E [&7| I;—1] = E [ C] = 0. Also,

a Liapunov condition holds whereby E || €5, C[|*™ < oo for all i since

1 246
* 2490
El&CIIT™ = E

T2+6 C

T
ZZ:U;/
t=1
1 J
245 2+6
mrs 2 AT E il
t=1

1 T
245
MWZIIZE‘II -,
t=1

IA

IN

which is finite in light of Assumption 1*(4ii) and of Theorem 5.2 in Park and Phillips
(1999). Thus, an MDS CLT can be applied to show that n=1/23"" &5 = O, (1).

Recalling the definition of £ we finally have

T n T
r E 2, = T E E 2405,
=1

i=1 t=1

= 0,0 [0, (VAT) + 0, (nVT)| = O, (nv/aT) + O, (n*VT) .

Last, 3.1, %, = O, (nT) by Assumption 1*(v). Thus, as far as the denominator of

(36) is concerned, as (n,T) — oo

1 a.s.
T [ W, ().

Let us now consider the numerator of (36). We have Zthl Ty = I Zthl Zelly +

Z?zl Usti. Similar arguments as above entail I' Z; 2y = Op (ny/nT)+0, (nZ\/T > ;
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Assumption 1*(i7) and the Cauchy-Schwartz inequality ensures that Zthl Vylly =
O, (nT'). Note that we do not need to assume that u; and v; are uncorrelated. As

far as the term >0 S°T 74, (B; — B) is concerned, it holds that

n T n T n T
Z thx;t (52 - B) = FZ Zzt$;t (ﬁz - B) + Z Zﬁtw;t (ﬁz - B)
=1 t=1 i=1 t=1 =1 t=1
n T

= FZZZtZt 5 6 +Fzzztvlt ﬁ 5 +szt‘xzt

=1 t=1 =1 t=1 =1 t=1

= I+II+1III,

where the second passage follows from (4). Consider I:

T n T
I =T Z 242 Z rg,—r Z ERAN
t=1 i=1 t=1

= 0,0, (1%) 0, (n) = 0, (n*T?):

by assumption, we know that n='>""  T'p, 21 (B + c), and therefore as (n,T) —
00, (nT) > x I & T [W,W/Tc. Also, similar arguments as above would lead to

I =0, (nynT)+ O, <n2\/T> Last

97 1/2

n

Zx;t (ﬁz - B)

i=1

T 2 [ 7
1< (z W) 3
t=1 t=1

1/2
with (Ethl H27t|]2> =0, <\/nT> by Assumption 1*(v) and

n 2

> @i (8= B)

IN

T n 2
2 D i
t=1 i=1

T
=112
max [|5; — BI" Y
1<i<n
t=1

= 0,(1)0, (n*T),

so that IIT is bounded by O, (n\/nT). Thus, as far as the numerator is concerned
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we have, as (n,T) — oo

T
1 a.s.
s P r/wzwgr’c+op(1).
n

t=1

Combining this with the denominator, it holds that as (n,T") — oo

BB+ {P/WZWZT'] B [F/WZWZ’F’] c=B+e

Proof of Proposition 3. T-consistency of the PC estimator for nonstationary
panel factor models is proved in Lemma 3 in Bai (2004), where it is established
that loadings can be estimated consistently irrespective of whether n be fixed or
large. Lemma 3 in Bai (2004) holds here because the assumptions we make are
the same as Assumptions A-E in Bai (2004). Assumption 1(7) and the requirement
that E ||e,]|*™° < oo for some § > 0 correspond to Assumption A. Assumption 2 (i)
corresponds to Assumption B, and it implies that ||Z;|| < oo. The requirements
that E |uy|> < oo, E|Jvy]® < oo and ZtT:lEHeffe}ZH < oo for all (4,7,s) imply
Assumption C and E. Note that we do not need to assume any bounds on cross-
sectional correlations given that n is fixed and finite sums of finite summands are
finite. Having finite n simplifies the restrictions needed for cross-sectional and time

series dependence. Finally, Bai’s Assumption D is the same as Assumption 1(ii) in

this paper. m

Proof of Theorem 2. Let b and I' be T-consistent estimators of b and I' and
define
Ep = B - b,

