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Abstract

In this paper, we propose a new noncausal vector autoregressive (VAR) model for
non-Gaussian time series. The assumption of non-Gaussianity is needed for reasons
of identi�ability. Assuming that the error distribution belongs to a fairly general class
of elliptical distributions, we develop an asymptotic theory of maximum likelihood
estimation and statistical inference. We argue that allowing for noncausality is of
importance in empirical economic research which currently uses only conventional
causal VAR models. Indeed, if noncausality is incorrectly ignored, the use of a causal
VAR model may yield suboptimal forecasts and misleading economic interpretations.
This is emphasized in the paper by noting that noncausality is closely related to the
notion of nonfundamentalness, under which structural economic shocks cannot be
recovered from an estimated causal VAR model. As detecting nonfundamentalness
is therefore of great importance, we propose a procedure for discriminating between
causality and noncausality that can be seen as a test of nonfundamentalness. The
methods are illustrated with applications to �scal foresight and the term structure of
interest rates.
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1 Introduction

In economic and �nancial applications, the vector autoregressive (VAR) model is

usually considered as an atheoretical summary of the dynamics of the included vari-

ables. Especially when the model is used for forecasting its error term is interpreted

as a forecast error that should be an independent white noise process in order for

the model to capture all relevant dynamic dependencies. Typically, the model is

deemed adequate if its errors are not serially correlated. However, unless the errors

are Gaussian, this is not su¢ cient to guarantee independence and, even in the ab-

sence of serial correlation, it may be possible to predict the error term by lagged

values of the considered variables. This is a relevant point because diagnostic checks

in empirical analyses often suggest non-Gaussian residuals and the use of a Gaussian

likelihood has been justi�ed by properties of quasi maximum likelihood (ML) estima-

tion. A further point is that, to the best of our knowledge, only causal VAR models

have previously been considered although noncausal autoregressions, which explicitly

allow for the aforementioned predictability of the error term, might provide a correct

VAR speci�cation (for noncausal (univariate) autoregressions, see, e.g., Brockwell

and Davis (1987, Chapter 3) or Rosenblatt (2000)). These two issues are actually

connected as distinguishing between causality and noncausality is not possible under

Gaussianity. Hence, in order to assess the nature of causality, allowance must be made

for deviations from Gaussianity when they are backed up by the data. If noncausality

indeed is present, con�ning to causal VAR models may lead to suboptimal forecasts

and false economic interpretations.

Noncausality is closely related to nonfundamentalness that arises, in particular,

in rational expectations models. The issue of nonfundamentalness was probably �rst

pointed out by Hansen and Sargent (1980, 1991), who showed that in its presence

structural economic shocks cannot be recovered from an estimated causal VAR model.

Subsequently, a relatively large literature has explored nonfundamentalness in various

applications; for a recent survey, see Alessi et al. (2008).
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To de�ne nonfundamentalness, let us consider a dynamic rational expectations

model whose solution is typically a stationary stochastic vector process yt that can

be expressed as a vector autoregression. Thus, an econometrician considers the spec-

i�cation

D(B)yt = �t; (1)

where the errors �t are interpreted as (functions of) the random shocks to agents�

information set and D(B) =
P1

j=0DjB
j is a potentially in�nite-order lag polynomial

in the backward shift operator B (i.e., Bkyt = yt�k for k = 0;�1; :::). In the econo-

metric analysis, �t is usually assumed to be a sequence of independent and identically

distributed random vectors with zero mean and positive de�nite covariance matrix,

and the roots of detD(z), the determinant of D(z), are assumed to lie outside the

unit disc. The latter condition implies that the process yt can equivalently be written

as

yt = C(B)�t; (2)

where C(B) is an in�nite-order lag polynomial depending only on positive powers of

B. In other words, yt only depends on the past and present errors �t�j; j � 0, which

can be recovered by the employed autoregression and interpreted as fundamental

economic shocks. In this case the autoregression (1) is referred to as fundamental.

The autoregression (1) is nonfundamental when some of the roots of detD(z)

lie inside the unit disc. As discussed by Hansen and Sargent (1991) and Alessi et

al. (2008), this can happen because the underlying economic model simply leads

to such a nonfundamental autoregression or because some relevant state variables

are not observed by the econometrician and, therefore, not included in the analysis.

However, even in this case the process yt admits an in�nite-order moving average

representation of the type (2) but, unlike in the preceding fundamental case, the

�lter C(B) now depends on negative powers of B, implying dependence of yt on

future errors �t+j; j � 0. A similar dependence on future errors also occurs in the

noncausal VAR model to be introduced in Section 2 so that nonfundamentalness
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shows up as noncausality in the VAR representation of yt. However, in conventional

causal VAR analysis the in�nite-order moving average representation only depends

on past and present errors. This means that, in the presence of noncausality, the

analysis is based on a misspeci�ed model and, consequently, the errors recovered from

the employed VAR model cannot be interpreted as (functions of) the random shocks

to agents� information set. Thus, checking for noncausality also serves as a check

for nonfundamentalness. Although we have here only discussed rational expectations

models, nonfundamentalness is also common in many other kinds of economic models;

one example being models with heterogeneous information, exempli�ed in Section 4.2,

and others can be found in Alessi et al. (2008) and the references therein.

The evaluation of dynamic stochastic general equilibrium (DSGE) models by

means of structural vector autoregressions is an application where ensuring the fun-

damentalness (or causality) of the VAR representation is of great importance. If such

a representation is falsely assumed, the structural shocks obtained have no economic

meaning and validating a DSGE model based on the impulse responses implied by the

structural VAR model is misleading. Therefore, it is in this �eld that some ways of

checking for fundamentalness have been devised although they should be more gener-

ally applicable. Fernández-Villaverde et al. (2007) derived conditions under which the

economic shocks of (a linearization of) a DSGE model match up with those associated

with a fundamental VAR model. This approach, however, only works when there are

as many economic shocks as there are observable variables, which restricts its ap-

plicability to relatively small systems. Giannone and Reichlin (2006) pointed out that

nonfundamentalness can be detected by augmenting the VAR model with additional

variables and checking whether they Granger cause the variables of interest. Under

fundamentalness, there should be no such Granger causality. The additional variables

should be �potentially relevant�and �likely to be driven by sources that are common

with the variables of interest�, but their selection seems, however, rather arbitrary.

Hence, we argue that checking for noncausality provides a viable and potentially more

general approach to detecting nonfundamentalness.
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A concept closely related to nonfundamentalness is indeterminacy of equilibria

in economic models, which is a highly topical issue in macroeconomics, especially in

studying monetary policy. Indeterminacy allows structural shocks to be nonfunda-

mental. Therefore, checking for causality facilitates checking for determinacy in that

detecting a causal VAR representation of the data can be interpreted as evidence in

favor of determinate equilibria. Some tests for indeterminacy have been presented

in the previous literature, but it has turned out to be very di¢ cult to discriminate

empirically between determinacy and indeterminacy. In particular, Beyer and Farmer

(2007) have shown that two DSGE models, one with a determinate and the other with

an indeterminate equilibrium, may be observationally equivalent in that they gener-

ate the same likelihood function, rendering tests of parameter restrictions (e.g. Lubik

and Schorfheide (2004)), in general, futile. Also, commonly used test procedures

based on evaluating the amount of variation in the residuals of rational expectations

models that is left unexplained by fundamentals (see, e.g. Salyer and She¤rin (1998))

are rather arbitrary as they crucially depend on the variables that are included in

the analysis. The approach based on checking for noncausality, in contrast, is quite

general as it is based on unrestricted VAR models and there is no need to determine

the suitable set of additional fundamental economic variables.

The statistical literature on noncausal univariate time series models is relatively

small, and, to our knowledge, noncausal VAR models have not been considered at all

prior to this study (references to previous univariate work can be found in Rosenblatt

(2000), Lanne and Saikkonen (2008), and the references therein). In this paper, the

previous statistical theory of univariate noncausal autoregressive models is extended

to the vector case. Our formulation of the noncausal VAR model is a direct extension

of that used by Lanne and Saikkonen (2008) in the univariate case. To obtain a

feasible non-Gaussian likelihood function, the distribution of the error term is assumed

to belong to a fairly general class of elliptical distributions. Using this assumption,

we can show the consistency and asymptotic normality of a local ML estimator, and

justify the applicability of usual likelihood based tests.
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The remainder of the paper is structured as follows. Section 2 introduces the

noncausal VAR model. Section 3 presents the likelihood function and properties

of the ML estimator. Section 4 illustrates the use of the noncausal VAR model in

detecting potential nonfundamentalness in the context of �scal foresight and the term

structure of interest rates. Section 5 concludes. A mathematical appendix contains

proofs of the results and some technical derivations.

The following notation is used throughout. The expectation operator and the

covariance operator are denoted by E (�) and C (�) or C (�; �), respectively, whereas

x
d
= y means that the random quantities x and y have the same distribution. By

vec(A) we denote a column vector obtained by stacking the columns of the matrix A

one below another. IfA is a square matrix then vech(A) is a column vector obtained by

stacking the columns of A from the principal diagonal downwards (including elements

on the diagonal). The usual notation A
B is used for the Kronecker product of the

matrices A and B. The mn � mn commutation matrix and the n2 � n (n+ 1) =2

duplication matrix are denoted by Kmn and Dn, respectively. Both of them are of

full column rank. The former is de�ned by the relation Kmnvec(A) = vec(A0) ; where

A is any m�n matrix, and the latter by the relation vec(B) = Dnvech(B) ; where B

is any symmetric n� n matrix.

2 Model

2.1 De�nition and basic properties

Consider the n-dimensional stochastic process yt (t = 0;�1;�2; :::) generated by

�(B) �
�
B�1

�
yt = �t; (3)

where �(B) = In��1B�� � ���rBr (n� n) and � (B�1) = In��1B�1�� � ���sB�s

(n� n) are matrix polynomials in the backward shift operator B, and �t (n� 1)

is a sequence of independent, identically distributed (continuous) random vectors

with zero mean and �nite positive de�nite covariance matrix. Moreover, the matrix
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polynomials �(z) and � (z) (z 2 C) have their zeros outside the unit disc so that

det� (z) 6= 0; jzj � 1; and det� (z) 6= 0; jzj � 1: (4)

If �j 6= 0 for some j 2 f1; ::; sg, equation (3) de�nes a noncausal vector autoregres-

sion referred to as purely noncausal when �1 = � � � = �r = 0. The corresponding

conventional causal model is obtained when �1 = � � � = �s = 0. Then the former

condition in (4) guarantees the stationarity of the model. In the general set up of

equation (3) the same is true for the process

ut = �
�
B�1

�
yt:

Speci�cally, there exists a �1 > 0 such that �(z)�1 has a well de�ned power series

representation �(z)�1 =
P1

j=0Mjz
j = M (z) for jzj < 1 + �1. Consequently, the

process ut has the causal moving average representation

ut =M (B) �t =
1X
j=0

Mj�t�j: (5)

Notice thatM0 = In and that the coe¢ cient matricesMj decay to zero at a geometric

rate as j !1. When convenient, Mj = 0, j < 0, will be assumed.

Write �(z)�1 = det (� (z))�1 � (z) =M (z), where � (z) is the adjoint polynomial

matrix of �(z). Then, det (� (B))ut = � (B) �t and, by the de�nition of ut;

�
�
B�1

�
wt = � (B) �t;

where wt = det (� (B)) yt. Note that � (z) is a matrix polynomial of degree at most

(n� 1) r and, because �(0) = In, we also have � (0) = In. By the latter condition

in (4) one can �nd a 0 < �2 < 1 such that � (z�1)
�1
� (z) has a well de�ned power

series representation � (z�1)�1 � (z) =
P1

j=�(n�1)rNjz
�j = N (z�1) for jzj > 1 � �2.

Thus, the process wt has the representation

wt =

1X
j=�(n�1)r

Nj�t+j; (6)
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where the coe¢ cient matrices Nj decay to zero at a geometric rate as j !1.

From (4) it follows that the process yt itself has the representation

yt =
1X

j=�1
	j�t�j; (7)

where 	j (n� n) is the coe¢ cient matrix of zj in the Laurent series expansion of

	(z)
def
= �(z�1)

�1
�(z)�1 which exists for 1 � �2 < jzj < 1 + �1 with 	j de-

caying to zero at a geometric rate as j ! 1. Clearly, the representation (7) can

be obtained by multiplying both sides of (6) by det (� (B))�1 so that we also have

	(z) = det (� (z))�1N (z�1). The representation (7) implies that yt is a stationary

and ergodic process with �nite second moments. We use the abbreviation VAR(r; s)

for the model de�ned by (3). In the causal case s = 0, the conventional abbreviation

VAR(r) is also used.

In the noncausal case, 	j 6= 0 for some j < 0, which shows the connection of our

noncausal VAR model and nonfundamentalness discussed in the Introduction. To see

further implications of noncausality, let Et (�) stand for the conditional expectation

operator with respect to the information set fyt; yt�1; :::g. From (3) and (7) it is seen

that

yt =
s�1X
j=�1

	jEt (�t�j) +
1X
j=s

	j�t�j:

In the conventional causal case, s = 0 and Et (�t�j) = 0; j � �1; so that the right hand

side reduces to the moving average representation (5). However, in the noncausal case

this does not happen. Then 	j 6= 0 for some j < 0; which in conjunction with the

representation (7) shows that yt and �t�j are correlated and, consequently, Et (�t�j) 6=

0 for some j < 0. Thus, future errors can be predicted by past values of the process

yt; which can be seen as an alternative characterization of nonfundamentalness.

In addition to depending on expected future errors, the process yt can also be

interpreted as being dependent on its expected future values. To see this, let us, for

simplicity, concentrate on the purely noncausal model, where �(B) = In. In this
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case, model (3) can be written as

yt = �1yt+1 + � � �+ �syt+s + �t;

and, taking conditional expectations with respect to the information set fyt; yt�1; :::g,

one obtains

yt = �1Et (yt+1) + � � �+ �sEt (yt+s) + Et (�t) : (8)

This shows that the elements of the coe¢ cient matrix �j give the e¤ect of the expec-

tation of yt+j on yt. In the general case (�(B) 6= In), we obtain a similar expression

for yt with the exception that Et (�t) is replaced by Et (ut).

