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1 Introduction

The classical Arrow-Debreu-McKenzie model of perfect competition is obviously at odds with

itself as the finitude of economy size implies that individuals can exercise some influence on the

prices at which goods are either sold or bought in the economy. Aumann [4] resolves this issue

by introducing an economy with an atomless measure space of agents. In such an economy, each

individual agent has non-negligible consumption in general, but with negligible impact on the

aggregate demand, and therefore takes prices as given. Thus, the formulation of an atomless

measure space of agents captures precisely the meaning of perfect competition.1

The Aumann model is deterministic as each agent’s characteristics are non-random. Thus,

in this model, contracts (trades) are made under complete information. It is not an exaggeration

to say that all economic activities or all contacts among individuals in an economy are made

under conditions of uncertainty or incomplete information. To this end, it is of interest to

know whether or not one can introduce asymmetric or private information2 on the Aumann

economy, and still be able to capture the meaning of perfect competition. Notice that once

private information is introduced in the Aumann model, an agent may have monopoly power

on her information, and thus may have an incentive to manipulate her information to become

better off. This poses the following question: can one model the idea of perfect competition

in an economy with asymmetric information? To put differently, can one model the concept of

negligible private information?

The main purpose of this paper is to formulate precisely the idea of perfect competition for

a differential information economy so that the incentive for an individual agent to manipulate her

private information is negligible. A heuristic way to capture the idea of perfect competition for

such an economy is that the private signal of an individual agent can only influence a negligible

corner of the market, and the signals associated with the individual agents (for example, used in

their utility functions) are essentially independent of each other conditioned on the true states

of nature. This paper shows that such a heuristic idea does work well in a suitable mathematical

framework.3

The paper is organized as follows. After presenting the basic measure-theoretic framework

in Section 2, a perfectly competitive differential information economy is considered in Section

3 in the setting of a “common value” model, where agents’ types are purely informational

in the sense that they do not enter the utility functions. In particular, this is the case, when
1See [8] for a systematic development of large economies and extensive references.
2When it is appropriate, we shall use the terminologies of private information, differential information, in-

complete information and asymmetric information interchangeably.
3Thus, we provide an answer to the open question posed in [1].
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uncertainty only stems from characteristics of the objects being traded. It is proved in Theorem

1 that any allocation in the corresponding complete information economy can be implemented as

an incentive compatible allocation in the private information economy that transforms exactly

the usual Pareto efficiency and Walrasian equilibrium to their ex post versions via very simple

measure-theoretic methods. The existence of incentive compatible and ex post Walrasian (and

hence ex post individually rational and ex post efficient) allocations follows easily (part (3)

of Theorem 1), and thus the conflict between incentive compatibility and Pareto efficiency is

resolved exactly in this setting, contrary to the fixed finite economy setting.

The same type of existence result as in part (3) of Theorem 1 is shown in Theorem 2 of

Section 4 for the more general case that agents’ types are allowed to enter the utility functions.

Theorem 3 of Section 5 presents the asymptotic version of Theorem 2 for a general sequence of

large, but finite private information economies. In Section 6, we discuss the related literature.

Section 7 contains some concluding remarks. Section 8 is an appendix that includes the proofs

of all the results plus a statement of the exact law of large numbers and associated definitions,

and a brief description on a construction of the information structure that satisfies the required

conditions.

All our definitions and results in the main text as well as the proofs in Sections 8.2 -

8.4 of the appendix are stated in common measure-theoretic or asymptotic terms, which can

be read by a reader with some background in probability theory. Nonstandard analysis is only

used in two sections of the appendix. Finally, a construction of the information structure using

Loeb probability spaces is given in Section 8.6.4

2 Some basic definitions

We fix an atomless probability space5 (I,I, λ) representing the space of economic agents, and

S = {s1, s2, . . . , sK} the space of true states of nature (its power set denoted by S), which are

not known to the agents.6 Let T 0 = {q1, q2, . . . , qL} be the space of all the possible signals

(types) for individual agents, (T, T ) a measurable space that model the private signal profiles

for all the agents, and thus T is a space of functions from I to T 0.7 Thus, t ∈ T , as a function
4The reader can pick up some basic knowledge of nonstandard analysis by reading [3], or Chapters 1, 2, 3 and

5 in the book [12].
5We use the convention that all probability spaces are countably additive.
6For those who prefer to see that there is a continuum of agents literally, it is noted in the appendix below

that one can indeed take I to be the unit interval with some atomless probability measure. However, Corollary
4.3 in [17] shows that in general, it will not make sense to impose the Lebesgue measure structure when an
independent process is considered.

7In the literature, one usually assumes that different agents have possibly different sets of signals and require
that the agents take all their own signals with positive probability. For notational simplicity, we choose to work
with a common set T 0 of signals, but allow zero probability for some of the signals. There is no loss of generality
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from I to T 0, represents a private signal profile for all agents in I. For agent i ∈ I, t(i) (also

denoted by ti) is the private signal of agent i while t−i the restriction of the signal profile t

to the set I \ {i} of agents different from i; let T−i be the set of all such t−i. For simplicity, we

shall assume that (T,T ) has a product structure so that T is a product of T−i and T 0, while T
is the product algebra of the power set T 0 on T 0 with a σ-algebra T−i on T−i. We shall adopt

the usual notation (t−i, t
′
i) to denote the signal profile whose value is t′i for agent i (t′i ∈ T 0),

and the same as t for other agents.

Let (Ω,F , P ) be a probability space representing all the uncertainty on the true states

as well as on the signals for all the agents, where (Ω,F) is the product measurable space

(S × T,S ⊗ T ). Let P S and P T be the marginal probability measures of P respectively on

(S,S) and on (T, T ). Let s̃ and t̃i, i ∈ I be the respective projection mappings from Ω to

S and from Ω to T 0 with t̃i(s, t) = ti.8 For each true state s ∈ S, we assume without loss

of generality that the state is essential in the sense that πs = P S({s}) > 0; let P T
s be the

conditional probability measure on (T, T ) when the random variable s̃ takes value s. Thus, for

each B ∈ T , P T
s (B) = P ({s} × B)/πs. It is obvious that P T =

∑
s∈S πsP

T
s . Note that the

conditional probability measure P T
s is often denoted as P (·|s) in the literature.

One can also introduce the conditional probability measure9 P S(·|t) on S such that

P S({s}|t) forms a probability weights in s ∈ S for a fixed t ∈ T , is T -measurable in t ∈ T for

a fixed s ∈ S, and for each B ∈ T , P ({s} × B) =
∫
B P S({s}|t)dP T (t). Let ps(·) be the density

function of P T
s with respect to P T ; it is easy to see that P S({s}|t) = πsps(t) for P T -almost all

t ∈ T .

For i ∈ I, let τi be the signal distribution of agent i on the space T 0,10 and P S×T−i(·|ti)
the conditional probability measure on the product measurable space (S × T−i,S ⊗ T−i) when

the signal of agent i is ti ∈ T 0. If τi({ti}) > 0, then it is clear that for D ∈ S ⊗ T−i,

P S×T−i(D|ti) = P (D × {ti})/τi({ti}).
In this paper, we need to work with a signal process that is independent conditioned

on the true states s ∈ S. However, an immediate technical difficulty arises, which is the so-

called measurability problem of independent processes that was first noted by Doob in [5]. In

our context, a signal process that is essentially independent, conditioned on the true states of

nature may not be measurable at all; in fact, it follows from Proposition 1 of [16] that it is never

jointly measurable in the usual sense except for trivial cases. Hence, we need to work with a

joint agent-probability space (I × T,I � T , λ � P T
s ) that extends the usual measure-theoretic

in this latter approach.
8t̃i can also be viewed as a projection from T to T 0.
9Note that a conditional probability measure is uniquely defined up to a null set.

10For q ∈ T 0, τi({q}) is the probability P (t̃i = q).
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product (I ×T,I ⊗T , λ⊗P T
s ) of the agent space (I, I, λ) and the probability space (T, T , P T

s ),

and retains the Fubini property.11 Its formal definition is given in Definition 7 of the Appendix.

Let I �F be the collection of all subsets E of I ×Ω such that there are sets A ∈ I � T ,

C ∈ S such that E = {(i, s, t) ∈ I × Ω : (i, t) ∈ A, s ∈ C}. By abusing the notation, we

can denote E by A × C and I � F by (I � T ) ⊗ S. Define λ � P on I � F by letting

λ � P (A×C) =
∑

s∈C πsλ � P T
s (A). Thus, one can view λ � P T

s as the conditional probability

measure on I × T , given s̃ = s.

3 Economies with common values

3.1 A large deterministic economy

Let E0 be a large (Aumann) deterministic economy with the atomless probability space (I,I, λ)

as the space of agents and Rm
+ as the common consumption set, u0 a function from I × Rm

+ to

R such that for any given i ∈ I, u0(i, x) is the utility of agent i at consumption bundle x ∈ Rm
+ .

Assume that u0(i, x) is I-measurable in i ∈ I, continuous and monotonic12 in x ∈ Rm
+ . Let e be

a λ-integrable function from I to Rm
+ , where e(i), (also denoted by ei) is the initial endowment

of agent i. We can represent E0 by {(I,I, λ), u0, e}. Let ∆m be the unit simplex in Rm
+ .

For the purpose of readability, we present in the following definition several standard

concepts.

Definition 1 1. An allocation for the economy E0 is simply an integrable function x from

(I,I, λ) to Rm
+ .

