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Abstract

We study the optimal intervention of a planner who seeks to maximize the diffu-
sion of an action in a circular network where agents imitate successful past behavior
of their neighbors. We find that the optimal targeting strategy depends on two pa-
rameters: (i) the likelihood of the action being more successful than its alternative
and (ii) and planner’s patience. More specifically, when planner’s preferred action
has high probability of being more successful than its alternative, then the optimal
strategy for an infinitely patient planner is to concentrate all the targeted agents in
one connected group; whereas when this probability is low it is optimal to spread
them uniformly around the network. Interestingly, for a very impatient planner,
the optimal targeting strategy is exactly the opposite. Our results highlight the
importance of knowing a society’s exact network structure for the efficient design of
targeting strategies, especially in settings where the agents are positionally similar.
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1. Introduction

1.1. Motivation

The importance of social interactions for the diffusion of innovations, ideas and
behavior are topics that have attracted a lot of research interest (see Jackson, 2008).
Recent technological advances have made possible the collection and analysis of
data related to the structure of relationships inside societies, as well as the rules
guiding the behavior of their members. The appropriate usage of this information
can provide useful tools for the effective diffusion of products, technologies and ideas
in societies.

In this paper, we describe the optimal intervention of an interested party (from
now on called planner) who seeks to maximize the diffusion of a given action in
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a society where the agents imitate successful past behavior of their neighbors. In
practice, the planner can be either a firm who seeks to spread its product in a new
market, or a social planner who seeks to promote the use of a new technology, or even
a political party that seeks to propagate its ideology. We illustrate how beneficial
the knowledge about society’s network structure may be for the efficient design of
marketing and social influence strategies.1

There are several reasons why economic agents adopt simple behavioral rules,
such as the imitation of successful past behavior. For example, they often need to
make decisions without knowing the potential gains or losses of their possible choices.
Additionally, when these situations arise with high frequency and the agents’ com-
putational capabilities are limited, then they tend to rely on information received by
past experience of others, rather than experimenting themselves.2 These arguments
are also supported by a recent, but growing, empirical and experimental literature
which provides strong evidence about the fact that in several decision problems the
agents, indeed, tend to imitate those who have been particularly successful (see
Apesteguia et al., 2007, Conley and Udry, 2010, Bigoni and Fort, 2013).

Most of the existing literature on targeting in networks has focused on the im-
portance of those agents who exhibit some kind of centrality (see Ballester et al.,
2006). Having a high or a low number of connections (see Galeotti and Goyal,
2009, Chatterjee and Dutta, 2011), or diffusing information to many others who are
poorly connected (see Galeotti et al., 2011) are some usual characteristics of influ-
ential agents. The importance of these characteristics is obvious and beyond doubt.
Nevertheless, we show that there is another important factor that affects diffusion
significantly. This is whether the targeted agents are concentrated all together, in
the sense that they are connected between them, or they are spread around the
network. Notice that, in order to use this additional tool, one should have informa-
tion about the exact structure of the network. Each one of these strategies may be
optimal depending on certain parameters, with the most important of them being
the patience of the planner.

Throughout our analysis we highlight the differences between the optimal target-
ing strategies of an infinitely patient planner, i.e. one who cares about the diffusion
of her preferred action in the long run, and an impatient planner, i.e. one who cares
about the diffusion of her preferred action in the short run. To our knowledge, this
is the first paper that determines both short and long run optimal targeting strate-
gies and provides a clear comparison between them. Interestingly enough, we find
a sharp contrast between the optimal targeting strategies in the two cases, which
persists for all values of the other parameters. This comparison is important in
several realistic scenarios, since different targeting strategies may be appropriate for
different time horizons.

1In broader terms, the importance of social networks in efficient marketing design has been
studied extensively and in several different disciplines. For an extensive list see Galeotti and Goyal
(2009) and references therein.

2These are some of the reasons why imitation has been subject to extensive theoretical study
in different environments (see Ellison and Fudenberg, 1993, 1995, Vega-Redondo, 1997, Eshel et
al., 1998, Schlag, 1998, Alós-Ferrer and Weidenholzer, 2008, Duersch et al., 2012).
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1.2. Results

Formally, we consider a finite population of behaviorally homogeneous agents
located around a circle. In each period, all agents choose simultaneously between
two alternative actions. The stage payoff that each action yields is uncertain and
depends on a random shock, which is common for all the agents who have chosen
the same action in that period.3 Shocks are independent across actions and across
periods. There are no strategic interactions between agents. After making their
decisions, all agent observe the chosen actions and the realized payoffs of their two
immediate neighbors. Subsequently, they update their choice myopically, imitating
the action that yielded the highest payoff within their neighborhood in the preceding
period. Notice that, an agent who does not observe any of her neighbors choosing
the alternative action never changes her choice.

A problem that fits well our model is that of the diffusion of agricultural tech-
nologies.4 Farmers’ harvests depends mostly on common factors such as the weather
and the fertility of the land. Moreover, it is normal to assume that they are aware
of the technologies and crops used by their neighbors, as well as the payoffs they
receive. In particular, Conley and Udry (2010) show that farmers tend to imitate
those who have been very successful in the past, whereas as pointed out by Elli-
son and Fudenberg (1993) the farmers’s technology decisions are guided mostly by
short–term considerations, especially when capital markets are poorly developed or
malfunctioning.

The planner is interested in maximizing the diffusion of her preferred action in
the population. The planner can be either infinitely patient, therefore interested in
the diffusion of the action in the long run; or impatient, therefore interested in the
diffusion of the action after just one period. She is assumed to know the structure
of the network, as well as how agents behave and she can intervene in society by
enforcing a change at the initial choice of a subset of the population. Ideally, she
would like to target the whole population, but doing so in reality would be extremely
costly. Hence, our goal is to identify the planner’s optimal targeting strategy given
the number of agents she is able to target.

Observe that none of the agents exhibits any kind of centrality. In fact, none
of them has any positional advantage or disadvantage compared to the rest of the
population. Despite this fact, we find that expected diffusion changes substantially
depending on the subset of the population that has been initially targeted by the
planner. This highlights the significance for the planner of knowing the exact struc-
ture of the network.

We show that the optimal targeting strategy depends on two parameters: (i) the
likelihood of the planner’s preferred action being more successful than its alternative
and (ii) and planner’s patience. In fact, we observe a sharp contrast between the
optimal strategies of an infinitely patient planner and that of a very impatient one.
More specifically, when planner’s preferred action has high probability of being more
successful than its alternative, then the optimal targeting strategy for an infinitely

3This assumption facilitates the tractability of results and does not seem to affect the main
insights

4see also Ellison and Fudenberg (1993)
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patient planner is to concentrate all the targeted agents in one connected group;5

whereas when this probability is low it is optimal to spread them uniformly around
the network. Interestingly, for a very impatient planner, the optimal targeting strat-
egy is exactly the opposite.

The intuition is relatively simple and depends on the fact that in the long run
only one of the two actions survives. Therefore, when the action is likely to be
successful, then an infinitely patient planner wants to prevent its disappearance due
to a few consecutive negative shocks in the first periods. For this reason she prefers
to concentrate them all together. To the contrary, if the action is unlikely to be
successful, then the optimal strategy for the planner is to try and take advantage of
a possible sequence of successful shocks during the first period. By concentrating all
the agents together, she would only manage to make her preferred action disappear
more slowly, since for its diffusion it would be needed a large number of consecutive
successful shocks, which is rather unlikely to happen.

For the impatient planner the arguments are reversed. When the action is likely
to be successful, then the planner wants to make it visible to as many agents as
possible, therefore she should spread the initial adopters around the society. On the
other hand, if the action is more likely to be unsuccessful, then the planner wants
to prevent as many of the initial adopters as possible from observing the alternative
action, therefore she should concentrate them all together.

Finally, we extend our analysis in many different directions. We discuss the
optimal strategies of planners with intermediate levels of patience, thus intending
to identify how the transition between the two extreme cases occurs. Moreover, we
quantify the practical meaning of infinite patience by characterizing the expected
waiting time before convergence occurs. We observe that, for those cases in which the
planner’s optimal strategy is to concentrate all the initial adopters in one group the
process is slowed down substantially. In addition to this, we discuss what happens if
we allow for inertia and we show that our results remain unchanged. This extension
captures many realistic features, as the existence of switching costs and some forms
of conformity. Finally, we repeat our analysis for the linear and the star network,
as an attempt to identify the effect of centrality to our results.

1.3. Related Literature

The role of influential agents on social networks has been studied in different dis-
ciplines, such as computer science (see Kempe et al., 2003, Richardson and Domin-
gos, 2002) and marketing (see Kirby and Marsden, 2006), as well as in economics.
Intuitively, a crucial feature is the centrality of the agents, which depicts either
the number of immediate neighbors they have or how important they are for the
connectivity of the network (see Ballester et al., 2006).

Other environments similar to ours have been studied in physics, mathematics
and computer science, especially in the areas of cellular automata and voter models.
The most similar paper to ours is Bagnoli et al. (2001), where they study the long-
run behavior and the phase transition of a system with similar characteristics as
ours. A crucial difference of our work is that they assume the initial conditions to
be random, given that they refer to initial positions of particles. Hence, they do

5In the circle network, a connected group is a segment of the circle.
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not focus on identifying which of these initial conditions would be the optimal ones,
which is the main focus of the present work.

In economics literature, the paper which is the most closely related to voter
models is by Ortuño (1993). The author considers a standeard voter model setting,
where the agents are located in a two dimensional infinite lattice and they proba-
bilistically adopt the choice made by one of their neighbors. This is the only paper
where centrality does not play a role. The agents are homogeneous in preferences
and location and there exists a planner who seeks the diffusion of a technology in
the society and can choose between targeting a single connected segment of agents,
or spread them in the population uniformly. The author concludes that these two
choices lead to the same probability of diffusion. The result is guided mainly by
the infinite size of the lattice. In our paper, the population is finite and we do not
restrict the potential choices of the planner. This features allow us to obtain more
general results. More recently, Yildiz et al. (2011) generalize the standard voter
model by introducing “stubborn” agents, i.e. who never change their choice. Simi-
larly to us, the authors also discuss the problem of optimal placement of stubborn
agents, when trying to maximize their impact on the long run expected choices of
agents.

Our paper is more closely related to Galeotti and Goyal (2009). Their research
question is similar, however they focus on ”word-of-mouth” communication and on
social conformism, which are mechanisms that disregard the performance of a prod-
uct. They look for the optimal influence strategy of a firm who seeks to maximize
the diffusion of its product in a society. Apart from focusing on different learning
mechanisms, there are two more main differences with our work. First, they focus
completely on the short run optimal targeting strategy, using a two–period model.
Second, in their case the network is represented as a degree distribution, hence each
agent meets a fixed number of agents every period, but those are randomly drawn
by a population mass. This approach disregards potential information about the
exact structure of the network, which we show to be important for the planner.
Moreover, there remains another open question, which is what would happen if the
degree distribution tends to become uniform and furthermore whether we could do
better by knowing the exact formation of the network. Both of these questions can
be tackled in our environment with promising results. They show that, depending
on the learning mechanism, agents with low or high number of connections should
be targeted, underlining again the important role of centrality.

In a recent paper, Galeotti et al. (2011) show that, in a setting where information
transmission is strategic (in contrast to what happens here), influential agents are
those who diffuse information to many others, who themselves are poorly connected.
Another closely related paper is the one by Chatterjee and Dutta (2011). They study
the optimal behavior of a firm that seeks to diffuse a technology in a society with
network structure, focusing mostly on the linear and the circular network. The
fact that part of the population consists of perfectly rational agents and that the
structure of the network is common knowledge changes significantly the dynamics
of the system. Also, the firm is allowed to target only a single agent. They find
that a firm which produces a good quality product will want to place target a node
that maximizes the decay centrality, whereas a firm producing a bad quality product
will want to target the agent with the highest number of connections. There is an
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apparent analogy between these results and our, in the sense that in both cases the
optimal choice depends on the quality of the technology, which in our case could be
approximated loosely by the value of p.

Regarding agents’ behavior, we focus on imitation of successful past behavior.
Recently, there is a growing empirical literature (see Apesteguia et al., 2007, Conley
and Udry, 2010, Bigoni and Fort, 2013) that provides empirical evidence on the
adoption of this behavior in real environments. In theoretical framework, Vega-
Redondo (1997) has shown that a Cournot economy, where the agents follow this
rule, converges to the Walrasian equilibrium. Moreover, Alós-Ferrer and Weiden-
holzer (2008), Eshel et al. (1998) and Fosco and Mengel (2011) study coordination
games and public good games respectively, played between neighbors, where the
agents imitate their most successful neighbor. Their focus is mostly on the charac-
terization of stochastically stable configurations.

In a general framework, the current analysis builds upon the work on learning
from neighbors (see Banerjee, 1992, Banerjee and Fudenberg, 2004, Bala and Goyal,
1998, Chatterjee and Xu, 2004, Ellison and Fudenberg, 1993, 1995, Gale and Kariv,
2003). These articles study different learning mechanisms in environments where
the agents face common individual problems and there are no strategic interactions.
They mainly discuss conditions under which efficient actions spread to the whole
population. Especially, Ellison and Fudenberg (1993) use an environment very sim-
ilar to ours, in the sense that the agents repeatedly choose between two alternative
technologies whose payoff depends on a random shock, which is common for all the
agents who use the same technology. Apart from those similarities in the setting,
there are several differences regarding the role of the network and other details of
the model, but the main difference is that their focus is not on the characterization
of the optimal intervention in favor of one of the two technologies.

The rest of the paper is organized as follows. In section 2 we define formally
the model. Section 3 contains the characterization of the optimal targeting strategy
for the impatient planner, whereas in Section 4 we analyze the optimal targeting
strategy for the infinitely patient planner. In Section 5 we discuss briefly some
extensions and in Section 6 we conclude. An extensive study of the extensions can
be found in Appendix A. All proofs can be found in Appendix B.

