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1. Introduction

In this paper, we study the theoretical properties of semiparametric estimators with gen-

erated covariates. Such estimators are used frequently to e.g. estimate nonlinear models

with endogenous covariates when identification is achieved using control variable tech-

niques. Here we consider a general class of semiparametric optimization estimators with a

criterion function that depends on two types of infinite-dimensional nuisance parameters:

a conditional expectation function that has been estimated nonparametrically using gen-

erated covariates, and another estimated function that is used to obtain the generated

covariates in the first place. The nonparametric component may be profiled and thus

depend on unknown finite-dimensional parameters. Generated covariates may originate

from an either parametric, semiparametric or nonparametric first step. Deriving asymp-

totic properties of estimators in this class is a non-standard problem due to the presence

of generated covariates. We give conditions on the primitives of the model under which

estimators are root-n consistent and asymptotically normal, derive a general formula for

the asymptotic variance, and show how to establish validity of the bootstrap. These re-

sults have important implications for econometric practice in a wide range of applications.

In this paper, we apply our methods to two substantial examples: estimation of average

treatment effects via regression on the propensity score (Rosenbaum and Rubin, 1983),

and estimation of production functions in the presence of serially correlated technology

shocks (Olley and Pakes, 1996; Levinsohn and Petrin, 2003). In both cases, our results

contribute new insights to the respective extensive literature.

Semiparametric estimation problems involving both finite- and infinite-dimensional

parameters are central to econometrics, and are studied extensively under general condi-

tions by e.g. Newey (1994), Andrews (1994), Chen and Shen (1998), Ai and Chen (2003,

2007), Chen, Linton, and Van Keilegom (2003), Chen and Pouzo (2009), or Ichimura and

Lee (2010). None of these papers explicitly considers the case of generated covariates

in the nonparametric component. Here we argue that in order to account for such a

structure it is not necessary to derive a completely new theory. Perhaps surprisingly,

the “high-level” conditions given in the aforementioned papers are sufficiently general to

encompass the generation step. What needs to be adapted substantially, however, are
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the methods used to verify these condition. Compared to a standard analysis, the main

difficulties occur when establishing a uniform rate of consistency for the nonparametric

component (e.g. Newey, 1994, Assumption 5.1(ii); or Chen, Linton, and Van Keilegom,

2003, Condition (2.4)), and an asymptotic normality result for a linearized version of the

objective function (e.g. Newey, 1994, Assumption 5.3 and Lemma 1; or Chen, Linton,

and Van Keilegom, 2003, Condition (2.6)).

The main contribution of our paper is to provide a connection between the exten-

sive literature on estimation and inference in semiparametric models and the one on

applications with generated covariates. We derive a new stochastic expansion that char-

acterizes the influence of generated covariates in the model’s nonparametric component

on the asymptotic properties of the final estimator. We then show how to use this ex-

pansion to verify the above-mentioned uniform consistency and asymptotic normality

conditions. Alternatively, our expansion could also be directly applied to a linearized

version of the estimator. The expansion, which is proven using techniques from empirical

process theory (e.g. Van der Vaart and Wellner, 1996; van de Geer, 2009), is related to

a result in Mammen, Rothe, and Schienle (2012) for purely nonparametric regression

problems with generated covariates. The main difference is that in the present paper

we derive sharp bounds on weighted integrals of the remainder term instead of control-

ling its supremum norm. This requires substantially different mathematical methods.

The new bounds shrink at a considerably faster rate than those obtained in Mammen,

Rothe, and Schienle (2012), which is critical for our development of a general theory of

semiparametric estimation with generated covariates.

As a further contribution, we provide an explicit formula for the asymptotic variance of

semiparametric estimators contained in the general class we consider. This formula is es-

sentially a byproduct of the verification of the asymptotic normality condition mentioned

above. Compared to an infeasible procedure that uses the true values of the covariates,

the influence function of such an estimator generally contains two additional terms: one

that accounts for using generated covariates to estimate the nonparametric component,

and one that accounts for the direct influence of generated covariates in other parts of

the model, e.g. through determining the point of evaluation of the infinite-dimensional

parameter. Additionally, we obtain a characterization of cases under which these two
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adjustment terms exactly offset each other, and thus do not affect first-order asymptotic

theory. Our methods can also be used to verify conditions under which a bootstrap pro-

cedure leads to asymptotically valid inference. The latter aspect can be important in

many applications where the asymptotic variance is difficult to estimate.

Our paper is related to an extensive literature on models with generated covariates.

To the best of our knowledge, Newey (1984) and Murphy and Topel (1985) were among

the first to study the theoretical properties of such two-step estimators in a fully para-

metric setting. Pagan (1984) and Oxley and McAleer (1993) provide extensive surveys.

Nonparametric regression with (possibly nonparametrically) generated covariates is stud-

ied by Mammen, Rothe, and Schienle (2012) under general conditions. See their refer-

ences for a list of examples, and Andrews (1995), Song (2008) and Sperlich (2009) for

related results. Examples of semiparametric applications with generated covariates in-

clude Olley and Pakes (1996), Heckman, Ichimura, and Todd (1998), Li and Wooldridge

(2002), Levinsohn and Petrin (2003), Blundell and Powell (2004), Linton, Sperlich, and

Van Keilegom (2008), Rothe (2009) and Escanciano, Jacho-Chávez, and Lewbel (2010),

among many others. Hahn and Ridder (2011) study the form of the influence function

of semiparametric linear, just-identified GMM-type estimators with generated covariates

using Newey’s (1994) path-derivative method, and point out some mistakes in asymptotic

variance calculations in the earlier literature. In contrast, the focus of this paper is on

giving explicit conditions that ensure the estimators’ root-n consistency and asymptotic

normality, and on showing how to establish validity of the bootstrap. Both aspects are

important for implementing an estimator in practice. Escanciano, Jacho-Chávez, and

Lewbel (2011) provide stochastic expansions for sample means of weighted residuals of

semiparametric regressions with generated covariates. Their results are useful for deriv-

ing asymptotic properties of certain semiparametric regression-type estimators, where the

nonparametric component affects the final estimator solely through its value at the gen-

erated covariates. They also require particular “index” condition, which is undesirable in

many applications such as e.g. the estimation of average treatment effects that we study

below, as it can imply strong restrictions on the underlying economic model and affect

the form of the asymptotic variance. Our results, which were obtained independently,

do not require such restrictions the underlying model, and apply to a substantially more
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general class of estimation procedures.

The remainder of the paper is structured as follows: In Section 2, we describe the class

of models we consider. In Section 3, we present our main technical result, a stochastic

expansion that characterizes the influence of generated covariates in the model’s non-

parametric component. Section 4 shows how this expansion can be used to verify classic

conditions for
√
n-consistency and asymptotic normality of semiparametric estimators,

derives a general formula for the asymptotic variance, and shows how to establish validity

of the bootstrap. In Section 5, we discuss two econometric applications that make use of

our results. All proofs and further details on the applications are collected in Appendix

A and B, respectively.