2. An allocation x is said to be individually rational if for λ-almost i ∈ I, u0(i, x(i)) ≥
u0(i, e(i)).

3. An allocation x is feasible in E0 if
∫
I x(i)dλ(i) =

∫
I e(i)dλ(i).

4. A feasible allocation x is efficient in E0 if there does not exist any other feasible allocation

y such that u0(i, y(i)) > u0(i, x(i)) for λ-almost all i ∈ I.13

5. A feasible allocation x is a Walrasian allocation (competitive equilibrium allocation) in

E0 if there is a price system p ∈ ∆m such that for λ-almost all i ∈ I, x(i) is a maximal

element in the budget set {z ∈ Rm
+ : p · z ≤ p · e(i)} under the utility function u0(i, ·).

11I � T is a σ-algebra that contains the usual product σ-algebra I ⊗ T , and the restriction of the countably
additive probability measure λ� P T

s to I ⊗ T is λ ⊗ P T
s .

12This means that if x, y ∈ Rm
+ , x ≥ y with x 6= y, then u0(i, x) > u0(i, y).

13The monotonicity assumption implies that the efficiency of x is equivalent to the nonexistence of a feasible
allocation y such that u0(i, y(i)) ≥ u0(i, x(i)) for λ-almost all i ∈ I with a strict inequality for a set of agents i
with λ-positive measure.
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6. A coalition A (i.e., a set in I with λ(A) > 0) is said to block an allocation x if there

exists an allocation y such that
∫
A y(i)dλ(i) =

∫
A e(i)dλ(i), and for λ-almost all i ∈ A,

u0(i, y(i)) > u0(i, x(i)). A feasible allocation x is said to be in the core of E0 if there is

no coalition that blocks x.

3.2 The economic model

We shall now follow the definition and notation in Section 2. We consider an atomless economy

with asymmetric information, which corresponds to the asymptotic replica economies considered

in [13]. The common consumption set is the positive orthant Rm
+ . Let u be a function from

I ×Rm
+ ×S to R+ such that for any given i ∈ I, u(i, x, s) is the utility of agent i at consumption

bundle x ∈ Rm
+ and true state s ∈ S.14 For any given s ∈ S, assume that u(i, x, s), (also denoted

by us(i, x)),15 is I-measurable in i ∈ I, continuous and monotonic in x ∈ Rm
+ . The utility of

agent i does not depend on her or any other agents’ signals. Let e be a λ-integrable function

from I to Rm
+ such that

∫
I e(i)dλ is in the strictly positive cone16 Rm

++, where e(i) is the initial

endowment of agent i.

For each s ∈ S, Ec
s = {(I,I, λ), us, e} is a large deterministic economy. The collection

Ec = {Ec
s : s ∈ S} is called a Complete Information Economy (CIE). The following

definition adapts Definition 1 to the CIE setting.

Definition 2 1. An allocation for the CIE is a function xc from I ×S to Rm
+ such that for

each s ∈ S, xc
s is λ-integrable. Let Ac be the collection of all the allocations for the CIE.

2. A CIE allocation xc is said to be individually rational if for each s ∈ S, xc
s is individ-

ually rational in Ec
s .

3. A CIE allocation xc is feasible if for each s ∈ S, xc
s is feasible in Ec

s .

4. A feasible CIE allocation xc is said to be efficient if for each s ∈ S, xc
s is efficient in Ec

s .

5. A feasible CIE allocation xc is said to be a Walrasian allocation (competitive equilibrium

allocation) if for each s ∈ S, there is a price system ps ∈ ∆m such that (xc
s, ps) is a

competitive equilibrium in Ec
s .

14 We assume that the utility functions take non-negative values to avoid stating various integrability conditions
explicitly. In fact, one can impose the condition of linear growth on the utilities to guarantee that the relevant
expected utilities as used in this paper are finite. A real-valued function v on Rm

+ is said to satisfy the condition
of linear growth if there exist positive numbers α and β such that v(x) ≤ α‖x‖ + β for all x ∈ Rm

+ . When a
continuous function v satisfies that condition, v(y(·)) is integrable on (T, T , P T ) whenever y(·) is so. It is obvious
that any concave function on Rm

+ always satisfies the condition of linear growth.
15In the sequel, we shall often use subscripts to denote some variable of a function that is viewed as a parameter

in a particular context.
16A vector x is in Rm

++ if and only if all its components are positive.
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6. A feasible CIE allocation xc is said to be in the core of the CIE if for each s ∈ S, xc
s is

in the core of Ec
s .

In the complete information economy, the agents are informed with the true state. We

shall now consider a corresponding Private Information Economy, where the agents are informed

with their signals but not the true state. In this case, the agents will use the conditional

probability measure P S(·|t) on S to compute their expected utilities. For t ∈ T , the ex post

utility Ui(x|t) of agent i (also denoted by U(i, x, t)) for her consumption bundle x ∈ Rm
+ with

the given signal profile t is
∑

s∈S ui(x, s)P S({s}|t). It is obvious that for any fixed x ∈ Rm
+ ,

U(i, x, t) is I ⊗ T -measurable in (i, t) ∈ I × T and continuous in x ∈ Rm
+ . The collection

Ep = {(I × Ω,I � F , λ � P ), u, e, (t̃i, i ∈ I), s̃} is called a Private Information Economy

(PIE). For each fixed t ∈ T , Ep
t = {(I,I, λ), U(·, ·, t), e} is a large deterministic economy. The

following is an analog of Definition 2 in the setting of a PIE.

Definition 3 1. An allocation for the PIE is an integrable function xp from (I × T,I �
T , λ � P T ) to Rm

+ . Let Ap be the collection of all the allocations for the PIE.

2. A PIE allocation xp is said to be ex post individually rational if for P T -almost all

t ∈ T , xp
t is individually rational in Ep

t .

3. A PIE allocation xp is ex post feasible if for P T -almost all t ∈ T , xp
t is feasible in Ep

t .

4. A feasible PIE allocation xp is said to be ex post efficient if for P T -almost all t ∈ T ,

xp
t is efficient in Ep

t .

5. A feasible PIE allocation xp is said to be an ex post Walrasian allocation (ex post

competitive equilibrium allocation) if there is a measurable price function p from (T, T )

to ∆m such that for P T -almost all t ∈ T , (xp
t , pt) is a competitive equilibrium in Ep

t .

6. A feasible PIE allocation xp is said to be in the ex post core of the PIE if for P T -almost

all t ∈ T , xp
t is in the core of Ep

t .

In the Private Information Economy, each agent i is privately informed with her signal

ti. A major issue is whether the agent will have any incentive to mis-report that signal. The

following definition of incentive compatibility is standard.

Definition 4 For a PIE allocation xp, an agent i ∈ I, a signal profile t ∈ T , and a signal

t′i ∈ T 0, let

Ui(x
p
i , t

′
i|ti) =

∫

S×T−i

ui(x
p
i (t−i, t

′
i), s)dP S×T−i(·|ti),
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which is the expected utility of agent i when she receives private signal ti but mis-reports as t′i.

The PIE allocation xp is said to be incentive compatible if λ-almost all i ∈ I,

Ui(x
p
i , ti|ti) ≥ Ui(x

p
i , t

′
i|ti)

holds for τi-almost all ti, t
′
i ∈ T 0.

3.3 Perfect competition in a large economy with asymmetric information

The fundamental idea of perfect competition is that there are many economic agents, and that

each individual agent has negligible influence in the market. Though each individual agent has

non-negligible consumption in general, her share of consumption in the aggregate in terms of

per capita consumption is negligible; that property can be guaranteed by using an atomless

measure space as the space of agents.

When individuals have asymmetric information, a heuristic way to capture the idea of

perfect competition is that the private signal of an individual agent can only influence a negli-

gible set of agents, and moreover those signals associated with the individual agents that play

a particular role in the model (for example, used in the utility functions or in calculating the

aggregate signal distribution in some sense) are essentially independent of each other. The

following definition formalizes this intuitive idea.

Definition 5 Let G0 be a finite set {g1, g2, . . . , gM}, (with power set G0), and F be a measurable

process from (I × T,I � T ) to G0. For agent i ∈ I, F (i, t) is the derived signal of agent i from

the signal profile t. The process F is called an idiosyncratic signal process if it has the

following two properties.

(1) The process F is a signal process with negligible influence from private signals. That

is, for λ-almost all i ∈ I, there is a set Ai ∈ I with λ(Ai) = 1 such that for any t ∈ T and

t′i ∈ T 0, F (j, (t−i, ti)) = F (j, (t−i, t
′
i)) holds for each j ∈ Ai.

(2) The process F is essentially pairwise independent conditioned on s̃.

Condition (1) means that agent i’s private signal ti can only possibly influence the value

of F (j, t) for a null set of agents j ∈ I − Ai. Thus, whenever agent i mis-reports her private

signal ti has no effect on F (j, t) for almost all agents j ∈ I. Condition (2) says that when a

true state s is realized, agent i’s derived signal F (i, ·) is independent of agent j’s derived signal

F (j, ·) for almost all agents i, j ∈ I. A formal definition of essential pairwise independence is

given in Definition 8 of the appendix.

Notice that ti is the private signal of agent i, and we simply call F (i, t) her signal.
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Note that the property in Definition 5 (1) can also be defined for the case when I has

finitely many agents and λ is the counting probability measure. Since any single agent is not

negligible, the validity of (1) implies that for any i, j ∈ I, t ∈ T and t′i ∈ T 0, F (j, (t−i, ti)) =

F (j, (t−i, t
′
i)), which implies that for any i ∈ I, F (i, ·) is constant. Thus, in order for the

property in (1) to be meaningful, one has to work in a model with an atomless measure space

of agents.

