AVOIDANCE AND MITIGATION OF PUBLIC HARM

RUILIN ZHOU PSU, visiting CEMFI

Introduction.

Historically, there are many episodes/cases of financial turmoil. The outcome of the troubled party ranges from complete failure/bankruptcy to full bailout/recovery.

• Firms.

Bailout: GM, Chrysler Bankruptcy: Pan Am (1991), Daewoo (1999)

- Financial institutions.
 Bailout: LTCM (1998), Citigroup (2008)
 Bankruptcy: Lehman Brothers (2008)
 Washington Mutual (2008)
- Sovereign countries.
 1994 Mexico Tequila crisis
 1997 Asian financial crisis
 Current Euro area crisis

Date: 2012.04.28

Two conflicting views about bailout:

- Financial turmoil/failures often would generate too much negative externality, so bailout is beneficial and sometimes necessary ex-post. Toobig-to-fail is consistent with this view.
- Bailout creates moral hazard problem: institutions have less incentive to be diligent to reduce crisis incidence since they know that they will be bailed out.

A third view:

• The observed pattern of bailing out some troubled institutions, but not others, is consistent with the view that the optimal bailout policy is a mixed strategy that deals with both views above.

Research program

- Construct a schematic, non-cooperative, 2-player model
 - One agent takes costly, unobservable action to try to avert a crisis.
 - If the crisis occurs, both agents decide how much to contribute mitigating it.
- Characterize Nash equilibrium of the one-shot game: both bailout and no-bailout equilibria always exist.
- Consider an infinite repetition of the one-shot stage game
 - Study in particular equilibrium that minimizes expected, discounted total cost.
 - Is some equilibrium consistent with the third view?

The one-shot game

- Two agents. agent 1 — active agent 2 — passive
- Two periods.

Period 1:

- Agent 1 chooses $a \in A = \{0, 1\}$ (avoidance/no avoidance) The cost of avoidance is d.
- The state $\xi \in X = \{0, 1\}$ is realized.

$$Pr(\xi = 1 | a = 0) = 1$$

$$Pr(\xi = 1 | a = 1) = \varepsilon$$

$$Pr(\xi = 0 | a = 1) = 1 - \varepsilon$$

$$\varepsilon \in (0,1).$$

Period 2:

• If $\xi = 1$ (crisis state), the two agents play a mitigation game. Agent i contributes $m_i \in M = [0, 1]$

$$u_i(1, m_1, m_2) = \begin{cases} -m_i & \text{if } m_1 + m_2 \ge 1 \\ -m_i - c_i & \text{otherwise} \end{cases}$$

• If $\xi = 0$, no mitigation is necessary.

$$u_i(0, m_1, m_2) = -m_i$$

Assumption 1.

 $c_i \in (0,1)$ for i = 1, 2. $c_1 + c_2 > 1$.

Nash equilibrium of the one-shot game

Period 2. Mitigation game.

Agent *i*'s period-2 strategy $m_i(\xi)$, $m_i: X \to M$.

When $\xi = 0$, no need to contribute, $m_1^*(0) = m_2^*(0) = 0$.

When $\xi = 1$, two types of Nash equilibrium.

• No-bailout: neither agent contributes anything,

 $m_1^o(1) = m_2^o(1) = 0$ $u_i(1, m_1^o(1), m_2^o(1)) = -c_i.$

• Bailout: jointly contribute 1 unit to mitigate

$$m_1^b(1) \in [1 - c_2, c_1], \quad m_2^b(1) = 1 - m_1^b(1)$$
$$u_i(1, m_1^b(1), m_2^b(1)) = -m_i^b(1)$$

Period 1. Agent 1's avoidance decision $a \in A$.

 $v_i(a, m_1, m_2)$ —the expected value of agent *i* in period 1 if

- agent 1 takes period-1 action a,
- two agents' strategy in period 2 is $(m_1(\xi), m_2(\xi))_{\xi \in X}$.

$$v_1(a, m_1, m_2) = \sum_{\xi \in X} Pr(\xi|a)u_1(\xi, m_1(\xi), m_2(\xi)) - ad$$

$$v_2(a, m_1, m_2) = \sum_{\xi \in X} Pr(\xi|a)u_2(\xi, m_1(\xi), m_2(\xi))$$

Agent 1's optimal period-1 action a depends on which of the period-2 equilibrium is to be played in case of crisis.