Er:f—r;

by definition, and in light of Assumption 1(7), &, = O, (T~') and er = O, (T). For
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the sake of the notation, let also Mb = a and ¢, = @ — a. We have

€a = a—a= Mb— Mb
= (M+€M)(b+€b)—Mb

= €Mb+M€b—|—€M€b = Op (Tﬁl) .

This is because we have
R P IR
M=T1" (Pr’) I

and

T = (T4er)T+ep) =

= TIT'+Teh +erl” +erep.
Using Taylor’s approximation,
LT + Deh + epl” 4+ erep] = (TTY) " — (PT) ' (Tel + epl’ + epel) (PTY) ' + Ry,
where the remainder Ry is defined as Ry = o (||T'e 4+ erl” + erep|), we have

A~ —L A
I (FP’) P = Ttel [(FP’)*1 — () Y (Tep + epT” + epel) (OT) 2| [0+ ep)
= V@) "D+ () ep = IV(CT) ' Dl () 7' T = TV (DY) epl () ' T

+ep (TT) ' T+ 0, (T72) .
Let ey = IV (TTY) " ep4ef (TTY) ' =TV (TY) ' el (PTY) ' =T (ITY) ' ep IV (ITY) ' T =

O, (T‘l).
We have

sin? (&, 3) — sin® (a, b) = [cos (d, 3) + cos (a, b)} [cos (a,b) — cos (&, IS)] .
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Slutsky’s theorem implies that cos <€L, Z;) = cos (a,b) + 0, (1), and under the null we

have cos (a,b) = 1, so that

sin? (&, l;) —sin? (a,b) = [2+4 0, (1)] [COS (a,b) — cos (d’ B)]

a'b a'b
= 240, (1)] - -
T el el Hb ‘
lal ||p] @b) = all 101l (a'0)
= [2+0,(1)] - . (37)
[lall ol flall ||b
It holds that
i'b = (a+ea) (b+ep)
= db+de,+ Ve, + gy
Let now e o = [|il| — [lal| and ey = HbH — |Ib]|. We have
2a 2d'q + 4Ea +ele,
Ellal = llall = [lall -
el
Using Taylor’s expansion, we get
2a'e, + €le, 12d'e, +ele, 1 (2de,+cle, 2
I+———=14+;———c|——5— | + R,
lal 2 al 8 lal
with Ry = o (||2d’e, + egsaHQ) so that
e g (W) (17%) (38)
Ellal = - .
T all T 20all 2
Likewise,
Vey ehey  (Vey)? _
o) = AT 0, (T7). (39)

ol 20l 2 (o)
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Under the null, a = b and a’b = ||a|| ||b]| = ||a||*. Therefore we may write

lall |[o] ') = llall ol (a5)

= Jal* [lall o] - (a%)]

and

lal ] - (a8).
= (llall +&jay) (lall + ) — a'b - a’ep — a’ea — el

/

= |lall oy + llall oy + epayesy — @'ep — a'ca — 4es

by 4+ EbEh (a'ep)?  (d'ey) (Vep)
2 2 2
2 2|al 2 2|al lal

— % (0 — &) {Ik — } (€a — &) -

elea  (d 5a)2

—d'ey —a'e, — ey

= de, +

aa’

lal®

Finally, from equation (37) it holds that, since under the null a = b

lal {|o] @b) = flall 101l (a'0)

sin? (d, l;) —sin? (a,b) = [2+4 0, (1)]

ol 01 1l o
1 / bb, -3
= W(é‘a—(‘:b) |:Ik— W:| (ga_gb)—i_Op (T )
~ 0, (T*Q) ' (40)