2. The Model

2.1. The Agents

There is a finite set of agents N = {1, ..., n}, mentioned as population of the
network. At τ = 1, 2, ..., each agent i ∈ N chooses between two alternative actions,
aτi ∈ {A,B}. Each action yields random payoff. The payoff of agent i is independent
of the other agents’ choices. Therefore, interactions among agents are not strategic
and their connections represent only informational exchange. Moreover, agents who
choose the same action at a given period receive equal payoffs.6 The payoffs of
both actions change in each period, with the realizations being independent across
periods. Action B yields strictly higher payoff than action A with probability p ∈

6This assumption does not affect the main intuitions and is imposed mainly in order to facilitate
the tractability of the results.
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(0, 1), while action A yields strictly higher payoff than B with probability q. For the
derivation of the main results, we focus on the case where q = 1 − p. Notice that,
for q = 1− p, the probability of both actions yielding exactly equal payoffs is zero,
which is assumed only in order to avoid unnecessary tie-breaks and does not affect
the results. In the section of extensions we relax this assumption and we allow for
different values of q.7 The ratio between p and q turns out to be crucial for our
analysis, therefore, we define r = p

q
. From now on, we will say that there is a success

(failure) in period τ if action B (A) yielded higher payoff in this period. 8

The planner is an agent, outside of the population, who seeks to maximize the
diffusion of action B in the population. She can do so by changing to her favor
the choice of a subset of the population before the beginning of the first period.
Optimally, she would like to affect the whole population, but in reality this would
be extremely costly. This cost enters implicitly by assuming that the cardinality
of the subset she can affect is fixed exogenously.9 More specifically, given that at
period τ = 0 all the agents are choosing action A, the planner can target t ≤ n
agents from the population and make them choose B at period τ = 1. After that,
she cannot affect the society anymore. The goal of this paper is to characterize the
planner’s optimal targeting strategy.

The planner can be either impatient or infinitely patient. A planner is called
impatient if she cares about the diffusion of her preferred action after only one
period. Similarly, a planner is called infinitely patient if she cares only about the
diffusion of her preferred action in the long–run. We find that the optimal behavior
of an impatient planner is exactly the opposite than that of an infinitely patient
planner. In the section of Extensions, we discuss as well some intermediate levels of
planner’s patience.

2.2. The Network

A social network is represented by a family of sets N := {Ni ⊆ N | i = 1, ..., n},
with Ni, called i’s neighborhood, denoting the set of agents observed by agent i. We
assume Ni to contain i as well. In the main part of our analysis, we examine the
circular network, where each agent interacts with her two immediate neighbors, i.e.
Ni = {i−1, i, i+1} for i = 2, . . . , n−1, whereas N1 = {n, 1, 2} and Nn = {n−1, n, 1}.
The current structure imposes an undirected network, because for all i, j ∈ N , j ∈ Ni

if and only if i ∈ Nj. In this setting, the network structure describes the flow of
information in the network, in the sense that each agent i ∈ N can observe the
action and the realized payoff of her neighbors, j ∈ Ni.

2.3. The Behavior

At the end of each period, the agents observe the actions and realized payoffs
of their neighbors. Subsequently, they have the opportunity to revise their choices.

7Different values of q allow us to introduce introduce the possibility of inertia. Later on, we use
this feature to capture scenarios where either the two actions may have the same realized payoffs,
or there are externalities between the actions of one’s neighbors, or switching costs.

8Later on, with some abuse of terminology, we will also define the success and failure in a
random walk, in a similar way.

9In the section of Extensions in the Appendix we endogenize t and we discuss the returns of
investment for different values of it
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Revisions happen simultaneously for all agents. We assume that each agent i ∈ N
can observe the choices and the realized payoffs of her neighbors in the previous
period. According to these observations, she revises her choice by imitating the
most successful action within her neighborhood in the preceding period. Notice
that, an agent never switches to an action that she did not observe, i.e. that neither
her nor any of her neighbors chose in the previous period. Moreover, if an action
disappears from the population, then it never reappears.

The important aspect of this myopic behavior is that the agents discard most of
the available information. They ignore whatever has happened before the previous
period, hence they are unable to form beliefs about the underline payoff distributions
of their alternative choices.

2.4. The Problem

After the action of the planner, the population consists of s agents choosing
action A (from now on called non–adopters) and t agents choosing action B (from
now on called adopters); obviously s+t = n. We call group a sequence of neighboring
agents who all choose the same action and are surrounded by agents choosing the
opposite action. The population is formed of m groups of neighboring agents who
choose action A, with sizes {s1, s2, . . . , sm}, where

∑m
k=1 sk = s and analogously m

groups of neighboring agents who all choose action B, with sizes {t1, t2, . . . , tm},
where

∑m
k=1 tk = t.10 We mention these groups as groups of type A and of type B

respectively. The numbering of the groups is based on their size in increasing order,
s1 ≤ s2 ≤ · · · ≤ sm and t1 ≤ t2 ≤ · · · ≤ tm. With some abuse of notation we also
use s1, s2, . . . , sm and t1, t2, . . . , tm to name the groups.

s1
tm

sk

t1
tk

sm

Figure 1: Example of an initial configuration: White nodes represent agents choosing action B
and black nodes agents choosing action A.

Our goal is to find the optimal size of all sk and tk for k = 1, . . . ,m− 1,11 their
optimal position (if it matters), as well as the optimal number of groups, m.

10Notice that, the fact that the network is a circle and there exist exactly two actions ensures
that the number of groups is the same for both actions.

11sm and tm must be equal to sm = s−
∑m−1
k=1 sk and tm = t−

∑m−1
k=1 tk respectively.

8



In order to avoid unnecessary complications in the calculations (which arise with-
out the gain of any additional intuition) we assume that every group must have an
even number of agents. This does not cause important limitations in our results,
since the underlying ideas remain the same. We refer the reader to the analysis of the
linear network for a more detailed motivation regarding this assumption. Formally:

Assumption 1 (A1). si and ti are even numbers for all i ∈ {1, . . . ,m}.

3. Results for the Impatient Planner

In this section, we study the optimal targeting strategy of a planner who cares
about maximizing the expected number of agents choosing action B after exactly
one period.12 The following figure (Figure 2) shows the two possible configurations
after one period. White dots represent the agents who choose initially action B
and black dots those agents who choose initially action A. Observe that only those
agents who are on the boundary of a group can change their choice. In fact, for
m denoting the total number of groups, in case action B is more successful in the
first period, then there will be 2m additional adopters in the next period; whereas,
in case action A is more successful, the number of adopters will decrease by 2m.
The probabilities of ending in each of the two possible states is p and q = 1 − p
respectively.

Initial Configuration After Success After Failure

Figure 2: Initial configuration and the two possible configurations after one period.

Hence we can construct the objective function of the impatient planner:

ENB(1) = t+ 2mp− 2m(1− p) = t+ 2m(2p− 1) = t+
2m

1− p
(r − 1)

It is easy to see that the optimal targeting strategy depends on the probability
p of action B being more successful. Namely, for p > 1/2 the objective function
is strictly increasing in m.13 Therefore, it is optimal to have as many groups as
possible. On the other hand, if p < 1/2 the objective function is strictly decreasing

12Implicitly, the planner is assumed to be risk neutral.
13If q 6= 1− p, we would simply have to replace 2p− 1 with p− q.
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in m and therefore it is optimal to locate all initial adopters in one group. We state
formally this result in the following proposition:

Proposition 1. Under (A1), then for an impatient planner

• If p > 1/2, the optimal targeting strategy is to spread the initial adopters to as
many groups as possible, i.e.

– If t < s, then m = t
2
, with t1 = · · · = tm = 2.

– If t > s, then m = s
2
, with s1 = · · · = sm = 2.

• If p < 1/2, the optimal targeting strategy is to concentrate all the initial
adopters in one group, i.e. m = 1 and t1 = t.

Observe that, as long as the planner creates the maximum number of groups, the
allocation of the agents inside these groups is not important.

Intuitively, this result suggests the following. If an action is likely to be successful,
then the planner should try to make it directly visible to as many non–adopters as
possible. In doing so, upon a highly probable successful realization, she will manage
to attract the maximum number of additional adopters. On the contrary, if an
action is unlikely to be successful, then the planner prefers to prevent most of the
initial adopters from observing the opposite action. As a result, even upon an
unsuccessful realization, most of the initial adopters will not observe the alternative
action, therefore they will not revise their choice in the second period. As we will
see, this optimal strategy changes sharply if the planner is infinitely patient.

4. Results for an Infinitely Patient Planner

In this section, we study the optimal behavior of an infinitely patient planner,
i.e. who cares only about the diffusion of her preferred action in the long run. A
crucial feature of this setting is that such a planner disregards completely the speed
of the procedure. Before beginning our analysis, it is useful to state the following
two prior results.

4.1. Preliminaries

4.1.1. Diffusion when Agents Imitate-the-Best Neighbor

The present behavioral rule constitutes a special case of an “Imitate-the-Best
Neighbor” rule, applied in a setting of individual decision–making under uncertainty
without strategic interactions between agents. Agents observe the choices of their
neighbors and the payoff those choices yield. Subsequently, they revise their choices
repeatedly according to these observations. In particular, they do so by imitating
the action that yielded the highest payoff within their neighborhood in the preceding
period.

In such a setting, it turns out that every connected network converges with
probability one to a steady state where all the agents are choosing the same action
(see Tsakas, 2013). Moreover, any of the actions can be the one to survive in the
long run. This is based on the fact that all actions are vulnerable to a sequence of
negative shocks, which can lead to their disappearance. Given that an action which
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disappears from the network never reappears, it turns out that only one of them
survives at the end.

In our case, this result ensures that only one of the two actions will survive in
the long run and that both actions have a positive probability to be the ones to
succeed it. Hence, the optimal strategy for an infinitely patient planner is the one
that maximizes the probability that action B gets diffused to the whole population
in the long run. We define this probability as follows:

Definition 1. PB(·) is the probability that action B will be diffused to the whole
population in the long run.

This probability will depend not only on the size of the population n, the number
of targeted agents t and the probability of success p, but also on the choice of
the planner about which agents to target. Notice as well that maximizing this
probability is equivalent to maximizing the expected number of agents choosing
action B in the long run; a remark that may seem obvious, but it will clarify the
analogy between our short run and long run analysis.

4.1.2. Results on Random Walks with Absorbing Barriers

A technical result which turns out to be particularly useful comes from Kemeny
and Snell (1960). It refers to the properties of a finite one–dimensional random
walk with absorbing barriers. The endpoints of a random walk are called absorbing
barriers if upon reaching one of the endpoints the random walk eventually stays
there forever. Specifically, the authors compute the random walk’s probabilities of
absorption at each one of the two absorbing states as follows:

Lemma 1 (Kemeny and Snell (1960)). Consider a random walk with states {0, 1, . . . , n},
where both barriers 0 and n are absorbing. If the probability of moving to the right
(from i to i+ 1) is p, the probability of moving to the left (from i to i− 1) is q, and
r = p

q
, then the probability of absorption at state n, when starting from state i is:

Pn(i) =

{
rn−rn−i

rn−1
if p 6= q (or equivalently r 6= 1)

i
n

if p = q (or equivalently r = 1)
(1)

Analogously, the probability of absorption at the state 0 is P0(i) = 1− Pn(i).

For the moment, p 6= q is equivalent top 6= 1
2
. Later on we extend our analysis

to show that the results are completely analogous in the general case.
To help us understand how this result can be used to express the current dif-

fusion process we consider a linear network (see figure below), with agents named
{1, 2, . . . , n}, where each agent has two neighbors, except of agents 1 and n who
have one neighbor each. In period τ = 1, agents 1 to i choose action B and the rest
choose action A. Hence, every period only two agents may revise their choice (for
example in the first period those are the agents i and i+ 1). The border fluctuates
until either agent n chooses B, or agent 1 chooses A. The position of the right
border of adopters is following a random walk with absorbing barriers 0 and n.14

14In order that agent 1 chooses A, the left barrier must be set at location equal to 0.
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Hence, we can use the result stated above to describe the probability of diffusion
for each one of the two actions. We call a random walk successful (unsuccessful) if
it ends up in the absorbing state where all the nodes included in the walk choose
action B(A).

0 1 2 ...... i− 1 i i+ 1 i+ 2 ...... n− 2 n− 1 n

1− p p

Figure 3: Initial configuration of a random walk with absorbing barriers 0 and n.

0 1 2 ...... i− 1 i i+ 1 i+ 2 ...... n− 2 n− 1 n

1− p p

0 1 2 ...... i− 1 i i+ 1 i+ 2 ...... n− 2 n− 1 n

1− p p

Figure 4: The two possible configurations after one period.

0 1 2 ...... i− 1 i i+ 1 i+ 2 ...... n− 2 n− 1 n

1− p = 0

0 1 2 ...... i− 1 i i+ 1 i+ 2 ...... n− 2 n− 1 n

p = 0

Figure 5: The two possible configurations after absorption.

This result is particularly helpful for our analysis, because any initial targeting
choice induces a stochastic process that can be expressed as a sequence of condition-
ally independent random walks with absorbing barriers, similar to the one described
above. Despite having multiple borders between groups, all of them fluctuate syn-
chronously, because the payoffs for each action are perfectly correlated and therefore
all agents in the boundaries make the same choice in each period. For example, con-
sidering the beginning of the process, each border fluctuates until either smallest
group of adopters, with size t1 or the smallest group of non–adopters, with size s1

disappears. This process can be represented by the random walk that is shown in
the following figure. Upon success or failure of the first walk, the process starts fluc-
tuating according to a new random walk that depends on the smaller still existing
groups of each type.

4.2. Main Results

Not surprisingly, the ratio r = p
q

= p
1−p , which describes the likelihood of action

B being more successful than action A, is a crucial parameter. However, surprisingly
enough, this is the only parameter that affects the optimal targeting strategy and
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. . .. . . i i+1 . . .. . .