If no-bailout equilibrium $(m_1^o(1),\,m_2^o(1))$ is anticipated,

$$v_1(a, m_1^o, m_2^o) = \begin{cases} -c_1 & \text{if } a = 0\\ -d - \varepsilon c_1 & \text{if } a = 1 \end{cases}$$

the optimal action is
$$a^o = \begin{cases} 1 & \text{if } c_1 \ge \frac{d}{1-\varepsilon} \\ 0 & \text{otherwise} \end{cases}$$

If the bailout equilibrium $(m_1^b(1),\,m_2^b(1))$ is anticipated,

$$v_1(a, m_1^b, m_2^b) = \begin{cases} -m_1 & \text{if } a = 0\\ -d - \varepsilon m_1 & \text{if } a = 1 \end{cases}$$

the optimal action is
$$a^b = \begin{cases} 1 & \text{if } m_1 \ge \frac{d}{1-\varepsilon} \\ 0 & \text{otherwise} \end{cases}$$

Table 1. Equilibrium of the one-shot game

parameter range	a	$m_1(1)$	ex-ante cost
(1) $\frac{d}{1-\varepsilon} \le 1-c_2$	1	$[1-c_2,c_1]$	$d + \varepsilon$
	1	0	$d + \varepsilon(c_1 + c_2)$
(2) $1 - c_2 < \frac{d}{1 - \varepsilon} \le c_1$	1	$\left[\frac{d}{1-\varepsilon}, c_1\right]$	$d + \varepsilon$
	0	$\left[1-c_2, \frac{d}{1-\varepsilon}\right]$	1
	1	0	$d + \varepsilon(c_1 + c_2)$
(3) $c_1 < \frac{d}{1-\varepsilon}$	0	$[1-c_2,c_1]$	1
	0	0	$c_1 + c_2$

• By Assumption 1, $0 < 1 - c_2 < c_1 < 1$.

- Regardless of the parameter region, both bailout and no-bailout equilibrium always exist.
- Any combination of avoidance and mitigation can occur.

Ex-ante expected total cost of (a, m_1, m_2)

$$= ad + (1 - a + a\varepsilon)[m_1 + m_2 + (c_1 + c_2)I_{\{m_1 + m_2 < 1\}}]$$

An action profile (a, m_1, m_2) is said to *ex-ante dominate* another one if it has a lower expected total cost.

- Assumption 1 says that bailout dominates no-bailout ex-post (c₁+c₂ > 1). In region (1) and (3), bailout also dominates ex-ante.
- In region (2), avoidance/bailout achieves the lowest ex-ante expected total cost among all equilibria. The ranking of the other two types of equilibrium is unclear.

The repeated game

Time is discrete, $t = 1, 2, \ldots$

At each date t, the two-period one-shot game is played between the two players with discount factor $\delta \in (0, 1)$.

Public information.

- At t, $h_t = (\xi_t, m_{t1}, m_{t2}) \in H \equiv X \times M^2$.
- History of public information at the beginning of date t,

$$h^t = (h_1, \dots, h_{t-1}) \in H^{t-1}$$

 $H^0 = \emptyset.$

• When agents decide (m_{t1}, m_{t2}) , the public information is $(h^t, \xi_t) \in H^{t-1} \times X$.

Private information.

• Agent 1's avoidance decision $\{a_t\}_{t=1}^{\infty}$ is private and never revealed.

A strategy is *public* if it depends only on public history.

Without loss of generality, focus on perfect Bayesian equilibrium where both agents play public strategies.