Proof of Corollary 2. When 55 -b=0, (T*‘S) and f‘5 -I'=0, (T*‘S), it
also holds that &, = O, (T°) and &, = O, (I""°), and hence

2
ae, eleq (a'e,) 0, ( ,35) ’

Ella|| = + -
1= Tall ™ 21lall — 2alf
Elpl| = Ve, | e _ (e (%)
bll = T — .
ol 26l 2pe "
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Then equation (40) becomes

. 1 b
sin? (as,bs ) —sin? (a,b) = — (g4 — &)’ {Ik - —] (€a —€p) + O (T_S‘;)
( ) 1] ]| !
= 0,(T™).

Proof of Theorem 3. From equation (40) we know that under H, asymptoti-

cally the following results holds

2/\_L8 —€b/ k—b—b/ Ea — &b o .
D= e (b ) e+ .

Under Hy we know that aa’ = b, and from equations (18)-(19) we know that

T L/
& — b—b= (Z thli) (Z Ztgt) s
t=1 t

=1
T L/

er = I'-T'= (Z ztz£> <Z ztvg) :
=1

t=1

Further, we know that ¢, = eyb+ Mey, with M= M+ eyandey =1V (FF’)_l er+
e (CT) ' — I (CT) ' Dep (TT) 7' T — TV (DY) ' epl” (ITY) ' T

From Assumption 1 we know that

-1

Te, % ( / WZWZ’) / W.dWs,
-1

Ter > < / WZWZ’) / W.dW!.

Proof of Theorem 4. Using (41) and recalling the definitions of ¢,, ), and
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ep, from equation (22) we have

so that

Tey % F iy,

TEF i iFF/H.

Proof of Proposition 4. The limiting distribution of O can be computed
recalling that ©FC = F/EPC and evaluating the limiting distribution of ZF¢. Let 2,
be the principal component estimator for z; based upon =ZPC. Then we know (see

e.g. the proof of Lemma 3 in Bai, 2004) that T <§P C - E) can be decomposed as

In the denominator of (42), we can rewrite
T T T T T
Z ZA’tﬁz = Z ZtZQ + Z (ﬁt — Zt) 22 + Z ét (ZA’t — Zt)/ + Z (275 — Zt) (ZA't — Zt)/
t=1 t=1 t=1 t=1 t=1

= I+1I+1IT+1V.

‘We know that
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from Lemma B.4(ii) in Bai (2004)
I =1II=0,(T)
and from Lemma B.1 in Bai (2004)
IV =0, (T),

Therefore the denominator of (42) is

and thus

As far as the numerator (42) is concerned, let

T T

T

1 W _t =

T e 2+ e zt—zt "+ = zt—zt
t=1

t=1 t=1

=A+B+C.

We have that A — f dW.W!. To study the the limiting distribution of B and
C, consider the following decomposition as proposed in Bai (2004, p. 164) for the

definition of Z;:
T

T T T
ét — &t = T_2 Z 28’771 (87 t) + T_2 Z ZSCst + T_2 Z gsnst + T_2 Z 2s§st7
s=1 s=1 s=1

s=1
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where

¥, (8,1) = E(et eW/n)

Cst = eF/I€W/n — Tn (37 t)

nst = z_e};v/n
€u = =) /n.

Then we have

Then

and

T T
3226 2y (5, )+ T2 ) el Z’Cst+T3ZZe 2y +

s=1 t=1 s=1 t=1 s=1 t=1
T T
-3 E : W~
T et Zs'fst?
1

s=1 t=1
T T T T
w W/ Wzt 3 W 1 -3 W =t
e e ey Zg+ T E E e ZNe + T E E e 2
s=1

—1T 3 §
=1 t=1 s=1 t=1

s=1

t=
I+11+111

T
[=n"'T! <T1 > etWetW'> (Tl > e§V2;> =0, (T™);
t=1

s=1

II = n'7- 322 Wz /H/ez/v

s=1 t=1

= _IT_?’E E el el 22,2

s=1 t=1

T T
= n! (Tl Zerer’> = <T2 Zzszg) =0, (1);
t=1

s=1
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I = n'T" 3ZZet # eV

s=1 t=1

T
_ —17—3 W =1 W =t
= n T E g e Le, Z

s=1 t=1

T
= poiT! (T IZet zt> = (T 1265"2;) =0, (T™).