2. Generated Covariates in Semiparametric Models

We consider a general class of semiparametric optimization estimators where the criterion

function depends on two types of infinite dimensional nuisance parameters: a conditional

expectation function that has been estimated nonparametrically using generated covari-

ates, and another estimated function that is used to compute the generated covariates

in a first step. No specific estimation procedure is required for the latter object. Our

results cover both parametrically and nonparametrically generated covariates, as well as

intermediate cases. The setting and notation is otherwise similar to Chen, Linton, and

Van Keilegom (2003), and thus allows for nonsmooth criterion functions and profiled

estimation of the nonparametric components.

2.1. Model and Estimation Procedure. Let Z = (Y,X,W ) ∈ RdZ be a random

variable distributed according to some probability measure P0 that is contained in a semi-

parametric model P = {Pθ,ξ : θ ∈ Θ, ξ ∈ Ξ}, where Θ ⊂ Rdθ denotes a finite dimensional

parameter space with generic element θ, and Ξ = M × R is an infinite dimensional

parameter space with generic element ξ = (m, r). Denote by θ0 ∈ Θ and ξ0(·, θ) =

(m0(·, θ), r0(·)) ∈ Ξ the true values of the finite and infinite dimensional parameter, re-

spectively, which implies that P0 = Pθ0,ξ0(·,θ0). We assume that there exists a nonrandom

function q : supp(Z)×Θ×Ξ→ Rdq such that Q(θ, ξ0(·, θ)) = E(q(Z, θ, ξ0(·, θ))) = 0 if and

only if θ = θ0. The parametric component of our semiparametric model is thus identified
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via a moment condition. For simplicity, we also assume that for every ξ ∈ Ξ the objective

function Q(θ, ξ(·, θ)) depends on the nuisance parameter ξ through its value over some

compact set I∗T ×I∗R only, which is useful to later accommodate “fixed trimming” schemes

into the estimation procedure.

We also impose certain restrictions on the nature of the infinite dimensional param-

eter ξ0(·, θ) = (m0(·, θ), r0(·)). First, we assume that r0 is identified from the distri-

bution of W ⊂ Z, and that this distribution does not depend on the true value of

the other parameters in the model. This allows for a consistent estimate of r0 to be

computed without knowledge of θ0 and m0. Second, we assume that m0(·, θ) is a con-

ditional expectation function that depends on θ ∈ Θ and the true value r0 through the

relationship m0(·, θ) = E(Y |T (X, θ, r0) = ·) where T (X, θ, r) = t(X, r(Xr), θ) is a ran-

dom vector of dimension dT , Xr ⊂ X are the covariates that enter the function r, and

t : RdX × Rdr × Θ → RdT is a known function. The role of r0 is thus to generate (some

of) the covariates used to compute the function m0. By allowing m0 to depend on X and

r0(Xr) through a known transformation indexed by θ, our setup includes a broad class

of index models that require profiling of the nonparametric component.

To make the notation more compact, we usually suppress the arguments of the in-

finite dimensional parameters, writing (θ, ξ) = (θ,m, r) ≡ (θ,m(·, θ), r(·)), (θ, ξ0) =

(θ,m0, r0) ≡ (θ,m0(·, θ), r0(·)), and (θ0, ξ0) = (θ0,m0, r0) ≡ (θ0,m0(·, θ0), r0(·)). We

also write T (θ, r) ≡ T (X, θ, r), T (θ) ≡ T (θ, r0), T (r) ≡ T (θ0, r) and T ≡ T (θ0, r0). We

assume that Ξ is a class of continuous and bounded functions endowed with the pseudo-

norm ‖·‖Ξ induced by the sup-norm, i.e. we have ‖ξ‖Ξ = supθ supx |m(x, θ)|+supxr |r(xr)|.

We also write ‖B‖ = (tr(B′AB))1/2 for any matrix B, where we suppress the dependence

of the norm on the fixed symmetric positive definite matrix A for notational convenience.

Given an i.i.d. sample (Z1, . . . , Zn) from the distribution of Z, a three-step semipara-

metric extremum estimator θ̂ of θ0 can be constructed as follows. In the first step, we

compute a (possibly nonparametric) consistent estimate r̂ of r0. In the second step, for

every θ ∈ Θ we obtain an estimate m̂(·, θ) of m0(·, θ) through a nonparametric regression

of Y on the generated covariates T̂ (θ) = T (θ, r̂). We discuss how to implement these

two estimation procedures in detail below. Finally, writing (θ, ξ̂) = (θ, m̂(·, θ), r̂(·)), we

define the estimator θ̂ of θ0 as any approximate solution to the problem of minimizing a
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semiparametric GMM-type objective function:

‖Qn(θ̂, ξ̂)‖ = inf
θ∈Θ
‖Qn(θ, ξ̂)‖+ oP (1/

√
n), (2.1)

where Qn(θ, ξ̂) = 1
n

∑n
i=1 q(Zi, θ, ξ̂). Here, we avoid evaluating ξ̂ in areas where it is

imprecisely estimated by restricting the influence of the nuisance parameter to be ex-

ceeded through its value over some compact set I∗T × I∗R introduced above. Such “fixed

trimming” procedures are commonly used to derive properties of profiled semiparametric

estimators. Allowing for “vanishing” trimming schemes where I∗T × I∗R increases with the

sample size would be possible at the cost of tedious calculations that are unrelated to the

issues caused by the presence of generated covariates. For the sake of clarity and brevity

in exposition, these are therefore omitted here.

Our estimator is a semiparametric procedure involving generated covariates, in the

sense that a preliminary estimate r̂ of the nuisance parameter r0 is used to compute the

covariates entering the nonparametric regression procedure to estimate m0(·, θ). Note

that because r̂ is also allowed to appear as a separate argument in the objective function

Qn, it does not only determine the shape of the function m̂, but could also exert a direct

influence. This flexibility is useful for all examples we consider below. For instance, the

objective function could depend on m̂ through its value at (some transformation of)end

on m̂ through its value at (some transformation of) the generated covariates. However, it

is important to stress that this is not required in our setting. Suppose for example that

m̂ does not depend on θ, and that θ̂ = n−1
∑n

i=1 m̂(Zi). Such an estimator, where r̂ is

only used to compute m̂, can easily be analyzed in our framework.1

For the later asymptotic analysis, it will be useful to also consider an infeasible esti-

mation procedure that uses the true value r0 instead of an estimate r̂. Such an estimator

θ̃ of θ0 can be obtained by first computing an estimate m̃(·, θ) of m0(·, θ) via nonparamet-

ric regression of Y on T (θ) for every θ ∈ Θ, and then finding an approximate minimizer

1We remark that this is a simple example of an estimator that could not be analyzed using the

results in Escanciano, Jacho-Chávez, and Lewbel (2011). They derive stochastic expansions for terms of

the form n−1
∑n

i=1(Yi − m̂(T̂i))s(Xi), where s(Xi) is some weighting term (their results are somewhat

more general, as they allow for estimated weights, the presence of vanishing trimming terms, and data-

dependent choices of the bandwidth). Such terms typically appear in expansions of θ̂ only if this estimator

depends on m̂ through its values at T̂i only, which is not the case in this example.
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of an infeasible version of the objective function:

‖Qn(θ̃, ξ̂)‖ = inf
θ∈Θ
‖Qn(θ, ξ̃)‖+ oP (1/

√
n) (2.2)

where (θ, ξ̃) = (θ, m̃(·, θ), r0(·)). In order to distinguish the two procedures, we refer to θ̂

and m̂ in the following as the real estimators of θ0 and m0, respectively, and to θ̃ and m̃

as the corresponding oracle estimators.