Our idiosyncratic signal process is a general function of the agents’ announcements sat-

isfying the above two conditions.17 We shall consider two special cases in the following two

remarks; one involves only agents’ private signals and the other replication of signals.

Remark 1 When F (i, t) = ti for all (i, t) ∈ I×T , i.e. F (i, ·) only takes agent i’s private signal

as its value, one can simply take Ai = I \ {i} for any i ∈ I. Since λ is assumed to be atomless,

any single agent is negligible, and hence λ(Ai) = 1. It is obvious that F (j, (t−i, ti)) = tj =

F (j, (t−i, t
′
i)) for j ∈ Ai. Therefore, F is a signal process with negligible influence from private

signals. If, in addition, F is essentially pairwise independent conditioned on s̃, then F is an

idiosyncratic signal process. Note that the property in Definition 5 (1) can only guarantee that

the private signal of an agent has negligible influence in the functional form. Some underlying

correlations conditioned on s̃ may still exist in a non-trivial way. For example, one can construct

P so that for a non-negligible set A of agents i ∈ I, t̃i, i ∈ A are correlated conditioned on s̃;

then an individual agent may still have non-negligible influence. Thus, condition (2) is needed.

Remark 2 (a) When a differential information economy with k agents is replicated as in [7],

[13] and [14], the agents are divided into many cohorts of k agents and the signals within each

cohort may be used in the utility functions or used for calculating the joint distributions within

the cohort. As an analog in the continuum setting, we assume that the space of agents is in

the form (I,I, λ) = (Ik × I ′,Ik ⊗ I ′, λk ⊗ λ′), where Ik = {1, 2, . . . , k}, Ik the power set on

Ik, λk the counting probability measure, and (I ′,I ′, λ′) is an atomless probability space. For

i′ ∈ I ′, the agents (1, i′), (2, i′), . . . , (k, i′) are said to be in the same cohort. For an agent

i = (l, i′) ∈ Ik × I ′, t ∈ T , let F ((l, i′), t) = (t(1,i′), t(2,i′), · · · , t(k,i′)). Then, F is a process from

(I × T,I � T ) to G0 =
(
T 0

)Ik

that takes the signals of the agents in the same cohort. For

i = (l, i′) ∈ Ik × I ′, let Ai = I \ {(1, i′), (2, i′), . . . , (k, i′)}; then, j = (q, j′) ∈ Ai implies that

j′ 6= i′, F (j, (t−i, ti)) = (t(1,j′), · · · , t(k,j′)) = F (j, (t−i, t
′
i)) for any t ∈ T and t′i ∈ T 0. Since

finitely many agents are still negligible, λ(Ai) = 1, and F is a signal process with negligible

influence from private signals.
17This kind of general function allows great flexibility and generality for interpreting our model; for example,

one can base on the agents’ announcements in a coalition. This point alone has already been considered to be a
worthy topic for further research in the second paragraph of page 2440 in [13]; see also footnote 28 below.
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(b) We can define another process F ′ from (I ′ × T,I ′ � T ) to G0 by letting F (i′, t) =

(t(1,i′), t(2,i′), · · · , t(k,i′)) for (i′, t) ∈ I ′ × T . An analogous property to that of independent repli-

cas is that for all i′, j′ ∈ I ′ with i′ 6= j′, F ′(i′, ·) and F ′(j′, ·) are independent with identical

distributions conditioned on s̃. We do not need this strong condition in order for F to be an

idiosyncratic signal process. It is easy to see that F is essentially pairwise independent condi-

tioned on s̃ if and only if so is F ′; thus, if F or F ′ has this property, then F is an idiosyncratic

signal process.

When the true state is s, the signal distribution of agent i conditioned on the true state

is P T
s F−1

i , i.e., the probability for agent i to have gl as her signal is P T
s (F−1

i ({gl})) for each

1 ≤ l ≤ M , where Fi = F (i, ·). Let µs be the agents’ average signal distribution conditioned

on the true state s, i.e.,

µs({gl}) =
∫

I
P T

s (F−1
i ({gl}))dλ =

∫

I

∫

T
1{gl}(F (i, t))dP T

s dλ,

Where 1{gl} is the indicator function of the singleton set {gl}. By the Fubini property for

(I ×T,I �T , λ �P T
s ),18 µs is actually the distribution (λ �P T

s )F−1 of F , viewed as a random

variable on the product space I × T .19

From now on, we shall impose the following non-triviality assumption on the process

F :

∀s, s′ ∈ S, s 6= s′ ⇒ µs 6= µs′ . (1)

This says that different true states of nature correspond to different average conditional distri-

butions of agents’ signals.

Next, we define the following sets

∀s ∈ S, Ls = {t ∈ T : λF−1
t = µs}; L0 = T − ∪s∈SLs. (2)

The non-triviality assumption implies that for any s, s′ ∈ S with s 6= s′, Ls ∩ Ls′ = ∅. The

measurability of the sets Ls, s ∈ S and L0 follows from the measurability of F . Thus, the

collection {L0} ∪ {Ls, s ∈ S} forms a measurable partition of T . That partition will play a

central role in later sections.20

18For a formal definition of the Fubini property, see Definition 7.
19As we will see in the appendix, under the assumption of essential pairwise conditional independence, the

exact law of large numbers in [15] and [17] (see Lemma 2 in the appendix) implies that (λ � P T
s )F−1 = λF−1

t

for P T
s -almost all t ∈ T .

20As noted in footnote 19, under the condition of essential pairwise independence, the exact law of large
numbers in [15] and [17] implies that P T

s (Ls) = 1 for each s ∈ S.
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3.4 Incentive compatibility and ex post efficient, Walrasian and core allocations

Define a mapping Φ from the set Ac of CIE allocations to the set Ap of PIE allocations as

follows. For any CIE allocation xc ∈ Ac, define

Φ(xc)(i, t) =
{

e(i) if t ∈ L0,
xc(i, s) if t ∈ Ls, s ∈ S

(3)

for (i, t) ∈ I × T . It is obvious that Φ(xc) is integrable on (I × T,I ⊗ T , λ ⊗ P T ), (and thus

integrable on the extension (I ×T,I � T , λ � P T )), and consequently is a PIE allocation. This

means that Φ is indeed a mapping from Ac to Ap.

Theorem 1 below shows that Φ plays a central role between the two economies Ec and Ep.

In particular, under assumption that F is an idiosyncratic signal process, any CIE allocation xc

can be transformed to an incentive compatible PIE allocation Φ(xc), and the ex post efficiency

of Φ(xc) is equivalent to the efficiency of xc. The same type of equivalence also holds for core

and Walrasian allocations. Thus, the existence of incentive compatible, ex post Walrasian,

(and thus ex post individually rational and ex post efficient) allocations, follows from the usual

existence result on Walrasian allocations, as in [8]. The theorem below is proved in Section 8.3

of the Appendix.

Theorem 1 (1) If F is a signal process with negligible influence from private signals, then the

PIE allocation Φ(xc) is always incentive compatible for any CIE allocation xc.

(2) Assume that the process F is essentially pairwise independent conditioned on s̃. Let xc

be any CIE allocation. Then xc is individually rational, or feasible, or efficient, or a Walrasian

allocation, or a core allocation in the CIE if and only if Φ(xc) has the corresponding ex post

version of the property in the PIE.21 In addition, we have
∫

T
ui(Φ(xc)(i, t), s)dP T

s (t) = ui(xc(i, s), s), (4)

which means that the expected utility of Φ(xc)(i, ·) conditioned on the true state s is always the

utility of xc(i, s).

(3) If F is an idiosyncratic signal process, then there exists an incentive compatible PIE

allocation xp that is an ex post Walrasian allocation (and thus ex post individually rational and

ex post efficient).

4 Economies with type dependent utility functions

Section 3 focuses on an atomless economy with asymmetric information, where no agents’ types

enter utility functions. In this section, we shall consider the more general case that allows
21By the usual core equivalence theorem in [4] and [8], a PIE allocation is in the ex post core if and only if it

is an ex post Walrasian allocation. Thus, core equivalence is still valid in this perfectly competitive framework.
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agents’ types to appear in the utility functions.

We shall follow the definition and notation in Sections 2 and 3.3. The common consump-

tion set is Rm
+ . Let v be a function from I ×Rm

+ × S ×G0 to R+ such that for any given i ∈ I,

v(i, x, s, g) is the utility of agent i at consumption bundle x, true state s, and the agent’s signal

g. For any given s ∈ S, and g ∈ G0, assume that v(i, x, s, g) is I-measurable in i ∈ I, continuous

and monotonic in x ∈ Rm
+ . For given (s, t), let u(i, x, s, t) = v(i, x, s, F (i, t)). It can be easily

checked that for any fixed x ∈ Rm
+ , s ∈ S, u(i, x, s, t) is I � T -measurable.22 Let e be an

integrable function from I to Rm
+ with

∫
I e(i)dλ(i) ∈ Rm

++, where e(i) is the initial endowment

of agent i.

We now define a Private Information Economy, where the agents are informed with their

signals but not the true state. The ex post utility Ui(x|t) of agent i, (also denoted by U(i, t, x)),

for the agent’s consumption x ∈ Rm
+ with the given signal profile t is

∑
s∈S u(i, x, s, t)P S({s}|t).