Strategy profile $(\alpha, \sigma) = (\alpha, \sigma_1, \sigma_2) = (\alpha_t, \sigma_{t1}, \sigma_{t2})_{t=1}^{\infty}$ $\alpha_1 \in \Delta(A), \quad \forall t > 1, \quad \alpha_t \colon H^{t-1} \to \Delta(A)$

for i = 1, 2,

$$\sigma_{1i} \colon X \to M, \quad \forall t > 1, \quad \sigma_{ti} \colon H^{t-1} \times X \to M$$

Let Σ_i denote the set of agent *i*'s public strategies.

Expected present discounted value of payoff stream induced by strategy profile (α, σ) , $V(a, \sigma) = (V_1(\alpha, \sigma), V_2(a, \sigma))$,

$$V_i(\alpha, \sigma) = (1 - \delta) \mathsf{E}[\sum_{t=1}^{\infty} \delta^{t-1} \sum_{a \in A} \alpha_t(h^t)(a) v_i(a, \sigma_t(h^t, \xi_t))]$$

For any public history h^t , let $(\alpha|_{h^t}, \sigma|_{h^t})$ denote the strategy profile induced by (α, σ) after t periods of history.

Definition 1. A public strategy profile (α^*, σ^*) is a *perfect public equilibrium* (*PPE*) if $\forall t \geq 1$, $\forall h^t \in H^{t-1}$, $(\alpha^*|_{h^t}, \sigma^*|_{h^t})$ is a Nash equilibrium from t on, that is, for i = 1, 2, for any other public strategy $(\alpha, \sigma_1) \in \Sigma_1, \sigma_2 \in \Sigma_2$,

$$V_1(\alpha^*|_{h^t}, \sigma_1^*|_{h^t}, \sigma_2^*|_{h^t}) \ge V_1(\alpha|_{h^t}, \sigma_1|_{h^t}, \sigma_2^*|_{h^t})$$
$$V_2(\alpha^*|_{h^t}, \sigma_1^*|_{h^t}, \sigma_2^*|_{h^t}) \ge V_2(\alpha^*|_{h^t}, \sigma_1^*|_{h^t}, \sigma_2|_{h^t})$$

and $\forall \xi_t \in X$,

$$(1-\delta)u_1(\xi_t, \sigma_{t1}^*, \sigma_{t2}^*) + \delta V_1(\alpha^*|_{h^{(t+1)*}}, \sigma_1^*|_{h^{(t+1)*}}, \sigma_2^*|_{h^{(t+1)*}}) \\ \geq (1-\delta)u_1(\xi_t, \sigma_{t1}, \sigma_{t2}^*) + \delta V_1(\alpha|_{h^{(t+1)1}}, \sigma_1|_{h^{(t+1)1}}, \sigma_2^*|_{h^{(t+1)1}}) \\ (1-\delta)u_2(\xi_t, \sigma_{t1}^*, \sigma_{t2}^*) + \delta V_2(\alpha^*|_{h^{(t+1)*}}, \sigma_1^*|_{h^{(t+1)*}}, \sigma_2^*|_{h^{(t+1)*}}) \\ \geq (1-\delta)u_2(\xi_t, \sigma_{t1}^*, \sigma_{t2}) + \delta V_1(\alpha^*|_{h^{(t+1)2}}, \sigma_1^*|_{h^{(t+1)2}}, \sigma_2|_{h^{(t+1)2}})$$

where

$$h^{(t+1)*} = (h^t, \xi_t, \sigma_{t1}^*, \sigma_{t2}^*)$$

$$h^{(t+1)1} = (h^t, \xi_t, \sigma_{t1}, \sigma_{t2}^*), \quad h^{(t+1)2} = (h^t, \xi_t, \sigma_{t1}^*, \sigma_{t2})$$

A PPE always exists: repetition of any static Nash equilibrium of the two-period stage game is a PPE.

Let \mathcal{V} denote the set of PPE payoff vectors,

$$\mathcal{V} = \{ V(\alpha, \sigma) \, | \, (\alpha, \sigma) \text{ is a } PPE \}$$

 $\mathcal{V} \neq \emptyset.$

Following APS (1990), find $\mathcal V$ through a self-generation procedure.