A practical complication with noncausal autoregressive models is that they cannot

be identi�ed by second order properties or Gaussian likelihood. In the univariate

case this is explained, for example, in Brockwell and Davis (1987, p. 124-125)). To

demonstrate the same in the multivariate case described above, note �rst that, by

well-known results on linear �lters (cf. Hannan (1970, p. 67)), the spectral density

matrix of the process yt de�ned by (3) is given by

(2�)�1�
�
e�i!

��1
�
�
ei!
��1C (�t)� �e�i!�0�1� �ei!�0�1

= (2�)�1
h
�
�
ei!
�0
�
�
e�i!

�0C (�t)�1� �ei!�� �e�i!�i�1 :
In the latter expression, the matrix in the brackets is 2� times the spectral density

matrix of a second order stationary process whose autocovariances are zero at lags

larger than r + s. As is well known, this process can be represented as an invertible

moving average of order r + s. Speci�cally, by a slight modi�cation of Theorem 10�

of Hannan (1970), we get the unique representation

�
�
ei!
�0
�
�
e�i!

�0C (�t)�1� �ei!�� �e�i!� =  r+sX
j=0

Cje�i!
!0  

r+sX
j=0

Cjei!
!
;

where the n� n matrixes C0; :::; Cr+s are real with C0 positive de�nite, and the zeros

of det
�Pr+s

j=0 Cjei!
�
lie outside the unique disc.1 Thus, the spectral density matrix

1A direct application of Hannan�s (1970) Theorem 10�would give a representation with ! replaced
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of yt has the representation (2�)
�1
�Pr+s

j=0 Cjeij!
��1 �Pr+s

j=0 Cje�ij!
�0�1

, which is the

spectral density matrix of a causal VAR(r + s) process.

The preceding discussion means that, even if yt is noncausal, its spectral density

and, hence, autocovariance function cannot be distinguished from those of a causal

VAR(r + s) process. If yt or, equivalently, the error term �t is Gaussian this means

that causal and noncausal representations of (3) are statistically indistinguishable

and nothing is lost by using a conventional causal representation. However, if the

errors are non-Gaussian using a causal representation of a true noncausal process

means using a VAR model whose errors are only guaranteed to be uncorrelated but

not independent. Then the errors can be predicted by past values of the considered

series and, as discussed above, one is faced with the problem of nonfundamentalness,

implying that the errors of the employed causal VAR model do not match up with

fundamental economic shocks. Thus, when fundamentalness is an issue, it is advisable

to �rst �t an (adequate) causal autoregression to the observed series by standard

least squares or Gaussian ML and check whether the residuals look non-Gaussian. If

deviations from Gaussianity are detected it is reasonable to consider the noncausal

VAR model (3) and check for nonfundamentalness by the procedures to be developed

in subsequent sections.

2.2 Assumptions

In this section, we introduce assumptions that enable us to derive the likelihood

function and its derivatives. Further assumptions, needed for the asymptotic analysis

of the ML estimator and related tests, will be introduced in subsequent sections.

As already discussed, meaningful application of noncausal VAR models requires

that the distribution of �t is non-Gaussian. In the following assumption the distri-

bution of �t is restricted to a general elliptical form. As is well known, the normal

by �!. That this modi�cation is possible can be seen from the proof of the mentioned theorem (see

the discussion starting in the middle of p. 64 of Hannan (1970)).
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distribution belongs to the class of elliptical distributions but we will not rule out

it at this point. Other examples of elliptical distributions are given in Fang et al.

(1990, Chapter 3). Perhaps the best known non-Gaussian example is the multivari-

ate t-distribution.

Assumption 1. The error process �t in (3) is independent and identically distrib-

uted with zero mean, �nite and positive de�nite covariance matrix, and an elliptical

distribution possessing a density.

Results on elliptical distributions needed in our subsequent developments can be

found in Fang et al. (1990, Chapter 2) on which the following discussion is based. To

simplify notation in subsequent derivations, we de�ne "t = ��1=2�t. By Assumption

1, we have the representations

�t
d
= �t�

1=2�t and "t
d
= �t�t; (9)

where (�t; �t) is an independent and identically distributed sequence such that �t

(scalar) and �t (n� 1) are independent, �t is nonnegative, and �t is uniformly dis-

tributed on the unit ball (so that �0t�t = 1). The density of �t is of the form

f� (x;�) = det (�)
�1=2 f

�
x0��1x;�

�
(10)

for some nonnegative function f (�;�) of a scalar variable. In addition to the positive

de�nite parameter matrix � (n� n) the distribution of �t is allowed to depend on the

parameter vector � (d� 1). The parameter matrix � is closely related to the covari-

ance matrix of �t from which it only di¤ers by a multiplicative scalar. Speci�cally,

because E (�t) = 0 and C (�t) = n�1In (see Fang et al. (1990, Theorem 2.7)) one

obtains from (9) that

C (�t) =
E (�2t )
n

�: (11)

Note that the �niteness of the covariance matrix C (�t) is equivalent to E (�2t ) <1.

A convenient feature of elliptical distributions is that we can often work with the

scalar random variable �t instead of the random vector �t. Equality (11) already
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illustrates this and for subsequent purposes we note that the density of �2t , denoted

by '�2 (�;�), is related to the function f (�;�) in (10) via

'�2 (�;�) =
�n=2

� (n=2)
�n=2�1f (�;�) ; � � 0; (12)

where � (�) is the gamma function (see Fang et al. (1990, p. 36)). Assumptions

imposed on the density of �t can be expressed by using the function f (�;�) (� � 0).

These assumptions are similar to those previously used by Andrews et al. (2006) and

Lanne and Saikkonen (2008) in so-called all-pass models and univariate noncausal

autoregressive models, respectively. Note, however, that when our assumptions are

specialized to the univariate case the �rst argument in the density function on the

right hand side of (10) will be the square of that appearing in these previous papers.

We denote by � the permissible parameter space of � and use f 0 (�;�) to signify the

partial derivative @f (�; �) =@� with a similar de�nition for f 00 (�;�). Also, we include

a subscript (typically �) in the expectation operator or covariance operator when it

seems reasonable to emphasize the parameter value assumed in the calculations. Our

second assumption is as follows.

Assumption 2. (i) The parameter space � is an open subset of Rd and that of the

parameter matrix � is the set of positive de�nite n� n matrices.

(ii) The function f (�;�) is positive and twice continuously di¤erentiable on (0;1)��.

Furthermore, for all � 2 �, lim�!1 �
n=2f (�;�) = 0, and a �nite and positive right

limit lim�!0+ f (�;�) exists.

(iii) For all � 2 �;Z 1

0

�n=2+1f (�;�) d� <1 and
Z 1

0

�n=2 (1 + �)
(f 0 (�;�))2

f (�;�)
d� <1:

Assuming that the parameter space � is open is not restrictive and facilitates

exposition. The former part of Assumption 2(ii) is similar to condition (A1) in An-

drews et al. (2006) and Lanne and Saikkonen (2008) although in these papers the
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domain of the �rst argument of the function f is the whole real line. The latter part

of Assumption 2(ii) is related to condition (A2) in the aforementioned papers. To see

this, notice that, for all � 2 �,Z 1

0

�n=2f 0 (�;�) d� = �n=2f (�;�) j10 �
n

2

Z 1

0

�n=2�1f (�;�) d� = �n� (n=2)
2�n=2

:

Here the latter equality follows because, by the latter part of Assumption 2(ii), the

�rst term in the second expression is zero andZ 1

0

�n=2�1f (�;�) d� =
� (n=2)

�n=2

Z
f (x0x;�) dx =

� (n=2)

�n=2
(13)

as in Fang et al. (1990, p. 35). When n = 1 the last expression equals unity, showing

the aforementioned connection. In Andrews et al. (2006) and Lanne and Saikkonen

(2008) the values of the parameter � are only assumed to belong to some (small)

neighborhood of the true parameter value but we have preferred to be slightly less

general here (this also applies to some subsequent assumptions).

The �rst condition in Assumption 2(iii) implies that E� (�4t ) is �nite (see (12)) and,

taken together, this assumption guarantees �niteness of some expectations needed in

subsequent developments. In particular, the latter condition in Assumption 2(iii)

implies �niteness of the quantities

j (�) =
4�n=2

n� (n=2)

Z 1

0

�n=2
(f 0 (�;�))2

f (�;�)
d� =

4

n
E�

"
�2t

�
f 0 (�2t ;�)

f (�2t ;�)

�2#
(14)

and

i (�) =
�n=2

� (n=2)

Z 1

0

�n=2+1
(f 0 (�;�))2

f (�;�)
d� = E�

"
�4t

�
f 0 (�2t ;�)

f (�2t ;�)

�2#
; (15)

where the latter equalities follow from the expression of the density of �2t (see (12)).

The quantities j (�) and i (�) can be used to characterize non-Gaussianity of the error

term �t. Speci�cally we can prove the following.

Lemma 1 . Suppose that Assumptions 1-3 hold. Then, j (�) � n=E� (�2t ) and

i (�) � (n+ 2)2 [E� (�2t )]
2
=4E� (�4t ) where equalities hold if and only if �t is Gaussian.

If �t is Gaussian, j (�) = 1 and i (�) = n (n+ 2) =4:
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Lemma 1 shows that assuming j (�) > n=E� (�2t ) gives a counterpart of condition

(A5) in Andrews et al. (2006) and Lanne and Saikkonen (2008). A di¤erence is,

however, that in these papers the variance of the error term is scaled so that the

lower part of the inequality does not involve a counterpart of the expectation E� (�2t ).

For later purposes it is convenient to introduce a scaled version of j (�) given by

� (�) = j (�)E�
�
�2t
�
=n: (16)

Clearly, � (�) � 1 with equality if and only if �t is Gaussian.

It appears useful to generalize the model de�ned in equation (3) by allowing

the coe¢ cient matrices �j (j = 1; :::; r) and �j (j = 1; :::; s) to depend on smaller

dimensional parameter vectors. We make the following assumption.

Assumption 3. The parameter matrices �j = �j (#1) (j = 1; :::; r) and �j (#2)

(j = 1; :::; s) are twice continuously di¤erentiable functions of the parameter vectors

#1 2 �1 � Rm1 and #2 2 �2 � Rm2, where the permissible parameter spaces �1 and

�2 are open and such that condition (4) holds for all # = (#1; #2) 2 �1 ��2.

This is a standard assumption. The di¤erentiability requirement guarantees that

the likelihood function is twice continuously di¤erentiable. We will continue to use to

notation �j and �j when there is no need to make the dependence on the underlying

parameter vectors explicit.

3 Parameter estimation

3.1 Likelihood function

ML estimation of the parameters of a univariate noncausal autoregression was studied

by Breidt et al. (1991) by using a parametrization di¤erent from that in (3). The

parametrization (3) was employed by Lanne and Saikkonen (2008) whose results we

here generalize. Unless otherwise stated, Assumptions 1-3 are supposed to hold.
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Suppose we have an observed time series y1; :::; yT . Denote

det (� (z)) = a (z) = 1� a1z � � � � � anrznr:

Then, wt = a (B) yt which in conjunction with the de�nition ut = �(B�1) yt yields26666666666664

u1
...

uT�s

wT�s+1
...

wT

37777777777775
=

26666666666664

y1 � �1y2 � � � � � �sys+1
...

yT�s � �1yT�s+1 � � � � � �syT
yT�s+1 � a1yT�s � � � � � anryT�s�nr+1

...

yT � a1yT�1 � � � � � anryT�nr

37777777777775
=H1

26666666666664

y1
...

yT�s

yT�s+1
...

yT

37777777777775
or brie�y

x =H1y:

From the de�nition of ut and (3) it follows that �(B)ut = �t so that from the

preceding equality we �nd26666666666666666666664

u1
...

ur

�r+1
...

�T�s

wT�s+1
...

wT

37777777777777777777775

=

26666666666666666666664

u1
...

ur

ur+1 � �1ur � � � � � �ru1
...

uT�s � �1uT�s�1 � � � � � �ruT�s�r
wT�s+1
...

wT

37777777777777777777775

=H2

26666666666666666666664

u1
...

ur

ur+1
...

uT�s

wT�s+1
...

wT

37777777777777777777775
or

z =H2x:

Hence, we get the equation

z =H2H1y;
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where the (nonstochastic) matrices H1 and H2 are nonsingular. The nonsingularity

of H2 follows from the fact that det (H2) = 1, as can be easily checked. Justifying

the nonsingularity of H1 is somewhat more complicated, and will be demonstrated

in Appendix B.

From (5) and (6) it can be seen that the components of z given by z1 = (u1; :::; ur),

z2 =
�
�r+1; :::; �T�s�(n�1)r

�
, and z3 = (�T�s�(n�1)r+1; :::; �T�s; wT�s+1; :::; wT ) are inde-

pendent. Thus, (under true parameter values) the joint density function of z can be

expressed as

hz1 (z1)

0@T�s�(n�1)rY
t=r+1

f� (�t;�)

1Ahz3(z3);
where hz1 (�) and hz3 (�) signify the joint density functions of z1 and z3, respectively.

Using (3) and the fact that the determinant of H2 is unity we can write the joint

density function of the data vector y as

hz1 (z1 (#))

0@T�s�(n�1)rY
t=r+1

f�
�
�(B) �

�
B�1

�
yt;�

�1Ahz3(z3 (#)) jdet (H1)j ;

where the arguments z1 (#) and z3 (#) are de�ned by replacing ut; �t, and wt in the

de�nitions of z1 and z3 by � (B�1) yt, �(B) � (B�1) yt, and a (B) yt, respectively.

It is easy to check that the determinant of the (T � s)n� (T � s)n block in the

upper left hand corner of H1 is unity and, using the well-known formula for the

determinant of a partitioned matrix, it can furthermore be seen that the determinant

of H1 is independent of the sample size T . This suggests approximating the joint

density of y by the second factor in the preceding expression, giving rise to the

approximate log-likelihood function

lT (�) =

T�s�(n�1)rX
t=r+1

gt (�) ; (17)

where the parameter vector � contains the unknown parameters and (cf. (10))

gt (�) = log f
�
�t (#)

0��1�t (#) ;�
�
� 1
2
log det (�) ; (18)
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with

�t (#) = ut (#2)�
rX
j=1

�j (#1)ut�j (#2) (19)

and ut (#2) = In��1 (#2) yt+1�� � ���s (#2) yt+s. In addition to # and � the parameter

vector � also contains the di¤erent elements of the matrix �, that is, the vector � =

vech(�). For simplicity, we shall usually drop the word �approximate� and speak

about likelihood function. The same convention is used for related quantities such as

the ML estimator of the parameter � or its score and Hessian.