2.2. A Framework for Asymptotic Analysis. It is straightforward to show that

θ̂ is a consistent estimate of the true value θ0 under standard conditions. We therefore

focus on the more interesting problem of establishing its asymptotic distribution. A

number of papers have given “high level” conditions for semiparametric estimators to

be root-n consistent and asymptotically normal in models that do not involve generated

covariates. Examples include Newey (1994), Andrews (1994), Chen and Shen (1998), Ai

and Chen (2003), Chen, Linton, and Van Keilegom (2003), or Ichimura and Lee (2010).

It turns out that these conditions are generally sufficient to establish the same type of

asymptotic properties for semiparametric estimators in models with generated covariates.

What needs to be adjusted, however, are the arguments to verify some of them.

To illustrate how previous results in the literature on semiparametric estimation can

be adapted to our context, we consider the main theorem from Chen, Linton, and Van Kei-

legom (2003). We choose this setting because it allows for a wide range of semiparametric

estimators, including those that are based on a nonsmooth criterion function, or require

profiled estimation of the nonparametric components. However, the arguments we are go-

ing to present are by no means specific to this setup, and apply analogously to all similar

theoretical analyses of semiparametric estimators based on linearization arguments.

Before we state the main result from Chen, Linton, and Van Keilegom (2003), we

have to introduce some further notation. Since we assume that θ̂ is consistent, we can

work with small subsets of the parameter spaces. For some small δ > 0, define Θδ =

{θ ∈ Θ : ‖θ − θ0‖ ≤ δ} and Ξδ = {ξ ∈ Ξ : ‖ξ − ξ0‖Ξ ≤ δ}. Furthermore, for any

(θ, ξ) ∈ Θ×Ξ, we denote the ordinary derivative of Q(θ, ξ) with respect to θ by Qθ(θ, ξ).

For any θ ∈ Θ, we say that Q(θ, ξ) is pathwise differentiable at ξ ∈ Ξ in the direction ξ̄ if

there exists a continuous linear functional Qξ(θ, ξ) : Θ× Ξ→ Rl such that Qξ(θ, ξ)[ξ̄] =
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limτ→0(Q(θ, ξ+τ ξ̄)−Q(θ, ξ))/τ . The functional Qξ(θ, ξ) is called the pathwise derivative

of Q(θ, ξ).

Theorem 1 (Chen, Linton, and Van Keilegom (2003)). Suppose that θ0 ∈ int(Θ) satisfies

Q(θ0, ξ0) = 0, that θ̂ = θ0 + oP (1), and that:

(N1) ‖Qn(θ̂, ξ̂)‖ = infθ∈Θ ‖Qn(θ, ξ̂)‖+ oP (1/
√
n).

(N2) (i) the ordinary derivative Qθ(θ, ξ0) of Q(θ, ξ0) in θ exists for θ ∈ Θδ and is con-

tinuous at θ = θ0; (ii) the matrix Qθ
0 = Qθ(θ0, ξ0) is of full rank.

(N3) For all θ ∈ Θδ the pathwise derivative Qξ(θ, ξ0)[ξ − ξ0] of Q(θ, ξ0) exists in all

directions [[ξ − ξ0]] ∈ Ξ; and for all (θ, ξ) ∈ Θδn × Ξδn with a positive sequence

δn = o(1): (i) ‖Q(θ, ξ)−Q(θ, ξ0)−Qξ(θ, ξ0)[ξ−ξ0]‖ ≤ c‖ξ−ξ0‖2
Ξ for a constant c ≥ 0;

(ii) ‖Qξ(θ, ξ0)[ξ − ξ0]−Qξ
0[ξ − ξ0]‖ ≤ o(1)δn, where Qξ

0[ξ − ξ0] = Qξ(θ0, ξ0)[ξ − ξ0].

(N4) ξ̂ ∈ Ξ with probability tending to one; and ‖ξ̂ − ξ0‖Ξ = oP (n−1/4)

(N5) For any positive sequence δn = o(1).

sup
‖θ−θ0‖≤δn,‖ξ−ξ0‖Ξ≤δn

√
n‖Qn(θ, ξ)−Q(θ, ξ)−Qn(θ0, ξ0)‖
1 +
√
n(‖Qn(θ, ξ)‖+ ‖Q(θ, ξ)‖)

= oP (1)

(N6)
√
n(Qn(θ0, ξ0) +Qξ

0[ξ̂ − ξ0])
d→ N(0, V ) for some finite matrix V .

Then
√
n(θ̂ − θ0)

d→ N(0,Ω), where Ω = (QθT
0 AQθ

0)−1QθT
0 AV AQθ

0(QθT
0 AQθ

0)−1.

Chen, Linton, and Van Keilegom (2003) provide an extensive discussion of the con-

ditions of Theorem 1, arguing that they are fairly general and thus satisfied in a wide

range of semiparametric models. Moreover, the result is sufficiently flexible to apply in

our setting. Neither its conditions nor a single step in its proof do rule out the type

of semiparametric estimation problems with generated covariates we consider in this pa-

per. Asymptotic normality of the real estimator of θ̂ can thus simply be established by

checking (N1)–(N6). There is no need to develop a completely new theory.2

2To the best of our knowledge, this point has not been made explicitly in the literature on semipara-

metric estimation. However, it has at least implicitly been noted for a special case in Linton, Sperlich,

and Van Keilegom (2008).
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This does not imply that the presence of generated covariates does not affect the

asymptotic properties of our estimator. Verification of the “uniform convergence” con-

dition (N4) and the “asymptotic normality” condition (N6) are substantially more com-

plicated, and the asymptotic variance V in (N6) will generally be different from the one

we would have obtained if the true value r0 had been used in the estimation procedure

instead of the estimate r̂. In the following section, we therefore derive new and general

methods to check conditions like (N4) and (N6), which also appear in many other papers.

On the other hand, note that the remaining conditions of Theorem 1 are not affected

by the presence of generated covariates, and can thus be verified by standard arguments:

(N1) simply states that θ̂ is an approximate minimizer of the objective function, which we

assumed in the first place; (N2) and (N3) are smoothness conditions on the population

moment function, and (N5) is a stochastic equicontinuity condition. Neither involves

estimates of the nonparametric components of our model, and thus they can be verified

independently of the issue of generated covariates.

3. Controlling the Influence of Generated Covariates

This section contains our main technical result. In particular, we consider a stochastic

expansion of nonparametrically estimated regression functions under very general condi-

tions, deriving a sharp bound on weighted averages of the respective remainder terms.

This is the key ingredient for showing condition (N6). Throughout this section, we use the

notation that for any vector a ∈ Rd the values amin = min1≤j≤d aj and amax = max1≤j≤d aj

denote the smallest and largest of its elements, respectively, a+ =
∑d

j=1 aj denotes the

sum of its elements, a−k = (a1, . . . , ak−1, ak+1, . . . , ad) denotes the d− 1-dimensional sub-

vector of a with the kth element removed, and ab = (ab11 , . . . , a
bd
d ) for any vector b ∈ Rd.