s=1

Therefore the only term that matters is /1 and thus

-1 (T_l Zefvefv')
¢

where the distribution limit 72 Zstl 252, -, B follows from the same argument as

[1]

T
<T—2 > zz’) 4 01028,

s=1

in the proof of the denominator.

Finally, as far as the term C' of the numerator is concerned we have

T T T T
C = -T- 322282}’% (s, t) =T~ SZZ@QKQ—T*’ZZ 252y

s=1 t=1 s=1 t=1 s=1 t=1

T T
-3 = 2!
=T E E :Zsztgst
s=1 t=1

= I+I1T+1IT+1V.

From Lemma B.4 in Bai (2004) we have that

1=0,(17)

IT=0,(T™").
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As far as terms 1] and IV are concerned, we have that

T T
T = n'T3Y ) 5425

s=1 t=1

T T
= n_lT_SE g z 2= el 3]

s=1 t=1

:n_1<T_2zT: z) ( Zethg)z (1),

s=1

and

T T
IV = n7i773 3,822 eV
t~t

s=1 t=1

T T
= n’lT’SE E Z,eV' 223

s=1 t=1

T T
-1 (T‘l > zew> = (T—l > mg) =0,(1).
s=1 t=1

Thus, the limiting distribution of C' is determined by /1 and IV, and we have

T
11 = nt (TQZzSz;) = ( Zet zt>
s=1
T
nt (T_2 Z z32;> =T Z el (3 — Zt)/]
s=1 t=1

4 n1BE { / AW, W! + n-lgezB] :

and

v 4 pt { / W.dW! + n‘lBE’Qe} EB.
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Combining the results above, the distribution (42) is

T (EPC - E) 4, { / AW, W' +n"'Q.EB — n"'BZ/ ( / AW, W, + n_lﬁeEB)
—n! ( / W.dW! + nlBE’Qe) EB} B!
_ < / dWeWZ’) B+ 10,2 — n !B / AW, W' B!

—n2BE'Q.E —n! / W.dW'E — n ?BE'Q,Z.

Proof of Theorem 5. Let by = I'3. Under H!,
16l = [lbol| + Ry = |lal| + R,

where

_ Lopor 9
for =5y ~ )

which follows from applying Taylor’s expansion to [|b]| and that §7.[' = 0.

Moreover
!

Orme
T<b I
Elpll = o + 7 — Brbe,

[1bo|
which follows from
Vey ey (Vey)? _3
€ = — - T ’
lleo]l ] 20l 2||b||3 P ( )

and application of Taylor’s expansion to ||b]| .
Also, from &, = 0 it follows a’b = a’by = ||a||>. We know from equation (37)

that
lal {|o] @b) = flall 11 (a'0)
Jal {|2] el 1

sin? (d, B) = sin® (a,b) + [2 + 0, (1)]

with [l ||o] lall 18] = llal* + o, (1).
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As far as sin? (a, b) is concerned, we have

b
sin? (a,b) = 1-— a
ol T
P
ol (lall + )
Rr 5
— =0 (T . 43
ol (ol + 7y~ 2T (43)

Consider the numerator ||al| HB” (a'b) — ||a|| ||b]] (&’3), we have

lall + epay] [I10l] + pey] (@'D) — llall |b]| [a'b + ey + bea + )
= [llall + ejay] [llall + Rr + eppoy + ool ™" 6pep — Rrb'es] [lal|* —

lall [lla|l + Rr] [@'b + d'ey + byea + dpeq + £l68)]

= M Ea — &b ! k— ad’ Eaq —&p) —
e R Gl il R
la||? 0% (g4 — €8) + O, (T7?). (44)

Combining equations (43) and (44), we finally have

/

A R 1 aa
sin? (&, b) = a + (6a — ) [Ik — —] (€a — &)
lall (lall + Rz) * |jal? al|?