Maximizing lT (�) over permissible values of � (see Assumptions 2(i) and 3) gives

an approximate ML estimator of �. Note that here, as well as in the next section,

the orders r and s are assumed known. Procedures to specify these quantities will be

discussed later.

3.2 Score vector

At this point we introduce the notation �0 for the true value of the parameter � and

similarly for its components. Note that our assumptions imply that �0 is an interior

point of the parameter space of �. To simplify notation we write �t (#0) = �t and

ut (#20) = u0t when convenient. The subscript �0�will similarly be included in the

coe¢ cient matrices of the in�nite moving average representations (5), (6), and (7) to

emphasize that they are related to the data generation process (i.e. Mj0, Nj0, and

	j0). We also denote �j (#1) = vec(�j (#1)) (j = 1; :::; r) and �j (#2) = vec(�j (#2))

(j = 1; :::; s), and set

r1 (#1) =

�
@

@#1
�1 (#1) : � � � :

@

@#1
�r (#1)

�0
and

r2 (#2) =

�
@

@#2
�1 (#2) : � � � :

@

@#2
�s (#2)

�0
:

In this section, we consider @lT (�0) =@�, that is, the score of � evaluated at the

true parameter value �0. Explicit expressions of the derivatives of the log-likelihood

function are given in Appendix A. Here we only present the expression of the limit
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limT!1 T
�1C (@lT (�0) =@�). The asymptotic distribution of the score is presented in

the following proposition for which additional assumptions and notation are needed.

For the treatment of the score of � we impose the following assumption.

Assumption 4. (i) There exists a function f1 (�) such that
R1
0
�n=2�1f1 (�) d� <1

and, in some neighborhood of �0; j@f (�;�) =@�ij � f1 (�) for all � � 0 and i = 1; :::; d.

(ii)

�����
Z 1

0

�n=2�1

f (�;�0)

@

@�i
f (�;�0)

@

@�j
@f (�;�0) d�

����� <1; i; j = 1; :::; d:

The �rst condition is a standard dominance condition which is needed to guarantee

that the score of � (evaluated at �0) has zero mean. The second condition simply

assumes that the covariance matrix of the score of � (evaluated at �0) is �nite. For

other scores the corresponding properties are obtained from the assumptions made in

the previous section.

Recall the de�nition � (�) = j (�)E� (�2t ) =n where j (�) is de�ned in (14). In

what follows, we denote j0 = j (�0) and � 0 = j0E�0 (�2t ) =n. De�ne the n� n matrix

C11 (a; b) = � 0

1X
k=0

Mk�a;0�0M
0
k�b;0

and set C11 (�0) =
�
C11 (a; b)
 ��10

�r
a;b=1

(n2r � n2r) and, furthermore,

I#1#1 (�0) = r1 (#10)
0C11 (�0)r1 (#10) :

Notice that j�10 C11 (a; b) = E�0
�
u0;t�au

0
0;t�b

�
. As shown in Appendix B, I#1#1 (�0)

is the standardized covariance matrix of the score of #1 or the (Fisher) information

matrix of #1 evaluated at �0: In what follows, the term information matrix will be

used to refer to the covariance matrix of the asymptotic distribution of the score

vector @lT (�0) =@�. Thus, the true parameter value �0 as well as the standardization

and (possible) limiting operation are not necessarily mentioned.

Presenting the information matrix of #2 is somewhat complicated. First de�ne

J0 = i0E
�
(vech(�t�0t)) (vech(�t�

0
t))

0�� 1
4
vech (In) vech (In)

0 ;
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a square matrix of order n (n+ 1) =2. An explicit expression of the matrix J0 can be

obtained from Wong and Wang (1992, p. 274) or Fang et al. (1990, Theorem 3.3).

For later purposes we note that

E
�
(vec(�t�0t)) (vec(�t�

0
t))

0�
=

1

n (n+ 2)

�
In2 +Knn + vec (In) vec (In)

0� (20)

We also denote �i0 = �(#10), i = 1; :::; r, and �00 = �In, and de�ne the partitioned

matrix C22 (�0) = [C22 (a; b; �0)]
s
a;b=1 (n

2s� n2s) where the n� n matrix C22 (a; b; �0)

is

C22 (a; b; �0) = � 0

1X
k=�1
k 6=0

rX
i=0

rX
j=0

�
	k+a�i;0�0	

0
k+b�j;0 
 �0i0��10 �j0

�

+
rX
i=0

rX
j=0

�
	a�i;0�

1=2
0 
 �0i0�

�1=2
0

�
(4DnJ0D

0
n �Knn)

�
�
1=2
0 	0b�j;0 
 �

�1=2
0 �j0

�
:

Now set

I#2#2 (�0) = r2 (#20)
0C22 (�0)r2 (#20) ;

which is the (limiting) information matrix of #2 (see Appendix B). Notice that in

the scalar case n = 1 and in the purely noncausal case r = 0 the expression of

C22 (�0) simpli�es because the latter term in the de�nition of C22 (a; b; �0) vanishes

(see equality (B.6) in Appendix B) and the former only depends on the coe¢ cient

matrices 	j0 with j < 0 (cf. Lanne and Saikkonen (2008)).

To be able to present the information matrix of the whole parameter vector # we

de�ne the n2 � n2 matrix

C12 (a; b; �0) = �� 0
1X
k=a

rX
i=0

�
Mk�a;0�0	

0
k+b�i;0 
 ��10 �i0

�
+Knn

�
	0b�a;0 
 In

�
and the n2r � n2s matrix C12 (�0) = [C12 (a; b; �0)] = C21 (�0)0 where a = 1; :::; r and

b = 1; :::; s. The o¤-diagonal blocks of the (limiting) information matrix of # are given

by

I#1#2 (�0) = r1 (#10)
0C12 (�0)r2 (#20) = I#2#1 (�0)

0 :
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In the scalar case n = 1 and in the purely noncausal case r = 0 simpli�cations again

result because in the expression of C12 (a; b; �0) the former term vanishes (see equality

(B.6) in Appendix B). Combining the preceding de�nitions we now de�ne the matrix

I## (�) =
�
I#i#j (�)

�
i;j=1;2

:

For the remaining blocks of the information matrix of �, we �rst de�ne

I�� (�0) = D0
n

�
�
�1=2
0 
 ��1=20

�
DnJ0D

0
n

�
�
�1=2
0 
 ��1=20

�
Dn

and

I#2� (�0) = �2
sX
j=0

@

@#2
�j (#2)

rX
i=0

�
	j�i;0�

1=2
0 
 �0i0�

�1=2
0

�
DnJ0D

0
n

�
�
�1=2
0 
 ��1=20

�
Dn

with I#2� (�)
0 = I�#2 (�). Note that in the scalar case n = 1 and in the purely

noncausal case r = 0 we have I#2� (�0) = 0 (see equality (B.6) in Appendix B).

Finally, de�ne

I�� (�0) =
�n=2

� (n=2)

Z 1

0

�n=2�1

f (�;�0)

�
@

@�
f (�;�0)

��
@

@�
f (�;�0)

�0
d�

and

I�� (�0) = �D0
n

�
�
�1=2
0 
 ��1=20

�
Dnvech (In)

�n=2

� (n=2)

Z 1

0

�n=2
f 0 (�;�0)

f (�;�0)

@

@�0
f (�;�0) d�

with I�� (�0)0 = I�� (�0). Here the integrals are �nite by Assumptions 2(iii) and 4(ii),

and the Cauchy-Schwarz inequality.

Now we can de�ne

I�� (�0) =

26666664
I#1#1 (�0) I#1#2 (�0) 0 0

I#2#1 (�0) I#2#2 (�0) I#2� (�0) 0

0 I�#2 (�0) I�� (�0) I�� (�0)

0 0 I�� (�0) I�� (�0)

37777775 ;

the information matrix of the whole parameter vector �. As already noted, in the

scalar case n = 1 and in the purely noncausal case r = 0 the expressions of I#2#2 (�0)
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and I#1#2 (�0) simplify and I#2� (�0) becomes zero. The latter fact means that then the

parameters # and (�; �) are orthogonal so that, asymptotically, their ML estimators

are independent.

Before presenting the asymptotic distribution of the score of � we introduce condi-

tions which guarantee the positive de�niteness of its covariance matrix. These include

conventional rank conditions on the �rst derivatives of the functions in Assumption

3 and assumptions on the score of � which are needed because of the general nature

of the parameter vector �. Speci�cally, we assume the following.

Assumption 5. (i) The matrices r1 (#10) (rn
2 �m1) and r2 (#10) (sn

2 �m2) are

of full column rank.

(ii) The matrix

24 I�� (�0) I�� (�0)

I�� (�0) I�� (�0)

35 is positive de�nite.
As already indicated, Assumption 5(i) is standard. Assumption 5(ii) is analogous

to what has been assumed in previous univariate models (see Andrews et al. (2006)

and Lanne and Saikkonen (2008)). Note, however, that unlike in the univariate case

it is here less obvious that this assumption is su¢ cient for the positive de�niteness of

the whole information matrix I�� (�0). The reason is that in the univariate case the

situation is simpler in that the parameters � and � are orthogonal to the autoregressive

parameters (here #1 and #2). In the multivariate case the orthogonality of � with

respect to #2 fails but it is still possible to do without assuming more than assumed

in the univariate case. We also note that, similarly to the aforementioned univariate

cases, Assumption 5(ii) is not needed to guarantee the positive de�niteness of I�� (�0).

This follows from the de�nition of I�� (�0) and the facts that duplication matrices

are of full column rank and that the matrix J0 is positive de�nite. The latter fact is

established in Lemma 6 in Appendix B even when the errors are Gaussian.

Now we can present the limiting distribution of the score.
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Proposition 2 Suppose that Assumptions 1�5 hold and that �t is non-Gaussian.

Then,

(T � s� nr)�1=2
T�s�(n�1)rX

t=r+1

gt (�0)
d! N (0; I�� (�0)) ;

where the matrix I�� (�0) is positive de�nite.

This result generalizes the corresponding univariate result given in Breidt et al.

(1991) and Lanne and Saikkonen (2008). In the following section we generalize the

work of these authors further by deriving the limiting distribution of the (approxi-

mate) ML estimator of �. Note that for the usefulness of this result it is crucial that

�t is non-Gaussian because in the Gaussian case the information matrix I�� (�0) is

singular (see the proof of Proposition 2, Step 2).

3.3 Limiting distribution of the approximate ML estimator

The expressions of the second partial derivatives of the log-likelihood function can be

found in Appendix A. The following lemma shows that the expectations of these deriv-

atives evaluated at the true parameter value agree with the corresponding elements

of �I�� (�0). For this lemma we need the following assumption.

Assumption 6.(i) The integral
R1
0
�n=2�1f 0 (�;�0) d� is �nite, lim�!1 �

n=2+1f 0 (�;�0)

= 0, and a �nite right limit lim�!0+ f
0 (�;�0) exists.

(ii) There exists a function f2 (�) such that
R1
0
�n=2�1f2 (�) d� < 1 and, in some

neighborhood of �0; � j@f 0 (�;�) =@�ij � f2 (�) and j@2f (�;�) =@�i@�jj � f2 (�) for all

� � 0 and i; j = 1; :::; d.

Assumption 6(i) is similar to the latter part of Assumption 2(ii) except that it is

formulated for the derivative f 0 (�;�0). Assumption 6(ii) imposes a standard domi-

nance condition which guarantees that the expectation of @gt (�0) =@�@�
0 behaves in

the desired fashion. It complements Assumption 4(i) which is formulated similarly to

deal with the expectation of @gt (�0) =@�. Now we can formulate the following lemma.
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Lemma 3 If Assumptions 1-6 hold then �T�1E�0 [@2lT (�0) =@�@�0] = I�� (�0) :

Lemma 3 shows that the Hessian of the log-likelihood function evaluated at the

true parameter value is related to the information matrix in the standard way, imply-

ing that @gt (�0) =@�@�
0 obeys a desired law of large numbers. However, to establish

the asymptotic normality of the ML estimator more is needed, namely the applica-

bility of a uniform law of large numbers in some neighborhood of �0; and for that

additional assumptions are required. As usual, it su¢ ces to impose appropriate dom-

inance conditions such as those given in the following assumption.

Assumption 7. For all � � 0 and all � in some neighborhood of �0, the functions�
f 0 (�;�)

f (�;�)

�2
;

����f 00 (�;�)f (�;�)

���� ; 1

f (�;�)2

�
@

@�j
f (�;�)

�2
1

f (�;�)

���� @@�j f 0 (�;�)
���� ; 1

f (�;�)

���� @2

@�j@�k
f (�;�)

���� ; j; k = 1; :::; d,
are dominated by a1 + a2�

a3 with a1, a2, and a3 nonnegative constants andR1
0
�n=2+1+a3f (�;�0) d� <1.

The dominance means that, for example, (f 0 (�;�) =f (�;�))2 � a1 + a2�
a3 for �

and � as speci�ed. The conditions in Assumption 7 are only slightly di¤erent from

those used in Andrews et al. (2006) and Lanne and Saikkonen (2008).

Now we can state the main result of this section.

Theorem 4 Suppose that Assumptions 1�7 of hold and that �t is non-Gaussian.

Then there exists a sequence of (local) maximizers �̂ of lT (�) in (17) such that

(T � s� nr)1=2 (�̂ � �0)
d! N

�
0; I�� (�0)�1

�
:

Furthermore, I�� (�0) can consistently be estimated by � (T � s� nr)�1 @2lT (�̂)=@�@�0.

Thus, Theorem 4 shows that the usual result on asymptotic normality holds for

a local maximizer of the likelihood function and that the limiting covariance matrix
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can consistently be estimated with the Hessian of the log-likelihood function. Based

on these results and arguments used in their proof, conventional likelihood based

tests with limiting chi-square distribution can be obtained. It is worth noting, how-

ever, that consistent estimation of the limiting covariance matrix cannot be based on

the outer product of the �rst derivatives of the log-likelihood function. Speci�cally,

(T � s� nr)�1
PT�s�(n�1)r

t=r+1 (@gt(�̂)=@�)(@gt(�̂)=@�
0) is, in general, not a consistent es-

timator of I�� (�0). The reason is that this estimator does not take nonzero covariances

between @gt(�)=@� and @gk(�)=@�, k 6= t, into account. Such covariances are, for ex-

ample, responsible for the term Knn

�
	0b�a 
 In

�
in I#1#2 (�0) (see the de�nition of

C12 (a; b; �0) and the related proof of Proposition 2 in Appendix B). For instance, in

the scalar case n = 1 this estimator would be consistent only when the ML estimators

of #1 and #2 are asymptotically independent which only holds in special cases.