1− p p

t1/2 s1/2

Figure 6: The first random walk

more specifically whether r is higher or lower than 1.15 The most interesting result,
though, is that the optimal strategy of the infinitely patient planner is in complete
contrast to that of the impatient planner. In particular, we observe that, for r > 1
the optimal targeting strategy of the planner is to concentrate all the targeted agents
in a single group, whereas for low values of r < 1, the optimal strategy is to spread
them as much as possible in the population, splitting them in as many groups as
possible and as symmetrically as possible. Observe that, the results are not just
different, but are exactly opposite to those found for the impatient planner. In fact,
the optimal strategy for an infinitely patient planner is the worst possible strategy
for an impatient planner and vice versa.

For a better exposition of the general results, we split the problem into three
sub-problems. First, we consider the case where the groups are restricted to be
symmetric. Then, we consider the asymmetric case where the planner can target up
to two groups and finally we consider the general asymmetric case.

4.2.1. Symmetric cases

First, we consider the symmetric case, where the groups of agents choosing the
same action are restricted to have equal sizes, namely s1 = · · · = sm = s

m
and

t1 = · · · = tm = t
m

. Assuming no problems of divisibility we find the optimal
number of groups, m. As we have mentioned already, the optimal targeting strategy
depends only on the ratio r. In particular, when r > 1 it is optimal to concentrate
all the initial adopters in one group, whereas when r < 1, it is optimal to spread
them in as many groups as possible, i.e. m = min{s/2, t/2}. Formally:

Proposition 2. Under (A1) and given s1 = · · · = sm = s
m

and t1 = · · · = tm = t
m

,
then for an infinitely patient planner:

• If r > 1, then arg maxm PB(m|s, t, n, r) = 1

• If r < 1, then arg maxm PB(m|s, t, n, r) = min{s/2, t/2}

All proofs can be found in the Appendix B.

Intuitively, this proposition suggests that when the probability of success is high,
it is beneficial to concentrate all initial adopters together. This prevents the dis-
appearance of the preferred action upon the realization of a sequence of negative

15Even though, at the moment r > 1 is identical to p > 1/2, we keep this notation because it
facilitates the extension to cases where q 6= 1− p.
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shocks during the first periods. The opposite strategy is optimal when the proba-
bility of success is low. Then the planner wants to take advantage of some potential
good shocks during the first periods, which will spread the action to as many agents
as possible.

4.2.2. Asymmetric Cases

We turn our attention towards the more general asymmetric cases. At first, let
us consider the case where the planner is restricted to target at most two groups of
each type, with sizes s1, s2 and t1, t2 respectively. Then the process can be described
as shown in the figure below. Recall that s1 ≤ s2 and t1 ≤ t2.

It turns out that the optimal decision depends completely on the value of r.
More specifically, if r > 1 it is optimal to concentrate all the agents in one group,
while if r < 1 the optimal choice is to have two groups of equal size for each action.

t2
s1

t1

s2

Figure 7: Example of an initial configuration with two groups of each type

Proposition 3. Under (A1) and given m ≤ 2, then for an infinitely patient planner:

• If r > 1, the optimal targeting strategy is to concentrate all the initial adopters
in one group.

• If r < 1, then the optimal targeting strategy is to split the initial adopters
into two as equal as possible groups, and locate them in the population as
symmetrically as possible, i.e. s2 − s1 ≤ 2 and t2 − t1 ≤ 2

The intuition is similar to that of the symmetric case. However, an interesting
finding is that this result does not hold for all restrictions on m. For example, if we
restrict the number of groups to be not greater than three, then it is not optimal to
split the agents into three equal groups of each type. Hence, it is not the case that
we always prefer symmetric compared to asymmetric configuration. Notice that,
this would be a sufficient condition for the proof of our main result, however it does
not always hold. Nevertheless, this does not affect our general result which is stated
below.

The two propositions help us construct the main theorem of the paper which
describes the optimal targeting strategy in the general case of m initial groups of
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each type, allowing them to have different sizes. The result is in line with the
previous findings and suggests that when r > 1, then the optimal choice is to
concentrate all the initial adopters in one group; whereas when r < 1, then the
optimal choice is to spread them uniformly to the population in as many and as
equal groups as possible. Namely:

Theorem 1. Under (A1), for an infinitely patient planner

• If r > 1, the optimal targeting strategy is to concentrate all the initial adopters
in one group, i.e. tm = t and t1 = · · · = tm−1 = 0 for any m.

• If r < 1, the optimal targeting strategy is to spread the initial adopters in as
many groups as possible and locate these groups as symmetrically as possible,
i.e.

– If t < s, then m = t
2
, with t1 = · · · = tm = 2 and sm − s1 ≤ 2,

– If t > s, then m = s
2
, with s1 = · · · = sm = 2 and tm − t1 ≤ 2

As it has been already mentioned, the importance of this result lies in the com-
plete contrast between the optimal strategy of an infinitely patient planner in com-
parison to an impatient one. An infinitely patient planner prefers to protect from
some initial negative shocks an action which is more likely to be successful, whereas
she prefers to spread as much as possible an action which is more likely to be unsuc-
cessful, trying to take advantage of a few positive shocks in the first periods. When
the probability of success is low, she knows that by concentrating all the targeted
agents together, a lot of positive shocks will be needed in order to capture the whole
population, which is rather improbable for an action that is expected to be often
unsuccessful.

5. Extensions

In this section, we briefly present the results of several extensions that clarify
specific questions regarding the process of interest. One can find an analytical
discussion of those extensions in Appendix A.

A natural question that arises from the contrast between the optimal behavior of
an impatient and an infinitely patient planner is what happens for intermediate levels
of patience. First of all, we observe that the expected diffusion is very sensitive to
small changes in the initial configuration and therefore it becomes particularly hard
to construct a general strategy for all intermediate levels of patience. Nevertheless,
we discuss the optimal targeting strategy of a planner who cares about the diffusion
of the action after 3 periods and we obtain a very enlightening result. Namely,
if r > 1, then in some cases the planner prefers to spread the initial adopters in
groups consisting of four, instead of two, agents. Whereas, if r < 1, she always
needs to compare between the two extreme cases, i.e. concentrating all of them in
one group or spread them to as many groups as possible. This result provides a
useful starting point to understand how the optimal targeting strategy changes as
the planner becomes more patient.

Furthermore, we discuss what happens if the choice of t becomes endogenous.
We find that under some simple and intuitive conditions, if r > 1 then the expected
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profits of the planner have decreasing returns to scale in t. We also provide a
condition under which the function of expected profits attains a strictly interior
maximum, which means that for the planner it is not optimal anymore to target all
the agents in the population, even if she has no budget constraints.

Another crucial aspect over which we would like to shed more light is the prac-
tical meaning of infinite patience. In reality, no planner can wait literally infinitely
many periods, so we try to identify the expected time of diffusion and how the plan-
ner’s choices that maximize the expected diffusion affect this expected time. Not
surprisingly, we find that a larger number of groups leads to faster diffusion and
therefore the optimal strategy of the planner for r > 1 has the drawback of maxi-
mizing also the expected waiting time before diffusion occurs.. On the other hand,
for r < 1 the optimal strategy is also the one that leads to the fastest expected
time of diffusion. An interesting feature, which is in line with standard results in
the analysis of random walks, is that the expected time of diffusion explodes as r
gets very close to 1. In general we find that for different configurations the expected
time until diffusion occurs may vary substantially and therefore one must be very
careful when acting as an infinitely patient planner.

Moreover, we discuss cases where inertia is possible. This generalization allows
us to capture some realistic scenarios, which include the possibility of both actions
having equally good realizations, the existence of switching costs and some forms
of conformity. Such settings can be captured by allowing q 6= 1− p, where q is the
probability of action A being more successful than action B, and we explain why
our results are not affected by this feature.

Finally, given that our analysis is based on the complete absence of centrality
features, we also discuss optimal targeting strategy of the planner for some simple
structures to give a notion of how our results would be affected under the presence
of central agents. First, we study the linear network and we find that for r > 1
it is optimal to target one of the two corners, whereas for r < 1 it is optimal
to target the agents located around the center. In this part of our analysis, we
also drop the assumption of groups having an even number of agents and we show
why dropping this assumption complicates our analysis without providing additional
insights. We discuss also briefly the star network, in which it becomes apparent the
vast importance of very central agents.

6. Conclusion

We have analyzed the optimal intervention of a planner who seeks to maximize
the diffusion of an action, in a circular network where the agents imitate success-
ful past behavior of their neighbors. It turns out that there is room for strategic
targeting of initial adopters even in this case where all the agents are completely
identical. Knowledge about the exact structure of the network, and not only its de-
gree distribution, can be beneficial for a planner. We find that the optimal decision
depends almost completely on two parameters. On the likelihood r of the preferred
action being more successful and on how patient the planner is. Changes in these
two parameters lead to completely opposite optimal behavior.

A very important parameter that we have disregarded completely from our anal-
ysis is the risk aversion of the planner. We have assumed the planner to be risk
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neutral, caring only about the expected number of adopters. For a risk averse plan-
ner, we would expect the optimal behavior to contain more dispersed targets than
for the risk neutral one, but this is definitely an open question for future research.

The current paper constitutes a first attempt to explore targeting possibilities in
networks where agents imitate successful behavior. Given that our network structure
is relatively simple, a natural extension would be to discover which of the current
features are still present and which of these are changing when we pass to more
general network structures. It is apparent that centrality features that arise in more
complex networks will play an important role, however the exact characteristics still
remain to be studied.

Appendix A. Extensions

Appendix A.1. Intermediate patience - the τ -patient planner

The sharp contrast between optimal targeting strategies of impatient versus in-
finitely patient planner makes plausible the question of how this transition occurs as
the planner becomes more patient. Intermediate levels of patience may be defined
in several alternative ways, of which we choose the following:

Definition 2. The planner is τ -patient if she cares about maximizing the expected
number of agents choosing action B at period τ , denoted by ENB(τ).

Although, at first sight, this definition of impatience might seem unusual, it
covers all the important intuitions and at the same time it can be easily extended to
more complicated cases. For example, the qualitative results would be very similar
if the planner cared about the sum of discounted expect number of agents choosing
her preferred action from period one up to period τ .

First of all, we analyze the case where the planner is 2-patient, so that she cares
only about the expected number of adopters after two periods. Notice that, after
two periods, there are four possible states the society can be at.16 Notice, also, that
the number of groups may have decreased after the first period. This is because,
after the first period, the groups consisting of only two agents who chose the action
that was unsuccessful during that period will disappear. For a visual representation,
look at the configuration occurring after failure at Figure 2, where the bottom left
group of two agents choosing action B disappears after a failure for action B in the
first period. Hence, we can construct easily the objective function of a 2-patient
planner as:

ENB(2) = t+ 2(2p− 1){2m− [pα2 + (1− p)β2]}

where α2 is the number of groups consisting of two agents choosing A and β2 is the
number of groups consisting of two agents choosing action B.

Notice that there are two opposing forces. We analyze them for p > 1/2, since
for p < 1/2 the analysis is exactly the opposite. For p > 1/2, on the one hand,
we would like to have as many groups as possible, since this increases the expected
number of agents choosing B. On the other hand, we would like not to have groups

16In general after τ -periods there are 2τ possible histories, so there are 2τ possible configurations.
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with size two, since this enters with a negative sign. Hence, as long as we can create
more groups, with size larger or equal than four agents, it is preferred to do so. Now,
what would happen if in order to create one extra group, we would have to create
one or more groups with size two, for each one of the actions. The most difficult
condition to be satisfied arises if we are left with groups of size no larger than four
agents for both actions. In this case, in order to create one additional group, we
would need to substitute one group of four agents with two groups of two agents for
each type. Therefore, we would need to increase the number of both α2 and β2 by
two. The necessary condition such that we prefer to have one extra group would be:

2m− [pα2 + (1− p)β2] ≤ 2(m+ 1)− [p(α2 + 2) + (1− p)(β2 + 2)]

With some straightforward calculations, we see that this condition is satisfied
always with equality, hence we are indifferent between having this one additional
group or not. Given that this is the toughest condition to satisfy, this means that
in all the other cases it is strictly preferred to have one more group. Concluding, for
a 2-patient planner it is always preferred, at least weakly, to have one extra group.
Therefore, her optimal behavior is identical to the one of the 1-patient planner.

The intuition is basically the same for the 3-patient planner. Notice that, during
the first two periods it is possible that also groups of four agents disappear, which
may affect the total number of groups in the third period. The objective function
of the planner becomes:

ENB(3) = t+ 2(2p− 1){3m− 2[pα2 + (1− p)β2]− [p2α4 + (1− p)2β4]}

where α4 (β4) is the number of groups consisting of four agents who choose action
A (B) and α2, β2 are as defined above.

We observe that, in this case it would be preferable not to have groups consisting
neither of two nor or four agents. Hence, there is an ambiguous trade–off between
having more groups and those additional groups consisting of four or less agents.
One can easily observe that the creation of groups consisting of four agents has very
small negative effect, compared to the positive effect of the addition of a group. This
means that the planner prefers to have two groups with four agents, rather than one
with eight. However, there are still more cases to analyze. The case captured in the
figure below is the one that imposes the toughest condition to satisfy. In particular,
the question is whether the planner prefers to break two groups of four agents each
into four groups of two agents each.

The condition is the following and it is not satisfied for any p:

3m− 2[pα2 + (1− p)β2]− [p2α4 + (1− p)2β4] ≤
≤ 3(m+ 1)− 2[p(α2 + 2) + (1− p)(β2 + 2)]− [p2(α4 − 1) + (1− p)2(β4 − 1)]⇔
⇔ 3− 4p− 4(1− p) + p2 + (1− p)2 ≥ 0

In a similar manner, we need to check whether other possible ways of creating
more groups are beneficial. This case turns up to be the only one where the 3-patient
planner prefers not to have more groups. The second stricter condition arises by
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not break break

Figure A.8: Configuration where a 3-patient planner prefers not to create an additional group if
r > 1

the configuration depicted in the following figure. In this case, it turns out that
the planner is indifferent between the two alternative configurations. All the other
conditions are strictly satisfied.

not break break

Figure A.9: Configuration where a 3-patient planner is indifferent between creating or not an
additional group, if r > 1.