3.1. Estimating the Nonparametric Component. To derive our main result, we

need to be more specific about the estimation procedures for the infinite-dimensional

nuisance parameters. We do not require a specific procedure for the estimator r̂ of r0,

but only impose certain “high-level” restrictions that cover a wide range of methods.

Given an estimate of r0, for every θ ∈ Θ we then obtain an estimate of m0(·, θ) through

a nonparametric regression of Y on the generated covariates T̂ (θ) = t(X, r̂(Xr), θ) using
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p-th order local polynomial smoothing. Our estimator is thus given by m̂(x, θ) = α̂,

where

(α̂, β̂) = argmin
α,β

n∑
i=1

(Yi − α−
∑

1≤u+≤p

βT
u (T̂i(θ)− x)u)2Kh(T̂i(θ)− x) , (3.1)

where Kh(v) =
∏dT

j=1K(vj/hj)/hj is a dT -dimensional product kernel built from the

univariate kernel function K, h = (h1, ..., hdT ) is a vector of bandwidths that tend to

zero as the sample size n tends to infinity, and
∑

1≤u+≤p denotes the summation over all

u = (u1, . . . , up) with 1 ≤ u+ ≤ dT . For p = 1, we get the usual local linear estimator.

We allow for uneven orders p > 1 for the purpose of bias control.3

To present our results later, it will also be useful to introduce the infeasible oracle

estimate m̃(·, θ), which is obtained via local linear smoothing of Y versus T (θ) for every

θ ∈ Θ, i.e. it is given by m̃(x, θ) = α̃, where

(α̃, β̃) = argmin
α,β

n∑
i=1

(Yi − α−
∑

1≤u+≤p

βT
u (Ti(θ)− x)u)2Kh(Ti(θ)− x).

We focus on local polynomial estimation for m0(·, θ) in this paper because the particular

structure of the estimator facilitates controlling the presence of generated covariates (see

Mammen, Rothe, and Schienle, 2012), and does not require a separate treatment of

boundary regions. While it might be possible to conduct a similar analysis for other

nonparametric procedures, such as e.g. orthogonal series estimators, we conjecture that

this would require substantially more involved technical arguments.

3.2. Assumptions. We now state our assumptions on the data generating process

and the preliminary estimator r̂ of r0. To this end, we define the generalized regression

residual ε(θ) = Y − E(Y |T (θ)), which allows us to write the dependent variable Y as

Y = m0(T (θ), θ) + ε(θ) with E(ε(θ)|T (θ)) = 0.

3Note that the definition of the estimator m̂(·, θ) in (3.1) implicitly requires T̂ (θ) to be continuously

distributed (see also Assumption 1(ii) below). This is not a restriction, however, as it would be straight-

forward to modify the estimator m̂(·, θ) by the usual frequency method if some components of T̂ (θ) are

in fact discrete. Also note that for the special case that the objective function Qn depends on m̂(·, θ)

through its values at the T̂i(θ) only, one could slightly simplify some technical arguments later by directly

considering a “leave-one-out” version of m̂(·, θ). Since our setup does not require such a structure, we

proceed with the definition in (3.1).
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Assumption 1 (Regularity). We assume the following properties for the data distribu-

tion, the bandwidth, and kernel function K.

(i) The sample observations Zi are independent and identically distributed.

(ii) The parameter space Θ is compact. For every θ ∈ Θ, the random vector T (θ) =

t(X, r0(Xr), θ) is continuously distributed with support IT satisfying I∗T ⊂ int(IT )

with I∗T compact. The corresponding density function fT (·, θ) is continuously differ-

entiable for every θ ∈ Θ, and infθ∈Θ,x∈I∗T fT (x, θ) > 0.

(iii) For every θ ∈ Θ, the functions m0(·, θ) and t(·, θ) are (p + 1)-times continuously

differentiable on their respective domains.

(iv) For every θ ∈ Θ, the residuals ε(θ) satisfy the inequality E[exp(l|ε(θ)|)|T (θ)] ≤ C

for a constant C > 0 and some l > 0 small enough.

(v) The function K is twice continuously differentiable and satisfies the following con-

ditions:
∫
K(u)du = 1,

∫
uK(u)du = 0 and

∫
|u2K(u)|du < ∞, and K(u) = 0 for

values of u not contained in some compact interval, say [−1, 1].

(vi) The bandwidth h = (h1, . . . , hdT ) satisfies hj ∼ n−ηj for all j = 1, . . . , dT , and

(1− η+)/2 > ηmax.

Most restrictions imposed in Assumption 1 are standard for nonparametric kernel-

type estimators of nuisance functions in semiparametric models. Part (i) is not necessary

and could be relaxed to allow for certain forms of temporal dependence. Part (ii) states

that the covariates T (θ) are continuously distributed, and that the density is bounded

away from zero over the set I∗T , thus ensuring a stable estimate m̂(·, θ) at the points of

evaluation. The differentiability conditions in (iii) are used to control the magnitude of

bias terms. Assuming subexponential tails of ε(θ) conditional on T (θ) in part (iv) is

necessary to apply certain results from empirical process theory in our proofs. Note that

conditions (ii)–(iv) involve the true function r0 only. Unlike Escanciano, Jacho-Chávez,

and Lewbel (2011), we do not assume that e.g. the vector T (θ, r) or the conditional ex-

pectation E(Y |T (θ, r)) have particular distributional or smoothness properties for values

of r ∈ R other than r0. Part (v) describes a standard kernel function with compact
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support. Finally, the restrictions on the bandwidth in (vi) imply that the smoothing bias

of the nonparametric regression estimator will be dominated by certain stochastic terms.

As we will see from the next assumption, allowing the components of h to tend to zero

at different rates can be useful in applications with multiple generated covariates that

have different rates of convergence. We remark that our setting can easily be extended

to allow for random, data-dependent bandwidths.4

Assumption 2 (Accuracy). We assume the following properties of the estimator r̂:

(i) sups |r̂j(s)− r0,j(s)| = OP (n−δ
∗
j ) for some δ∗j > 1/4 and all j = 1, . . . , dr, and

(ii) supθ,x |Tj(x, θ, r̂)− Tj(x, θ, r0)| = oP (n−δj) for some δj > ηj and all j = 1, . . . , dt,

where in both cases the subscript j denotes the j-th component of the respective object.

Assumption 2 imposes restrictions on the accuracy of the first-step estimator r̂. Part

(i) implies the classic condition that that sup |r̂j(s) − r0,j(s)| = oP (n−1/4), which is nec-

essary for condition (N4) of Theorem 1 to hold. This condition is required because we

allow r̂ to appear as a separate argument in the objective function Qn. It thus does

potentially not only determine the shape of the function m̂, but could also exert a direct

influence. Part (ii) ensures that the difference between the respective components of T̂ (θ)

and T (θ) tend to zero in probability at a rate at least as fast as the corresponding band-

width in the second stage of the estimation procedure, uniformly in θ. Such conditions

can be verified for a wide range of nonparametric estimators (e.g. Masry (1996), Newey

(1997)), and they trivially hold for regular parametric estimators. Assumption 2 is also

important from a practical point of view, as it gives some (admittedly rough) guidance

for bandwidth choice in the presence of generated covariates.