4 Empirical applications

In this section, we consider two economic applications of the noncausal VAR model.

In each case, discriminating between causality and noncausality is primarily seen

as an indirect test of the economic hypothesis being considered. In other words,

the presence of noncausality per se would be seen as evidence against the theory.

Moreover, basing a test of the theory on the assumption of causality, as is typically

done, would be incorrect in the presence of noncausality. It is only after ascertaining

that the variables indeed have a causal VAR representation that the economic theory

can be evaluated by testing restrictions on the parameters of such a VAR model.

Hence, checking for noncausality can be considered a pretest validating conventional

testing procedures.

In our applications, the speci�cation of a potentially noncausal VAR model is

carried out along the same lines as in the univariate case in Breidt et al. (1991)

and Lanne and Saikkonen (2008). The �rst step is to �t a conventional causal VAR

model by least squares or Gaussian ML and determine its order by using conventional
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procedures such as diagnostic checks and model selection criteria. Once an adequate

causal model is found, we check its residuals for Gaussianity. As already discussed, it

makes sense to proceed to noncausal models only if deviations from Gaussianity are

detected. If this happens, a non-Gaussian error distribution is adopted and all causal

and noncausal models of the selected order are estimated. Of these models the one

that maximizes the log-likelihood function is selected and its adequacy is checked by

diagnostic tests.

If a noncausal model is selected, it would often be of interest to proceed to im-

pulse response analysis to fully understand the e¤ects of economic shocks but, as the

relevant methods are not readily available, that lies outside the scope of this paper.

The main di¢ culty with impulse response analysis is that prediction in noncausal

autoregressions is, in general, a nonlinear problem and no closed form of the forecast

function is currently available (see Rosenblatt (2000, Chapter 5) and the discussion

in Lanne and Saikkonen (2008)).

4.1 Fiscal foresight

Our �rst application is concerned with �scal foresight, i.e., the phenomenon that due

to lags in implementation, agents receive signals about a future change in the tax

rate or government spending before they actually take place. It can be shown that

the presence of foresight leads to time series with a non-invertible moving average

component in equilibrium (for a survey of this literature, see Leeper et al. (2008)).

In other words, if there is foresight, a VAR model incorporating the key variables of

the economy (including taxes and government expenditure), is noncausal. Finding

noncausality therefore provides evidence in favor of �scal foresight, which invalidates

analyses based on conventional causal VAR models common in the previous litera-

ture. This was illustrated by Yang (2005) who showed by simulations of a standard

neoclassical growth model that relying on a causal VAR model in the presence of

foresight of only one quarter can yield very misleading estimates of tax e¤ects. This,
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of course, follows from the fact that the errors of the identi�ed VAR model are not

the true �scal shocks in this case.

The previous empirical evidence of �scal foresight is mostly based on case studies

around major �scal policy changes and not closely connected to theory (see Poterba

(1988), Auerbach and Slemrod (1997) Steigerwald and Stuart (1997), and House and

Shapiro (2006, 2008), inter alia). Indirect evidence in favor of �scal foresight not

based on a single tax change was recently provided by Yang (2007) who showed that

in a VAR model augmented by variables capturing expectations (such as prices and

interest rates), the responses of labor, investment, and output to a tax shock become

weaker. Our approach of checking for noncausality can be seen as a more direct test

of �scal foresight.

We consider a simple trivariate VAR model for the (demeaned) di¤erences of U.S.

GDP, total government expenditure, and total government revenue (all in real per

capita terms). The quarterly data from 1955:1 to 2000:4 (184 observations) were

previously used by Mountford and Uhlig (in press), who also provide a detailed de-

scription of the construction of the variables. We start the analysis by searching for

an adequate Gaussian vector autoregression. The AIC and BIC select VAR(3) and

VAR(2) models, respectively, and according to the diagnostic test results reported in

Table 1, the second-order model is deemed su¢ cient in capturing autocorrelation.2

However, the errors, especially those of the equation for the government expenditure,

exhibit conditional heteroskedasticity. Also, the quantile-quantile (Q-Q) plots in the

upper panel of Figure 1 suggest that the errors are not normally distributed3 with

2Note that, when the orders of the model are misspeci�ed, the Ljung-Box and McLeod-Li tests

are not exactly valid as they do not take estimation errors correctly into account. The reason is

that a misspeci�cation of the model orders makes the errors dependent. Nevertheless, p-values of

these tests can be seen as convenient summary measures of the autocorrelation remaining in the

residuals and their squares. A similar remark applies to the Shapiro-Wilk test used to check the

error distribution.
3The p-values of the Shapiro-Wilk test are 0.005, 0.416 and 1.80e�6 for the residuals of the

equations for the GDP, government expenditure and government revenue, respectively.
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the greatest discrepancies at the tails, suggesting that a fat-tailed error distribution

might be more appropriate.

Instead of the normal distribution, we consider the multivariate t-distribution for

the errors. In this case, the second-order model that best �ts the data in terms of the

log likelihood function, is the VAR(1,1)-t model. It also seems to be the only model in

Table 1 that produces well-behaved residuals, with the other speci�cations exhibiting

autocorrelation or conditional heteroskedasticity in at least one of the equations.

Hence, there is evidence in favor of a noncausal VAR representation of the data,

indicating the presence of �scal foresight. The Q-Q plots of the residuals of the

preferred model in the lower panel of Figure 1 attest to the good �t of the multivariate

t-distribution.4 Also, the estimated value of the degrees-of-freedom parameter � in

Table 2 is relatively small (8.253), which lends further support to the need for a

fat-tailed error distribution.

Because the noncausal model provides the best �t, analyses based on causal VAR

models are expected to be misleading as they fail to extract the correct structural

shocks. The presence of a noncausal VAR representation indicates the importance of

expectations of future tax and government expenditure changes that the conventional

causal VAR model does not take into account. The elements of the matrix �1 give

the e¤ect of a change in expected next-period values of the variables on the current

values, as discussed in Section 2.1 (see, in particular, Equation (8) and the ensuing

discussion). In particular, the estimates in Table 2 suggest that expectations of future

tax increases tend to increase the GDP and government revenue.

4.2 Term structure of interest rates

As another application, we consider the expectations hypothesis of the term structure

of interest rates. According to this theory, the long-term interest rate is a weighted

sum of present and expected future short-term interest rates. Campbell and Shiller

4The p-values of the Shapiro-Wilk test for the three residual series are 0.455, 0.295 and 0.186,

respectively.
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(1987, 1991) suggested testing the expectations hypothesis by testing the restrictions

it imposes on the parameters of a VAR model for the change in the short-term interest

rate and the spread between the long-term and short-term interest rates. Furthermore,

they showed how the theoretical spread satisfying these restrictions can be computed

based on the estimated VAR model. The expectations hypothesis is a special case of

the present value model, and similar techniques have been widely employed in testing

that model in the context of various applications, including stock returns (Camp-

bell and Shiller (1987)) and the net present value budget balance (Roberds (1991)).

Although this method is straightforward, it crucially depends on the existence of a

causal VAR representation, suggesting that its validity can be assured by checking

the causality of the related vector autoregression.

Finding noncausality indicates nonfundamentalness that can arise because the

agents�information set is larger than the econometrician�s. Although the discrepancy

between the information sets poses no problem in testing the expectations hypothesis

under the assumption of the existence of a causal VAR representation maintained in

most of the previous literature, the conclusions can be misleading if this assumption is

falsely imposed. One explanation for nonfundamentalness and, hence, noncausality,

in asset pricing models recently put forth by Kasa et al. (2007) are heterogenous

beliefs. Indeed, they show that if agents have di¤erent information, nonfundamental

representations of the data correspond to nonrevealing equilibria where the agents

�forecast the forecasts of others�. So, detecting noncausality in the term structure

may indicate that agents have heterogeneous information useful in predicting future

interest rates.

We concentrate on a bivariate VAR model for the (demeaned) change in the three-

month interest rate (�rt) and the spread between the ten-year and three-month inter-

est rates (St) (quarter-end yields on U.S. zero-coupon bonds) from 1970:1�1998:4 (116

observations).5 AIC and BIC select Gaussian VAR(3) and VAR(2) models, respec-

5The data were previously used by Du¤ee (2002). We thank Gregory Du¤ee for providing them

on his website.
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tively, but only the third-order model produces serially uncorrelated errors. However,

the results in Table 3 show that the residuals are conditionally heteroskedastic and

the Q-Q plots is the upper panel of Figure 2, indicate considerable deviations from

normality.6 Because the most severe violations of normality occur at the tails, a more

leptokurtic distribution, such as the multivariate t distribution, might prove suitable

for these data.

The estimation results of all four third-order VAR models with t-distributed errors

are summarized in Table 3. By a wide margin, the speci�cation maximizing the log-

likelihood function is the VAR(2,1)-t model. It also turns out to be the only one of

the estimated models that shows no signs of remaining autocorrelation or conditional

heteroskedasticity in the residuals. The Q-Q plots of the residuals in the lower panel of

Figure 2 lend support to the adequacy of the multivariate t distribution of the errors;

the p-values of the Shapiro-Wilk test for the residuals of the equations for �rt and St

equal 0.509 and 0.451, respectively. Moreover, the estimate of the degrees-of-freedom

parameter � reported in Table 4 is small (8.187) and accurate, suggesting inadequacy

of the Gaussian error distribution. Thus, there is evidence of noncausality, but not

pure noncausality, i.e., the term structure depends on expectations of future interest

rates as well as past values.

The presence of a noncausal VAR representation of �rt and St invalidates the

test of the expectations hypothesis suggested by Campbell and Shiller (1987, 1991).

This may also explain the common rejections of the hypothesis when testing is based

on the assumption of a causal VAR model, which in view of our results is likely to

be misspeci�ed. Indirectly these �ndings lend support to the heterogeneous beliefs

explanation of Kasa et al. (2007) discussed above although that is likely not to be the

only possibility. The estimated �1 matrix also seems to have an interpretation that

goes contrary to the expectations hypothesis: an expected increase of the short-term

rate tends to increase the current short-term rate while having no signi�cant e¤ect on

6The p-values of the Shapiro-Wilk test for the residuals of the equations of �rt and St equal

4.09e�8 and 0.001, respectively.
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the spread. According to the expectations hypothesis, in contrast, an expected future

increase in the short-term rate should have no e¤ect on the current short-term rate,

but it should increase the long-term rate and, therefore, the spread. Furthermore,

here an expected future increase of the spread tends to decrease the short-term rate

and increase the spread. This might be interpreted in favor of (expected) time-varying

term premia driving the term structure instead of expectations of future short-term

rates as implied by the expectations hypothesis.

5 Conclusion

In this paper, we have proposed a new noncausal VAR model that contains the com-

monly used causal VAR model as a special case. In the Gaussian case, causal and

noncausal VAR models cannot be distinguished which underlines the importance of

a careful speci�cation of the error distribution of the model. This may also be im-

portant in causal VAR models because in the non-Gaussian case, absence of serial

correlation does not necessarily guarantee nonpredictability of the errors. While the

new model is likely to be useful in providing a more accurate description of the dy-

namics of economic time series than the causal model, it is probably in checking for

nonfundamentalness that it is most valuable. Nonfundamentalness often invalidates

the use of conventional econometric methods and it arises, in particular, in rational

expectations models.

We have derived asymptotic properties of a (local) ML estimator and related tests

in the noncausal VAR model, and we have successfully employed an extension of the

model selection procedure presented by Breidt et al. (1991) and Lanne and Saikkonen

(2008) in the corresponding univariate case. The methods have been illustrated by

means of two empirical applications. Evidence in favor of �scal foresight in the U.S.

was found, suggesting that shocks identi�ed by imposing structural restrictions on

causal VAR models to study the e¤ects of �scal policy, are not likely to carry any

economic interpretation. Likewise, a noncausal VAR model for the U.S. term struc-
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ture of interest rates turned out to be superior to the causal model, invalidating the

commonly employed test procedures of the expectations hypothesis that explicitly

assume causality.

While checking for nonfundamentalness is an important application of our meth-

ods, it can only be considered as the �rst step in the analysis of economic and �nancial

data. Once noncausality is detected, it would be natural to use the noncausal VAR

model for forecasting and structural analysis. These, however, require methods that

are not readily available. Another issue of great interest is the use of noncausal

VAR models for modeling expectations and the relation of noncausal VAR models

to economic models involving expectations. Regarding statistical aspects, the theory

presented in this paper is con�ned to the class of elliptical distributions. Even though

the multivariate t-distribution belonging to this class seemed adequate in our empir-

ical applications, it would be desirable to make extensions to other relevant classes

of distributions. Also, the �nite-sample properties of the proposed model selection

procedure and, in particular, its performance in detecting indeterminacy in economic

models could be examined by means of simulation experiments. We leave all of these

issues for future research.
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Mathematical Appendix

A Derivatives of the approximate log-likelihood function

To simplify subsequent derivations, we �rst introduce some notation. We set h (�;�) =

f 0 (�;�) =f (�;�) so that

h0
�
�t (#)

0��1�t (#) ;�
�
=
f 00
�
�t (#)

0��1�t (#) ;�
�

f
�
�t (#)

0��1�t (#) ;�
� � f 0 ��t (#)0��1�t (#) ;��

f
�
�t (#)

0��1�t (#) ;�
� !2 :
(A.1)

Next, de�ne

et (�) = h
�
�t (#)

0��1�t (#) ;�
�
��1=2�t (#) and e0t = et (�0) : (A.2)

From (9) it is seen that

e0t
d
= �th

�
�2t ;�0

�
�t = �th0

�
�2t
�
�t; (A.3)

where the latter equality de�nes the notation h0 (�) = h (�;�0).

First derivatives of lT (�). It will be su¢ cient to consider the derivatives of

gt (�). By straightforward di¤erentiation one �rst obtains from (18)

@

@#i
gt (�) = 2h

�
�t (#)

0��1�t (#) ;�
� @

@#i
�t (#) �

�1�t (#) ; i = 1; 2; (A.4)

where, from (19),

@
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with�0 = �In = �00. We also set Ut�1 (#2) =
�
(ut�1 (#2)
 In)0 � � � (ut�r (#2)
 In)0

�0
and Yt+1 (#1) =
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i=0 (yt+1�i 
 �0i)
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Pr
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tation Ut�1 (#20) = U0;t�1 and Yt+1 (#10) = Y0;t+1,

@

@#1
gt (�0) = �2

rX
i=1

@

@#1
�i (#10) (u0;t�i 
 In) ��1=20 e0t (A.7)

= �2r1 (#10)
0 U0;t�1�

�1=2
0 e0t

32



and
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As for the parameters � = vech(�) and �, straightforward di¤erentiation yields
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Replacing �0 by � gives the corresponding derivatives evaluated at an arbitrary �.