2 )
—W(;T (ga - 55) + Op (T 3) .

Thus, the limiting distribution of D = sin?(a, ) is

~ a0 1 ! 2
a

2 2 2
lall™ ol lall

Proof of Theorem 6. We prove the Theorem, merely for the sake of the
notation and with no loss of generality, by considering alternative hypotheses H; of

the form

leb:F'5+5,
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where the k-dimensional vector ¢ is, as in the local alternative case, orthogonal to

[, ie T =0. Let by = I"8 and k = ||0]| / ||a||. From condition 6'T" = 0, under Hj,

a = by and

1611 = 1boll VIT R = [laf| VIT 22,

Therefore, it holds that

D = sin®(a,b)

()
lall [[ol

]{?2

We know that

D = sin (& 3)
= sin®(a,b) + [COS <CAL,ZA)) + cos (a, b)] [cos (a,b) — cos (& ]

. o [ ) ol o (#5)
= Toge T [2eos(ab) 40, (1)] ] ‘ ‘ lall o]

From equation (45) it follows that

1
V1+E2

lal ||p] @b) = fall 1] (a'0)
Jal {|o] el 10

is concerned, we have, with respect to the denominator and after Slutsky’s theorem

cos (a,b) =

(46)

As far as the term

|| llall ]

lall® [[BI* + 0, (1)

lall* (14 &) + o0, (1). (47)
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As far as the numerator is concerned, we have

[lall + eyay] [I10l] + goy] (a'd) — llall |b]] [a'b + a’e, + Veq + €,e]
= [Ilboll + €pay] [HbOH V1+k+ €an] 1bol* —
HbOH2 V14 k2 [HbgH2 + byep + byea + 0'eq + 5;51,]

= lbol)? [||b0\| VI + k2ea) + |1boll epo) — VI + k28, (Bhey + byea + 6'20) + O, (T*2)} .

Recalling the definitions of €|, and | given in equations (38) and (39) respectively,

we have
1 5
ool Km -Vi+ k:?) boes + \/1%2 —Vi+ k2(5’5a} +0, (T7?)
= 0,(T).

Combining this with equations (45), (46) and (47), we obtain

D= K + 2 D LR —k—Qb'a + 0, (T7?)
TR b L \1 A2 ) 1Rz T ’

where

2 / b k? / -1
) — €4 | ———=b =0, (T ).
HbUH2 |: (1 n kQ € ) 1 + k)Z 05b:| p( )

Proof of Theorem 7. To prove the theorem, consider the following pre-
liminary result which states the distributional equivalence between the quantities
T <@OLS — @) and T (@PC — @) with their bootstrap counterpart 7' (@* — (:)OLS>
and T <®* —er C) respectively.

Lemma A.1 Consider the estimators ©°FS and ©FC of © and their linear
transformations ©°L° and ©FC defined in Step (1.1) of the bootstrap algorithm. Let
©* be the bootstrap estimator for O°LS and OFC, and define the limiting distribution

of T <@OLS — @) and T <(;)Pc — @) as Z§¥5 and ZEC respectively. Then it holds
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* Ol d Ol

and

T (6" - 60) 4 750,

Proof. We distinguish the case of z;s observable from that in which the z;s are
unobservable.

The case of zs observable. The proof is based on the three following steps: (1)
we derive a strong approximation for the limiting distribution of the partial sums of
the process 7,; (2) we derive the strong approximation for the bootstrap counterpart
N5 (3) we extend these results to the limiting distribution of processes w; and ;.