We can describe the optimal behavior of a 3-patient planner as follows. For
p > 1/2, if t ≪ s, then optimally t1 = t2 = · · · = tm = 2 and m = t/2. For s ≪ t,
optimally s1 = s2 = · · · = sm = 2 and m = s/2. However, if s ≈ t then if t is a
multiple of 4 the optimal targeting strategy is to choose t1 = t2 = · · · = tm = 4 and
m = t/4 and if t is not a multiple of 4, then t1 = 2, t2 = · · · = tm and m = t+2

4
and

the same for s.
Analogously, for p < 1/2, the objective function of the planner decreases in

the number of groups until m = t/4 and increases afterwards. Hence, we need to
compare the cases where m = 1 and m = min{s/2, t/2}. Comparing the two cases
for s ≈ t, we get the condition:

3 ≥ 3
t

2
− 2p

s

2
− 2(1− p) t

2
which is satisfied whenever t ≥ 6. Hence, it is not optimal to target one group

only when t ≈ s and t < 6.
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The case of the 3-patient planner provides very useful insights about the change
in the planner’s optimal behavior as she becomes more patient. On the one hand,
for actions with high probability of success (p > 1/2) it seems that this transition
happens smoothly, since it becomes optimal for the planner to target larger and
larger groups. On the other hand, when the action has low probability of success
(p < 1/2) this transition happens suddenly, meaning that for low values of t it
is optimal to target as many groups as possible, whereas for high values of t it is
optimal to target only one group.

Continuing the analysis for more patient planners would give more complicated
results which would not be easily tractable. This is because the results would depend
vastly on the exact initial position of each group and not only on their number and
sizes. A complete characterization for any value of planner’s patience would be an
interesting and illuminating extension of our paper.

Appendix A.2. Returns to Scale of Investment

In this section, we endogenize the choice of the number of initial adopters t
and the returns to scale of investment for an infinitely patient planner. We define
explicitly the expected profits of the planner as follows:

EΠ(t) = πPB(t)− c(t)

where PB(t) is the probability of successful diffusion, which depends only on t if we
assume that the planner has chosen the optimal targeting strategy. The constant π
is a fixed benefit that the planner receives if action B captures the whole population
and c(t) is a a strictly increasing and weakly convex cost function. As in most of
our analysis, we consider EΠ(t), PB(t) andc(t) as continuous and twice differentiable
functions, of which we are interested only at the integer values of t.

For r > 1, we show that the expected profits have decreasing returns to scale.
Moreover, if the cost function is linear and the marginal cost of adding an initial
adopter is neither two small, nor too large, then there exists an interior choice of
initial adopters which maximizes the expected profits. This result is very intuitive
if we recall that targeting additional agents increases the probability of successful
diffusion, but never ensures it. Therefore, for a given number of initial adopters,
by targeting one more the increase in probability may be so little, that the cost for
convincing this agent exceeds the expected increase in profits. We summarize these
results in the following proposition.

Proposition 4. For r > 1, the expected profits’ function of the planner, EΠ(t),
given her optimal targeting strategy and cost function c(t) such that c′(t) > 0 and
c′′(t) ≥ 0:

• Has decreasing returns to scale in t,

• If c(t) = kt, k ∈ R+, then it has strictly interior maximum if and only if
π ln r

2(r
n
2 −1)

< k < π ln r

2(r
n
2 −1)

r
n
2 .

If k is larger than the upper bound then the derivative is always negative, which
means that targeting any agent is too expensive and therefore the optimal choice
is t = 0. If k is lower than the lower bound then the derivative is always positive,
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which means that targeting an agent is very cheap and therefore under the absence
of initial budget constraint the optimal choice is t = n.

For r < 1, the result is more ambiguous because targeting more agents affects
also the optimal number of groups. Nevertheless, if we slightly modify the argument,
we can show that for a fixed number of groups it is possible that the expected profits
have increasing returns to scale when r < 1 and t < s. In particular, this is the case
if the cost function is homogeneous of degree one, which holds for example when the
cost function is linear. Hence, given that splitting the agents into more groups yields
even higher expected profits, at least when the cost function is linear the expected
profits have increasing returns to scale when r < 1 and t < s.

Appendix A.3. Expected Waiting Time before Absorption

We have analyzed the different optimal targeting strategies, given the planner’s
level of patience. However, in practice, our definition of long–run may have very
different characteristics depending on the parameters of the problem. In order to
complement our previous analysis, we turn our attention towards the identification
of the expected waiting time before the diffusion of one of the two actions in the
whole population.

Our goal is twofold. On the one hand, we want to quantify the meaning of
“infinite patience” of a planner, by characterizing the performance of her optimal
choices with respect to the expected waiting time before the population converges
to a steady state. On the other hand, we explore potential trade-offs between max-
imizing the probability of successful diffusion and minimizing the expected waiting
time before diffusion occurs.

Not surprisingly, we find that diffusion is expected to occur faster as the number
of groups increases. This result is very intuitive, because having more groups (of
equal sizes) implies that the size of each group is going to be smaller; and when the
groups are smaller then fewer failures are sufficient to make them disappear. feature
that leads to faster convergence. This means that, for p < 1

2
the targeting strategy

that maximizes the probability of diffusion, minimizes also the expected time until
absorption, therefore there is no trade–off between the two aspects. Moreover, we see
that convergence occurs fast even in absolute terms. On the other hand, for p > 1

2
,

our optimal targeting strategy is the one with the maximum expected waiting time,
compared to all the symmetric configurations, which for some values of p close to
1
2

may be unrealistically high in absolute terms. Therefore, there is an important
trade–off for the planner.

Furthermore, for the optimal initial configurations if p > 1
2

or p < 1
2

with t >
sthen the expected waiting time increases as t increases. However, it decreases if
p < 1

2
with t < s. For p > 1

2
, this happens because an increase in t is associated with

an increased size of the unique group of each type. For p < 1
2

with t > s, increasing
t leaves unaffected the number of groups (because this depends on s) and increases
their size. Whereas, for p < 1

2
and t > s, increasing t leads to an increase in the

number of groups and a decrease in their size.
In addition to this, in most of the cases we see that the expected waiting time

becomes larger for values of p close to 1
2

and decreases sometimes up to one or two
orders of magnitude as p approaches either 0 or 1. We see also that the larger the
difference between the values of s and t, the more extreme the effect in waiting time
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of changes in the values of p. The problem becomes particularly important when
the planner targets a single group of initial adopters, because then the differences
may become extreme (for example look at Figure B.25 in Appendix B). In addition
to this, in absolute terms these changes increase significantly as the population
increases.

To establish our results on a concrete manner, we use the following result, which
comes from Kemeny and Snell (1960). Namely:

Lemma 2 (Kemeny and Snell (1960)). Consider a random walk with states {0, 1, . . . , n},
where both barriers 0 and n are absorbing. If the probability of moving to the right
(from i to i+ 1) is p, the probability of moving to the left (from i to i− 1) is q and
r = p

q
, then, starting from state i, the expected waiting time before absorption occurs

is:

τ(i,n−i) =

{
1
p−q [n

rn−rn−i

rn−1
− i] if p 6= 1

2

i(n− i) if p = 1
2

(A.1)

Recall that we focus on the case where q = 1− p. Now, we are ready to charac-
terize the expected waiting time for the planner’s optimal targeting strategies.

Appendix A.3.1. Expected waiting times of optimal configurations

For r > 1, recall that the optimal choice for the infinitely patient planner is to
target a single group of adopters. In this case the process can be summarized as
a random walk with n/2 steps and two absorbing barriers, starting from i = t/2.
Hence the expected waiting time is equal to:

τ(t, s|r > 1) = τ( t
2
, s
2

) =
1

2p− 1

[
n

2

(
rn/2 − rs/2

rn/2 − 1

)
− t

2

]
=

1

2p− 1

[
s

2
− n

2

(
rs/2 − 1

rn/2 − 1

)]
The following proposition summarizes the properties of the above expression:

Remark 1. For r > 1, the expected waiting time before absorption, τ(t, s|r > 1),
is

1. Strictly increasing in n,

2. Strictly concave in s and in t,

3. Given p and n, attains interior maximum t∗ = n−s∗ = n−2 ln (rn/2−1)−ln (ln r)−ln (n/2)
ln r

4. lim
r→1+

t∗ = n
2

and lim
r→1+

τ(t∗,s∗=n
2

) = n2
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5. lim
r→+∞

t∗ = 0 and lim
r→+∞

τ(t∗,s∗=n−2) = n
2
− 1.

/

Notice, that t∗ may not be an even integer number. In this case we have to
compare the two closest even integers to t∗, in order to identify the size of t that
would give the maximum expected time before absorption occurs. As r diverges
to infinity, t∗ approaches 0, which is not in the domain of t, hence we check the
expected time at t = 2.

When p is close to 1
2
, the relation between the expected time of absorption, τ ,

and the probability of success, p, is a bit more sensitive to the different parameter
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values. This makes it hard to provide a general result. However, we have analyzed
numerically every possible circular network with up to one million agents and we
have found that, for all the values of p when we can target sufficiently many agents
and for values of p sufficiently far away from 1/2 the expected time of absorption is
decreasing in p. Sufficiently far away has different meaning depending on the size of
the network. For populations larger than 30 agents is less than 0.6, for populations
larger than 100 agents is below 0.55 and for populations larger than 1000 it gets so
close to 1/2 that in practice it is true everywhere. Moreover, this decrease may be
as big as one or two orders of magnitude. The Figures B.25 and B.26 (in Appendix
B) depict the expected time of absorption for different values of s = n − t, in a
population with 200 agents.

For r < 1 we must differentiate between the cases where t < s and t > s. We
concentrate in cases where there is no problem of divisibility, i.e. si = s/m and
ti = t/m respectively. For t < s, after some simplifications, the expected waiting
time is equal to:

τ(t, s|r < 1, t < s) = τ(1, s
t
) =

1

2p− 1

[
s

n− s
− n

n− s

(
r

s
n−s − 1

r
n

n−s − 1

)]
Remark 2. For r < 1 and t ≤ s, the expected waiting time, τ(t, s|r < 1, t < s), is

1. Strictly decreasing in n,

2. Strictly decreasing in t and strictly increasing in s,

3. lim
r→0

τ = 1 and lim
r→1−

τ = s
n−s ,

4. τ(t = n
2
, s = n

2
) = τ(1,1) = 1 and lim

s→n
τ = − 1

2p−1

/

The first two results are very intuitive. Increasing t(s), decreases (increases) s
t

and therefore decreases (increases) the length of the random walk associated with
the process. Decreasing (Increasing) the length of the walk, decreases (increases)
the expected time before absorption occurs.

More interesting is the part (4) of Remark 2 which shows that the minimum and
the maximum expected waiting time does not depend on the size of the population,
but only on the probability of success. This result is very useful, because it provides
a natural upper bound for the expected waiting time, which does not explode as the
population grows.

For the relation between τ and p we repeat the same numerical analysis we did
before for r > 1 and for all circular networks with up to one million agents. We find
that for s > n

2
the expected waiting time is strictly increasing in p. For, s = n

2
is

stable and equal to 1. The behavior is qualitatively identical irrespectively of the
size of the population. In Figures B.27 and B.28 in Appendix B we show the typical
relation for different values of t.

Notice that, from parts (2) and (3) of Remark 2, we find that the maximum
expected time of absorption occurs as p approaches 1

2
and t = 2 and is equal to

n
2
− 1. This is exactly equal to the previous case, described in Remark 1, where

r →∞ and t = 2, which is the fastest among the configurations that maximize the
expected waiting time. This shows, that comparing worst case scenarios for r < 1
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and r > 1, we find that the slowest of all the worst case scenarios when r < 1 is still
faster than the fastest of the worst case configurations for r > 1. This provides a
notion of how much faster are the optimal configurations for r < 1 with respect to
those for r > 1.

For t > s, the intuitions are analogous to the previous case. The expected waiting
time before absorption is equal to:

τ(t, s|r < 1, t > s) = τ( t
s
,1) =

1

2p− 1

[
1− n

s

r − 1

r
n
s − 1

]
Remark 3. For r < 1 and t ≥ s, the expected waiting time, τ(t, s|r < 1, t > s), is:

1. Strictly increasing in n,

2. Strictly increasing in t and strictly decreasing in s,

3. lim
r→0

τ = lim
r→1−

τ = t
s

4. lim
s→0

τ = +∞ and lim
s→n

2

τ = 1

/

As expected, the two first results are the contrary to those of Remark 2. Their
justification is a straightforward reversal of the argument used there. An impor-
tant issue that arises here is that the expected time is not always increasing as p
increases. In fact, it seems to be increasing in the beginning up to some point and
then decreasing. The point where it gets maximized varies a lot as we alter p, s and
t. Again, a typical behavior can be found in Figures B.29 and B.30. The shape
of the figures is very similar for all networks we checked (all networks with up to
one million agents). An interesting feature is expected waiting is minimized as p
approaches 0 and 1/2 with the two limits being always exactly equal.

Appendix A.3.2. Comparison between configurations with different number of groups

Now, we turn our attention to the comparison between configurations consisting
of different number of groups. We analyze the simplest of these cases, where all the
groups are symmetric. Recall that, when groups are symmetric, then the optimal
strategy for an infinitely patient planner is, if r > 1, to locate them in a single
group and if r < 1 to spread them to as many groups as possible. Moreover, even
when we allow for asymmetric configurations, the optimal choices again tend to be
symmetric. However, it is not clear yet which is the effect of this choice on the
expected waiting time before absorption occurs. By Lemma 2, this is equal to:

τ( t
2m

, s
2m

) =
1

2p− 1

[
s

2m
− n

2m

(
r

s
2m − 1

r
n
2m − 1

)]
Proposition 5. For all r 6= 1 and for symmetric configurations, i.e. s1 = · · · =
sm = s

m
and t1 = · · · = tm = t

m
, the expected waiting time is strictly decreasing in

the number of groups, m.