Second derivatives of lT (�). First note that
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and furthermore that (see(A.4))
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B Proofs for Sections 2 and 3

Proof of Lemma 1. For the former inequality, �rst consider the expectation

E�
�
�2th

�
�2t ;�

��
=

�n=2

� (n=2)

Z 1

0

�n=2f 0 (�;�) d� = �n
2
; (B.1)

where the de�nition of the function h (see the beginning of Appendix A), density of

�2t (see (12)), and Assumption 2(ii) have been used (see the discussion after Assump-

tion 2). The same arguments combined with the Cauchy-Schwarz inequality and the

de�nition of j (�) (see (14)) yield
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= j (�) � E�
�
�2t
�
=n:

Thus, we have shown the claimed inequality.

From the preceding proof it is seen that equality holds if and only if there is

equality in (B.2). As is well known, this happens if and only if �n=4f 0 (�;�) =
p
f (�;�)

is proportional to �n=4
p
f (�;�) or if and only if

f 0 (�;�)

f (�;�)
=
@

@�
log f (�;�) = c for some c.

This implies f (�;�) = b exp (�a�) with a > 0 and b > 0. From the fact that

f (x0x;�), x 2 Rn, is the density function of �t�t (see (9) and (10)) it further follows

that b = (a=�)n=2 and that �t�t has the normal density (2�)
�n=2 exp (�x0x=2). Here

the identity covariance matrix is obtained because �2t � �2n, and hence from (11),

C (�2t�t) = In (cf. the corollary to Lemma 1.4 and Example 1.3 of Fang et al. (1990),

p. 23). Thus, �t is Gaussian as a linear transformation of �t�t. On the other hand,

if �t is Gaussian the equality f 0 (�;�) =f (�;�) = c clearly holds with c = �1=2 and,

because then �2t � �2n, E� (�2t ) = n. This completes the proof for j (�).
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Regarding i (�), �rst notice thatZ 1

0

�n=2+1f 0 (�;�0) d� =

�
�n=2+1f (�;�) j10 �

n+ 2

2

Z 1

0

�n=2f (�;�) d�

�
= �n+ 2

2
� � (n=2)
�n=2

E�
�
�2t
�
;

where we have used Assumptions 2(ii) and (iii), and the expression of the density of

�2t (see (12)). Proceeding as in the case of the �rst assertion yields
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(see the de�nition of i (�) in (15)). This shows the stated inequality and the condition

for equality leads to the same condition as in the case of j (�). Finally, in the Gaussian

case, E� (�2t ) = n and E� (�4t ) = 2n+ n2, implying i (�) = n (n+ 2) =4. �

Proof of the nonsingularity of the matrix H1. We have not found a simple

way to show the nonsingularity of H1, so we demonstrate it when s = 2. From

the de�nition of H1 it is not di¢ cult to see that the possible singularity of H1 can

only be due to a linear dependence of its last n (r + 2) rows and, furthermore, that

it su¢ ces to show the nonsingularity of the lower right hand corner H1 of order
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n (r + 2)� n (r + 2). This matrix reads as

H
(2;2)
1 =

26666666666666666666664

In ��1 ��2 0 � � � � � � p � � � 0

0
. . . . . . . . . . . . p ...

...
. . . . . . . . . . . . . . . p ...

... � � � 0 In ��1 ��2 p 0 0

... � � � 0 0 In ��1 p ��2 0

0 � � � 0 0 0 In p ��1 ��2
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37777777777777777777775
def
=

24 B11 B12
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35 ;
where the partition is as indicated. The determinant of B11 is evidently unity so that

from the well-known formula for the determinant of a partitioned matrix it follows

that we need to show the nonsingularity of the matrix B11�2 = B22 �B21B
�1
11B12.

The inverse ofB11 depends on coe¢ cients of the power series representation of L (z) =

� (z)�1 given by L (z) =
P1

j=0 Ljz
j where L0 = In and, when convenient, Lj = 0,

j < 0, will be used. Equating the coe¢ cient matrices of z on both sides of the identity

L (z) � (z) = In yields Lj = Lj�1�1+Lj�2�2. Using this identity it is readily seen that

B�1
11 is an upper triangular matrix with In on the diagonal and Lj, j = 1; :::; nr � 1,

on the diagonals above the main diagonal. This fact and straightforward but tedious

calculations further show that

B11�2 =

24 In �Pnr
j=1 ajLj �

Pnr
j=1 ajLj�1�2

�
Pnr

j=1 ajLj�1 In �
Pnr

j=2 ajLj�2�2

35
=

24 In 0
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35� nrX
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aj

24 Lj Lj�1�2

Lj�1 Lj�2�2

35 :
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Next de�ne the companion matrix

� =

24 �1 �2

In 0

35
and note that the latter condition in (4) implies that the eigenvalues of � are smaller

than one in absolute value. Also, the matrices Lj and Lj�1 (j � 0) can be obtained

from the upper and lower left hand corners of the matrix �j, respectively. Using

these facts, the identity Lj = Lj�1�1 + Lj�2�2, and properties of the powers �j it

can further be seen that

B11�2 = I2n �
nrX
j=1

aj�
j = P

 
I2n �

nrX
j=1

ajD
j

!
P�1;

where the latter equality is based on the Jordan decomposition of� so that� = PDP�1.

Thus, the determinant ofB11�2 equals the determinant of the matrix in parentheses in

its latter expression. Because Dj is an upper triangular matrix having the jth powers

of the eigenvalues of � on the diagonal this determinant is a product of quantities of

the form 1�
Pnr

j=1 aj�
j where � signi�es an eigenvalue of �. By the latter condition

in (4) the eigenvalues of � are smaller than one in absolute value whereas the former

condition in (4) implies that the zeros of a (z) lie outside the unit disc. Thus, the

nonsingularity of B11�2, and hence that of H
(2;2)
1 and H1 follow.

We note that in the case s = 1 the preceding proof simpli�es because then we need

to show the nonsingularity of the matrix obtained from H
(2;2)
1 by deleting its last n

rows and columns and setting �2 = 0. In place of B11�2 we then have In�
Pnr

j=1 aj�
j
1

and, because now the eigenvalues of �1 are smaller than one in modulus, the preceding

argument applies without the need to use a companion matrix. �

Before proving Proposition 2 we present some auxiliary results. In the following

lemmas, as well as in the proof of Proposition 2, the true parameter value is assumed,

so the notation E (�) will be used instead of E�0 (�) and similarly for C (�). In these

proofs frequent use will be made of the facts that the processes �t and �t are indepen-

dent and that E (�t) = 0 and E (�t�0k) equals 0 if t 6= k and n�1In if t = k. The same
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can be said about well-known properties of the Kronecker product and vec operator,

especially the result vec(ABC) = (C 0 
 A)vec(B) which holds for any conformable

matrices A, B, and C. This and other results of matrix algebra to be employed can

be found in Lütkepohl (1996). We also recall the de�nition "t = �
�1=2
0 �t (see (9)) and,

to simplify notation, we will frequently write f (�;�0) = f0 (�) and similarly for f 00 (�)

and f 000 (�).

Lemma 5 Under the conditions of Proposition 2,

E (e0t) = 0 and C (e0t) =
j0
4
In; (B.3)

and

C ("t; e0k) =

8<: 0; if t 6= k

�1
2
In; if t = k

(B.4)

Proof of Lemma 5. By the de�nition of the function h0 (�) (see (A.3)) and the

density of �2t (see (12)) we have

E
h
�2t
�
h0
�
�2t
��2i

=
�n=2

� (n=2)

Z 1

0

�n=2
(f 00 (�))

2

f0 (�)
d� =

n

4
j0;

where the latter equality is due to (14). Thus, because E (�t) = 0 and C (�t) = n�1In,

the independence of the processes �t and �t in conjunction with (A.3) proves (B.3).

The same arguments and (9) yield

E ("te00k) = E
�
�t�kh0

�
�2k
��
E (�t�0k) ;

where E (�t�0k) = 0 for t 6= k. Thus, one obtains (B.4) from this and (B.1). �

Lemma 6 . Under the conditions of Proposition 2,

C ("t�i 
 e0t; "k�j 
 e0k) =

8>>>>>><>>>>>>:

DnJ0D
0
n; if t = k; i = j = 0

�0
4
In2 ; if t = k; i = j 6= 0

1
4
Knn; if t 6= k; i = t� k; j = k � t

0; otherwise.

Moreover, the matrix J0 is positive de�nite even when �t is Gaussian.
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Proof. First notice that (see (9) and (A.3))

"t�i 
 e0t
d
= �t�i�th0

�
�2t
�
(�t�i 
 �t) : (B.5)

Consider the case t = k and i = j = 0. The preceding fact and independence of �t

and �t yield

E ("t 
 e0t) = E
�
�2th0

�
�2t
��
E (�t 
 �t) = �

1

2
Dnvech (In) ;

where the latter equality is due to (B.1) and E (�t 
 �t) = vec(E (�t�0t)) = n�1vec(In).

By the same arguments we also �nd that

E [("t 
 e0t)("t 
 e0t)0] = E
h
�4t
�
h0
�
�2t
��2iE (�t�0t 
 �t�0t) = i0E (�t�0t 
 �t�0t) ;

where the latter equality follows from the de�nition of i0 (see (15)). Because

E (�t�0t 
 �t�0t) = E [(�t 
 �t) (�0t 
 �0t)] = DnE
�
(vech(�t�0t)) (vech(�t�

0
t))

0�
D0
n;

the stated result is obtained from the preceding calculations and the de�nition of the

matrix J0.

To show the positive de�niteness of the matrix J0, note �rst that J0 is clearly

symmetric. From the de�nition of i0 and (B.1) we �nd that, even when �t is non-

Gaussian, i0 > fE [�2th0 (�2t )]g
2
= n2=4 where the inequality is strict because �2t has

positive density. Now, let x be a nonzero n�1 vector and conclude from the preceding

inequality and the de�nition of J0 that

4x0J0x > n2x0E
�
(vech(�t�0t)) (vech(�t�

0
t))

0�
x� x0vech (In) vech (In)0 x

= n2x0C (vech(�t�0t))x;

where the equality is justi�ed by E [vech(�t�0t)] = n�1vech(In) : Because the last

quadratic form is clearly nonnegative, the positive de�niteness of J0 follows.

For the case t = k; i = j 6= 0 we have by independence, E ("t�i 
 e0t) = E ("t�i)


E (e0t) = 0. Thus, by (B.5) and arguments already used,

C ("t�i 
 e0t; "t�i 
 e0t) = E
�
�2t�i

�
E
h
�2t
�
h0
�
�2t
��2i �E ��t�i�0t�i�
 E (�t�0t)� :
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The stated result is obtained from this by using de�nitions and E (�t�0t) = n�1In.

In the case t 6= k; i = t � k; and j = k � t we have i 6= 0 6= j and, as in the

preceding case, E ("k 
 e0t) = 0. We also note that "t 
 e0k = Knn(e0k 
 "t) (see

Result 9.2.2(3) in Lütkepohl (1996)). As before, we now obtain

C ("k 
 e0t; "t 
 e0k) = C ("k 
 e0t; Knn (e0k 
 "t))

= E
��
�k�k 
 �th0

�
�2t
�
�t
� �
�kh0

�
�2k
�
�0k 
 �t�0t

��
K 0
nn

=
�
E
�
�2th0

�
�2t
��	2 fE (�k�0k)
 E (�t�0t)gK 0

nn

=
1

4
Knn;

where the last equality follows form (B.1), the symmetry of the commutation matrix

Knn; and the fact E (�t�0t) = n�1In.

Finally, in the last case the stated results follows from independence. �

Now we can prove Proposition 1.

Proof of Proposition 2. The proof consists of three steps. In the �rst one we show

that the expectation of the score of � at the true parameter value is zero and its lim-

iting covariance matrix is I�� (�0). The positive de�niteness of I�� (�0) is established

in the second step and the third step proves the asymptotic normality of the score.

Step 1. We consider the di¤erent blocks of I�� (�0) separately and, to simplify

notation, we set N = T � s � nr. In what follows, frequent use will be made of the

identity
�
f 0
�
�0t�

�1
0 �t;�0

�
=f
�
�0t�

�1
0 �t;�0

��
��10 �t = �

�1=2
0 e0t (see (A.2)).

Block I#1#1 (�0). From the de�nitions and (5) it can be seen that U0;t�1 and e0t are

independent. Thus, (B.3), (A.7), and straightforward calculation give E (@gt (�0) =@#1) =

0 and, furthermore,

C

0@N�1=2
T�s�(n�1)rX

t=r+1

@

@#1
gt (�0)

1A = r1 (#10)
0C11 (�0)r1 (#10) = I#1#1 (�0) :

Block I#2#2 (�0). Deriving I#2#2 (�0) is somewhat complicated. From the expres-

sion of @gt (�0) =#2 (see (A.8)) it may not be quite immediate that the expecta-

tion of the score of #2 is zero so that we shall �rst demonstrate this. Recall that
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� (z)�1 = L (z) =
P1

j=0 Ljz
j with L0 = In and, Lj = 0, j < 0. Similarly to the

notation Mj0, Nj0, and 	j0 we shall also write Lj0 when Lj is based on true parame-

ter values. Equating the coe¢ cient matrices related to the same powers of z in the

identity L (z�1) = 	 (z)� (z) (see the discussion below (7)) one readily obtains

�
rX
i=0

	j�i;0�i0 =

8>>><>>>:
0; j > 0

In; j = 0

L�j0; j < 0;

(B.6)

where, as before, �00 = �In. To simplify notation we also denote

A0 (k; i) = 	k0�
1=2
0 
 �0i0�

�1=2
0 and B0 (d) =Md0�

1=2
0 
 ��1=20 .