It is obvious that for any fixed x ∈ Rm
+ , U(i, t, x) is I � T -measurable. For each fixed t ∈ T ,

Ep
t = {(I,I, λ), U(·, ·, t), e} is a large deterministic economy. The collection Ep = {(I × Ω,I �

F , λ � P ), u, e, F, (t̃i, i ∈ I), s̃} is called a Private Information Economy (PIE). Definition

3 is still applicable for the PIE in this section.

The following definition of incentive compatibility is the same as Definition 4 except that

the utility functions ui are now signal dependent.

Definition 6 For a PIE allocation xp, an agent i ∈ I, a signal profile t ∈ T , and a signal

t′i ∈ T 0, let

Ui(x
p
i , t

′
i|ti) =

∫

S×T−i

ui(x
p
i (t−i, t

′
i), s, (t−i, ti))dP S×T−i(·|ti),

which is the expected utility of agent i when she receives private signal ti but mis-reports as t′i.

The PIE allocation xp is said to be incentive compatible if λ-almost i ∈ I,

Ui(x
p
i , ti|ti) ≥ Ui(x

p
i , t

′
i|ti)

holds for τi-almost all ti, t
′
i ∈ T 0.

Now we present the following theorem that corresponds to the result in Part (3) of

Theorem 1 (the proof is given in Section 8.4 of the Appendix).

Theorem 2 If F is an idiosyncratic signal process, then there exists an incentive compatible

allocation xp in the Private Information Economy such that xp is an ex post Walrasian allocation

(and thus ex post individually rational, and ex post efficient).
22For any fixed x ∈ Rm

+ , s ∈ S, and r ∈ R, one can simply observe that

{(i, t) ∈ I × T : u(i, x, s, t) < r} = ∪g∈G0
[
F−1({g}) ∩ {(i, t) ∈ I × T : v(i, x, s, g) < r}

]
.
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5 Asymptotic interpretation

In this section, we translate Theorem 2 to an asymptotic setting. Fix n ≥ 1. We shall first

define the n-th Private Information Economy Ep
n. Let In be {1, 2, . . . , n} with the counting

probability measure λn on its power set In; (In,In, λn) represents the space of agents for

the n-th economy.23 The sets S and T0 have the same meanings as in Section 2, i.e., S =

{s1, s2, . . . , sK}, (with power set S), is the space of true states that are not known to the

agents; and T 0 = {q1, q2, . . . , qL} is the space of all the possible private signals for individual

agents.

Let T n = (T 0)I
n

be the space of all the functions from In to T 0 with its power set

T n, and (Ωn,Fn) the product of (S,S) and (T n,T n). Let (Ωn,Fn, Pn) be a probability space

representing all the uncertainty (on the true states as well as on the private signals for all the

agents) in the n-th economy, P S
n and P T n

n the marginal probability measures of Pn respectively

on (S,S) and on (T n,T n). Let s̃n be the projection mapping from Ωn to S.

For tn ∈ T n, tn is a function from In to T0 representing a signal profile for all the agents

in In, and tn(in), also denoted by tnin , the private signal received by agent in ∈ In. Let t̃nin be

the projection mapping from Ωn to T 0 with t̃nin(s, tn) = tnin . For tn ∈ T n and in ∈ In, let tn−in

be the restriction of the signal profile tn to the set In \ {in}; T n
−in denotes the set of all such

tn−in .

Let P T n

ns denote the conditional probability measure P T n

n (·|s) on (T n,T n) when the ran-

dom variable s̃n takes value s. Let P S
n (·|tn) be the conditional probability measure on S given

the signal profile tn ∈ T n. For in ∈ In, let τn
in be the signal distribution Pn

(
t̃nin

)−1 of agent in

on the space T 0, and P
S×T n

−in

n (·|tnin) the conditional probability measure on S × T n
−in when the

signal for agent in is tnin ∈ T 0.

Let F n be a signal process from (In×T n,In⊗T n) to a finite space G0 = {g1, g2, . . . , gM}
of derived signals for the agents; F n(in, tn) will enter the utility function of agent in. For each

in ∈ In, let F n
in denote the function F n(in, ·) on T n.

For each s ∈ S, let

µn
s (·) =

(
λn ⊗ P T n

ns

)
(F n)−1 (·) =

1
n

n∑

in=1

P T n

ns

(
(F n

in)−1 (·)
)

,

which is the average signal distribution conditioned on the true state s. Assume that there

exists a positive number δ0 such that for each n ≥ 1,

∀s ∈ S, πn
s = P S

n ({s}) ≥ δ0; ∀s, s′ ∈ S, s 6= s′ ⇒ ‖µn
s − µn

s′‖ ≥ δ0, (5)

23We shall use both superscript and subscript n to index objects in the n-th economy.
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where µn
s and µn

s′ are viewed as points in the unit simplex ∆K in RK , and ‖µn
s − µn

s′‖ is

their Euclidean distance. This condition corresponds to the non-triviality assumption on the

measures P S and µs, s ∈ S in the limit model in Sections 2 and 3.

We shall now define the utilities and endowments for the n-th Private Information Econ-

omy. For simplicity, we take a compact subset U0 of the space U(Rm
+ ) of non-negative continuous

and monotonic functions on Rm
+ satisfying the condition of linear growth24 that is endowed with

the supnorm topology, and a compact subset E0 of Rm
++. Let vn and en be mappings25 respec-

tively from In × S × G0 to U0 and from In to E0, where vn(in, s, g)(·) is the utility function

of agent in at true state s ∈ S and her signal g, and en(in) the initial endowment of agent in.

For tn ∈ T n, the ex post utility Un
in(x|tn) of agent in, (also denoted by Un(in, x, tn)), for her

consumption bundle x ∈ Rm
+ with the given signal profile tn is

∑
s∈S un

in(x, s, tn)P S
n ({s}|tn),

where un
in(x, s, tn) = vn(in, s, F n(in, tn))(x).

The n-th Private Information Economy is simply the collection Ep
n = {(In×Ωn,In⊗

Fn, λn ⊗ Pn), un, en, (t̃nin , in ∈ In), s̃n}. An allocation for Ep
n is a function from (In × T n,In ⊗

T n, λn ⊗ P T n

n ) to Rm
+ .

For an allocation xp
n of the PIE Ep

n, an agent in ∈ In, a signal profile tn ∈ T n, and a

signal (tnin)′ ∈ T 0, let

Un
in

(
(xp

n)in , (tnin)′|tnin
)

=
∫

S×T n
−in

un
in

(
xp

n(in, (tn−in , (tnin)′), s, tn
)
dP

S×T n
−in

n (·|tnin),

which is the expected utility of agent in when she receives private signal tnin but mis-reports as

(tnin)′.

The following theorem is an asymptotic analog of Theorem 2. The proof can be found in

Section 8.5 of the Appendix.

Theorem 3 For the sequence Ep
n, n ≥ 1 of PIEs, assume that the signal processes F n, n ≥ 1

are asymptotically idiosyncratic in the sense that for any δ > 0, and s ∈ S, both of the following

sequences converge to one as n goes to infinity:26

λn ⊗ λn

({
(in, jn) ∈ In × In : ‖P T n

ns

(
F n

in , F n
jn

)−1 − P T n

ns (F n
in)−1 ⊗ P T n

ns

(
F n

jn

)−1 ‖ ≤ δ
})

, (6)

λn ⊗ λn

({
(in, jn) ∈ In × In : ∀tn ∈ T n, (tnin)′ ∈ T 0, F n(jn, tn) = F n(jn, (tn−in , (tnin)′))

})
. (7)

Then for any given ε > 0, there is a positive integer N such that for any n > N , there exists

an allocation xp
n for the PIE Ep

n, a price function pn from T n to the price simplex ∆m, and
24The purpose of including the condition of linear growth as defined in Footnote 14 is to guarantee the relevant

expected utilities in the limiting case to have finite values. Note that the utility functions in [7] are assumed to
be bounded (p. 1277).

25The compactness assumption on both U0 and E0 can be relaxed respectively to a tightness condition on the
induced distribution of un on U(Rm

+ ) and to a uniform integrability condition on en.
26In this paper, ‖ · ‖ denotes the Euclidean norm.
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sets Bn ⊆ In and Cn ⊆ T n with λn(Bn) > 1 − ε and P T n

n (Cn) > 1 − ε satisfying the following

properties.

(a) For each in ∈ Bn,

Un
in ((xp

n)in , tnin |tnin) + ε ≥ Un
in

(
(xp

n)in , (tnin)′|tnin
)

holds for all tnin , (tnin)′ ∈ T 0 with τn
in({tnin}) ≥ ε and τn

in({(tnin)′}) ≥ ε.

(b) For any (in, tn) ∈ In × T n, pn(tn)xp
n(in, tn) = pn(tn)en(in).

(c) For all tn ∈ Cn,

(i)
∥∥∫

In xp
n(in, tn)dλn −

∫
In en(in)dλn(in)

∥∥ ≤ ε;

(ii) λn

({
in ∈ In : ∀y ∈ Rm

+ , pn(tn)y ≤ pn(tn)en(in) ⇒ Un
in(xp

n(in, tn)|tn) + ε ≥ Un
in(y|tn)

})
≥

1 − ε;

(iii) λn({in ∈ In : Un
in(xp

n(in, tn)|tn) + ε ≥ Un
in(en(in)|tn)}) ≥ 1 − ε;

(iv) there does not exist an allocation yn from In to Rm
+ such that

∫
In yn(in)dλn(in) =

∫
In en(in)dλn(in), and for all in ∈ In, Un

in(yn(in)|tn) > Un
in(xp

n(in, tn)|tn) + ε.