(1) Define S, (r) = T-1/2 1] Ny Assumption 3(i) ensures that an invariance
principle holds such that S, (7) 4w (r), where W (r) is a Brownian motion. Fol-
lowing Sakhanenko’s (1980) and Park (2002), for some [ > 2 and for any 6 > 0, the

following strong approximation holds

P{ s 1,00 - w | = o} <7 m (B},

0<r<1

where K is an absolute constant depending only on (.

(2) Define S; (r) = T1/2 S 15 Similarly:

P{ sup ‘S:; (r) =W (r)| > 5} < T*2K, {E|77;t‘l}.

0<r<1

Thus, from our resampling scheme

!
E

1 T
7A7qt - T Z ﬁqt
t=1

Il
:TZ
t=1

*
nqt

l
< Q0.

Assumption 3(i) and the law of large numbers ensure that F |n},
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Hence, as T' — o0

P{ sup | Sy (r) — W (r)] za}:o

0<r<1

This proves the strong approximation is valid for the bootstrap 7y,.

(3) Following Chang, Park and Song (2006), the bootstrap invariance principle
for ny, carries over to w; provided that the U, are consistent estimators for ¥y
Assumption 3(ii) ensures that U, is a consistent estimator for U,. See also Chang

and Park (2002, 2003).

T (éOLS - @) 4, (/ dwag) (/ WZW,;) 71,

where By, is the Brownian motion associated with the partial sums of ;.

It holds

Thus, it holds:

T (@* - (Z)OLS> 4 </ dwag) (/ WZWZ’> -

The use of the continuous mapping theorem leads to equation (35), under the null,
for the case when z; is observed.

The case of z s unobservable. Though this part of the proof is similar to the case
where z; is observable, however in this case the error term w; also contains the extra
component O (z; — Z;), which leads to different asymptotics. It is natural in this case
to derive the proof directly for w;.

From (34), we know that
Wy =0z +é.
Since in this case the bootstrap estimator ©* is given by

0" =

T -1
ok k!
Zt Zt )
t=1

T

A7 x/
g Wiz
t=1
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we have
) T T -1
0F —6r¢ = [Z é:z;'] [Z z;z;’] : (48)

(1) Define Xr (r) = T~1/2 Zg? wy and X (r) the corresponding limiting distrib-
ution as T' — oo, i.e. Xr (1) NS (7). Markov inequality ensures that, for any § > 0

and some [ > 2

P{ s (1) = X 0] > 5 <578 | sup X0 0) - X (0]

0<r<1 0<r<1

From martingale theory, we have

E { sup | Xr (1) — X (T)V} <l {E \T*l%t}l} _ i1/ {E |wt|l} ,

0<r<1

where ¢; is an absolute constant. Thus,

P{ sup |Xr(r) — X (r)] > 6} < 5l {E |1Dt\l}.

0<r<1

This result provides an assessment of the rate of convergence of X to its limiting
distribution X and mimics the strong approximation result in Sakhanenko (1980)
used by Park (2002).

(2) In the same fashion, define X7 (r) = T-2 """} % we can write a similar

result as above

P{ sup | X7 (r) — X (r)| > (5} < 57TtV ]u?;f\l,

0<r<1

and from our resampling scheme we have

T l

E\w;‘l—%z

t=1

1 T
wt—?;wt

Give that @} = [, A2"]', in order to prove that E |@f|' is finite we need to show
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that both F |éf|" and E |A%f|' are finite. Assumption 3(i) ensures that & has finite