Notice that from (B.6) we �nd that

rX
i=0

A0 (a� i; i) vec (In) = vec
 

rX
i=0

�0i0	
0
a�i;0

!
= 0; a 2 f1; :::; sg : (B.7)

Now recall that the matrix Y0;t+1 consists of the blocks
Pr

i=0 (yt+a�i 
 �0i0) ; a 2

f1; :::; sg, and consider the expectation

E

 
rX
i=0

(yt+a�i 
 �0i0) �
�1=2
0 e0t

!
=

rX
i=0

1X
k=�1

E
�
(	k0�t+a�i�k 
 �0i0�

�1=2
0 )e0t

�
=

rX
i=0

1X
k=�1

A0 (k; i)E ("t+a�i�k 
 e0t) ;

where the former equality is based on (7) and the latter on the de�nition of A0 (k; i)

and the de�nition "t = �
�1=2
0 �t. By Lemma 5, the expectation in the last expression

equals zero if k 6= a� i and �1
2
vec(In) if k = a� i. From this and (B.7) we �nd that

E

 
rX
i=0

(yt+a�i 
 �0i0) �
�1=2
0 e0t

!
= �1

2

rX
i=0

A0 (a� i; i) vec (In) = 0:

This in conjunction with (17) and (A.8) shows that E (@lT (�0) =@#2) = 0, and we

proceed to the covariance matrix of the score of #2.
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Let 1 (�) stand for the indicator function and, for a; b 2 f1; :::; sg, consider the

covariance matrix

C

 
rX
i=0

(yt+a�i 
 �0i0) �
�1=2
0 e0t;

rX
j=0

(yk+b�j 
 �0i0) �
�1=2
0 e0k

!

=
1X

c;d=�1

rX
i;j=0

A0 (c; i)C (("t+a�i�c 
 e0t); ("k+b�j�d 
 e0k))A0 (d; j)0

=
� 0
4

1X
c=�1
c 6=0

rX
i;j=0

A0 (c+ a� i; i)A0 (c+ b� j; j)0 1 (t = k)

+
1

4

rX
i;j=0

A0 (t� k + a� i; i)KnnA0 (k � t+ b� j; j)0 1 (t 6= k)

+

rX
i;j=0

A0 (a� i; i)DnJ0D
0
nA0 (b� j; j)

0 1 (t = k) :

Here the former equality is again obtained by using (7) and the de�nition of A0 (k; i)

whereas the latter is justi�ed by Lemma 6. Summing the last expression over t; k =

r + 1; :::; T � s� (n� 1) r, multiplying by 4=N , and letting T tend to in�nity yields

the matrix C22 (a; b; �0) (see (A.8) and the de�nition of I#2#2 (�0)). Thus,

C22 (a; b; �0) = � 0

1X
k=�1
k 6=0

rX
i=0

A0 (k + a� i; i)
rX
j=0

A0 (k + b� j; j)0

+
1X

k=�1
k 6=0

rX
i=0

A0 (k + a� i; i)Knn

rX
j=0

A0 (�k + b� j; j)0

+4

rX
i=0

A0 (a� i; i)DnJ0D
0
n

rX
j=0

A0 (b� j; j)0 : (B.8)

To see that the right hand side equals the expression given in the main text, we have

to show that the second term vanishes when the range of summation is changed to

k = 0� 1;�2; :::, or that
1X

k=�1

rX
i;j=0

�
	k+a�i;0�

1=2
0 
 �0i0�

�1=2
0

�
Knn

�
�
1=2
0 	0�k+b�j;0 
 �

�1=2
0 �j0

�
= 0:

To see this, notice that (	k+a�i;0�
1=2
0 
�0i0�

�1=2
0 )Knn = Knn(�

0
i0�

�1=2
0 
	k+a�i;0�1=20 )

(see Lütkepohl (1996), Result 9.2.2 (5)(a)). Thus, the left hand side of the preceding
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equality can be written as

Knn

1X
k=�1

rX
i;j=0

�
�0i0	

0
�k+b�j;0 
	k+a�i;0�j0

�
= Knn

1X
l=�1

rX
j=0

 
rX
i=0

�0i0	
0
�l+a+b�j�i;0 
	l;0�j0

!

= Knn

1X
l=�1

rX
j=0

�
L0l�a�b+j;0 
	l;0�j0

�
= Knn

1X
k=0

 
L0k;0 


rX
j=0

	k+a+b�j;0�j0

!
= 0:

Here the second and fourth equalities are obtained from (B.6) (because a, b > 0).

From (A.8), the de�nition of A0 (c; i), and the preceding derivations it follows that

the covariance matrix of the score of #2 divided by N converges to I#2#2 (�0).

Block I#1#2 (�0). Let a 2 f1; :::; rg and b 2 f1; :::; sg. Using (5) and (7), and the

previously introduced notation A0 (k; i) and B0 (k) (B0 (k) = 0 for k < 0) we consider

C

 
(u0;t�a 
 In) ��1=20 e0t;

rX
i=0

(yk+b�i 
 �0i0) �
�1=2
0 e0k

!

=
1X
c=0

1X
d=�1

rX
i=0

B0 (c)C (("t�a�c 
 e0t); ("k+b�i�d 
 e0k))A0 (d; i)0

=
� 0
4

1X
c=a

rX
i=0

B0 (c� a)A0 (c+ b� i; i)0 1 (t = k)

+
1

4

rX
i=0

B0 (t� k � a)KnnA0 (k � t+ b� i; i)0 1 (t 6= k) ;

where the latter equality is based on Lemma 6. Summing over t; k = r + 1; :::; T �

s � (n� 1) r, multiplying by �4=N , and letting T tend to in�nity yields the matrix

C12 (a; b; �0) (see (A.7), (A.8) and the de�nition of I#1#2 (�0)). Thus,

C12 (a; b; �0) = �� 0
1X
c=a

rX
i=0

B0 (c� a)A0 (c+ b� i; i)0

�
1X
c=a

rX
i=0

B0 (c� a)KnnA0 (�c+ b� i; i)0 : (B.9)

It is easy to see that the �rst term on the right hand side equals the the �rst term

on the right hand side of the de�ning equation of C12 (a; b; �0). To show the same for
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the second term, we need to show that

�Knn

�
	0b�a;0 
 In

�
= �

1X
c=a

rX
i=0

�
Mc�a;0�

1=2
0 
 ��1=20

�
Knn

�
�
1=2
0 	0�c+b�i;0 
 �

�1=2
0 �i0

�
:

Using again Result 9.2.2 (5)(a) in Lütkepohl (1996) and the convention Mj0 = 0,

j < 0, we can write the right hand side as

�Knn

1X
c=�1

rX
i=0

�
	0�c+b�i;0 
Mc�a;0�i0

�
= �Knn

1X
k=�1

 
	0k0 


rX
i=0

�i0M�k�a+b�i;0

!
= Knn

�
	0b�a;0 
 In

�
:

Here the latter equality can be justi�ed by using the identity �(z)M (z) = In to

obtain an analog of (B.6) with 	j�i;0 and L�j0 replaced byMj�i;0 and 0, respectively.

The preceding derivations and the de�nitions (see (A.7) and (A.8)) show that the

covariance matrix of the scores of #1 and #2 divided by N converges to I#2#1 (�0).

Block I�� (�0). First note that, by (A.9) and independence of �t, we only need to

show that E (@gt (�0) =@�) = 0 and C (@gt (�0) =@�) = I�� (�0). These facts can be

established by writing equation (A.9) as

@

@�
gt (�0) = �D0

n(�
�1=2
0 
 ��1=20 )("t 
 e0t +

1

2
vec (In));

using Lemma 6 (case t = k and i = j = 0), and arguments in its proof.

Block I�� (�0). As in the preceding case, it su¢ ces to show that E (@gt (�0) =@�) =

0 and C (@gt (�0) =@�) = I�� (�0). For the former, conclude from (A.10) and (9) that

E�0
�
@

@�
gt (�0)

�
= E�0

 
1

f (�2t ;�0)
� @
@�
f
�
�2t ;�

�����
�=�0

!

=
�n=2

� (n=2)

Z 1

0

�n=2�1
@

@�
f (�;�)

����
�=�0

d�

=
�n=2

� (n=2)

@

@�

Z 1

0

�n=2�1f (�;�) d�j�=�0

= 0:

Here the second equality is based on the expression of the density function of �2t (see

(12)), the third one on Assumption 4(i), and the fourth one on equation (13).
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That C (@gt (�0) =@�) = I�� (�0) is an immediate consequence of Assumption 4(ii),

(A.10), (9), and the expression of the density function of �2t .

Blocks I#1� (�0) and I#1� (�0). That these blocks are zero follows from (A.7),

(A.9), (A.10), independence of �t, and the fact that U0;t�1 is independent of �t and

has zero mean (see (5)).

Block I#2� (�0). Consider the covariance matrix (cf. the derivation of I#2#2 (�0))

C

 
rX
i=0

(yt+a�i 
 �0i0) �
�1=2
0 e0t;

@

@�
gk (�0)

!

= �
1X

c=�1

rX
i=0

A0 (c; i)C (("t+a�i�c 
 e0t); ("k 
 e0k)) (��1=20 
 ��1=20 )Dn

= �
rX
i=0

A0 (a� i; i)DnJ0D
0
n(�

�1=2
0 
 ��1=20 )Dn1 (t = k) :

Here the former equality is based on (7), the de�nition on A0 (c; i), and the expression

of @gt (�0) =@� given in the case of block I�� (�0). The latter equality is due to Lemma

6. The stated expression of I#2� (�0) is a simple consequence of this, (A.8), and (A.9).

Block I#2� (�0). Similarly to the preceding case we consider the covariance matrix

C

 
rX
i=0

(yt+a�i 
 �0i0) �
�1=2
0 e0t;

@

@�
gk (�0)

!

=
1X

c=�1

rX
i=0

A0 (c; i)C
�
("t+a�i�c 
 e0t);

@

@�
gk (�0)

�

=
1X

c=�1

rX
i=0

A0 (c; i)E
��
�t+a�i�c�t+a�i�c 
 �th0

�
�2t
�
�t
� 1

f0 (�2k)

@

@�0
f
�
�2k;�0

��

=

1X
c=�1

rX
i=0

A0 (c; i)E (�t+a�i�c 
 �t)E
�
�t+a�i�c�th0

�
�2t
� 1

f0 (�2k0)

@

@�0
f
�
�2k;�0

��
:

Here the �rst equality is justi�ed by (7) whereas the remaining ones are obtained

from (A.10), (9), (A.3), the independence of the processes �t and �t, and the fact that
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@gt (�0) =@� has zero mean. Thus, because E (�t+a�i�c 
 �t) = n�1vec(In)1 (c = a� i),

C

 
rX
i=0

(yt+a�i 
 �0i0) �
�1=2
0 e0t;

@

@�
gk (�0)

!

=
1

n

rX
i=0

A0 (a� i; i) vec (In)E
�
�2t
h0 (�

2
t )

f0 (�2t ; )

@

@�0
f
�
�2t ;�0

��
1 (t = k) ;

which in conjunction with (B.7) gives the desired result I#2� (�0) = 0.

Block I�� (�0). The employed arguments are similar to those in the cases of blocks

I�� (�0) and I�� (�0). By the independence of �t it su¢ ces to consider

C
�
@

@�
gt (�0) ;

@

@�
gt (�0)

�
= �D0

n

�
�
�1=2
0 
 ��1=20

�
E
�
("t 
 e0t)

@

@�0
gt (�0)

�
;

where the expectation equals (see (9), (A.3), and (A.10))

E
��
�t�t 
 �th0

�
�2t
�
�t
� 1

f0 (�2t )

@

@�0
f
�
�2t ;�0

��
= E (�t 
 �t)E

�
�2t
h0 (�

2
t )

f0 (�2t ; )

@

@�0
f
�
�2t ;�0

��
:

Because E (�t 
 �t) = n�1vec(In) = n�1Dnvech(In), the stated expression of I�� (�0)

follows from the de�nitions and the expression of the density function of �2t (see (12)).

Thus, we have completed the derivation of I�� (�0).

Step 2. From Assumption 5(i) it readily follows that it su¢ ces to prove the

positive de�niteness of I�� (�0) when r1 (#10) = Irn2 and r2 (#20) = Isn2. First we

introduce some notation. De�ne the sn2 � n2 and rn2 � n2 matrices

A0 (k) =

"
rX
i=0

A0 (k + j � i; i)
#s
j=1

and B0 (k) = [B0 (k � i)]
r
i=1 ;

where, as before, A0 (k + j � i; i) = 	k+j�i;0�1=20 
�0i0�
�1=2
0 , j = 1; :::; s, andB0 (k � i) =

Mk�i;0�
1=2
0 
 ��1=20 , i = 1; :::; r. We also set

F0 =
�n=2

� (n=2)

Z 1

0

�n=2
f 0 (�;�0)

f (�;�0)

@

@�
f (�;�0) d� � vech (In)0 J�10

�
d� 1

2
n (n+ 1)

�
Let �t = [�

0
1t �

0
2t �

0
3t �

0
4t]
0 be a sequence of independent and identically distrib-

uted random vectors with zero mean. The covariance matrix of �t as well as the

dimensions of its components will be speci�ed shortly. We consider the linear process

xt =
1X
k=1

G0 (k) �t;
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where xt = [x01t x
0
2t x

0
3t x

0
4t]
0 and

G0 (k) =

26666664
�B0 (k) 0 0 0

A0 (k) A0 (�k) 21 (k = 1)A0 (k � 1)Dn 0

0 0 �1 (k = 1)D0
n(�

�1=2
0 
 ��1=20 )Dn 0

0 0 1 (k = 1)F0 1 (k = 1) Id

37777775
With an appropriate de�nition of the covariance matrix of �t we have C (xt) = I�� (�0).

This is achieved by assuming

C (�t) = diag

0@24 � 0In2 Knn

K 0
nn � 0In2

35 : J0 : I�� (�0)� F0J0F 00

1A ;
where the �rst block de�nes the covariance matrix of [�01t �

0
2t]
0. Thus, [�01t �

0
2t]
0, �3t;

and �4t are uncorrelated and the dimension of both �1t and �2t is n
2 � 1 whereas

the dimensions of �3t and �4t are (n (n+ 1) =2) � 1 and d � 1, respectively. The

dimensions of xit agree with those of �it (i = 1; :::; 4). By straightforward calculations

one can check that the equality C (xt) = I�� (�0) really holds (with r1 (#10) = Irn2

and r2 (#20) = Isn2). Here we only note that for I## (�0) the calculations yield the

expressions given for C22 (a; b; �0) and C21 (a; b; �0) in the derivation of I#2#2 (�0) and

I#2#1 (�0) (see (B.8) and (B.9)) and that for I#2� (�0) equation (B.7) can be used.