Theorem 3 (a) says that the PIE allocation xp
n for Ep

n is approximately incentive compat-

ible; (b), (i) and (ii) of (c) mean that xp
n is an approximate ex post Walrasian allocation; (iii)

and (iv) of (c) show that xp
n is both ex post individually rational and ex post efficient in an ap-

proximate sense. Note that the approximate ex post individual rationality in (iii) of (c) clearly

follows from the approximate optimality with budget constraints in (ii) of (c). However, the

statement in (iv) of (c) on approximate ex post efficiency may not follow from the approximate

ex post Walrasian property.27 Since the common value model can be regarded as a special case

of the model with type dependent utilities, exactly the same result in Theorem 3 also provides

an asymptotic version of Part (3) of Theorem 1.

6 Related literature

One needs to choose a mathematically meaningful model for an atomless measure space of agents

who act independently conditioned on true states of nature. This has not appeared anywhere

before. The well-known measurability problem associated with a continuum of independent

random variables, as noted by Doob [5], Judd [9] and Feldman-Gilles [6], are automatically

resolved in our mathematical model. This is important since we use the distribution of the

realized signals to determine the true states; if the relevant sample functions are not known to

be measurable in a general analytic framework, this would become senseless.
27Suppose that there exists an allocation yn satisfying the required properties in (iv) of (c). Then, (ii) of (c)

implies that for any tn ∈ Cn, λn ({in ∈ In : pn(tn)yn(in) > pn(tn)en(in)}) ≥ 1−ε; one may not be able to derive
a contradiction from that condition with

∫
In pn(tn)yn(in)dλn =

∫
In pn(tn)en(in)dλn.
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Our notion of perfect competition is new. In particular, as it is explained in Section 3.3,

the private signal of an individual can only influence a negligible set of agents (through their

utilities and/or through computing the realized signal distributions) and furthermore those

signals associated with the individual agents are essentially pairwise independent. In contrast

to the replica models in [7] and [13], where all the private announcements in a cohort with a

fixed number n of agents influence everyone in the cohort, our formulation is based on a general

function of the private announcements for all the agents, which allows great flexibility and

generality for interpreting our model. While the formulation of a replica model simply relies on

a fixed finite economy, our notion of negligible influence of private signals is reduced to complete

triviality for a fixed finite economy, as noted in Section 3.3. Thus, our new formulation has no

meaningful exact analog for a fixed finite economy. In addition, an individual agent can have

correlation with a negligible set (which can be infinite) of other agents conditioned on the true

states while the replica models only do so for agents in the same cohort with a fixed number of

n agents.

Our limit results in Theorems 1 and 2 for the atomless economy are completely new.

However, our asymptotic results in Theorem 3 are related to the approximate results in Gul-

Postlewaite [7], Krasa-Shafer [10], McLean-Postlewaite [13] and Palfrey-Srivastava [14]. In

particular, Palfrey-Srivastava [14] discussed the idea of “information smallness”, and showed

that when the economy is replicated independently, the incentive for an agent to manipulate her

private information goes to zero. For an economy with a fixed finite number of agents, Krasa

and Shafer [10] and McLean and Postlewaite [13] obtained a sort of continuity result that a

small perturbation of the information structure with non-exclusive or complete information

would still give an incentive compatible equilibrium in an approximate sense.

Since our asymptotic results in Theorem 3 are closely related to those of Gul-Postlewaite

[7], and McLean-Postlewaite [13], we make detailed comparisons below. While we consider here

a very general sequence of large, but finite economies with possibly non-concave, type-dependent

utilities, a special sequence of replica economies with strictly concave, type-dependent utilities

was considered in [7]. Note that the model in [7] relies on a regularity condition that requires

the demands of two different types for an agent to be never identical for all prices in some

open ball for every realization of the relevant uncertainty. It is not clear what type of utility

functions will produce this regularity condition. Since the regularity condition in [7] requires

that an individual agent’s utility cannot be independent of her type, the independent replica

model with type independent utilities (common values) as considered in [13] is thus ruled out

in the model of [7]. We do not need the type of regularity condition in this paper, which means

that the basic common value model can indeed be regarded as a special case for the more
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general models with type dependent utilities.

Next, we compare the restrictions on the information structures. In the independent

replica model in [7], the private signal of an individual agent has influence over a fixed number

of k agents in the same cohort, and the discrete parameter process that takes the signals of

all the k agents in the relevant cohort as its values are mutually independent and identically

distributed (iid) conditioned on the true states. In comparison, our asymptotically idiosyncratic

signal processes F n are general functions of the agents’ announcements that satisfy equations

(6) and (7).28 It is more general than the replica case in two aspects. First, it allows the private

signal of an individual agent to influence a small corner of the market without a fixed bound

k (in particular, any fixed finitely many agents in the large finite markets). Second, the signal

process is not assumed to be iid but with the much more general condition of approximate

pairwise independence conditioned on the true states. In addition, we formulate the non-

triviality condition in equation (5) in terms of non-negligible distances between the average

signal distributions while [7, p.1277] and [13, p.2434] assumed that the conditional probabilities

on the signal space were different with different given true states.

Since our asymptotic model is much more general than the independent replica models

considered in [7] and [13], our conclusion in Theorem 3 is also slightly less sharp than the

corresponding conclusions in [7] and [13] in the sense that approximate incentive compatibility

is used here.29

Finally, we compare our proofs with those in [7] and [13]. The proofs for the approximate

results in [7] and [13] require intricate computations. In comparison, the proofs of our exact

results are simple and transparent in measure-theoretic terms. Also, the proof of our asymptotic

results in Theorem 3 is based on our exact results. Given the fact that the special replica case

as considered in [7] and [13] is already rather difficult to prove, we believe that it would be very

difficult to prove our asymptotic results using finite approximations directly, without using the

corresponding exact results. Thus, our Theorem 2 not only provides the exact results but also

plays a key role in proving the asymptotic results in our Theorem 3.

7 Concluding remarks

This paper shows that the introduction of a suitable mathematical model to capture the mean-

ing of perfect competition in a differential information economy has a high reward. In particular,
28Our idiosyncratic signal process in the limit case is a general function satisfying the two conditions in

Definition 5. In particular, it can use just the announcements from a coalition A of agents by letting Fi(t) = ti

for i ∈ A and Fi(t) = g0 for i /∈ A, where g0 is a point in G0 (for this case, we take G0 = {g0} ∪ T 0); F
is an idiosyncratic signal process when the private signals for agents in coalition A are essentially independent
conditioned on the true states (see the suggestion on page 2440 of [13]). See also footnote 17.

29Note that approximate incentive compatibility is also used in [14].
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not only for the first time we model the idea of perfect competition in a differential information

economy, and therefore generalize the Aumann model, but also we resolve exactly the incom-

patibility of incentive compatibility and Pareto efficiency. Furthermore, our results for the limit

economies guarantee the corresponding asymptotic results for large but finite economies, and

also a number of assumptions needed in [7] and [13] can be dispensed with in our general setting.

8 Appendix

8.1 The exact law of large numbers

In order to work with independent processes constructed from signal profiles, we need to work

with an extension of the usual measure-theoretic product having the Fubini property. Here is

a formal definition.

Definition 7 Let (I,I, λ) and (Ω,F , P ) be probability spaces. A probability space (I×Ω,W, Q)

is said to be a Fubini extension of the usual product space (I×Ω,I⊗F , λ⊗P ) if it is an extension

of (I × Ω,I ⊗ F , λ ⊗ P ), and for any real-valued Q-integrable function g on (I × Ω,W), the

two functions gi = g(i, ·) and gω = f(·, ω) are integrable respectively on (Ω,F , P ) for λ-almost

all i ∈ i and on (I,I, λ) for P -almost all ω ∈ Ω; moreover,
∫
Ω gidP and

∫
I gωdλ are integrable

respectively on (I,I, λ) and on (Ω,F , P ), with
∫
I×Ω gdQ =

∫
I

(∫
Ω gidP

)
dλ =

∫
Ω

(∫
I gωdλ

)
dP .

The space (I × Ω,W, Q) is denoted by (I × Ω,I � F , λ � P ).

The following is an exact law of large numbers for a continuum of independent random

variables shown in [15] and [17].30

Lemma 1 Let g be a measurable process from (I×Ω,I�F , λ�P ) to a complete separable metric

space X. If the process g is essentially pairwise independent in the sense that for λ-almost all

i ∈ I, the random variables gi and gj are independent for λ-almost all j ∈ I, then for P -almost

all ω ∈ Ω, the cross-sectional distribution λg−1
ω of the sample function gω is the same as the

distribution (λ � P )g−1 of the process g viewed as a random variable on (I ×Ω,I �F , λ � P ).

We shall now follow the notation of Section 2. When the probability space (I × T, I �
T , λ � P T

s ) is a Fubini extension of the usual product space (I × T,I ⊗ T , λ ⊗ P T
s ), for each

s ∈ S, it can be checked that (I × Ω, I � F , λ � P ), defined in the last paragraph of Section 2,

is a Fubini extension of the usual product space (I × Ω,I ⊗ F , λ ⊗ P ). Below is a definition of

conditional independence.
30This result was originally stated on the Loeb measure spaces in [15] (Theorem 5.2). However, it is noted in

[17] that the result can be proved for an extension of the usual product with the Fubini property (Corollary 2.9).
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Definition 8 Let G be a I � T -measurable process from I × T to a complete separable metric

space X. It is said to be essentially pairwise independent conditioned on the true state random

variable s̃ if for each s ∈ S, the process G from (I × T,I � T , λ � P T
s ) to X is essentially

pairwise independent.