Assumption 3 (Complexity). For every j = 1, . . . , dT , there exist a sequence of sets of

functions Tn,j such that

4Allowing for a random bandwidth would only require to control the behavior of the mapping (t, θ) 7→

m̂(t, θ) as a function of h uniformly over some grid of bandwidth values that expands at a polynomial

rate (Einmahl and Mason, 2005). To account for the presence of generated covariates, we are going

to control the mapping (t, θ) 7→ m̂(t, θ) as a function of r uniformly over a much bigger space (see

Assumption 3 below). Hence the extension to data-dependent bandwidths would cause no particular

technical difficulties.

13



(i) Pr(Tj(·, r̂) ∈ Tn,j)→ 1 as n→∞.

(ii) For a constant CT > 0 and a function rn with ‖Tj(x, θ, rn) − Tj(x, θ, r0)‖∞ =

oP (n−δj), the set T ∗n,j = Tn,j ∩ {Tj(·, r) : ‖Tj(x, θ, r) − Tj(x, θ, rn)‖∞ ≤ n−δj} can

be covered by at most CT exp(λ−αjnχj) balls with ‖ · ‖∞-radius λ for all λ ≤ n−δj ,

where 0 < αj ≤ 2, χj ∈ R and ‖ · ‖∞ denotes the supremum norm.

Assumption 3 restricts the complexity of the function space in which the mapping

(x, θ) 7→ T (x, θ, r̂) takes its values by imposing constraints on the cardinality of the

covering sets. Since we have that T (x, θ, r) = t(x, r(xr), θ) for some known function

t which, by Assumption 1(iii), is continuously differentiable with respect to its second

component, the condition imposes implicit restrictions on the complexity of the first-stage

estimator r̂. Indeed, we could equivalently state a restriction similar to Assumption 3 on

the set R∗n = {r ∈ R : Tj(·, r) ∈ T ∗n,j for all j = 1, . . . , dT}.

Restrictions on covering numbers are a common requirement in the literature on

empirical processes, that is typically fulfilled under suitable smoothness assumptions.

Suppose for example that R∗n is the set of smooth functions defined on the compact set

IR ⊂ RdXr , whose partial derivatives up to order k exist and are uniformly bounded by

some multiple of nχ
∗
j for some χ∗j ≥ 0, and that |Tj(x, r(xr), θ)−Tj(x, r(xr), θ∗)| ≤ C‖θ−

θ∗‖ for every θ, θ∗ and every value of x and r. Then the set Tn,j satisfies Assumption 3(ii)

with αj = dXr/k and χj = χ∗jαj (Van der Vaart and Wellner, 1996, Corollary 2.7.2). The

same entropy bound applies if R∗n consists of the sum of one fixed function and a smooth

function from a respective smoothness class. This extension is useful if one chooses the

fixed function as equal to the sum of r0 and the bias of r̂. Thus it is not necessary that

the bias term is a smooth function.

For kernel-based estimators of r0, one can then verify Assumption 3(i) by explicitly

calculating the derivatives. Consider e.g. the one-dimensional Nadaraya-Watson estima-

tor r̂n,j with bandwidth of order n−1/5. Choose rn,j equal to r0,j plus asymptotic bias

term. Then one can check that the second derivative of r̂n,j − rn,j is absolutely bounded

by OP (
√

log n) = oP (nχ
∗
j ) for all χ∗j > 0. For sieve and orthogonal series estimators,

Assumption 3(i) immediately holds when the set Mn,j is chosen as the sieve set or as a

subset of the linear span of an increasing number of basis functions, respectively. For a
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discussion of entropy bounds and further references we refer to van de Geer (2009). Note

that in settings where r0 is estimated by parametric or semiparametric methods verifying

Assumption 3 is generally much more simple, and substantially smaller values can be

established for the constants αj and χj.

To state our final assumption, we define the “index bias” ρ(X, θ) = E(Y |X) −

E(Y |T (θ)), which is the difference between the conditional expectations of Y given the

underlying dX-dimensional covariate vector X and the dT -dimensional “index” T (θ), re-

spectively.

Assumption 4 (Continuity). We assume that the elements of R∗n = {r ∈ R : Tj(·, r) ∈

T ∗n,j for all j = 1, . . . , dT} satisfy the following properties:

(i) For all r ∈ R∗n and θ ∈ Θ the function τB(t, θ, r) = E(ρ(X, θ)|T (r) = t) is p+1 times

differentiable with respect to its first argument, and the derivatives are uniformly

bounded in absolute value.

(ii) For a constant C∗B > 0 and for r1, r2 ∈ R∗n, θ ∈ Θ it holds that

‖τB(T (r1), θ, r1)− τB(T (r2), θ, r2)‖ ≤ C∗B‖r1 − r2‖∞ a.s.

(iii) For a constant CB > 0 and all r1, r2 ∈ R∗n, θ ∈ Θ and t ∈ I∗T it holds that

∣∣E [(T (θ, r1)− t)uh−uKh(T (θ, r1)− t)
]

− E
[
(T (θ, r2)− t)uh−uKh(T (θ, r2)− t)

]∣∣ ≤ CB‖r1 − r2‖∞

for 0 ≤ u+ ≤ p.

Assumption 4(i)–(ii) are technical conditions which ensure that the conditional ex-

pectation of the “index bias” ρ(X, θ) satisfies certain smoothness restrictions. These

conditions trivially hold if ρ(X, θ) = 0, as assumed in Escanciano, Jacho-Chávez, and

Lewbel (2011). Generally speaking, the index bias could be equal to zero if the economic

model implies certain exclusion restrictions on the relationship between the underlying

covariates X and the variable Y . Such exclusion restrictions are e.g. be available in

some instrumental variable models. In general, however, it is undesirable to impose that

ρ(X, θ) = 0, and we do not require such a condition for our analysis. See our Section 5.1
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below for an application where this flexibility is important. Assumption 4(iii) is a fur-

ther smoothness condition. If the random vector r(Xr) is continuously distributed, this

condition holds if ‖f1 − f2‖∞ ≤ CB‖r1 − r2‖∞ for all r1, r2 ∈ R∗n, where fj denotes the

density function of rj(Xr) for j = 1, 2. See Escanciano, Jacho-Chávez, and Lewbel (2011,

Assumption 10) for a similar restriction on the densities of the generated covariates.