From Lemma 1 and the fact that Knn is a permutation matrix it follows that

the �rst block of C (�t) is positive de�nite. Indeed, this is implied by the positive

de�niteness of � 0In2 � ��10 K 0
nnKnn = � 0In2 � ��10 In2, which clearly holds because

� 0 > 1. That J0 is positive de�nite follows from Lemma 6 whereas the positive de�-

niteness of the third block of C (�t) holds in view of Assumption 5(ii) and the identity

I�� (�0) � F0J0F 00 = I�� (�0) � I�� (�0) I�� (�0)�1 I�� (�0), which can be checked by

direct calculation. Thus, the whole covariance matrix C (�t) is positive de�nite.

The preceding discussion implies that we need to show that the covariance matrix

C (xt) is positive de�nite. This holds if the in�nite dimensional matrix [G0 (1) : G0 (2) : � � � ]

is of full row rank. First note that the �rst block of rows is readily seen to be of full

row rank. Indeed, using the de�nition of B0 (k) it is straightforward to see that

48



the matrix [B0 (1) : � � � : B0 (r)] (rn2 � rn2) is upper triangular with diagonal blocks

�
�1=2
0 
 ��1=20 and, therefore, of full row rank. The last two block of rows are also

linearly independent because the covariance matrix of [x03t x
0
4t]
0 equals that of the

scores of � and �, which is positive de�nite by Assumption 5(ii). It is furthermore

obvious that these two block of rows are linearly independent of the �rst block of

rows. Thus, from the de�nition of G0 (k) it can be seen that it su¢ ces to show that

the in�nite dimensional matrix [A0 (�1) : A0 (�2) : � � � ] is of full row rank. We shall

demonstrate that the matrix [A0 (�1) : � � � : A0 (�r � s)] (sn2 � s (s+ r)n2) is of full

row rank. For simplicity, we do this in the special case s = 2.

Consider the matrix product

[A0 (�1) : � � � : A0 (�r � 2)]

26666664
�
�1=2
0 �00 
 �1=20 0

... �
�1=2
0 �00 
 �1=20

�
�1=2
0 �r0 
 �1=20

...

0 �
�1=2
0 �r0 
 �1=20

37777775 (B.10)

=

24 Pr
j=0

�Pr
i=0	�j�i;0�i0 
 �0j0

� Pr
j=0

�Pr
i=0	�1�j�i;0�i0 
 �0j0

�
Pr

j=0

�Pr
i=0	1�j�i;0�i0 
 �0j0

� Pr
j=0

�Pr
i=0	�j�i;0�i0 
 �0j0

�
35

=

24 Pr
j=0

�
�Lj0 
 �0j0

� Pr
j=0

�
�Lj+1;0 
 �0j0

�
Pr

j=0

�
�Lj�1;0 
 �0j0

� Pr
j=0

�
�Lj0 
 �0j0

�
35 ;

where the equalities follow from the de�nitions and from (B.6) by direct calculation.

We shall show below that the last expression, a square matrix of order 2n2 � 2n2,

is nonsingular. Assume this for the moment and note that the latter matrix in the

product (B.10) is of full column rank 2n2 (because �00 = �In ). Thus, as the rank

of a matrix product cannot exceed the ranks of the factors of the product, it follows

that the matrix [A0 (�1) : � � � : A0 (�r � 2)] has to be of full row rank 2n2.

To show the aforementioned nonsingularity, it clearly su¢ ces to show the nonsin-
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gularity of the matrix24 Pr
j=0

�
�Lj0 
 �0j0

� Pr
j=0

�
�Lj+1;0 
 �0j0

�
Pr

j=0

�
�Lj�1;0 
 �0j0

� Pr
j=0

�
�Lj0 
 �0j0

�
3524 In2 ��10 
 In

0 In2

35
=

24 In L10 � �10
0 In

35
 In � rX
j=1

0@24 Lj0 Lj+1;0 � Lj0�10
Lj�1;0 Lj;0 � Lj�1;0�10

35
 �0j0
1A

=

24 In 0

0 In

35
 In � rX
j=1

0@24 Lj0 Lj�1;0�20

Lj�1;0 Lj�2;0�20

35
 �0j0
1A :

As in the proof of proof of the nonsingularity of the matrixH1, we have here used the

identity Lj0 = Lj�1;0�10+Lj�2;0�20 with L00 = In and Lj0 = 0, j < 0, as well as direct

calculation. In the same way as in that proof, we can now show the nonsingularity of

the last matrix by using the fact that this matrix can be expressed as

In2 
 In �
rX
j=1

�
�j
0 
 �0j0

�
= (P0 
 In)

 
In2 
 In �

rX
j=1

�
Dj
0 
 �0j0

�! �
P�10 
 In

�
;

where �0 is the companion matrix corresponding the matrix polynomial In��10z�

�20z
2 and �0= P0D0P

�1
0 is its Jordan decomposition (cf. the aforementioned previ-

ous proof). The determinant of the matrix on the right hand side of the preceding

equation is a product of determinants of the form det
�
In �

Pr
j=1�

0
j0�

j
�
where �

signi�es an eigenvalue of �0. These determinants are nonzero because, by the latter

condition in (4), the eigenvalues of �0 are smaller than one in absolute value whereas

the former condition in (4) implies that the zeros of det� (z) lie outside the unit disc.

This completes the proof of the positive de�niteness of I�� (�0).

Step 3. The asymptotic normality can be proved in the same way as in previous

univariate models (see Proposition 2 of Breidt et al. (1991)). The idea is to use (5)

and (7) to approximate the processes ut�i (#10) and yt+j�i (i = 1; :::; r; j = 1; :::; s) in

@gt (�0) =@#1 and @gt (�0) =@#1, respectively, by long moving averages. This amounts

to replacing @gt (�0) =@� by a �nitely dependent stationary and ergodic process with

�nite second moments. As is well known, a central limit theorem holds for such a

process. The stated asymptotic normality can then be established by using a standard
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result to deal with the approximation error (see, e.g., Hannan (p. 242)). As in the

aforementioned univariate case, one can here make use of the fact that the coe¢ cient

matrices in (5) and (7) decay to zero at a geometric. Details are omitted. �

Proof of Lemma 3. In the same way as in the proof of Step 1 of Proposition 2 we

consider the di¤erent blocks of I�� (�0) separately. For simplicity, we again suppress

the subscript from the expectation operator and denote E (�) instead of E�0 (�) :

Block I#1#1 (�0). Using the independence of u0;t�i (i > 0) and e0t along with (B.3)

it can be seen that the �rst term on the right hand side of (A.12) evaluated at � = �0

has zero expectation. Thus, it su¢ ces to consider the expectation of the second term.

To this end, recall the notation "t = �
�1=2
0 �t and de�ne

W
(1)
#1#1

(a; b) = 2E
�
h0 ("

0
t"t)

�
u0;t�au

0
0;t�b 
 ��10

��
;

W
(2)
#1#1

(a; b) = 4E
�
f 000 ("

0
t"t)

f0 ("0t"t)

�
u0;t�au

0
0;t�b 
 ��10 �t�0t��10

��
;

and

W
(3)
#1#1

(a; b) = �4E
h
(h0 ("

0
t"t))

2 �
u0;t�au

0
0;t�b 
 ��10 �t�0t��10

�i
:

Using these de�nitions in conjunction with (A.11), (A.1), and (A.5) we can write the

aforementioned expectation (see (A.12)) as

�2
rX
a=1

@

@#1
�a (#10)E

�
(u0;t�a 
 In) ��1=20

@

@#01
et (�0)

�
= �2

rX
a=1

@

@#1
�a (#10)E

�
h0 ("

0
t"t) (u0;t�a 
 In) ��10

@

@#01
�t (#0)

�
�4

rX
a=1

@

@#1
�a (#10)E

�
f 000 ("

0
t"t)

f0 ("0t"t)
(u0;t�a 
 In) ��10 �t�0t��10

@

@#01
�t (#0)

�
+4

rX
a=1

@

@#1
�a (#10)E

�
(h0 ("

0
t"t))

2
(u0;t�a 
 In) ��10 �t�0t��10

@

@#01
�t (#0)

�
=

rX
a;b=1

@

@#1
�a (#10)

h
W

(1)
#1#1

(a; b) +W
(2)
#1#1

(a; b) +W
(3)
#1#1

(a; b)
i @

@#01
�b (#10) :

We need to show that the last expression equals�I#1#1 (�0), which follows if
P3

i=1W
(i)
#1#1

(a; b) =

�C11 (a; b) 
 ��10 . To see this, conclude from the de�nitions, (9), and the fact
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C (�t) = n�1In that

W
(1)
#1#1

(a; b)+W
(2)
#1#1

(a; b) = 2

�
E
�
h0
�
�2t
��
+
2

n
E
�
�2t
f 000 (�

2
t )

f0 (�2t )

�� �
E
�
u0;t�au

0
0;t�b

�

 ��10

�
:

Using de�nitions and the expression of the density of �2t (see (12)) yields

E
�
h0
�
�2t
��
+
2

n
E
�
�2t
f 000 (�

2
t )

f0 (�2t )

�
(B.11)

=
�n=2

� (n=2)

�Z 1

0

�n=2�1f 00 (�) d� +
2

n

Z 1

0

�n=2f 000 (�) d�

�
=

�n=2

� (n=2)

�Z 1

0

�n=2�1f 00 (�) d� +
2

n
�n=2f 00 (�) j10 �

Z 1

0

�n=2�1f 00 (�) d�

�
= 0;

where the last two equalities are justi�ed by Assumption 6(i). Thus, we can conclude

that W (1)
#1#1

(a; b) +W
(2)
#1#1

(a; b) = 0.

Regarding W (3)
#1#1

(a; b), use again (9) and the fact C (�t) = n�1In to obtain

W
(3)
#1#1

(a; b) = � 4
n
E
h
�2t
�
h0
�
�2t
��2iE �u0;t�au00;t�b�
 ��10

= �j0E
�
u0;t�au

0
0;t�b

�

 ��10 ;

by the de�nitions of h0 (�) and j0 (see (14)). Thus, because j0E
�
u0;t�au

0
0;t�b

�
=

C11 (a; b), we have
P3

i=1W
(i)
#1#1

(a; b) = C11 (a; b)
 ��10 , as desired.

Block I#2#2 (�0). The �rst term on the right hand side of (A.13) evaluated at

� = �0 has zero expectation by arguments entirely similar to those used to show

that the expectation of @gt (�0) =@#2 is zero (see the proof of Proposition 2, Block

I#2#2 (�0)). Thus, it su¢ ces to consider the second term for which we �rst note that

E
�
�4t
f 000 (�

2
t )

f0 (�2t )

�
=

�n=2

� (n=2)

Z 1

0

�n=2+1f 000 (�) d�

=
�n=2

� (n=2)

�
�n=2+1f 00 (�)

���1
0
� n+ 2

2

Z 1

0

�n=2f 00 (�) d�

�
= n(n+ 2)=4; (B.12)

where the last equality is justi�ed by Assumption 6(i) and (B.1).
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Next de�ne

W
(1)
#2#2

(a; b) = 2E

"
h0 ("

0
t"t)

rX
i;j=0

�
yt+a�iy

0
t+b�j 
 �0i0��10 �j0

�#
;

W
(2)
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(a; b) = 4E

"
f 000 ("

0
t"t)

f0 ("0t"t)

rX
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�
yt+a�iy

0
t+b�j 
 �0i0��10 �t�0t��10 �j0

�#
and

W
(3)
#2#2

(a; b) = �4E
"
(h0 ("

0
t"t))

2
rX

i;j=0

�
yt+a�iy

0
t+b�j 
 �0i0��10 �t�0t��10 �j0

�#
:

Using these de�nitions in conjunction with (A.11) and (A.6) the expectation of the

second term on the right hand side of (A.13) evaluated at � = �0 can be written as

2
sX
a=1

@

@#2
�a (#20)E

"
rX
i=0

(yt+a�i 
 �0i0) �
�1=2
0

@

@#02
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#

= 2
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�
yt+a�iy

0
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 �0i0��10 �j0

�# @

@#02
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sX
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"
f 000 ("

0
t"t)
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�
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@#02
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�4
sX
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f 00 ("

0
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f0 ("0t"t)

�2 rX
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�
yt+a�iy
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t+b�j 
 �0i0��10 �t�0t��10 �j0

�# @

@#02
�b (#20)

=

sX
a;b=1

@

@#2
�a (#20)

h
W

(1)
#2#2

(a; b) +W
(2)
#2#2

(a; b) +W
(3)
#2#2

(a; b)
i @

@#02
�b (#20) :

Thus, to show that the last expression equals �I#2#2 (�0) it su¢ ces to show thatP3
i=1W

(i)
#2#2

(a; b) = �C22 (a; b; ; �0). To this end, �rst note that, by (7),

W
(1)
#2#2

(a; b) = 2
rX

i;j=0

1X
c;d=�1

E
�
h0 ("

0
t"t)

�
	c0�t+a�i�c�

0
t+b�j�d	

0
d0 
 �0i0��10 �j0

��
=

2

n
E
�
�2t
�
E (h0 ("0t"t))

rX
i;j=0

1X
c=�1
c 6=0

A0 (c+ a� i; i)A0 (c+ b� j; j)

�
rX

i;j=0

A0 (a� i; i)A0 (b� j; j) ;
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where, as before, 	k0�
1=2
0 
�0i0�

�1=2
0 = A0 (k; i). The latter equality is a straightfor-

ward consequence of (9), (B.1), and the fact C (�t) = n�1In.

For W (2)
#2#2

(a; b) one obtains from (7)

W
(2)
#2#2

(a; b) = 4
rX

i;j=0

1X
c;d=�1

E
�
f 000 ("

0
t"t)
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�
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E
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2
t )

f0 (�2t )

� rX
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c 6=0
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+4E
�
�4t
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2
t )

f0 (�2t )

� rX
i;j=0

A0 (a� i; i)E (�t�0t 
 �t�0t)A0 (b� j; j) ;

where the latter equality is again obtained from (9) and the fact C (�t) = n�1In.