For the convenience of the reader, we restate Lemma 1 to the setting of conditional

independence using our notation.

Lemma 2 If a process G from I × T to a complete separable metric space X is essentially

pairwise independent conditioned on s̃, then for each s ∈ S, the cross-sectional distribution

λG−1
t of the sample function Gt(·) = G(t, ·) is the same as the distribution (λ � P T

s )G−1 of the

process G viewed as a random variable on (I × T,I � T , λ � P T
s ) for P T

s -almost all t ∈ T .

8.2 The conditional probability P S(·|t), t ∈ T

Let δs be the Dirac measure on S that gives probability one to the point s and zero to other

points. Define a function H from T to the space of probability measures on S by letting

H(t) =
{

δs for t ∈ Ls, s ∈ S,
δs1 for t ∈ L0.

Lemma 3 below shows that the conditional independence of the signal process F together with

the associated exact law of large numbers as shown in [15] and [17] implies that P T (∪s′∈SLs′) =

1, and H(t), t ∈ T is a version of the conditional probability P S(·|t), t ∈ T . Note that using

H as the conditional probability P S(·|t), t ∈ T means the following. When all the signals are

reported by the agents to form a signal profile t, the agents will be able to determine the true

state to be s if the cross-sectional signal distribution λF−1
t is observed to be µs.

Lemma 3 If F is essentially pairwise independent conditioned on s̃, then P T (∪s′∈SLs′) = 1,

and H(t), t ∈ T is a version of P S(·|t), t ∈ T .

Proof: The exact law of large numbers as stated in Lemma 2 says that the set Ls = {t ∈ T :

λF−1
t = µs} has P T

s -probability one. Thus, P T
s (Ls′) = 0 for s 6= s′ ∈ S, P T

s (∪s′∈SLs′) = 1, and

P T (∪s′∈SLs′) =
∑

s∈S πsP
T
s (∪s′∈SLs′) = 1. Hence, P T is a convex combination of mutually

singular probability measures P T
s , s ∈ S.

Fix any s′ ∈ S, B ∈ T . Since B \ Ls′ is a subset of T \ Ls′ , which is a P T
s′ -null set, we

have P T
s′ (B \ Ls′) = 0. Thus, P T

s′ (B ∩ Ls′) = P T
s′ (B) − P T

s′ (B \ Ls′) = P T
s′ (B). Hence, for any

s ∈ S, we have the following identities
∫

B
H(t)({s})dP T (t) =

∑

s′∈S

πs′

∫

B
H(t)({s})dP T

s′ (t) =
∑

s′∈S

πs′

∫

B∩Ls′

H(t)({s})dP T
s′ (t)
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=
∑

s′∈S

πs′

∫

B∩Ls′

δs′({s})dP T
s′ (t) = πsP

T
s (B ∩ Ls) = πsP

T
s (B)

= P ({s} × B) =
∫

B
P S({s}|t)dP T

s (t) (8)

which implies that H(t), t ∈ T is indeed a version of P S(·|t), t ∈ T , by the arbitrary choices of

s ∈ S and B ∈ T .

8.3 Proof of Theorem 1

(1): By Definition 5 (1), we know that there is a set A∗ ∈ I with λ(A∗) = 1 such that for any

i ∈ A∗, there is a set Ai ∈ I with λ(Ai) = 1 such that for any t ∈ T and t′i ∈ T 0, the sample

functions F(t−i,ti)(·) and F(t−i,t′i)
(·) agree on Ai. Since the society’s signal distribution cannot

be influenced by a negligible set of agents outside the set Ai, we have λF−1
(t−i,ti)

= λF−1
(t−i,t′i)

.

This means that for any i ∈ A∗, t ∈ T , t′i ∈ T 0, and s ∈ S,

t ∈ Ls ⇔ λF−1
t = µs ⇔ λF−1

(t−i,t′i)
= µs ⇔ (t−i, t

′
i) ∈ Ls. (9)

Since L0 is T \ ∪s∈SLs, we also know that t ∈ L0 ⇔ (t−i, t
′
i) ∈ L0.

Denote Φ(xc) by xp. We have for any i ∈ A∗, xp(i, t) = xp(i, (t−i, t
′
i)) for any t ∈ T and

t′i ∈ T 0. Therefore, the condition of incentive compatibility in Definition 4 is satisfied by xp.

Thus, part (1) is shown.

(2): Assume that F is essentially pairwise independent conditioned on s̃. The exact law

of large numbers as stated in Lemma 2 says that the set Ls = {t ∈ T : λF−1
t = µs} has

P T
s -probability one. Since, for any s ∈ S, i ∈ I, one always has xp(i, t) = Φ(xc)(i, t) = xc(i, s)

for t ∈ Ls, and then by integration, we obtain that
∫

T
ui(Φ(xc)(i, t), s)dP T

s (t) =
∫

Ls

ui(Φ(xc)(i, t), s)dP T
s (t) = ui(xc(i, s), s),

which is equation (4).

Lemma 3 says that H is a version of the conditional probability P S(·|t). Thus, for any

version of the conditional probability P S(·|t), we always have P S(·|t) = δs for P T -almost all

t ∈ Ls. Hence, for P T -almost all t ∈ Ls,

U(i, ·, t) =
∑

s′∈S

u(i, ·, s′)P S({s′}|t) =
∑

s′∈S

u(i, ·, s′)δs({s′}) = u(i, ·, s)

for all i ∈ I,31 and Ep
t = Ec

s . Let Bs = {t ∈ Ls : Ep
t = Ec

s}; then P T (Ls \Bs) = 0. Hence, for any

t ∈ Bs, the ex post economy-allocation pair (Ep
t , xp(·, t)) is exactly the same as the complete

31Here we note that the Dirac measure δs has probability one at the point s and zero at those points s′ ∈ S
with s′ 6= s.
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information economy-allocation pair (Ec
s , xc(·, s)), which means that they must have the same

properties.

Thus, if xc is efficient, then for each fixed s ∈ S, xc(·, s) is efficient for Ec
s . This means that

xp(·, t) is efficient for Ep
t for any t ∈ Bs. Since P T (Ls \ Bs) = 0 for each s ∈ S, P T (∪s∈SBs) =

P T (∪s∈SLs) = 1. Hence xp(·, t) is efficient for Ep
t for P T -almost all t ∈ T . Hence xp is ex post

efficient.

For the other direction, fix any s ∈ S. If xp is ex post efficient, then xp(·, t) is efficient

for Ep
t for P T -almost all t ∈ T , and in particular for P T -almost all t ∈ Ls. Since P T (Bs) =

P T (Ls) =
∑

s′∈S πs′P
T
s′ (Ls) = πsP

T
s (Ls) = πs > 0, we can certainly find a t ∈ Bs such that

xp(·, t) is efficient for Ep
t . For such a t ∈ Bs, since the economy-allocation pairs (Ep

t , xp(·, t)) and

(Ec
s , x

c(·, s)) are the same, we obtain that xc(·, s) is efficient for Ec
s . Since s is arbitrarily chosen

in S, we know that xc is efficient.

The rest of the proof for part (2) follows clearly from the definition of each of the prop-

erties in Definition 2 and their ex post versions in Definition 3 by using the argument adopted

for the proof of efficiency.

(3): By the usual existence result on Walrasian allocations in [8], there exists an alloca-

tion xc that is a Walrasian allocation for the CIE. By parts (1) and (2) of this theorem, the

PIE allocation xp = Φ(xc) is an incentive compatible, ex post Walrasian allocation, which is

obviously also individually rational and ex post efficient. Hence part (3) follows.

8.4 Proof of Theorem 2

To make those variables with given parameters in the particular context clear, we use subscripts

extensively in this section. Fix s ∈ S. Define a mapping Γ from I × T to I × G0 by letting

Γ(i, t) = (i, F (i, t)) for all (i, t) ∈ I × T . Then, Γ is a measurable mapping in the sense that for

any measurable set D ∈ I ⊗G0, Γ−1(D) is measurable in I �T . Let νs be the induced measure

on I×G0 of the measure λ�P T
s under Γ, i.e., for any D ∈ I⊗G0, νs(D) =

(
λ � P T

s

) (
Γ−1(D)

)
.

Define a large deterministic economy Ēs = {(I × G0,I ⊗ G0, νs), Vs, e}, where the utility

function for agent (i, g) ∈ I × G0 is Vs(i, g, ·) = v(i, ·, s, g) and the initial endowment for agent

(i, g) is e(i). By the usual existence result on Walrasian allocations in [8], there is a Walrasian

allocation ys with a strictly positive price system ps for the economy Ēs. By modifying the

values of ys on a null set (if necessary), we can assume that for every agent (i, g) ∈ I × G0,

ys(i, g) is a maximal element in her budget set.

Consider another large deterministic economy Es = {(I ×T,I � T , λ�P T
s ), us, e}, where

the utility function for agent (i, t) ∈ I × T is us(i, t, ·) = u(i, ·, s, t) and the initial endowment

for agent (i, t) is e(i). Define a mapping xs from I × T to Rm
+ by letting xs(i, t) = ys(Γ(i, t)) =
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ys(i, F (i, t)). Since ys is a feasible allocation for Ēs, it is obvious that xs is a feasible allocation

for Es. It is also clear that for each agent (i, t) ∈ I × T , xs(i, t) is a maximal element in her

budget set under the price system ps. Therefore, xs is a Walrasian allocation with a strictly

positive price system ps for the economy Es.