3.3. Stochastic Expansions of the Nonparametric Component. Using the as-

sumptions outlined above, we can now derive a sharp stochastic approximation of the

nonparametric estimator m̂. To state the result, we denote the unit vector (1, 0, . . . , 0)>

in Rp+1 by e1, the derivative of m0(t, θ) with respect to t by m′0(t, θ), and write wi(t, θ, r) =

(1, (Ti(r, θ)−t)/h, ..., (Ti(r, θ)−t)p/hp)> andNh(x, θ) = E(wi(t, θ, r)wi(t, θ, r)
>Kh(Ti(r, θ)−

t)). Recalling that ρ(X, θ) = E(Y |X) − E(Y |T (θ)), we then define the approximating

function m̂∆ by

m̂∆(t, θ) = m̃(t, θ) + ϕAn (t, θ, r̂) + ϕBn (t, θ, r̂), (3.2)

where

ϕAn (t, θ, r) = −m′0(t, θ)e>1 Nh(x, θ)
−1E(Kh(Ti(θ)− t)wi(x, θ)(Ti(r, θ)− Ti(θ)))

in case of local linear regression with p = 1 (a general, notationally much more involved

definition for higher order local polynomials is given in (A.2) in Appendix A), and

ϕBn (t, θ, r) = e>1 Nh(x, θ)
−1E(K ′h(Ti(θ)− t)>wi(x, θ)(Ti(r, θ)− Ti(θ))ρ(X, θ))

for any r ∈ R∗n. Here we use the notation K ′h(v) = (K′h,j(v) : j = 1, ..., dT )> with

elements K′h,j(v) = K′(vj/hj)/h2
j

∏
j∗ 6=j K(vj∗/hj∗)/hj∗ . Our main result concerns the

accuracy when using m̂∆ as an approximation of m̂.

Theorem 2. Suppose that Assumption 1–4 hold. Then for any θ ∈ Θ, it is∫
(m̂(t, θ)− m̂∆(t, θ))ω(t)dt = oP (n−κ

∗
) (3.3)

for some weight function ω : Rd → R whose partial derivatives of order one are uniformly

absolutely bounded, and that satisfies ω(x) = 0 for all x /∈ I∗T , and κ∗ = min{κ∗1, . . . , κ∗4}
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with

κ∗1 =
1

2
+ (1− αmax

2
)δmin −

(αη + χ)max
2

, κ∗2 < (p+ 1)ηmin + (δ − η)min,

κ∗3 < (2− αmax
2

)δmin +
1

2
(1− η+)− (αη + χ)max

2
, κ∗4 < 2δmin.

The Theorem provides a sharp bound on weighted averages the the approximation

error m̂(t, θ) − m̂∆(t, θ). We focus on this class of distance measures because they are

particularly suitable to verify conditions of the type (N6) in Theorem 1. Bounds on the

supremum norm of the approximation error, as studied Mammen, Rothe, and Schienle

(2012), typically vanish at a rate slower than n−1/2, and are thus not useful to establish

the “asymptotic normality” condition. They can however, with some adaptation, be

employed to verify the “uniform consistency” condition (N4), as explained below.

The function m̂∆ consists of two components: the term m̃(·, θ) is the oracle estimator

of m0(·, θ) introduced above, whereas ϕAn (t, θ, r̂) + ϕBn (t, θ, r̂) is an adjustment term that

captures the additional uncertainty due to the presence of generated covariates. Note

that the generated covariates enter the expansion only through smoothed versions of the

estimation error T (θ, r̂)−T (θ, r0). Since this additional smoothing typically improves the

rate of convergence of the stochastic part of the first-step estimator (although it does not

improve the order of the bias component), we generally expect the adjustment term to

have a faster rate of convergence. Hence the dimensionality of the generation step should

play a less pronounced role in this context.

4. Application to Semiparametric Estimation

In this section, we show how to verify conditions of the type (N4) and (N6) in Theo-

rem 1. We also derive a general formula for the asymptotic variance of the estimator

θ̂. Throughout the section, we assume that the smoothness conditions (N2)–(N3) on the

criterion function Q hold.

4.1. Verifying “Uniform Consistency”. To verify the “Uniform Consistency” con-

dition (N4), we use a variation of an earlier result in Mammen, Rothe, and Schienle

(2012) to derive the uniform rate of consistency of the estimator m̂(t, θ).
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Theorem 3 (Uniform Consistency). Suppose Assumption 1–3 and 4(i)–(ii) hold. Then

sup
t∈I∗T ,θ∈Θ

|m̂(t, θ)−m0(t, θ)| = OP

(
n−(p+1)ηmin +

√
log(n)n−(1−η+) + n−δmin + n−κ

)
,

where κ = min{κ1, ..., κ3} with

κ1 <
1

2
(1− η+) + (δ − η)min −

1

2
(δα + χ)max, κ2 < (p+ 1)ηmin + (δ − η)min,

κ3 < δmin + (δ − η)min.

The first two terms in the error bound on the right hand side follow from a standard

uniform consistency result of the oracle estimator m̃ (Masry, 1996), whereas the remaining

two terms are due to the presence of generated covariates. In order for condition (N4)

to hold, these terms have to be of smaller order than n−1/4. For the oracle part, this can

easily be achieved by choosing an appropriate bandwidth under sufficient smoothness

conditions. For the remaining terms, Assumption 2(i) and Assumption 1(iii) jointly

imply that δmin > 1/4. It then follows from simple calculations that OP

(
n−δmin + n−κ

)
=

oP (n−1/4) under appropriate restrictions on the sets Tn,j.5

4.2. Verifying “Asymptotic Normality”. Given a specific estimator r̂ of r0, the

expansion m̂∆(t, θ) in (3.2) can usually be calculated more explicitly, and can then be

used to verify (N6). To illustrate this idea in a general setting, suppose that the estimator

used to generate the covariates satisfies the following asymptotically linear representation,

which can be shown to be satisfied for a wide range nonparametric, semiparametric,

and fully parametric estimation procedures (we also discuss two representative examples

below).6

Assumption 5 (Linear Representation). The estimator r̂ of r0 satisfies

r̂(s)− r0(s) =
1

n

n∑
i=1

ϕr̂ni(s) +Rn(s) (4.1)

5Note that when studying the “asymptotic normality” condition (N6) in the next subsection, we will

introduce some additional structure on the estimator r̂ of r0 in Assumption 5. Using this additional

structure, it would be possible to derive better rates than the one given in Theorem 3. See the remark

at the end of the proof of Theorem 3 in Appendix A for details.
6Note that Assumption 5 is typically not satisfied for estimators that are not asymptotically Gaussian,

such as e.g. the Maximum Score estimator of a single-index binary choice model, or other estimators

that follow so-called cube-root asymptotics. See Song (2011) for a further discussion of this point.
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with ϕr̂ni(s) = Hn(Si, s)ν(Wi) for some Si ⊂ Wi and sups∈I∗R |Rn(s)| = oP (n−1/2). The

term ν(Wi) satisfies E(ν(Wi)|Si) = 0 and E(ν(Wi)ν(Wi)
>) < ∞, and Hn is a weighting

function satisfying E(‖Hn(Si, Sj)‖2) = o(n) for i 6= j.

To see how this additional structure can be utilized for our purposes, recall that it

follows from elementary rules for pathwise derivatives that

Qξ
0[ξ̂ − ξ0] = Qm(θ0, ξ0)[m̂−m0] +Qr(θ0, ξ0)[r̂ − r0],

where for any (θ, r) the functional Qm(θ, ξ)[m̄] is the pathwise derivative of Q(θ, (m, r))

at m in the direction m̄, and similarly for Qr. In most applications, m and r are square

integrable functions of random vectors Zm and Zr, respectively, and it follows from the

Riesz representation theorem that there exists unique square integrable functions λm and

λr such that

Qm(θ0, ξ0)[m̂−m0] =

∫
λm(z)(m̂(z)−m0(z))dFZm(z), (4.2)

Qr(θ0, ξ0)[r̂ − r0] =

∫
λr(z)(r̂(z)− r0(z))dFZr(z). (4.3)

See e.g. Newey (1994). The form of λm and λr depends on the particular application.