Numerical examples can be found in Figures B.31 and B.32, which show that
this decrease has an exponential shape. Even though we have restricted our atten-
tion to symmetric configurations, this proposition provides an interesting intuition
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regarding the trade-off between maximizing the probability of successful diffusion
and minimizing the expected waiting time before diffusion occurs. On the one hand,
for r > 1, the choice that maximizes the probability of successful diffusion is the one
with the longest expected waiting time. On the other hand, for r < 1, the planner’s
choice that maximizes the probability of successful diffusion is also the one mini-
mizing the expected waiting time until diffusion. Theoretically, these findings are
in line with standard results on finite random walks with absorbing barriers, where
increasing equally the number of steps in both directions leads to an increase in
the expected waiting time before absorption, but it has an ambiguous effect on the
probability of absorption in each one of the two barriers.

In our problem, this result stresses out the fact that the strategy of concentrat-
ing all the initial adopters in one group when r is high, despite maximizing the
probability of successful diffusion, may slow down the procedure significantly. This
should be taken into account by a planner when trying to quantify the meaning of
being infinitely patient. In practical terms, the waiting time may be so long that
even a very patient planner would find it unrealistic to wait until diffusion occurs.
Nevertheless, when r is low, the optimal choice for the planner is also the one which
minimizes the expected waiting time. This facilitates the decision of the planner
since there is no trade-off between the two characteristics of the procedure.

Appendix A.4. q 6= 1− p: Conformity, Switching Cost and Possibility of Inertia

Until now, we have focused on the case where q = 1− p. In practice this meant
that if two neighbors were using different actions at some period, then in the next
period either they would both use action B, which would happen with probability
p, or would both use action A, which would happen with probability 1 − p. This
assumption rules out several realistic problems, which we mention here.

Nevertheless, our whole analysis, for both the patient and the impatient planner,
is based not on the value of p itself, but on the value of r, which we defined as the
relative likelihood of action B being more successful than action A, more formally
as r = p

q
. Despite the fact that, for simplicity reasons, we concentrated on the

case where q = 1 − p, this need not be the case necessarily. Our results remain
unchanged if we substitute the condition p > 1

2
(p < 1

2
respectively) with p > q

(p < q respectively). In both cases, the conditions can be summarized by the value
of r and in fact whether r > 1 or r < 1. In this extension we discuss three realistic
scenarios, where relaxing this assumption would be necessary and therefore our
results are appropriate.

Appendix A.4.1. Possibility of Inertia

With our previous description we have ruled out the possibility of both actions
yielding the same payoff. A plausible modification would be to allow both actions
to be equally successful in some states of nature. This would lead to a combination
of configurations with transition probabilities as shown in Figure 9.
Focusing on i and i+ 1, who would be the only agents (in this part of the network)
who could change their decision, we would obtain the following possible cases:
As we have already mentioned, the results are still valid if we define r = p

q
.
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. . .. . . i i+1 . . .. . .

(1− p− q)q p

tk sk

Figure A.10: Transition probabilities under the possibility of inertia

period τ

i i+ 1

prob. p

i i+ 1

prob. q

i i+ 1

(1− p− q)
i i+ 1

Figure A.11: The left figure shows agents’ i and i+ 1 choices at period τ . The other three figures
show the choices of the agents at period τ + 1, after (ii) success, (iii) failure, (iv) draw at period τ .

Appendix A.4.2. Switching Cost

In the example of technology adoption, we have disregarded the effect of switch-
ing costs. Implementing a new technology assumes the purchase of new machinery,
or effort of learning how to use the new technology efficiently. Therefore, a farmer in
order to decide to pay this cost must have observed the new technology to have been
sufficiently better than the one she already uses. Sufficiently better in this setting
can be translated as follows. Agent i who uses action B at period τ changes to action
A if the payoff of action A at that period was sufficiently higher, i.e. πτA > πτB + c,
where πτB is the payoff of B at that period and c the switching cost. Let us call q the
probability of this realization. Analogously, agent i+ 1 who uses action A, changes
to action B if πτB > πτA + c, which occurs with probability p. Now, if |πA − πB| < c
which happens with probability 1 − p − q,17 then both agents keep using the same
action. The alternative action did not seem to be successful enough to convince
them to abandon their current technology. This scenario is along the same lines
with those have already mentioned. Hence, our results are suitable also under the
presence of switching costs.

Appendix A.4.3. Conformity

Our mechanism is also suitable to describe cases where the choices of the agents
do not depend only on the performance of the actions, but also on the number of
their neighbors (including themselves) who used each action in the previous period.
Think of the following mechanism:

• Those agents who observed at least one agent (including themselves) choosing
action B in period τ will choose action B in period τ + 1, with probability p1,

• Those agents who observed at least two agents (including themselves) choosing
action B in period τ will choose action B in period τ + 1, with probability p2,

17We assume that the payoffs are defined such that the switching cost is high enough to ensure
that p+ q < 1.
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• Those agents who observed exactly three agents (including themselves) choos-
ing action B in period τ will choose action B in period τ + 1, with probability
p3.

This mechanism introduces a notion of conformity in the network, since the more
of your neighbors chose one action in the previous period, the more probable is that
you choose it in the next period. For example, notice that those agents who observe
only one of the two alternative actions satisfy all the three conditions, therefore they
will choose the same action again with probability p1 + p2 + p3 = 1. Also, those
agents who observed two agents choosing B will do the same in the next period with
probability p1 + p2. This probability is larger than the one of those who observed
only one agent choosing B in the previous period, which is p1. The dynamics of the
network can be summarized by the following figure.

period τ

p2p3 p1

period τ + 1, with probability p1

period τ + 1, with probability p2

period τ + 1, with probability p3

Figure A.12: Possible configurations and transition probabilities under the presence of conformity.

To be in line with our previous notation, if we define p1 = p, p3 = q and
p2 = 1− p− q, we see that our results still hold under the presence of conformity.

Appendix A.5. The Line

In this section we turn our attention towards the linear network. The only
difference between the line and the circle is that in the line the agents 1 and n
are not connected between them, so they have only one neighbor. Formally, Ni =
{i− 1, i, i+ 1} for i = 2, . . . , n− 1, whereas N1 = {1, 2} and Nn = {n− 1, n}.

This structure introduces a notion of centrality in the network. Mainly, this is
not because of the fact that some agents have different number of neighbors; but
because there is only one path that connects indirectly each two agents. Hence,
the agents located closer to the center of the line act as hubs for the transmission
of information through the network. This new feature has interesting interesting
implications which we are worth discussing.

We consider only the case where there is a single group of initial adopters, with
size t and is surrounded by two groups of non–adopters with sizes s1 and s2 re-
spectively (see figure below). First, let us first construct PB(s1|s, t, n, r) for different
values of s1, s2 and t. Notice that the only independent variable is s1 since s2 = s−s1.
Without loss of generality, we consider only the cases where s1 ≤ s2. By symmetry,
the rest of the cases are completely analogous.
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1 2
. . .. . .

s1

s1 + 1 . . .. . . s1 + t

n− s2

. . .. . .
n− 1 n

p 1− p 1− p p

s1
t

s2

Figure A.13: A linear network with one group of initial adopters.

The probability of diffusion can be expressed as the product of two random walks
with absorbing barriers. The first walk describes the procedure until either the group
of type B disappears, or the smaller group of type A disappears. For r 6= 1 the first
walk is depicted in Figure 13. The probability of success in this walk depends on
whether t is an odd or an even number. In case the first walk is unsuccessful, action
B disappears from the population. In case it is successful, then it is pursued by the
random walk in Figure 14, which is the same for t being odd or even.

1 2
. . .. . .

s1

s1 + 1 . . .. . . s1 + t

n− s2

. . .. . .
n− 1 n

s1 t
2

s2t
2

1 2
. . .. . .

s1

s1 + 1 . . .. . . s1 + t
2

p 1− p

s1 t
2

Figure A.14: The first random walk.

1 2 . . .. . . 2s1 + t . . .. . .
n− 1 n

2s1 + t s2 − s1

1− p p

Figure A.15: The random walk that follows successful absorption in the first walk.

Hence, the probability of diffusion of action B, for r 6= 1 is:

PB(s1|s, t, n, r) =


r(s1+

t+1
2 )−rs1

r(s1+
t+1
2 −1)

rn−r(n−t−2s1)

rn−1
if t odd

r(s1+
t
2 )−rs1

r(s1+
t
2 )−1

rn−r(n−t−2s1)

rn−1
if t even

(A.2)

and for r = 1:
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PB(s1|s, t, n, r = 1) =

{
(t+1)(t+2s1)
(t+2s1+1)n

if t odd
t
n

if t even
(A.3)

We see that the probability depends slightly on whether t is an odd or an even
number. This is because an odd number of initial adopters provides one additional
step before the disappearance of action B from the society.

Proposition 6. If the number t of initial adopters is even then:

• If r < 1 then target the middle, i.e. s1 = s2 if s even, or s1 = s2 − 1 if s odd.

• If r > 1 then target a corner, i.e. s1 = 0.

• If r = 1 then the probability does not depend on s1.

Proposition 7. If the number t of initial adopters is odd then:

• If r < 1 then target the middle, i.e. s∗1 = s2 if s even, or s∗1 = s2 − 1 if s odd.

• If r = 1 then target the middle, i.e. s∗1 = s2 if s even, or s∗1 = s2 − 1 if s odd.

• If r > 1 then s∗1 ∈ {bg(r, t)c, dg(r, t)e}18, for g(r, t) = ln[r1/2+(r−1)1/2]
ln r

− t
2
. If

PB(s1 = bg(r, t)c) > PB(s1 = dg(r, t)e) then s∗1 = bg(r, t)c and vice versa.

These two propositions clarify the difference between having groups with odd or
even number of agents. We see that for an odd number of agents, the exposition of
the results is slightly more complicated, without providing additional insights. The
following corollary provides some more concrete results regarding the cases where t
is odd.

Corollary 1. For t being an odd number

1. If t = 1 it is never optimal to target the corner.

2. For t ≥ 3 it is optimal to target the corner whenever r ≥ 1.618.

3. For all t ≥ 3, there exists r̂ ≤ 1.618 such that for r > r̂ it is optimal to target
the corner.

In particular, it seems that the results are substantially different than for t even
only when the number of targeted agents is small. In particular, if we can target
only one agent, we never want her to be in the corner of the network. This happens
because when we target only one agent, she is never safe for more than one period,
meaning that a failure in the first period leads to the disappearance of the action.
After a positive shock an agent located in the corner can affect the choice of only one
additional agent, instead of two. Nevertheless, the problem becomes unimportant
when the number of targeted agents is sufficiently large or r is sufficiently high.

18bg(r, t)c = max{m ∈ Z|m ≤ g(r, t)} is the floor function of g
and dg(r, t)e = max{m ∈ Z|m ≥ g(r, t)} is the ceiling function of g
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Appendix A.6. The Star

The star network is a very special case, because there is a unique agent -the
center - who performs as hub for the information transmission in the network. She
observes the actions and outcomes of all the other -peripheral - agents, while everyone
else observes only her. Formally, N1 = {1, . . . , n} = N while Ni = {1, i} for all
i ∈ {2, . . . , n}. This extreme form of centrality turns out to be crucial in the present
setting, making always optimal to target the central agent (independently of the
value of r).

Namely, if the central agent (call it ”agent 1”, for simplicity) is targeted together
with l more peripheral agents, then PB(1, l) = p

1−p(1−p) ,
19 which is bounded below

by p and does not depend on l, as long as l > 0. On the other hand, if the
central agent is not targeted, then for any number l′ of targeted peripheral agents
PB(not1, l′) = pPB(1, l′) = p2

1−p(1−p) which is bounded above by p and again does not

depend on l′.
Hence, it is apparent that it is always optimal to target the central agent. Tar-

geting, also, a peripheral agent increases the probability of diffusion, because it
”secures” the action from disappearing in case of a failure in the first period. Tar-
geting more than one peripheral agents does not improve the chances of successful
diffusion, since all of them would transmit to the central agent information that she
is already aware of.

Appendix B. Proofs

Proof of Proposition 2. Under (A1), s
m

and t
m

are even numbers. Then, the
process is equivalent to having a line of n

2m
agents, consisting of one group of t

2m

adjacent agents choosing B and another group of s
2m

adjacent agents choosing A.

. . .. . . . . .. . .

1− p p

t
2m

s
2m

Figure B.16: The random walk that describes the process in the symmetric case.

By Lemma 1, the probability of successful diffusion becomes:

PB(m|s, t, n, r) =
r

n
2m − r s

2m

r
n
2m − 1

Despite the fact, that we are interested only in the integer values of m, t and n, the
function PB(·) is well-defined and smooth for all r 6= 1 and m ≥ 1. Hence, we can

19PB(1, l) = p+ (1− p)PB(not1, l) = p+ (1− p)pPB(1, l)⇒ PB(1, l) = p
1−p(1−p)

30



check its monotonicity by differentiating over m.

dPB
dm

=

[
r

n
2m ln r

(
− n

2m2

)
− r s

2m ln r
(
− s

2m2

)] (
r

n
2m − 1

)
−
(
r

n
2m − r s

2m

) [
r

n
2m ln r

(
− n

2m2

)](
r

n
2m − 1

)2

=
ln r(

r
n
2m − 1

)2

[(
− n

2m2
r

n
2m +

s

2m2
r

s
2m

) (
r

n
2m − 1

)
−
(
r

n
2m − r

s
2m

) (
− n

2m2
r

n
2m

)]
=

ln r(
r

n
2m − 1

)2

(
− n

2m2
r

2n
2m +

s

2m2
r

s+n
2m +

n

2m2
r

n
2m − s

2m2
r

s
2m +

n

2m2
r

2n
2m − n

2m2
r

s+n
2m

)
=

ln r

2m2
(
r

n
2m − 1

)2

(
sr

s+n
2m + nr

n
2m − sr

s
2m − nr

s+n
2m

)
=

ln r

2m2
(
r

n
2m − 1

)2

[
sr

s
2m

(
r

n
2m − 1

)
− nr

n
2m

(
r

s
2m − 1
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=

ln r

2m2
(
r

n
2m − 1

)2

(
r

n
2m − 1

) (
r

s
2m − 1

)( sr
s

2m

r
s

2m − 1
− nr

n
2m

r
n
2m − 1

)
If we call s

2m
= s′ and n

2m
= n′, then the following lemma helps us conclude the

argument.