Define expected payoff of action profile (ϕ, m_1, m_2) if continuation value is $w \colon X \times M^2 \to \Re^2$, for i = 1, 2,

$$g_i(\phi, m_1, m_2, w) \equiv \sum_{a \in A} \phi(a) \Big[(1 - \delta) v_i(a, m_1, m_2) \\ + \delta \sum_{\xi \in X} Pr(\xi|a) w_i(\xi, m_1(\xi), m_2(\xi)) \Big]$$

Definition 2. For any $W \subset \Re^2$, an action profile (ϕ, m_1, m_2) together with payoff function $w \colon X \times M^2 \to \Re^2$ is *admissible* with respect to W if

(1)
$$\forall \xi \in X, w(\xi, m_1(\xi), m_2(\xi)) \in W.$$

(2) $(\phi, m_1) = \arg \max_{\phi' \in \Delta(A), \{m'_1(\xi) \in M\}_{\xi \in X}} g_1(\phi', m'_1, m_2, w)$
(3) For any $\xi \in X$, for any m'_1 and m'_2 ,
 $(1 - \delta)u_1(\xi, m_1(\xi), m_2(\xi)) + \delta w_1(\xi, m_1(\xi), m_2(\xi))$
 $\geq (1 - \delta)u_1(\xi, m'_1(\xi), m_2(\xi)) + \delta w_1(\xi, m'_1(\xi), m_2(\xi))$
 $(1 - \delta)u_2(\xi, m_1(\xi), m_2(\xi)) + \delta w_2(\xi, m_1(\xi), m_2(\xi))$
 $\geq (1 - \delta)u_2(\xi, m_1(\xi), m'_2(\xi)) + \delta w_2(\xi, m_1(\xi), m'_2(\xi))$

For any $W \subset \Re^2$, define $B(W) = \left\{ r \,|\, \exists (\phi, \, m_1, \, m_2, \, w) \text{ admissible w.r.t. W} \\ \text{ such that } r = g(\phi, \, m_1, \, m_2, \, w) \right\}$

Then $B(\mathcal{V}) = \mathcal{V}$.

The set of PPE payoff vectors $\mathcal V$ can be obtained numerically by starting from some initial set $W^0\subset \Re^2$,

$$B^t(W^0) \to \mathcal{V} \quad \text{as} \quad t \to \infty$$

PPE that minimizes the expected discounted total cost

Case 1. $\frac{d}{1-\varepsilon} \leq 1-c_2$

• Repetition of avoidance/bailout at every date,

$$a_t^* = 1, \quad \sigma_{t1}^*(m_1) = m_1, \quad \sigma_{t2}^*(m_1) = 1 - m_1$$

where $m_1 \in [1 - c_2, c_1]$.

Case 2. $1 - c_2 < \frac{d}{1 - \varepsilon} \le c_1$

• Repetition of avoidance/bailout at every date,

 $a_t^*=1,\quad \sigma_{t1}^*(m_1)=m_1,\quad \sigma_{t2}^*(m_1)=1-m_1$ where $m_1\in [\frac{d}{1-\varepsilon},\,c_1].$

In both cases, (a^*,σ^*) is a PPE since it is a repetition of the static Nash equilibrium of the stage game.

Case 3. $c_1 < \frac{d}{1-\varepsilon}$

• At any static Nash equilibrium of the stage game, agent 1 chooses no avoidance.

Assumption 2. $d + \varepsilon < 1$.

That is, avoidance/bailout yields the lowest one-period ex-ante expected total cost.

Question 1: Can avoidance/bailout be sustained at some PPE of the repeated game?

An example of a simple mechanism

Assume $c_1 < \frac{d}{1-\varepsilon}$.

Two-state automaton, $\{S, \mu^0, (f_1, f_2), \pi\}$

- The set of states $S = \{0, 1\}$.
- Distribution of initial state $\mu^0 \in \Delta(S)$.
- Decision rule $f_1: S \to A \times M, f_2: S \to M$ $f_{11}(0) = f_{11}(1) = 1$ $f_{12}(0) = m_1^0, f_2(0) = 1 - m_1^0$ $f_{12}(1) = m_1^1, f_2(1) = 1 - m_1^1$ That is, avoidance/bailout is imposed. Assume that $m_1^1 \ge m_1^0$.