For example, if the criterion function Q(θ, ξ) = E(q(Z, θ,m, r)) is such that the term

q(Z, θ,m, r) only depends on the functions m and r smoothly through their value when

evaluated at some random vectors Zm and Zr, respectively, we have that

λm(zm) = E(∂q(Z, θ,m0, r0)/∂m0(Zm, θ0)|Zm = zm)

λr(zr) = E(∂q(Z, θ,m0, r0)/∂r0(Zr)|Zr = zr).

All econometric applications we consider in Section 5 below exhibit this structure.

When λm and λr are sufficiently smooth, one can use Assumption 5 together with the

representation in (3.2) to show that there exist fixed functions ψj with E(ψj(Z)) = 0 and

E(ψj(Z)ψj(Z)>) <∞ for j = 1, 2, 3 such that∫
λm(z)m̃(z, θ0)dFZm(z) =

1

n

n∑
i=1

ψ1(Zi) + oP (n−1/2)

∫
λm(z)

(
ϕAn (z, θ0, r̂) + ϕBn (z, θ0, r̂)

)
dFZm(z) =

1

n

n∑
i=1

ψ2(Zi) + oP (n−1/2),

∫
λr(z)

1

n

n∑
i=1

ϕr̂ni(z)dFZr(z) =
1

n

n∑
i=1

ψ3(Zi) + oP (n−1/2).
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Moreover, the properties of the remainder term Rn(t) = m̂(t, θ0)− m̂∆(t, θ0) established

in Theorem 2 ensure, under suitable regularity conditions, that∫
λm(z)Rn(z)dFZm(z) = oP (n−1/2).

If we now put ψ0(Zi) = q(Zi, θ0, ξ0) and ψ(z) =
∑3

j=0 ψj(z), the above statements imply

that

√
n(Qn(θ0, ξ0) +Qξ

0[ξ̂ − ξ0]) =
1√
n

n∑
i=1

ψ(Zi) + oP (1)
d→ N(0,E(ψ(Z)ψ(Z)>)) (4.4)

by the Central Limit Theorem, and thus condition (N6) holds with V = E(ψ(Z)ψ(Z)>).

The following Corollary formalizes this argument, and provides a general formula to

compute the variance matrix V .

Corollary 1 (Normality). Suppose Assumption 1– 5 holds with p+ 1 > dT ,

(αη + χ)max
2

< min{(1− αmax
2

)δmin, (2−
αmax

2
)δmin +

1

2
(1− η+)}, (4.5)

the criterion function satisfies (4.2)– (4.3) with λm(·) and λr(·) being (p+1)-times contin-

uously differentiable, and 1/2(p+1) < ηj < 1/2dT for j = 1, . . . , dT . Then equation (4.4)

holds with

ψ1(Zi) = εiλm(Ti)fZm(Ti)fT (Ti)
−1

ψ2(Zi) = −ν(Wi)E(λ∗m(Xr)Hn(Si, Xr)|Si)

ψ3(Zi) = ν(Wi)E(λr(Zr)Hn(Si, Zr)|Si),

where

λ∗m(xr) = E(T (r)(X)(ρ(X)G′(T ) +m′0(T )G(T ))|Xr = xr)

and G(t) = λm(t)fZm(t)fT (t)−1 and G′(t) = ∂tG(t) and T (r)(x) = ∂T (x, θ0, r0)/∂r0(xr).

Restriction (4.5) involves a tradeoff between the complexity of the first and second

estimation step for the nonparametric component: It can be shown to be satisfied when r0

is “sufficiently regular” (i.e. the αj and χj are small) and m0(·, θ) is “sufficiently smooth”

(i.e. p is large and thus the ηj can be chosen small). Exact conditions are difficult to give

in general, but are easy to check for a specific application, where specific values for the

αj and χj are available. See the discussion after Assumption 3 above for an example.
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Assumption 5 is similar to conditions used e.g. in Rothe (2009) or Ichimura and

Lee (2010). We now give two examples for which it is satisfied: the case where r0 is

a conditional expectation function estimated by nonparametric regression, and the case

where r0(xr) = r̄(xr, ϑ0) is a function known up to a finite dimensional parameter ϑ0,

for which there exists a regular asymptotically linear estimator. These are arguably the

most important cases from an applied point of view. We refer to Kong, Linton, and Xia

(2010) for general results on kernel-based M-estimators.

Example 1 (Nonparametric Regression). Suppose that W is partitioned as W = (D,S),

and we have that D = r0(S)+ζ with E(ζ|S) = 0. Consider a kernel-based nonparametric

regression estimator r̂ of r0, such as the Nadaraya-Watson or a local polynomial estimator.

Then one can show that Assumption 5 holds under suitable smoothness conditions with

ν(Wi) = ζi and Hn(Si, s) = fS(s)−1Lg(Si − s), where L is a kernel function and g is a

bandwidth that tends to zero at an appropriate rate. We then find that

ψ2(Zi) = −ζiλ∗m(Si)
fXr(Si)

fS(Si)
and ψ3(Zi) = ζiλr(Si)

fZr(Si)

fS(Si)
.

The form of ψ0(·) and ψ1(·) remains unchanged.

Example 2 (Nonlinear Parametric Estimation). Assume that r0(s) = r̄(s, ϑ0) is a para-

metrically specified function (not necessarily a conditional expectation) known up to the

finite dimensional parameter ϑ0. Suppose there exists an estimator ϑ̂ of ϑ0 that satisfies

ϑ̂− ϑ0 =
1

n

n∑
i=1

ϕϑ̂(Wi) + oP (n−1/2),

where E(ϕϑ̂(W )) = 0, E(ϕϑ̂(W )ϕϑ̂(W )>) < ∞, and that r(xr, µ) is continuously differ-

entiable in its second argument. Then Assumption 5 is satisfied with ν(Wi) = ϕϑ̂(Wi)

and Hn(Si, s) = ∂ϑr(s, ϑ0), and thus

ψ2(Zi) = −ν(Wi)E(T r(X)∂ϑr(Xr, ϑ0)(ρ(X)g(T ) + λm(T )m′0(T )fZm(T )fT (T )−1))

ψ3(Zi) = ν(Wi)E(λr(Zr)∂ϑr(Zr, ϑ0)).