Lemma 3. f(x) = 2mxrx

rx−1
is strictly increasing for x ≥ 1, for all r 6= 1 and m ≥ 1

Proof. Let r 6= 1 and m ≥ 1, then

df

dx
=

2m

(rx − 1)2
[(rx + xrx ln r)(rx − 1)− xrx(rx) ln r]

=
2m

(rx − 1)2
(r2x − rx − xrx ln r) =

2mrx

(rx − 1)2
(rx − 1− x ln r) > 0 for all x ≥ 1

To show this, we define g(x) = rx − 1− x ln r, which is strictly increasing for x ≥ 1
because dg

dx
= rx ln r − ln r = ln r(rx − 1) > 0. So it attains minimum for x = 1,

which is g(1) = r − 1− ln r. Moreover, g(1) > 0 for all r 6= 1 because it holds that
h(r) = r − 1− ln r > 0 for all r 6= 1. This is because dh

dr
= 1− 1

r
is strictly positive

when r > 1 and strictly negative when r < 1. So, h attains global minimum for
r = 1, the h(1) = 0. Hence, g(x) > 0 for all x ≥ 1, which means that also df

dx
> 0

for all x ≥ 1 and this concludes the argument.

By Lemma 3, given that n > s, we get that ( sr
s

2m

r
s

2m−1
− nr

n
2m

r
n
2m−1

) < 0 always, so we

can conclude that dPB

dm
< 0 if r > 1 and dPB

dm
> 0 if r < 1. Hence, for r > 1 the

PB(m|s, t, n, r) is decreasing in m, so arg maxm PB(m|s, t, n, r) = 1, i.e. the optimal
choice is to target a single group of initial adopters. On the other hand, for r < 1,
P is increasing in m, so we would like to split the initial adopters in as many groups
as possible, i.e. arg maxm PB(m|s, t, n, r) = min{s/2, t/2}.

Proof of Proposition 3. First, we have to construct the probability of successful
diffusion. For r 6= 1, the process again can be described as a sequence of ran-
dom walks with absorbing barriers. At the beginning, we have a random walk of
(s1 + t1)/2 nodes, starting from node t1/2, until it disappears either t1 or s1. In case

31



of successful absorption we get a random walk of n/2 nodes starting from the node
(t+ 2s1)/2. Otherwise, in case of unsuccessful absorption we get a random walk of
n/2 nodes as well, but starting from node (t − 2t1)/2. Notice that (A1) solves all
the problems of divisibility.

Initial Walk
. . .. . . . . .. . .

1− p p

t1
2

s1
2

After Success
. . .. . . . . .. . .

1− p p

t+2s1
2

n−t−2s1
2

After Failure
. . .. . . . . .. . .

1− p p

t−2t1
2

n−t−2t1
2

Figure B.17: The random walks that describe the process in the asymmetric case with two groups.

Hence, by Lemma 1, the probability of successful diffusion for r 6= 1 is:

PB(s1, t1|s, t, n, r) =
r

s1+t1
2 − r

s1
2

r
s1+t1

2 − 1

r
n
2 − r

n−t−2s1
2

r
n
2 − 1

+
r

s1
2 − 1

r
s1+t1

2 − 1

r
n
2 − r

s+2t1
2

r
n
2 − 1

Now, we compute the derivatives with respect to t1 and s1. As usually, we
are only interested in integer points, but the function P is a well-behaved smooth
function for r 6= 1, so we can study its monotonicity.
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Analogously for t1 we have:
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Hence, given that 0 ≤ s1 ≤ s2 and 0 ≤ t1 ≤ t2 we conclude that for r > 1 the
optimal targeting strategy is (s1, t1) = (0, 0), whereas for r < 1 it is s2− s1 ≤ 2 and
t2 − t1 ≤ 2.

Proof of Theorem 1. For the case of r > 1 we proceed by induction. First, we
recall the result by Proposition 2, which states that if we can target up to two
groups, then the optimal choice is to concentrate all the initial adopters in one
group. Remember also that s1 ≤ s2 ≤ s3 and t1 ≤ t2 ≤ t3. Now suppose that we
can target up to three groups (m ≤ 3). Then again at first we are interested in the
two smallest groups of each type and we have the following random walk.

. . .. . . . . .. . .

1− p p

t1
2

s1
2

The system fluctuates in this direction until either s1 or t1 disappears. Depending
on the successful or unsuccessful absorption of this process we get one of the following
two configurations (Figure A.17), with only two groups remaining of each type.
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before

t2

s1

t1

s3

t3

s2

after success

t1 + t2 + 2s1

s3 − s1

t3 + s1

s2 − s1

after failure

t2 − t1
s1 + s3 + 2t1

t3 − t1

s2 + t1

Figure B.18: Configurations with 3 groups of adopters.

By Proposition 2, in both of these cases we know that the optimal choice would
be to eliminate one of the two groups of initial adopters. Hence, we would like
to choose s2 and t2 (as functions of s1 and t1 respectively), in such a way that
the probability of diffusion is maximized in both of these cases. Recalling that
s1 ≤ s2 ≤ s3 and t1 ≤ t2 ≤ t3, we see that this can be achieved if s2 = s1 and
t2 = t1, where the optimal s1 and t1 remained to be determined. Notice that, by
construction, s3 = s− s1 − s2 and t3 = t− t1 − t2.
So now, we can rewrite the probability of diffusion as a function of s1 and t1 only.

PB(s1, t1|s, t, n, r,m = 3) =
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Like before we study the monotonicity of the function with respect to s1 and t1
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Hence the optimal choice is s1 = s2 = 0 and s3 = s.

36



Analogously for t1 we get the following:
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Notice that 2r2(
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2
) − r

s1+t1
2 + 1 = r2(

s1+t1
2

) + r
s1+t1

2 + (r
s1+t1

2 − 1)2 which is
strictly positive for s1 and t1 positive. Hence, PB is always decreasing in t1, and
given that t1 = t2 the optimal choice is t1 = t2 = 0 and t3 = t. This concludes the
argument for the case where m = 3. We will generalize this argument by induction.

Formally, given that the argument holds for m = 3, it suffices to show that if it
holds for m = k − 1 ≥ 3 then it holds as well for m = k.

At the beginning of the process we care only about the two smallest groups of
each type s1 and t1 and the system fluctuates as in the previous cases until one of
the two disappears. Figure A.18 shows the possible configurations after the disap-
pearance of either s1 or t1. The location of the groups around the network comes
without loss of generality.

Given that the argument holds for k−1 groups then we know that s1 = · · · = sk−1

and t1 = · · · = tk−1. Therefore, we only need to find the optimal s1 and t1. The
probability of diffusion becomes:
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r

t1+s1
2 − r

s1
2

r
t1+s1

2 − 1

r
n
2
−r

n−t−ks1
2

r
n
2 − 1

+
r

s1
2 − 1

r
t1+s1

2 − 1

r
n
2 − r

s+kt1
2

r
n
2 − 1
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after success

t3 + s1

s2 − s1

t1 + t2 + 2s1

sm − s1

tm + s1

s4 − s1
t4 + s1

s3 − s1

after failure
t3 − t1

s1 + s2 + 2t1

t2 − t1
sm + s1

tm − t1

s4 + t1 t4 − t1

s3 + s1

Figure B.19: Configurations after the disappearance of s1 or t1 with m groups.

By some calculations which are omitted because they are identical to the case
where m = 3, we get:
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and equality holds only if s1 = t1 = 0. For the argument to hold we need
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2 − (k − 1) to be negative. So, let x = r
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2 and take the function
f(x) = kx − xk − (k − 1) for some k ≥ 3 and x ≥ 0. Now, df
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= k − kxk−1 is

positive if x < 1 and negative if x > 1, hence f attains global max at x = 1 equal to

f(1) = k−1k− (k−1) = 0, hence f(x) < 0 for all x 6= 1. Now given that x = r
s1+t1

2 ,
with r > 1 and s1, t1 ≥ 0 the function is always strictly negative and becomes equal
to zero only when s1 = t1 = 0. So, the optimal choice is s1 = · · · = sk−1 = 0 and
sk = s.

Analogously for t1 we get that:
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again equality holds only when s1 = t1 = 0 and to ensure the result we need that
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case they are both equal to zero. As before, let x = r
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2 and define the function
g(x) = kxk−1−(k−1)xk−1. Then df
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= k(k−1)xk−2−k(k−1)xk−1 which is strictly

negative for x > 1 and strictly positive for x < 1, then g attains unique maximum

at x = 1 equal to g(1) = 0. So g(x) < 0 for all x 6= 1. Given again that x = r
s1+t1

2

then x = 1 only if s1 = t1 = 0. So again the optimal choices are t1 = · · · = tk−1 = 0
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and tk = t, which completes the inductive argument.

Hence, when r > 1, for any possible number of groups m, the optimal choice is
to concentrate all the initial adopters in one group, i.e. s1 = · · · = sm−1 = 0 and
sm = s, as well as t1 = · · · = tm−1 = 0 and tm = t.

Now, we turn our attention towards the case where r < 1. We tackle this case
in a different way. Namely, we construct an upper bound for the probability of
successful convergence and we show that for the same configurations that this upper
bound is maximized, the actual probability is equal to this upper bound. Hence this
has to be the maximum value of the probability as well.

In order to proceed, we need to construct the upper bound for the value of the
probability of successful diffusion of action B. We solve it first for t < s and then
for s < t.

Let t < s, then allowing for the existence of m = t
2

groups, the network will
have the form of the following figure. Notice that, the fact that si can have size
equal to zero, allows us to construct any possible configuration. For example, in the
following figure (Figure A.19), if s1 = 0 then the two groups next to s1 merge to one
group with four agents. According to this structure, the network will initially follow
a random walk with s1

2
black steps and one white. By Lemma 1, the probability of

success in this first walk is equal to r
s1
2 +1−r

s1
2

r
s1
2 +1−1

.

In Figure A.19, we see as well, how the network will look like if the first walk is
successful. Unsuccessful absorption in the first walk leads to the disappearance of
action B from the network, because all t’s have the same size.

Initial Configuration

tk = 2

s1
t1 = 2

tm = 2 sm

s2

After Success
2 + s1

4 + 2s1

sm − s1

s2 − s1

Figure B.20: General Initial Configuration and Result After Success, for t < s.

After success, the network will move according to the following random walk.

The probability of success in this walk is equal to r
s2
2 +1−r

s2−s1
2

r
s2
2 +1−1

.

In Figure A.20, we depict the two possible configurations that arise after success
or failure in the second walk. It is important to notice that the probability of
successful diffusion after two successes is obviously weakly lower than one and it is
strictly lower than one, as long as sm − s1 > 2, where sm is the size of the largest
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. . .. . . . . .. . .

1− p p

s1
2 + 1 s2−s1

2

group and s1 is the size of the smallest one.

Failure After Success

2 + s1

Success After Success

s3 − s1

sm − s2

Figure B.21: Resulting Configurations given Failure or Success in the second random walk, given
successful first walk, for t < s

Hence, we can construct the probability of successful diffusion, which is equal to:

PB(·) =
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where PB(·|s, s) stands for the probability of diffusion of B after two successes
in the first two random walks. Given that PB(·|s, s) ≤ 1 we get the following upper

bound of PB, denoted by P̃B(·), which is equal to:
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]
Before performing any calculations it is important to simplify the expression of

P̃B(·). Specifically,
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Notice that s2 = s − s1 − s3 − · · · − sm, hence ∂s2
∂s1

= −1. And now we can

differentiate P̃B(·) with respect to s1.
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> 0, for r < 1.

The fact that the term 2r
n−s1

2
−1 − r

n+s2−s1
2 − 1 is always negative is not obvious

and is proven here. Substituting s2, we can rewrite it as:

r−s1−1
[
2r

n+s1
2 − r

n+s−s3−···−sm
2

+1 − r2
s1
2

+1
]

If we denote x = r
s1
2 then we get a polynomial of degree two with respect to x.

The discriminant of this polynomial is equal to:

∆ = 4r2n
2−4r

n
2

+
s−s3−···−sm

2
+2 = 4r

n
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(
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s−s3−···−sm
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(
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n
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s1+s2
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Because r < 1 and n
2
> s1+s2

2
+ 2 for m ≥ 3. For m = 2 this holds with equality,

but we have already analyzed this case. So, this polynomial has no roots and given
that the factor of the quadratic term is negative (−r), we can conclude that for r < 1

the polynomial is always negative. Therefore, P̃B(·) takes its maximum value when
s1 is maximized. For this value of s1, the real probability of successful diffusion is
equal to this upper bound as long as sm − s1 ≤ 2. Therefore, remembering that
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P̃B(·) ≥ PB(·) always, it has to be that PB(·) is also maximized for when both s1 is
maximized and sm − s1 ≤ 2.

In case m divides s exactly, then the maximum of s1 is equal to s
m

and the op-
timal choice is s1 = · · · = sm = s

m
. If m does not divide s exactly, then we have

s = mq + d, where q is the quotient of the division and d is the remainder. In this
case, PB is maximized if we have m − d

2
groups of size q = s−d

m
and d

2
groups with

size q + 2 = s−d
m

+ 2, so again the difference in the size of any two groups is no
larger than four. We still remain to describe what is the optimal position of the
groups that have the two additional agents. The result will become apparent after
we analyze the case for t > s.