• Transition probability $\pi: S \times X \to \Delta(S)$, $\pi(0,0) = 1 - \varepsilon \theta_0, \quad \pi(0,1) = \varepsilon \theta_0$ $\pi(1,0) = (1 - \varepsilon)(1 - \theta_1) + \varepsilon (1 - \theta_2)$ $\pi(1,0) = (1 - \varepsilon)\theta_1 + \varepsilon \theta_2$ where $\theta_0 = \operatorname{Prob}(s' = 1 \mid s = 0, \ \xi = 1) \in [0,1]$ $\theta_1 = \operatorname{Prob}(s' = 1 \mid s = 1, \ \xi = 0) \in [0,1]$ $\theta_2 = \operatorname{Prob}(s' = 1 \mid s = 1, \ \xi = 1) \in [0,1]$

Question 2: Can this automaton, in particular, the decision rule (f_1, f_2) be supported as a PPE?

• If the answer is yes, then the answer to question 1 is affirmative. That is, avoidance/bailout can be sustained as a PPE of the repeated game.

Claim. No, the automaton can not be supported as a PPE.

• The automaton has an ergodic distribution:

$$\bar{\mu}(1) = \frac{\varepsilon\theta_0}{1 + \varepsilon\theta_0 - \left[(1 - \varepsilon)\theta_1 + \varepsilon\theta_2\right]}$$

- $\bar{\mu}(0) = 1 \mu(1)$. Assume that $\mu^0 = \bar{\mu}$. Calculate the expected discounted value for agent 1, (V_1^0, V_1^1) To support f_1 as agent 1's decision rule, (V_1^0, V_1^1) has to satisfies some IC constraints. The one for $f_{11}(s) = 1$ is

$$\delta\theta_0(V_1^0 - V_1^1) \ge (1 - \delta) \left[\frac{d}{1 - \varepsilon} - m_1^0\right]$$

which is equivalent to

$$\psi m_1^1 + (1 - \psi) m_1^0 \ge \frac{d}{1 - \varepsilon} \qquad (**)$$

where

$$\psi = \frac{\varepsilon \theta_0 \delta}{1 + \delta \varepsilon \theta_0 - \delta [(1 - \varepsilon) \theta_1 + \varepsilon \theta_2]} \le \bar{\mu}(1)$$

The expected discounted total cost of the automaton to agent 1 is

$$(1-\delta)\sum_{t=1}^{\infty} \delta^{t-1} \left(d + \varepsilon(\bar{\mu}(1)m_1^1 + \bar{\mu}(0)m_1^0) \right)$$

= $d + \varepsilon \left(\bar{\mu}(1)m_1^1 + \bar{\mu}(0)m_1^0 \right)$
\ge $d + \varepsilon \left(\psi m_1^1 + (1-\psi)m_1^0 \right)$
\ge $d + \varepsilon \frac{d}{1-\varepsilon}$ (by (**))
= $\frac{d}{1-\varepsilon} > c_1$

The expected discounted total cost of no-avoidance/no-bailout for agent 1 is c_1 which is his minmax value of the game.

So a = 1 at every date is not incentive compatible for agent 1, and hence can not be an equilibrium strategy.

Conjecture 1. Assume that $c_1 < \frac{d}{1-\varepsilon}$. Avoidance/bailout regardless history can not be supported as a PPE.

• To show this, I will show that any given PPE payoff $v \in \mathcal{V}$ can be achieved with an appropriately programmed two-state automaton.

Conjecture 2. Assume that $c_1 < \frac{d}{1-\varepsilon}$. A modified two-state automaton with randomized decision rule, in particular, $f_1 \colon S \to \Delta(A) \times M$, may be supported as a PPE.

• If this is true, at such a PPE, the incidence of crisis is higher than ε , and higher punishment for agent 1, jointly governed by m_1^1 , θ_0 , θ_1 , θ_2 , may be necessary.