4th moment, and therefore

l
et—%Zet

t=1

1 T

~x |1 § :
E|€t :T

t=1

is finite.
As far as E|Azf|' is concerned, let us consider the quantity 7-'3 [ |A%[,
where A% = A2, —T7! Zthl A%, and let Az, = Az, —T71 Zthl Az;. Thus we have

that
1 T
ElAz] = 2 |A%[ =
1 T
— TZ|A@+(A@—A@)|Z

T T
1 1
TZ|A@|Z+TZ|A@—A@|’. (49)

t=1 t=1

IN

We have that the first term in the inequality above, T-' 3.1 |Az[", is finite from
Assumption 3(i). As far as the second term, T-* 3.7 |Az, — Az is concerned, we

have
T T
Az =Dz = T2 AZAel"AetV +T72)  AZAe'EAz
s=1 s=1

T
+T72) " AZAZEAe),

s=1

o7



and

T T T T
%Z T3 AZAMAY| = TS AZA|| TS Ak
t=1 s=1 s=1 =
= 0(T7?%),
1 I T ! T ! T
TZ T AZAYEAz| = T AZAL| T EAz
t=1 s=1 s=1 =
= 0 (177,

l I T
Ty At
t=1

= 0(T7?). (50)

T T
T! E AZLAZZENe) T g AZLAZL
s=1 s=1

Therefore, we have that E |AZ;|" is finite.
From (49) and (50), the vector E || is finite.

As T — oo,
P{ sup | X7 (r) — X (r)] >5}:0. (51)

0<r<1
This result jointly with continuous mapping theorem prove that numerator in (48)
s T2 5 [ W
As far as the numerator in (48) is concerned, we have
T T
e

PICEAE é;z;’+Z@ P E) A+ ol (1) (52)

t=1 t=1

Expression (51) ensures a strong approximation result holds for the partial sums of
Zf, zf — Z; and €;.
Therefore, continuous mapping theorem and consistency of the Us ensured by

Assumption 3(ii), lead to

T
T 12@ F—Z)Z ' ' BE {/dWeWZ/—i—n—lQeEB

t=1

+n / W.dW! +n"'BE'Q ] =B (53)
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which is the same result as for 7' Y1, O (2, — %) 2.

Combining the results from equations (52) and (53), we obtain

(e -6") %
F’ [/ AW W! +n"'Q.ZB — n~ ' BZ’ (/ dW. W, + n‘lQeEB)

—nt ( / W.dW! + n‘lBE’Qe> EB} B,

which is the same as the distribution of 7' (@P C_ @) provided in Theorem 4. There-
fore, we have that T’ <@* — (:)PC> and T’ (épc — @) are equal in distribution. QED.

Lemma A.1 ensures the distributional equivalence between ©°LS and ©FC with
their bootstrap counterpart ©*. Therefore, after the continuous mapping theorem,

letting

we have

if the z;s are observable and

Ter % 10 F i,
x« d .

if the z;s are unobservable, where F and IT are defined in equation (23) and Theorem
4 respectively.

We can now prove equation (35) by analysing the asymptotic behaviour of D~.
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‘We have

D* = sin®(a*,b*)
ol 11 (a'8) — lall || (2"
o 1] ) [2]

= sin? (&, 5) + [cos (a*,b*) + cos <ZL, 5)]
Since a* and b* are superconsistent estimators, by Slutsky’s theorem we have
cos (a*,b*) = cos (ZL, l~7> +0,(1),

and by definition of b we have

Therefore
2 ||a*|| [|b*]| — a*'b*

114 :
bH +0, (1)

b

D" = 240, (1)

Since

la[H16*]] — a™b"

= (lall + 5|*|au) (lall + €>ﬁb”) —a'b—a'e; —a'el —elep

*/ %

= [lall efay + l1all €fe) + Efayeiy) — @'ey — ez — ed'es

1 * * aa’ * * -
- e b -0, ().

we have that

PN +0,00).
|7

25* _ 1
t

2 (ea — 52)/ Iy —

Lemma A.1 and the continuous mapping theorem ensure that equation (35) holds.

Note that since resampling was done under the null via the use of b, equation (35)
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is valid not only under the null but also under the alternative hypothesis H; (and

under the local alternatives H!). m
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