Now, we prove the result for t > s in a completely analogous way. In this
case, the initial configuration is as in the left part of Figure A.21. A success in
the first random walk leads to the diffusion of action B, while a failure leads to a
configuration as in the right part of the same figure. The probability of success in the

first walk is r
t1
2 +1−r

r
t1
2 +1−1

. Figure A.22 shows the possible configurations after successful or

unsuccessful absorption in the second random walk, given unsuccessful absorption in

the first one. The probability of success in the second walk is r
t2
2 +1−r

t1
2 +1

r
t2
2 +1−1

. Therefore,

we can construct again an upper bound for the probability of successful diffusion,
equal to:

P̃B(·) =
r

t1
2

+1 − r
r

t1
2

+1 − 1
+

r − 1

r
t1
2

+1 − 1

[
r

t2
2

+1 − r
t1
2

r
t2
2

+1 − 1

r
n
2 − r

t1
2
−1

r
n
2 − 1

+
r

t1
2 − 1

r
t2
2

+1 − 1

]

Initial Configuration

sk = 2

t1
s1 = 2

sm = 2 tm

t2

After Failure
2 + t1

4 + t1

tm − t1

t2 − t1

Figure B.22: General Initial Configuration and Result After Success, for t > s.

This expression can be transformed in a similar manner as before:
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Success After Failure

2 + t1

Failure After Failure

t3 − t1

tm − t2

Figure B.23: Resulting configurations after success or failure in the second random walk, given
failure in the first random walk, for t > s

P̃B(·) =
r

t1
2

+1 − r
r

t1
2

+1 − 1
+

r − 1

r
t1
2

+1 − 1

[
r

t2
2

+1 − r
t1
2

r
t2
2

+1 − 1

r
n
2 − r

t1
2
−1

r
n
2 − 1

+
r

t1
2 − 1

r
t2
2

+1 − 1

]
=

=
1

rn/2 − 1

[
(r

t2
2

+1 − 1)(rn/2 − 1)− (r
t2
2

+1 − r
t1
2

+1)(r − 1)

r
t2
2

+1 − 1

]
=

=
1

rn/2 − 1

[
rn/2 − r + (r − 1)

r
t1
2

+1 − 1

r
t2
2

+1 − 1

]

Notice again, that the upper bound becomes equal to the actual probability if
tm − t1 ≤ 2, where tm is the size of the largest group of type B and t1 the smallest
one.

Now, we can differentiate the expression with respect to t1, remembering that
t2 = t− t1 − t3 − · · · − tm:

∂P̃B(·)
∂t1

=
(r − 1) ln r

2(rn/2 − 1)

[
r

t1
2

+1(r
t2
2

+1 − 1) + (r
t1
2

+1 − 1)r
t2
2

+1

(r
t2
2

+1 − 1)2

]
> 0, for all r < 1.

The upper bound is increasing in t1. For this value of t1, the real probability of
successful diffusion is equal to this upper bound as long as tm − t1 ≤ 2. Therefore,

remembering that P̃B(·) ≥ PB(·) always, it has to be that PB(·) is also maximized
for when both t1 is maximized and tm − t1 ≤ 2.

In case m divides s exactly, then the maximum of t1 is equal to t
m

and the
optimal choice is t1 = · · · = tm = t

m
. If m does not divide t exactly, then we have

t = mq + d, where q is the quotient of the division and d is the remainder. In this
case, PB is maximized if we have m − d

2
groups of size q = t−d

m
and d

2
groups with

size q+ 2 = t−d
m

+ 2, so again the difference in the size of any two groups is no larger
than four.
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To complete the proof we need to explain the optimal location of the groups
which have the two additional agents. For the case where t < s we need to notice
that after successful absorption in the first random walk, now the network consists
of d

2
groups of each type, where all the groups of type A have exactly two agents.

Hence, we fall into the analysis of the case where t > s, where we would like the
groups of type B to be as equal as possible. In order to succeed this we should have
located the groups of type A with more agents as symmetrically as possible around
the network.

An example can be illustrated in Figure A.23. We have targeted 14 out of 48
agents, having seven groups of two agents of type B, three groups of six agents and
four groups of four agents of type A. After successful absorption in the first walk,
there will be left only three groups of two agents of type A, which we want to be
located as symmetrically as possible. For this reason we do not put two groups of
six agents one next to the other in the initial configuration. However, notice that
we cannot make the configuration arising after success totally symmetric, due to the
restriction on the sizes of the groups. But again we want it to be as symmetric as
possible, by maximizing the smallest group and minimizing its difference with the
largest one. The argument for the case where t > s is completely analogous.

Initial Configuration
q

q + 2q

q + 2

q

q + 2

q

After Success

4 + 2q

4 + 2q

6 + 4q

Figure B.24: Optimal Initial Configuration with s = mq + d, for s > t.

Proof of Proposition 4- Decreasing Returns to Scale. By Theorem 1, the op-
timal targeting strategy of the planner is to concentrate all initial adopters in one
group. Therefore the expected profits’ function has the following form, which we
can differentiate twice:

EΠ(t) = π
r

n
2 − r n−t

2

r
n
2 − 1

− c(t)⇒ d2EΠ

dt2
= − π(ln r)2

4(r
n
2 − 1)

r
n−t
2 − c′′(t) < 0

Therefore, the expected profits’ function is strictly concave in t and hence it has
decreasing returns to scale in t.
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If c(t) = kt, where k ∈ R+ is a constant then it is sufficient to see when the
following equation has a solution.

dEΠ

dt
=

π ln r

2(r
n
2 − 1)

r
n−t
2 − k = 0

It is apparent that this equation has a solution if and only if dEΠ
dt
|t=0 < 0 and

dEΠ
dt
|t=n > 0, which are satisfied when π ln r

2(r
n
2 −1)

< k < π ln r

2(r
n
2 −1)

r
n
2 . One can even

calculate the exact value of t which will be either the first integer to the right, or
the first integer to the left of:

t∗ = 2
ln( π

2c
) + ln(r

n
2 ) + ln(ln r)− ln(r

n
2 − 1)

ln r

If k is larger than the upper bound then the derivative is always negative, and
the optimal solution is t = 0. If k is lower than the lower bound then the derivative
is always positive and the optimal solution is t = n.

Proof of Remark 1. 1) τ strictly increasing in n:

∂τ

∂n
=

1

2p− 1

[
−(rs/2 − 1)

2

(rn/2 − 1)− n ln r
2
rn/2

(rn/2 − 1)2

]
= − (rs/2 − 1)

2(2p− 1)(rn/2 − 1)2

[
rn/2 − 1− n ln r

2
rn/2

]
> 0

because, for r > 1, rn/2 − 1 − n ln r
2
rn/2 is strictly decreasing in r. For every n

its maximum is attained for r = 1 and is equal to zero. Hence, the expression is
negative for all r > 1. All the other terms are strictly positive, so the derivative is
strictly positive and the mean waiting time is strictly increasing in n.

2) τ strictly concave in s:

∂τ

∂s
=

1

2p− 1

[
1

2
− n

4

r
s
2 ln r

(r
n
2 − 1)

]
⇒ ∂2τ

∂s2
= − n(ln r)2r

s
2

8(2p− 1)(r
n
2 − 1)

< 0

.
The other argument follows directly because t = n− s⇒ ∂2τ

∂s2
= ∂2τ

∂t2
.

3) τ has interior maximum in t, therefore it has interior maximum in s:
We have already found that τ is strictly concave. Hence, we only need to ensure

that there exists s∗ such that ∂τ
∂s

= 0.

At s = 0, ∂τ
∂s

= 1
2p−1

[
1
2
− n

4
ln r

(r
n
2 −1)

]
> 0. This holds because n ln r

2(r
n
2 −1)

< 1 ⇔
n ln r − 2r

n
2 + 2 < 0, which is true for r ≥ 1 because this latest expression, with

respect to r, attains a unique maximum equal to zero for r = 1. Hence, it is strictly
negative for all r > 1.

At s = n, ∂τ
∂s

= 1
2p−1

[
1
2
− n

4
r
n
2 ln r

(r
n
2 −1)

]
< 0. This holds because nr

n
2 ln r

2(r
n
2 −1)

> 1 ⇔
nr

n
2 ln r − 2r

n
2 + 2 > 0, which is true because this latest expression attains unique

minimum equal to zero for r = 1. Hence, it is strictly positive for all r > 1.
Using the two previous results and the fact that the derivative is continuous in

(0, n) for all r > 1, we can apply Bolzano theorem and conclude that there exists
some s∗ such that the derivative becomes equal to zero.
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4)

lim
r→1+

s∗ = 2 lim
r→1+

ln
(
r

n
2 − 1

)
− ln (ln r)− ln

(
n
2

)
ln r

= 2 lim
r→1+

n
2
r

n
2 ln r − r n

2 + 1

ln r(r
n
2 − 1)

=

= 2 lim
r→1+

n2

4
r

n
2 ln r

r
n
2 − 1 + n

2
r

n
2 ln r

=
n2

2
lim
r→1+

n
2

ln r + 1

n+ n2

4
ln r

=
n

2

lim
r→1+

τ(t=n
2
,s=n

2
) = lim

r→1+

1

2p− 1

[
n

4
− n

2

1

r
n
4 + 1

]
0
0= lim
p→ 1

2

+

n2r
n
4
−1

16(r
n
4 + 1)2

∂r

∂p
=
n2

16

5)

lim
r→+∞

s∗ = 2 lim
r→+∞

ln (r
n
2 − 1)− ln (ln r)− ln

(
n
2

)
ln r

= 2 lim
r→+∞

[
nr

n
2

2(r
n
2 − 1)

− 1

ln r

]
= n

lim
r→+∞

τ(t=2,s=n−2) = lim
r→+∞

1

2p− 1

[
n

2
− 1− n

2

r
n
2
−1 − 1

r
n
2 − 1

]
=
n

2
− 1

Proof of Remark 2. 1)Call s′ = s
n−s and n′ = n

n−s and notice that ∂s′

∂n
= ∂n′

∂n
=

− s
(n−s)2 . Now,

∂τ

∂n
=

1

2p− 1

[
∂s′

∂n
− ∂n′

∂n

(
rs
′ − 1

rn′ − 1

)
− n′

∂s′

∂n
rs
′
ln r(rn

′ − 1)− ∂n′

∂n
rn
′
ln r(rs

′ − 1)

(rn′ − 1)2

]
=

= − s(rn
′ − rs′)

(2p− 1)(n− s)2(rn′ − 1)2
(rn

′ − 1− n′ ln r) < 0

Given that the last term is positive for r < 1.
2) Here we use again s′ and n′ and notice now that ∂s′

∂s
= ∂n′

∂s
= n

(n−s)2 .

The calculation is identical as in part (1) and we get that:

∂τ

∂s
=

n(rn
′ − rs′)

(2p− 1)(n− s)2(rn′ − 1)2
(rn

′ − 1− n′ ln r) > 0

3) For r → 0+ the calculation is straightforward. For r → 1− we use the previous
definition of s′ and n′. It is easier to calculate the limit with respect to p as it goes
to 1

2
, and applying three times L’Hopital’s rule we get

lim
p→ 1

2

τ = −n
′

2

1
(1/2)2

[s′n′(s′ − n′)]
2(1/2)2n′2 1

(1/2)2

= s′ =
s

n− s

4) The first result is straightforward. For the second one we use again the definition
of s′ and n′. Notice that s′ = n′ − 1 and take the limit with respect to n′. When
s→ n, then n′ →∞. Hence,
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lim
s→n

τ = lim
n′→∞

1

2p− 1

(
n′ − 1− n′ r

n′−1 − 1

rn′ − 1

)
= lim

n′→∞

1

2p− 1

[
n′
rn
′
(r − 1)

rn′ − 1
− 1

]
= 0

Because,

lim
n′→∞

n′rn
′−1

rn′ − 1
= lim

n′→∞

n′

r − r1−n′ = lim
n′→∞

1

(1− n′)r−n′
= 0

Proof of Remark 3. 1)

∂τ

∂n
=

1

2p− 1

(
−r − 1

s

(r
n
s
−1)−n

s
r
n
s ln r

(r
n
s − 1)2

)
= − r − 1

s(2p− 1)(r
n
s − 1)2

(
r

n
s − 1− n

s
r

n
s ln r

)
> 0

Because the last term is negative for all n
s
> 0.

2)
∂τ

∂s
=
n(r − 1)(r

n
s − 1− n

s
r

n
s ln r)

(2p− 1)s2(r
n
s − 1)2

< 0

3) For r → 0 the proof is straightforward by substitution. For r → 1 is easier to
calculate the limit with respect to p, as p→ 1

2
and by applying three times L’Hopital

rule we get:

lim
r→ 1

2

−

1

2p− 1

(
1− n

s

(r − 1)

(r
n
s − 1)

)
= − n

2s

n
s
(n
s
− 1)− n

s
(n
s
− 1) + n

s
(n
s
− 1)(n

s
− 2)

2(1
2
)2(n

s
)2

=
n

s
−1 =

t

s

4) Remembering that r = p
1−p , both proofs are straightforward by substitution.

Proof of Proposition 5.

∂τ( t
2m

, s
2m

)

∂m
=

1

2p− 1

− s

2m2
+

n

2m2

(
r

s
2m − 1

r
n
2m − 1

)
− n

2m

∂
(
r

s
2m−1

r
n
2m−1

)
∂m

 < 0 for all r 6= 1

Which holds because of the following:

• The first part of the expression inside the brackets is

− s

2m2
+

n

2m2

(
r

s
2m − 1

r
n
2m − 1

)
=
r

s
2m − 1

m

(
n

2m

1

r
n
2m − 1

− s

2m

1

r
s

2m − 1

){
< 0 if r > 1
> 0 if r < 1

To show this we need to define the function f(x) = x
rx−1

. Its derivative is
df
dx

= rx−1−rxx ln r
(rx−1)2

, whose denominator is positive for all r 6= 1, whereas the

nominator is negative, because ∂(rx−1−rxx ln r)
∂r

= −x2rx−1 ln r which is positive
for r < 1 and negative for r > 1, obtaining a maximum equal to zero for
r = 1. Hence, f is strictly decreasing in x for all r 6= 1, which makes the
expression inside the parenthesis always negative (because n

2m
> s

2m
) and the

sign depending only on r
s

2m − 1 which is positive for r > 1 and negative for
r < 1.
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• Now, to find the sign of − n
2m

∂

(
r

s
2m−1

r
n
2m−1

)
∂m

, notice that r
s

2m−1

r
n
2m−1

= 1 − r
n
2m−r

s
2m

r
n
2m−1

,

hence:

− n

2m

∂
(
r

s
2m−1

r
n
2m−1

)
∂m

=
n

2m

∂
(
r

n
2m−r

s
2m

r
n
2m−1

)
∂m

{
< 0 if r > 1
> 0 if r < 1

which holds by Proposition 1.