For each i ∈ I, t, t′ ∈ T , agents (i, t) and (i, t′) have the same endowment, and conse-

quently the same budget set. Hence the utility of agent (i, t) at xs(i, t) is greater than or equal

to her utility at xs(i, t′) since xs(i, t′) belongs to the budget set of agent (i, t). This means that

∀i ∈ I, s ∈ S, t, t′ ∈ T, u(i, xs(i, t), s, t) ≥ u(i, xs(i, t′), s, t). (10)

As in equation (3), define a mapping xp from I × T to Rm
+ by letting

xp(i, t) =
{

e(i) if t ∈ L0,
xs(i, t) if t ∈ Ls, s ∈ S

for (i, t) ∈ I × T . It is obvious that xp is integrable on (I × T,I � T , λ � P T ), and hence a PIE

allocation.

By the same argument in the first paragraph of the proof of Theorem 1 in Section 8.3,

we obtain that for λ-almost all i ∈ I, for any t ∈ T , t′i ∈ T 0 and s ∈ S, t ∈ Ls if and only if

(t−i, t
′
i) ∈ Ls. Thus, for λ-almost all i ∈ I, for any t ∈ Ls and t′i ∈ T 0, we have

ui(x
p
i (t−i, ti), s, (t−i, ti)) = ui(xs(i, t), s, t) ≥ ui(xs(i, (t−i, t

′
i)), s, t) = ui(x

p
i (t−i, t

′
i), s, (t−i, ti));

when t ∈ L0, we also have (t−i, t
′
i) ∈ L0; hence

ui(x
p
i (t−i, ti), s, (t−i, ti)) = ui(e(i), s, t) = ui(x

p
i (t−i, t

′
i), s, (t−i, ti)).

Thus, for λ-almost all i ∈ I, we have Ui(x
p
i , ti|ti) ≥ Ui(x

p
i , t

′
i|ti) for τi-almost all ti, t

′
i ∈ T 0.

Therefore, xp is an incentive compatible PIE allocation.

Fix any s ∈ S. Lemma 3 says that P S(·|t) = δs for P T -almost all t ∈ Ls. Since

P T =
∑

s′∈S πs′P
T
s′ with πs′ > 0, a P T -null set is a P T

s -null set; hence P S(·|t) = δs for P T
s -

almost all t ∈ Ls.

Since F is essentially pairwise independent conditioned on s̃, we know that for each fixed

s ∈ S, the random variables xs(i, ·), i ∈ I are essentially pairwise independent. By the exact

law of large numbers in Lemma 1,32 we know that for P T
s -almost all t ∈ T , x(s,t) has the same

distribution (hence the same mean) as xs, which implies that x(s,t) is a feasible allocation for

the large deterministic economy E(s,t) = {(I,I, λ), u(s,t), e}. As noted earlier, for any given

32Note that Lemma 2 is not directly applicable to the process xs since xs may depend on s ∈ S while the
process G in Lemma 2 is independent of s ∈ S.
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t ∈ T , x(s,t)(i) is also a maximal element in the budget set of agent i under the price system

ps. Therefore, for P T
s -almost all t ∈ T , (ps, x(s,t)) is a Walrasian equilibrium for E(s,t).

Let Es be the set of all t ∈ Ls such that P S(·|t) = δs, and (ps, x(s,t)) is a Walrasian

equilibrium for E(s,t). Then, the above two paragraphs imply that P T
s (Es) = 1, and for any

t ∈ Es, we have
∫
I x(s,t)(i)dλ(i) =

∫
I e(i)dλ(i).

Let E = ∪s∈SEs. Then

P T (E) =
∑

s′∈S

πs′P
T
s′ (∪s∈SEs) =

∑

s′∈S

πs′P
T
s′ (Es′) =

∑

s′∈S

πs′ = 1.

Since the sets Ls, s ∈ S are disjoint, so are Es, s ∈ S. For any t ∈ E, there is a unique s ∈ S

such that t ∈ Es and
∫

I
xp(i, t)dλ(i) =

∫

I
x(s,t)(i)dλ(i) =

∫

I
e(i)dλ(i),

which implies that xp is feasible for the PIE.

Define a measurable function p∗ from (T,T ) to Rm
++ by letting

p∗(t) =
{

e∗ if t ∈ L0,
ps if t ∈ Ls, s ∈ S

where e∗ is the vector whose components are 1/m.

Fix any s ∈ S and t ∈ Es. Then, Ut = u(s,t), p∗(t) = ps, Ep
t = E(s,t) and xp

t = x(s,t). Since

(ps, x(s,t)) is a Walrasian equilibrium for E(s,t), (p∗(t), xp
t ) is a Walrasian equilibrium for Ep

t .

Hence, for any t ∈ E, (p∗(t), xp
t ) is a Walrasian equilibrium for Ep

t . Since P T (E) = 1, xp

is thus an incentive compatible and ex post Walrasian allocation in the PIE, and therefore ex

post individually rational, and ex post efficient.

8.5 Proof of Theorem 3

We transfer the PIE sequence Ep
n, n ∈ N to the nonstandard universe to obtain an internal

sequence Ep
n, n ∈ ∗N of PIEs.33

Fix n ∈ ∗N∞. We shall round off the infinitesimals in the internal PIE Ep
n to obtain a

standard PIE Ep using Loeb measures. Let I = In, T = T n and Ω = Ωn. Let (I,I, λ), (Ω,F , P )

and (I × Ω,I � F , λ � P ) be the Loeb spaces34 of the respective internal probability spaces

(In,In, λn), (Ωn,Fn, Pn) and (In × Ωn,In ⊗ Fn, λn ⊗ Pn). It is clear that F n (to be denoted

F ) is still a mapping from (In × T n,In ⊗ T n) to G0 = {g1, g2, . . . , gM}. Denote s̃n by s̃. The

rest of the definition related to the information structure (Ω,F , P ) can be found in Section 2.
33As in [12], the nonstandard extension of an object O is denoted by ∗O.
34To avoid the possibility of generating different classes of null sets on an underlying space, we only work with

the σ-algebras generated by the relevant internal algebras.
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By equation (5), we have µs 6= µs′ for all s 6= s′ ∈ S, and πs = P S({s}) > 0 for all s ∈ S, where

µs =
(
λ � P T

s

)
F−1.

Since vn and en take values respectively in ∗U0 and ∗E0, the compactness of U0 and E0

implies that the mappings vn and en have standard parts v = ◦(vn) and e = ◦(en) respectively,35

where v is a measurable mapping from (I × S × G0,I ⊗ S ⊗ G0) to U0, and e a measurable

mapping from (I,I) to E0. It is obvious that for any given s ∈ S, g ∈ G0, v(i, x, s, g) is I-

measurable in i ∈ I, continuous and monotonic in x ∈ Rm
+ . Let u(i, x, s, t) = v(i, x, s, Fi(t)).

Thus, we obtain the PIE Ep = {(I × Ω,I � F , λ � P ), u, e, (t̃i, i ∈ I), s̃}.
For any standard positive integer r, take δ = 1/r. Both of the following measures

λn ⊗ λn

({
(in, jn) ∈ In × In : ‖P T n

ns

(
F n

in , F n
jn

)−1 − P T n

ns (F n
in)−1 ⊗ P T n

ns

(
F n

jn

)−1 ‖ ≤ δ
})

,

λn ⊗ λn

({
(in, jn) ∈ In × In : ∀tn ∈ T n, (tnin)′ ∈ T 0, F n(jn, tn) = F n(jn, (tn−in , (tnin)′))

})
.

are greater than or equal to 1 − δ for all s ∈ S; and hence the same inequalities hold for

some positive infinitesimal δ = 1/r with r ∈ ∗N∞ by the spillover principle.36 Thus, for

λ � λ-almost all (i, j) ∈ I × I, P T
s (Fi, Fj)−1 = P T

s F−1
i ⊗ P T

s F−1
j holds for all s ∈ S, and

F (j, (t−i, ti)) = F (j, (t−i, t
′
i)) for any t ∈ T and t′i ∈ T 0. The Fubini property implies that for

λ-almost all i ∈ I and for λ-almost all j ∈ I, F (j, (t−i, ti)) = F (j, (t−i, t
′
i)) for any t ∈ T and

t′i ∈ T 0, and Fi and Fj are independent conditioned on s̃. Thus, F is an idiosyncratic signal

process.

By Theorem 2 and its proof, there exists an incentive compatible PIE allocation xp that

is an ex post Walrasian allocation with strictly positive price system p(t) = ps ∈ ∆m for t ∈ Ls,

where ps is an equilibrium price of a corresponding large deterministic economy with true state

s ∈ S. Note that the monotonicity assumption on the utilities implies that for P T -almost all

t ∈ T , p(t)xp(i, t) = p(t)e(i) for λ-almost all i ∈ I, which also implies the essential boundedness

of xp. Let pn be an internal lifting of p that only takes values in {ps : s ∈ S}, and xp
n be an

Sλn⊗P T
n

-integrable lifting37 of xp. Fix any ε ∈ R+.

It is clear that for λ � P T -almost all (in, tn) ∈ In × T n, pn(tn)xp
n(in, tn) ' p(tn)xp(in, tn)

and pn(tn)en(in) ' p(tn)e(in). One can modify the values of xp
n to retain its property of being

an Sλn⊗P T
n

-integrable lifting of xp such that for all (in, tn) ∈ In × T n,

pn(tn)xp
n(in, tn) = pn(tn)en(in). (11)

Without loss of generality, we can assume that both xp and xp
n are bounded, and xp(in, tn) is

the standard part xp
n(in, tn) for all (in, tn) ∈ In × T n.