From (B.11) and (B.12) we can now conclude that

W
(1)
#2#2

(a; b) +W
(2)
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rX
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rX
j=0

A0 (a� i; i)A0 (b� j; j)

+n(n+ 2)
rX
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 �t�0t)A0 (b� j; j) :

Next, arguments similar to those already used give
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A0 (a� i; i)E (�t�0t 
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= �� 0
rX

i;j=0

1X
c=�1
c 6=0

A0 (c+ a� i; i)A0 (c+ b� j; j)
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rX
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0
nA0 (b� j; j) :

Here the last equality follows from the de�nitions of � 0; i0, and J0 (in the term

involving J0 (B.7) has also been used).
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From the preceding derivations we �nd that

3X
i=1

W
(i)
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(a; b) = �� 0
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That
P3

i=1W
(i)
#2#2

(a; b) = �C22 (a; b; ; �0) holds, can now be obtained from (20) by

observing that E (�t�0t 
 �t�0t) = E
�
(vec(�t�0t)) (vec(�t�

0
t))

0� and that the impact
of the term vec(In)vec(In)

0 in (20) cancels by equality (B.7) (see the de�nition of

C22 (a; b; ; �0)).

Block I#1#2 (�0). First conclude from (A.14), (A.11), (A.6), and (9) that
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:
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We need to show that
P4

i=1W
(i)
#1#2

(a; b) = �C12 (a; b; �0). The employed arguments,

based mostly on (5), (7), (9), and the fact C (�t) = n�1In, are similar to those used

in the previous cases. First note that
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;

where the last equality is due to (B.1). Next,
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:

From the preceding expressions and (B.11) it is seen thatW (2)
#1#2

(a; b)+W
(3)
#1#2

(a; b) =

0.

Regarding W (4)
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(a; b), we have
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where the last equality holds by the de�nitions of h0 (�) and � 0. Combining the

preceding derivations yields
P4

i=1W
(i)
#1#2

(a; b) = �C12 (a; b; �0), as desired.
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Block I�� (�0). From (A.15) and (9) we obtain

@2

@�@�0
gt (�0) = h0 ("

0
t"t) (�

0
t 
 �0t 
D0

n) (In 
Knn 
 In)

�
�
��10 
 ��10 
 vec

�
��10

�
+ vec

�
��10

�

 ��10 
 ��10

�
Dn

+h00 ("
0
t"t)D

0
n(�

�1=2
0 
 ��1=20 ) ("t"

0
t 
 "t"0t) (�

�1=2
0 
 ��1=20 )Dn

+
1

2
D0
n

�
��10 
 ��10

�
Dn:

The �rst term on the right hand side consists of two additive terms. Using (9) and

taking expectation the �rst one can be written as

E
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Here the former equality is based on (B.1) and the fact E (�t�0t) = n�1In whereas the

latter can be seen as follows. Let B1 and B2 be arbitrary symmetric (n� n) matrices

and consider the quantity
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��10 
 ��10

�
Dnvech (B2) :

Here the third equality follows from Lütkepohl (1996, Result 9.2.2(5)(c)) whereas the

other equalities are due to de�nitions and well-known properties of the Kronecker

product and vec operator (especially the result vec(ABC) = (C 0 
 A)vec(B)). Be-

causeB1 andB2 are arbitrary symmetric (n� n)matrices the stated result follows and
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in the same way it can be seen that a similar result holds for the second additive com-

ponent obtained from the �rst term of the preceding expression of @2gt (�0) =@�@�0.

Thus, we can conclude that

E
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� 1
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�
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Using (9) and (A.1) one obtains
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where the latter equality is based on (B.12) and the de�nition of i0 (see (15)). Thus,

E
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Because E (�t�0t 
 �t�0t) = DnE ((vech(�t�0t))(vech(�t�0t))D0
n the right hand side equals

�I�� (�0) if the expression in the brackets can be replaced by vec(In)vec(In)0. From

(20) it is seen that this expression can be replaced by vec(In)vec(In)
0 + Knn � In2 .

Thus, the desired result follows because

(Knn � In2) (��1=20 
 ��1=20 )Dn = (�
�1=2
0 
 ��1=20 ) (Knn � In2)Dn = 0

by Results 9.2.2(2)(b) and 9.2.3(2) in Lütkepohl (1996).

Block I�� (�0). By the de�nition of I�� (�0) and (A.17) it su¢ ces to note that

E
�

1

f (�2t ;�0)
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@�@�0
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�2t ;�0
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=

�n=2

� (n=2)

Z 1
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�n=2�1
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@�@�0
f (�;�0) d� = 0;

where the former equality follows from (12) and the latter from Assumption 6(ii) (cf.

the corresponding part of the proof of Proposition 2, Block I�� (�0)).

Blocks I#1� (�0) and I#1� (�0). The former is an immediate consequence of (A.16),

the independence of �t and @�t (#0) =@#1, and the fact E (@�t (#0) =@#1) = 0 (see (A.5))

which imply E (@2gt (�0) =@#1@�0) = 0:
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As for I#1� (�0), it is seen from (A.18), (A.1), and (A.5) that we need to show that

E
�

1

f0 ("0t"t)
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0 ("

0
t"t) = (f0 ("

0
t"t))

2. These facts follow

from the independence of u0;t�a and �t and E (u0;t�a) = 0.

Block I#2� (�0). From (A.16) and (A.6) we �nd that

@2

@#2@�0
gt (�0)

= �2h0 ("0t"t)
sX
b=1

@

@#2
�b (#20)

rX
a=0

(�0t 
 yt+b�a 
 �0a0)
�
��10 
 ��10

�
Dn

�2h00 ("0t"t)
sX
b=1

@

@#2
�b (#20)

rX
a=0

(yt+b�a 
 �0a0) ��10 �t (�0t 
 �0t)
�
��1 
 ��1

�
Dn:

By independence of �t and equation (7), y0t+b�a on the right hand side can be replaced

by 	b�a;0�t when expectation is taken. Thus, using the de�nition of et0 (see (A.2))

and straightforward calculation the expectation of the �rst term on the right hand

side becomes
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where, again, A0 (b� a; i) = 	b�a0�1=20 
 �0a0�
�1=2
0 and the latter equality is due to

E(e00t 
 "t 
 In) = E("te00t 
 In) = �2�1In2 (see (B.4)).

The expectation of the second term in the preceding expression of @2gt (�0) =@#2@�0

can similarly be written as

�2
sX
b=1

@

@#2
�b (#20)E

"
h00 ("

0
t"t)

rX
a=0

(	b�a;0�t 
 �0a0) ��10 �t ("0t 
 "0t)
#
(�

�1=2
0 
��1=20 )Dn;

59



where, by (9) and (A.1), the expectation equals�
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Here we have used (B.12), the de�nition of i0 (see (15)), and straightforward calcu-

lation. Combining the preceding derivations shows that
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where the last expression equals �I#2� (�0) and the latter equality can be justi�ed by

using the de�nition of J0, the identity (20), and arguments similar to those already

used in the case of block I�� (�0) (see the end of that proof).

Block I#2� (�0). From (A.18) and (A.6) it is seen that we need to show that
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The argument is similar in both cases and also similar to that used in the proof of

Proposition 2 (see Block I#2� (�0)). For example, consider the former and use (7) and

independence of �t to write the left hand side of the equality as
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where that equality is due to (9). Because E (�t 
 �t) = vec(E (�t�0t)) = n�1vec(In)

the last expression is zero by (B.7). A similar proof applies to the other expectation.

Block I�� (�0). One obtains from (A.19) that E (@2gt (�0) =@�@�) is a sum of two

terms. One is
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where the equality is based on (9) and, using (12), the last expectation can be written

as
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Here the former equality is justi�ed by Assumption 6(ii) and the latter by (B.1).

By similar arguments it is seen that the second term of E (@2gt (�0) =@�@�) becomes

�I�� (�0). �
Proof of Theorem 4. First note that our Proposition 2 and Lemma 3 are analogous

to Lemmas 1 and 2 of Andrews et al. (2006) so that the method of proof used in

that paper also applies here. That method is based on a standard Taylor expansion

and, an inspection of the arguments used by Andrews et al. (2006) in their proof

of Theorem 1, shows that we only need to show that the appropriately standardized

Hessian of the log-likelihood function satis�es
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 p! 0; (B.13)

where �0 is some small enough compact neighborhood of �0 (cf. Lanne and Saikkonen

(2008)). From the expressions of the components of @2gt(�)=@�@�
0 it can be checked

that @2gt(�)=@�@�
0 is stationary and ergodic, and, as a function of �, continuous.

Hence, a su¢ cient condition for (B.13) to hold is that @2gt(�)=@�@�
0 obeys a uniform

law of large numbers over �0, which is turn is implied by

E�0
�
sup
�2�0





 @2

@�@�0
gt(�)





� <1 (B.14)
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(see Theorem A.2.2 in White (1994)).

We demonstrate (B.14) for some typical components of @2gt(�)=@�@�
0 and note

that the remaining components can be handled along similar lines. Of @2gt(�)=@#i@#
0
j

i; j 2 f1; 2g we only consider @2gt(�)=@#1@#02. In what follows, c1, c2; ::: will denote

positive constants. From (A.14), Assumption 3, and the de�nitions of the quantities

involved (see (A.2), (A.11), (A.6)) it can be seen that
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The �niteness of the last two expectations can be established similarly, so we only

show the latter. First conclude from (A.1) and Assumption 7 that, with �0 small

enough,

sup
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;

where the last equality is obtained from the de�nition of �t (#) (see (19)) and Loeve�s

cr�inequality (see Davidson (1994), p. 140). Thus, it follows that we need to show

the �niteness of E�0
�
kytk4+2a3

�
or, by (7) and Minkowski�s inequality, the �niteness

of
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where the former inequality is justi�ed by (9) and the latter by Assumption 7.

From (19) and (A.15) it can be seen that the treatment of @2gt(�)=@�@�0 is very

similar to that of @2gt(�)=@#1@#
0
2 and the same is true for @

2gt(�)=@#i@�
0 (i = 1; 2) (see
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(A.16), (A.5), and (A.6)). Next consider @2gt(�)=@�@�
0. The dominance assumptions

imposed on the third and �fth functions in Assumption 7 together with the triangular

inequality and the Cauchy-Schwarz inequality imply that, with �0 small enough,

E�0
�
sup
�2�0
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@�@�0
gt(�)





� � 2a1 + 2a2E�0 �� sup
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0��1�t (#)
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;

where the �niteness of the right hand side was established in the case of @2gt(�)=@#1@#
0
2.

The treatment of the remaining components, @2gt(�)=@#i@�
0 and @2gt(�)=@�@�

0, in-

volve no new features, so details are omitted.

Finally, because

� (T � s� nr)�1 @2lT (�̂)=@�@�0 = � (T � s� nr)�1
T�s�(n�1)rX

t=r+1

@2gt(�̂)=@�@�
0;

the consistency claim is a straightforward consequence of the fact that @2gt(�)=@�@�
0

obeys a uniform law of large numbers. This completes the proof. �
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Figure 1: Quantile-quantile plots of the residuals of the VAR(2,0)-N (upper panel)

and VAR(1,1)-t (lower panel) models for the changes in U.S. GDP, government ex-

penditure and government revenue.
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Figure 2: Quantile-quantile plots of the residuals of the VAR(3,0)-N (upper panel)

and VAR(2,1)-t (lower panel) models for the U.S. term structure data.
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Table 1: Results of diagnostic checks of the second-order VAR models for examining
the presence of �scal foresight.

Model
VAR(2,0)-N VAR(2,0)-t VAR(1,1)-t VAR(0,2)-t

Ljung-Box (4)
0.994
0.194
0.633

0.712
0.038
0.272

0.733
0.065
0.160

0.843
0.021
0.281

McLeod-Li (4)
0.084
0.103
1.66e�7

0.111
0.085
1.47e�9

0.767
0.762
0.969

0.940
0.687
1.80e�8

Log-likelihood �960.407 �967.489 �944.947 �949.472

VAR(r; s) denotes the vector autoregressive model for (�GDP;�Government
expenditure;�Government revenue)0 with the rth and sth order polynomials �(B)
and �(B�1), respectively. N and t refer to Gaussian and t-distributed errors, respec-
tively. Marginal signi�cance levels of the Ljung-Box and McLeod-Li tests with 4 lags
are reported for each equation.
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Table 2: Estimation results of the VAR(1,1)-t model for (�GDP;�Government

expenditure;�Government revenue)0.

�0.064

(0.091)

0.107

(0.075)

�0.049

(0.016)

�1
�0.046

(0.111)

�0.093

(0.104)

0.012

(0.024)

0.192

(0.315)

�0.065

(0.205)

�0.333

(0.071)

0.244

(0.104)

0.006

(0.060)

0.072

(0.022)

�1
�0.320

(0.167)

0.268

(0.093)

0.066

(0.045)

0.607

(0.278)

�0.045

(0.176)

0.389

(0.071)

0.165

(0.024)

0.071

(0.017)

0.346

(0.055)

�
0.071

(0.017)

0.305

(0.040)

0.156

(0.053)

0.346

(0.055)

0.156

(0.053)

2.141

(0.295)

�
8.253

(0.954)

The �gures in parentheses are standard errors based on the

Hessian of the log-likelihood function.
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Table 3: Results of diagnostic checks of the third-order VAR models for the term
structure.

Model
VAR(3,0)-N VAR(3,0)-t VAR(2,1)-t VAR(1,2)-t VAR(0,3)-t

Ljung-Box (4)
0.710
0.725

0.005
0.014

0.134
0.976

4.58e�5
0.002

0.003
0.155

McLeod-Li (4)
5.83e�5
3.85e�4

0.011
0.103

0.478
0.879

6.07e�5
0.001

0.058
0.199

Log-likelihood �261.443 �110.307 �93.960 �106.453 �106.012

VAR(r; s) denotes the vector autoregressive model for (�rt; St)0 with the rth and sth order
polynomials �(B) and �(B�1), respectively. N and t refer to Gaussian and t-distributed errors,
respectively. Marginal signi�cance levels of the Ljung-Box and McLeod-Li tests with 4 lags are
reported for each equation.
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Table 4: Estimation results of the VAR(2,1)-t model for (�rt; St)0.

�1
�0.532

(0.107)

0.464

(0.138)

0.248

(0.156)

0.257

(0.143)

�2
�0.338

(0.055)

0.306

(0.097)

0.461

(0.094)

�0.018

(0.129)

�1
0.441

(0.076)

�0.136

(0.041)

�0.191

(0.201)

0.658

(0.096)

�
0.123

(0.023)

�0.095

(0.043)

�0.095

(0.043)

0.184

(0.074)

�
8.187

(1.214)

The �gures in parentheses are standard errors based on the

Hessian of the log-likelihood function.
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