Therefore the whole expression inside the brackets is negative for r > 1 and
positive for r < 1. This expression is multiplied by (2p− 1) which positive for r > 1
and negative for r < 1. This makes the derivative of τ with respect to m always
negative.

Proof of Proposition 6. Despite being interesting only in integer values of s1, s2, t
and n, this is a well-behaving smooth function for all r 6= 1. Hence, we can differ-
entiate it with respect to s1.

dP

ds1

=
rn
[
r

t
2 − 1

]
rn − 1

(rs1 ln r + r−s1−t ln r)
(
rs1+ t

2 − 1
)
− (rs1 − r−s1−t)

(
rs1+ t

2 ln r
)

(
rs1+ t

2 − 1
)2

 =

=
rn
(
r

t
2 − 1

)
ln r

(rn − 1)
(
rs1+ t

2 − 1
)2

[
r2s1+ t

2 + r−
t
2 − rs1 − r−s1−t − r2s1+ t

2 + r−
t
2

]
=

=
rn
(
r

t
2 − 1

)
ln r

(rn − 1)
(
rs1+ t

2 − 1
)2

(
2r−

t
2 − rs1 − r−s1−t

)
=

=
rn
(
r

t
2 − 1

)
ln r

(rn − 1)
(
rs1+ t

2 − 1
)2

[
−rs1

(
r2s1 − 2rs1−

t
2 + r−t

)]
=

= −
rn
(
r

t
2 − 1

)
ln r

(rn − 1)
(
rs1+ t

2 − 1
)2

(
rs1 − r−

t
2

)2

r−s1

If r > 1, then dP
ds1

< 0, so the optimal targeting decision is s1 = 0, i.e. target

one corner. Whilst, if r < 1, then dP
ds1

> 0 and recalling that s1 ≤ s2, the optimal
decision is s1 = s2 for s even, or s1 = s2 − 1 for s odd, i.e. to target the middle of
the line. See also the following figures (Figure A.24).

For the case of r = 1, it is apparent that the P (B|·) does not depend on s1,
hence every decision yields the same result.
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n

s
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Figure B.25: Optimal choice for p > 1/2 (above) and for p < 1/2 (below)

Proof of Proposition 7.

dP

ds1

=
rn
(
r

t+1
2 − 1

)
rn − 1

(rs1 ln r + r−s1−t ln r)
(
rs1+ t+1

2 − 1
)
− (rs1 − r−s1−t) rs1+ t+1

2 ln r(
rs1+ t+1

2 − 1
)2

 =

=
rn
(
r

t+1
2 − 1

)
ln r

(rn − 1)
(
rs1+ t+1

2 − 1
)2

[
r2s1+ t+1

2 + r
−t+1

2 − rs1 − r−s1−t − r2s1+ t+1
2 + r

−t+1
2

]
=

=
rn
(
r

t+1
2 − 1

)
ln r

(rn − 1)
(
rs1+ t+1

2 − 1
)2

(
2r

1−t
2 − rs1 − r−s1−t

)

So, the sign of derivative will depend on the sign of 2r
1−t
2 − rs1 − r−s1−t.

For r < 1, we can rewrite it as r−s1(2r
1
2 rs1r

−t
2 − r2s1 − r−t) which is negative

because:
r < 1⇒ r

1
2 < 1⇒ 2r

1
2 rs1r−

t
2 < rs1r−

t
2 ⇒

⇒ 2r
1
2 rs1r−

t
2 − r2s1 − r−t < rs1r−

t
2 − r2s1 − r−t ⇒

⇒ 2r
1
2 rs1r−

t
2 − r2s1 − r−t < −

(
rs1 − r−

t
2

)2

< 0

So in general for r < 1 we get dP
ds1

> 0, hence, as before, the optimal decision is
s1 = s2 for s even, or s1 = s2 − 1 for s odd, i.e. to target the middle of the line.

For r > 1,we can rewrite it as r−s1r−t
(

2rs1r
1+t
2 − r2s1rt − 1

)
and naming x = rs1

the content of the parenthesis becomes a polynomial of degree 2, namely −[rtx2 −
2r

1+t
2 x+ 1]. Let us first calculate the roots of the polynomial which are
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x1,2 =
2r

1+t
2 ±

√
4r1+t − 4rt

2rt
= r

1−t
2 ± (r − 1)

1
2 r−

t
2

⇒ x1 =
[
r

1
2 − (r − 1)

1
2

]
r−

t
2 and

⇒ x2 =
[
r

1
2 + (r − 1)

1
2

]
r−

t
2

−
(
rtx2 − 2r

1+t
2 x+ 1

)
≥ 0⇔

[
r

1
2 − (r − 1)

1
2

]
r−

t
2 ≤ rs1 ≤

[
r

1
2 + (r − 1)

1
2

]
r−

t
2

⇔ r
1
2 − (r − 1)

1
2 ≤ rs1+ t

2 ≤ r
1
2 + (r − 1)

1
2

⇔ ln rs1 ≤ ln

(
r

1
2 − (r − 1)

1
2

r
t
2

)

⇔ s1 ≤
ln
[
r

1
2 + (r − 1)

1
2

]
ln r

− t

2
= g(r, t)

The left hand-side is always satisfied because r
1
2 − (r − 1)

1
2 < r

1
2 < rs1+ t

2 .

So, for s1 ≤
ln
[
r
1
2 +(r−1)

1
2

]
ln r

− t
2

= g(r, t) we find that dP
ds1

> 0, while for s1 ≤
ln
[
r
1
2 +(r−1)

1
2

]
ln r

− t
2

= g(r, t) we find dP
ds1

< 0, hence the function has a global maximum

at s1 = ln[r1/2+(r−1)1/2]
ln r

− t
2

= g(r, t), however, notice that in our problem s1 has
to be an integer, so in order to find the maximum we need to compare the two
closest integers to s1, namely bg(r, t)c and dg(r, t)e. If PB(s1 = bg(r, t)c) > PB(s1 =
dg(r, t)e) then s∗1 = bg(r, t)c and vice versa.

For r = 1, we have that PB(s1; s, t, n, r = 1) = (t+1)(t+2s1)
(t+2s1+1)n

so,

dP

ds1

=
t+ 1

n

2(2s1 + t+ 1)− 2(2s1 + t)

(2s1 + t+ 1)2
=

2(t+ 1)

n(2s1 + t+ 1)2
> 0

Hence, the optimal is to target the middle.

Proof of Corollary 1. The proof of Corollary 1 comes directly after the proof of
the following lemma (Lemma 4).

Lemma 4. The function f(r) = ln[r
1
2 +(r−1)

1
2 ]

ln r
has the following properties.

1. lim
r→1+

f(r) = +∞,

2. lim
r→+∞

f(r) =
1

2
,

3. f is strictly decreasing in r,
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Proof of Lemma 4.

(1) lim
r→1+

f (r) = lim
r→1+

ln
[
r

1
2 + (r − 1)

1
2

]
ln r

= lim
r→1+

1

r
1
2 +(r−1)

1
2

(
1

2r
1
2

+ 1

2(r−1)
1
2

)
1
r

(L’Hopital)

= lim
r→1+
{ r

2r
1
2

[
r

1
2 + (r − 1)

1
2

] +
r

2 (r − 1)
1
2

[
r

1
2 + (r − 1)

1
2

]}
= lim

r→1+

r + r{2r 1
2

[
r

1
2 + (r − 1)

1
2

]
}

4r
1
2 (r − 1)

1
2

[
r

1
2 + (r − 1)

1
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because both [ln r] and [2 ln 2 (r − 1)] are increasing functions, equal to zero for r = 1
but the second one increases at a higher rate, because:

d (ln r)

dr
=

1

r
< 2 ln 2 =

d [2 ln 2 (r − 1)]

dr
.
Hence, f is decreasing in r.
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Appendix C. Figures
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Figure C.26: τ(p) for r > 1, n = 200 and (i)t = 190, (ii)t = 100, (iii)t = 40, (iv)t = 10
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Figure C.27: dτ(p)
dp for r > 1, n = 200 and (i)t = 190, (ii)t = 100, (iii)t = 40, (iv)t = 10
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Figure C.28: τ(p) for r < 1, t < s, n = 200 and (i)t = 98, (ii)t = 70, (iii)t = 50, (iv)t = 10
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Figure C.29: dτ(p)
dp for r < 1, t < s, n = 200 and (i)t = 98, (ii)t = 70, (iii)t = 50, (iv)t = 10
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Figure C.30: τ(p) for r < 1, t > s, n = 200 and (i)t = 198, (ii)t = 180, (iii)t = 150, (iv)t = 102
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Figure C.31: dτ(p)
dp for r < 1, t > s, n = 200 and (i)t = 198, (ii)t = 180, (iii)t = 150, (iv)t = 102
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Figure C.32: τ(m) for r = 0.2, n = 200 and (i)t = 180, (ii)t = 100, (iii)t = 50, (iv)t = 4

2 4 6 8 10
Groups

50

100

150

200

250

300

Time

0 10 20 30 40 50
Groups

10

20

30

40

50

60

Time

5 10 15 20 25
Groups

50

100

150

Time

1.2 1.4 1.6 1.8 2.0
Groups

50

100

150

200

Time

Figure C.33: τ(m) for r = 0.501, n = 200 and (i)t = 180, (ii)t = 100, (iii)t = 50, (iv)t = 4

56



References

Alós-Ferrer, C. & Weidenholzer, S. (2008). Contagion and efficiency. Jour-
nal of Economic Theory 143, 251–274.

Apesteguia, J., Huck, S. & Oechssler, J. (2007). Imitation – Theory and
experimental evidence. Journal of Economic Theory 136, 217–235.

Bagnoli, F., Boccara, N. & Rechtman, R. (2001). Nature of phase transition
in a probabilistic cellular automaton with two absorbing states. Physical Review
E 63(4), 046116.

Bala, V. & Goyal, S. (1998). Learning from Neighbours. Review of Economic
Studies 65, 595–621.

Ballester,C., Calvo-Armengol, A. & Zenou, Y. (2006). Who’s who in net-
works. Wanted: The key player Econometrica 74(5), 1403–1417.

Banerjee, A. (1992). A Simple Model of Herd Behavior. Quarterly Journal of
Economics 107, 797–817.

Banerjee, A. & Fudenberg, D. (2004). Word-of-mouth learning. Games and
Economic Behavior 46, 1–22.

Bigoni, M. & Fort, M. (2013). Information and Learning in Oligopoly. IZA
Discussion Paper No. 7125.

Chatterjee, K. & Dutta, B. (2011). Credibility and Strategic Learning in Net-
works. Warwick Economic Research Papers no.972.

Chatterjee, K. & Xu, S.H. (2004). Technology diffusion by learning from neigh-
bors. Advances in Applied Probability 36(2), 355–376.

Conley, T. & Udry, C. (2010). Learning About a New Technology: Pineapple
in Ghana. American Economic Review 100, 35–69.

Domingos, P. and Richardson, M. (2001). Mining the network value of cus-
tomers. In Proceedings of the Seventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 57–66.

Duersch, P., Oechssler, J. and Schipper, B.C. (2012). Unbeatable Imita-
tion, Games and Economic Behavior 76(1), 88–96.

Ellison, G. & Fudenberg, D. (1993). Rules of Thumb for Social Learning.
Journal of Political Economy 101, 612–644.

——– (1995). Word-of-mouth communication and social learning. Quarterly Journal
of Economics 109, 93–125.

Eshel, I., Samuelson, L. & Shaked A. (1998). Altruists, egoists and hooligans
in a local interaction model. American Economic Review 88, 157–179.

57



Fosco, C. & Mengel, F. (2011). Cooperation through imitation and exclusion
in networks. Journal of Economic Dynamics and Control 35(5), 641–658.

Gale, D. & Kariv, S. (2003) Bayesian Learning in Social Networks. Games and
Economic Behavior 45, 329–346.

Galeotti, A. & Ghiglino, C. & Squintani, F. (2011). Strategic Information
Transmission in Networks. Working Paper.

Galeotti, A. & Goyal, S. (2009). Influencing the influencers: a theory of strate-
gic diffusion. RAND Journal of Economics 40(3), 509–532.

Gigerenzer, G. & Selten, R. (2002). Bounded Rationality: The Adaptive Tool-
box. The MIT Press.

Kemeny, J.G. & Snell, J.L. (1960). Finite Markov Chains. Springer.

Kempe, D., Kleinberg, J. and Tardos, E. (2003). Maximizing the Spread
of Influence in a Social Network. In Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 137–146,
New York, NY.

Kempe, D., Kleinberg, J. and Tardos, E. (2005). Influential nodes in a dif-
fusion model for social networks. In ICALP 2005: Proceedings of the 32nd Inter-
national Colloquium on Automata, Languages and Programming, 1127–1138.

Kirby, J. & Marsden, P. (2006). Connected marketing. Elsevier.

Jackson, M.O. (2008). Social and Economic Networks. Princeton University Press.

Ortuño, I. (1993), Multiple equilibria, local externalities and complexity, mimeo.

Richardson, M. and Domingos, P. (2002). Mining Knowledge–Sharing Sites
for Viral Martketing. In Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 61–70. Edmonton, Canada
2002.
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