35en(·) is clearly a bounded function.
36See part (i) of Theorem 2.8.11 in [12].
37See [12] for the definition and properties of S-integrability.
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An internal version of Keisler’s Fubini theorem38 says that for P T -almost all tn ∈
T n, xp

n(·, tn) is an Sλn-integrable lifting of xp(·, tn), which implies that
∫
In xp

n(in, tn)dλn '
∫
In xp(in, tn)dλ. The compactness of E0 certainly implies that

∫
In en(in)dλn '

∫
In e(in)dλ. By

the feasibility of xp, we obtain that for P T -almost all tn ∈ T n,
∥∥∥∥
∫

In

xp
n(in, tn)dλn(in) −

∫

In

en(in)dλn(in)
∥∥∥∥ ≤ ε. (12)

For P T -almost all tn ∈ T n, the standard part p(tn) of pn(tn) is strictly positive and

(p(tn), xp(·, tn)) is an equilibrium for the economy Ep
tn ; take any such tn ∈ T n. For λ-almost all

i ∈ I, xp(i, tn) is the maximal element in the budget set of agent i; take any such i ∈ I. Then,

for any y ∈ ∗Rm
+ with pn(tn)y ≤ pn(tn)en(i) or pn(tn)y ' pn(tn)en(i), y has a standard part ◦y

with p(tn)◦y ≤ p(tn)e(i). By the continuity of the payoffs and compactness of U0, it is easy to

see that both Un
i (xp

n)(i, tn)|tn) ' Ui(xp(i, tn)|tn) and Un
i (y|tn) ' Ui(◦y|tn) hold. Hence, we can

obtain that for P T -almost all tn ∈ T n,

λn({in ∈ In : ∀y ∈ ∗Rm
+ , pn(tn)y ≤ pn(tn)en(in)

⇒ Un
in(xp

n(in, tn)|tn) + ε ≥ Un
in(y|tn)}) ≥ 1 − ε, (13)

which also implies that

λn({in ∈ In : Un
in(xp

n(in, tn)|tn) + ε ≥ Un
in(en(in)|tn)}) ≥ 1 − ε. (14)

Let Dn be the set of tn ∈ T n such that there exists an internal allocation yn from In

to ∗Rm
+ with the properties (i)

∫
In yn(in)dλn(in) =

∫
In en(in)dλn(in), and (ii) Un

in(yn(in)|tn) >

Un
in(xp

n(in, tn)|tn)+ε holds for all in ∈ In. Suppose that P T n
(Dn) is a positive real number. By

the argument in the above paragraph, there exists tn ∈ Dn such that for λ-almost all in ∈ In,

if Un
in(yn(in)|tn) > Un

in(xp
n(in, tn)|tn) + ε, then pn(tn)yn(in) > pn(tn)en(in) and pn(tn)yn(in) 6'

pn(tn)en(in); fix such a tn ∈ Dn. We thus know that for λ-almost all in ∈ In, pn(tn)yn(in) −
pn(tn)en(i) is a non-infinitesimal number in ∗R+; let E be the internal set of all in ∈ In such

that pn(tn)yn(in) ≤ pn(tn)en(i). Then λn(E) ' 0. It is clear that α =
∫
In\E(pn(tn)yn(in) −

pn(tn)en(i))dλn(in) has a standard part ◦α ∈ R+. On the other hand, the feasibility condition

(i) implies that
∫
In(pn(tn)yn(in) − pn(tn)en(i))dλn(in) = 0. Hence, we have

α =
∫

E
(pn(tn)en(in) − pn(tn)yn(in))dλn(in) ≤

∫

E
pn(tn)en(in)dλn(in) ' 0. (15)

Thus, ◦α ≤ 0, which contradicts the fact that ◦α ∈ R+. Therefore, P T n
(Dn) = 0, and

consequently P T n

n (Dn) ' 0.
38See Proposition 5.3.12 in [12].
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By the continuity of the payoffs again, the incentive compatibility of xp implies that for

λ-almost all in ∈ In,

Un
in ((xp

n)in , tnin |tnin) + ε ≥ Un
in

(
(xp

n)in , (tnin)′|tnin
)

(16)

holds for all tnin , (tnin)′ ∈ T 0 with τn
in({tnin}) ≥ ε and τn

in({(tnin)′}) ≥ ε.

Let Bn be the set of all in ∈ In such that equation (16) holds for in, and Cn the set of all

tn ∈ T n−Dn such that equations (12) and (13)(and thus equation (14) also) hold for tn. Then,

λn(Bn) > 1 − ε and P T n

n (Cn) > 1 − ε for any n ∈ ∗N∞. The rest follows from the spillover

principle.39

8.6 A construction of the information structure

In this section, we shall show that the information structure used in Sections 2 and 3.3 does exist

via the Loeb measure construction in nonstandard analysis (see [11]). The reader is referred to

[12] for basic nonstandard analysis.

Let I be a hyperfinite set with its internal power set I0, λ0 the internal counting proba-

bility measure on (I,I0), I the σ-algebra σ(I0) generated by I0, and λ the corresponding Loeb

measure on (I,I).40 The atomless probability space (I,I, λ) is used as the space of agents.

Since I is simply an equivalence class of a sequence of finite sets in an ultrapower construc-

tion,41 the external cardinality of I is the cardinality of the continuum. Thus, one can indeed

take I as the unit interval [0, 1] with a suitable measure structure.

Let T 0 = {q1, q2, . . . , qL} be the space of all (at least two) possible signals for the in-

dividual agents with its power set T 0. Let T = (T 0)I be the space of all internal functions

from I to T 0 with its internal power set T0. For i ∈ I, let T−i = (T 0)I\{i} be the set of all

internal functions from I \ {i} to T 0 with its internal power set (T−i)0. Let T = σ(T0) and

T−i = σ((T−i)0). Then (T, T ) is indeed the product of (T−i,T−i) with (T 0,T 0), and hence it

does have the desired product structure as stated in Section 2.

Let S = {s1, s2, . . . , sK} be the space of true states with its power set S, and Ω = S × T

with its internal power set F0 (and thus F0 = S ⊗ T0). Let F = σ(F0). It is obvious that

F = S ⊗ T . Thus, (Ω,F) is the product of (S,S), (T 0,T 0) and (T−i,T−i).

Let (I×Ω,I0⊗F0) be the internal product of (I, I0) and (Ω,F0) and I�F = σ(I0⊗F0).

For the purpose of illustration, we only consider the simple case that the signal process F takes

the private signals as its values, i.e., for (i, t) ∈ I × T , F (i, t) = t(i), where t(i) is the private
39See part (ii) of Theorem 2.8.11 in [12].
40The basic intuition for a hyperfinite set is that it is defined by a sequence of finite sets.
41See Section 2.5 in [12] for the ultrapower construction.
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signal received by agent i for a signal profile t. Then F is I0 ⊗ T0-measurable (and hence

I � F-measurable).

For each s ∈ S, let ρs
0 be an internal measure on (T,T0) such that

λ0 ⊗ λ0

({
(i, j) ∈ I × I : ∀q, q′ ∈ T 0, ρs

0({t ∈ T : Fi(t) = q &Fj(t) = q′})

' ρs
0({t ∈ T : Fi(t) = q})ρs

0({t ∈ T : Fj(t) = q′})
})

' 1. (17)

The purpose of equation (17) is to guarantee independence for F conditioned on the true

states.42 Let πs, s ∈ S be a positive probability weight function on S. Define an internal

probability measure P0 on (Ω,F0) by letting P0({s}×B) = πsρ
s
0(B) for any s ∈ S and B ∈ T0.

Let P be the corresponding Loeb measure on (Ω,F). It is clear that the marginal probability

measure P S of P on (S,S) has the property that P S({s}) = πs for each s ∈ S. Let s̃ be

the projection mapping from Ω to S. It is easy to see that for each s ∈ S, the conditional

probability measure P T
s on (T,T ), given s̃ = s is the Loeb measure ρs of ρs

0.

Fix s ∈ S. Let λ � P and λ � P T
s be the corresponding Loeb measures of λ0 ⊗ P0 and

λ0⊗ρs
0 respectively on I�F and on I�T . As first noted by Anderson in [2], (I×Ω,I�F , λ�P )

and (I ×T,I �T , λ�P T
s ) are respective extensions of the usual products (I ×Ω,I ⊗F , λ⊗P )

and (I ×T,I ⊗T , λ⊗P T
s ). These extensions are actually Fubini extensions by Keisler’s Fubini

theorem (see Corollary 5.3.14 in [12]). Equation (17) implies that the random variables Fi, i ∈ I

on (T,T , P T
s ) are essentially pairwise independent conditioned on s̃. Thus, F is an idiosyncratic

signal process. It is also easy to make sure that the non-triviality assumption in equation (1)

is satisfied.43

Finally, we note that the purpose to take only the σ-algebras generated by the relevant

internal algebras is to make sure that we work on the same σ-algebra T . Notice that the Loeb

measures P T
s on T = σ(T0) may have different completions.

42There are many ways to construct such ρs
0; an easy way is to take the internal product measure on (T, T0)

of a hyperfinite sequence {τ s
i }i∈I of internal probability measures on (T 0, T 0).

43Let µs be a standard probability distribution on (T 0, T 0) such that µs 6= µs′ if s 6= s′ ∈ S. One simple way
to guarantee the non-triviality assumption is to take (T, T0, ρ

s
0) to be the internal product measure space of |I|

copies of (T 0, T 0, µs). In this case, F is an iid process conditioned on s̃. However, there are also many other
ways to construct ρs

0 so that F is non-iid conditioned on s̃.
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