In case that W is partitioned as W = (D,S), and we have that D = r̄(S, ϑ0) + ζ with

E(ζ|S) = 0, and that ϑ̂ is the nonlinear least squares estimator of ϑ0. In such a setting,

we would have that ν(Wi) = E(∂ϑr(S, ϑ0)∂ϑr(S, ϑ0)>)−1∂ϑr(Si, ϑ0)(Di − r0(Si)), under

the usual regularity conditions.
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4.3. The Asymptotic Variance. The argument in the previous subsection conveys

some important intuition for the form of the asymptotic variance of θ̂. Recall that under

the conditions of Theorem 1 this variance is given by

Ω = (Qθ>
0 AQθ

0)−1Qθ>
0 AV AQθ

0(Qθ>
0 AQθ

0)−1

with V = E(ψ(Z)ψ(Z)>) and ψ(z) =
∑3

j=0 ψj(z). In contrast, the asymptotic variance

of the oracle estimator θ̃ can be shown to be

Ω̃ = (Qθ>
0 AQθ

0)−1Qθ>
0 AṼ AQθ

0(Qθ>
0 AQθ

0)−1

with Ṽ = E((ψ0(Z) + ψ1(Z))(ψ0(Z) + ψ1(Z))>), by simply setting r̂ = r0. The presence

of generated covariates thus affects the asymptotic variance only through the additional

summands ψ2(Z) and ψ3(Z) used to calculate V , as the weight matrix A is chosen by the

econometrician and Qθ
0 is simply a population quantity. In particular, the term ψ2(Z)

captures the additional uncertainty due to using generated covariates when estimating the

function m0, whereas the term ψ3(Z) accounts for directly using the generated covariates

in other parts of the model, e.g. as a point of evaluation of an estimated function. A

simple condition for the presence of generated covariates to be asymptotically negligible,

i.e. that Ω = Ω̃, is then of course that ψ2(Z) = −ψ3(Z) with probability one. This finding

complements and generalizes results in Hahn and Ridder (2011), who were the first to

derive the influence function for a class of semiparametric estimators with generated

covariates.

The following two examples give an explicit formula for the asymptotic variance of

particular classes of semiparametric estimators. These examples illustrate two important

issues. First, they give some insight under which conditions the presence of generated

covariates can be asymptotically negligible. Second, they show that the “index bias”

ρ(X) = E(Y |X) − E(Y |T ) appears explicitly in the asymptotic variance of a large class

of estimators, and thus assuming that ρ(X) = 0 as in Escanciano, Jacho-Chávez, and

Lewbel (2011) can be restrictive.

Example 3 (Linear Estimator). Consider a setup where T (X, θ, r) = (X1, r(Xr)) and

the parameter of interest is θ0 = E(s(m0(T ))) for some known function s, and thus the

criterion function is of the form Qn(θ,m, r) = n−1
∑n

i=1 s(m((X1i, r(Xri)))) − θ. This
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setting is also considered in Hahn and Ridder (2011, Theorem 3). Suppose that r0 is a

nonparametric regression function satisfying D = r0(Xr)+ζ with E(ζ|Xr) = 0. Applying

Corollary 1 as in Example 1 above, we find that the asymptotic variance of the estimator

θ̂ is given by

Ω = E((Ψ1 + Ψ2)(Ψ1 + Ψ2)>)

where, writing T = (X1, r0(Xr)),

Ψ1 = s(m0(T ))− θ + s′(m0(T ))ε,

Ψ2 = −ζE(s′′(m0(T ))m′0(T )T (r)(X)(Y − E(Y |T ))|Xr).

In this simple setting, it is easy to give intuitive conditions under which the presence of

generated covariates is asymptotically negligible. Note that the term Ψ2 = ψ2(Z)+ψ3(Z)

accounts for the estimation error from using an estimate of r0 instead of the actual

function. This term is easily seen to be equal to zero if either s(·) is a linear function or

if the index restriction E(Y |X) = E(Y |T ) holds.

Example 4 (Semiparametric Regression). Consider a setup where the objective function

is of the formQn(θ,m, r) = n−1
∑n

i=1(Yi−m(T (Xi, θ, r), θ))s(Xi) for some known function

s. This type of objective function occurs in may semiparametric regression problems,

such as e.g. the estimation of single- or multi-index models with generated covariates by

semiparametric maximum likelihood or semiparametric least squares (e.g. Rothe, 2009).

Suppose again that the function r0 is a nonparametric regression function that satisfies

D = r0(Xr) + ζ with E(ζ|Xr) = 0. Applying Corollary 1 as in Example 1, we find that

the asymptotic variance of the estimator θ̂ is equal to

Ω = (Qθ
0)−1E((Ψ1 + Ψ2 + Ψ3)(Ψ1 + Ψ2 + Ψ3)>)(Qθ

0)−1,

where, writing u(t) = E(s(X)|T = t),

Ψ1 = ε(s(X)− E(s(X)|T ))

Ψ2 = −ζE((s(X)− E(s(X)|T ))m′0(T )T (r)(X)|Xr)

Ψ3 = ζE(u′(T )T (r)(X)(E(Y |X)− E(Y |T ))|Xr).
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The terms Ψ2 and Ψ3 account for the estimation error from using an estimate of r0 instead

of the actual function. In this setting there are generally no simple conditions under which

the presence of generated covariates is asymptotically negligible. Still, the form of the

asymptotic variance simplifies considerably if the index restriction E(Y |X) = E(Y |T )

holds.

4.4. Validity of the Bootstrap. In some applications, the asymptotic variance matrix

V could be difficult to estimate since it depends on the nonparametrically estimated

components of the model in a potentially nontrivial fashion. In such cases, resampling

techniques like the ordinary nonparametric bootstrap can be useful to compute confidence

regions for the parameters of interest. Our results can be used to establish the validity

of such an approach. Consider for example a setting where the sample and population

objective function are of the form Qn(θ, ξ) = n−1
∑n

i=1 q(Zi, θ,m(Zm,i, θ), r(Zr,i)) and

Q(θ, ξ) = E(q(Z, θ,m(Zm, θ), r(Zr))), respectively. Let (Z∗1 , . . . , Z
∗
n) be be drawn with

replacement from the original sample (Z1, . . . , Zn), let ξ̂∗ be the same estimator as ξ̂ but

based on the bootstrap data, and put Q∗n(θ, ξ) = n−1
∑n

i=1 q(Z
∗
i , θ,m(Z∗m,i, θ), r(Z

∗
r,i)).

Next, define the bootstrap estimator θ̂∗ as any sequence that minimizes a GMM-type

criterion function based on a recentered moment condition:

‖Q∗n(θ̂∗, ξ̂∗)−Qn(θ̂, ξ̂)‖ = inf
θ∈Θ
‖Q∗n(θ, ξ̂∗)−Qn(θ̂, ξ̂)‖+ oP ∗(1/

√
n).

Sufficient conditions which imply that
√
n(θ̂∗− θ̂) converges in distribution to N(0,Ω) un-

der the probability measure P ∗ implied by the bootstrap are given in Theorem B in Chen,

Linton, and Van Keilegom (2003). In the presence of generated covariates, the central

requirements to be checked are the following variants of (N4) and (N6), respectively:

(B4) ξ̂ ∈ Ξ with P ∗-probability tending to one; and ‖ξ̂∗ − ξ̂‖Ξ = oP ∗(n−1/4).

(B6)
√
n(Q∗n(θ0, ξ0) +Qξ

0[ξ̂∗ − ξ0])
d→ N(0, V ) under P ∗.

By adapting the discussion after Theorem B in Chen, Linton, and Van Keilegom (2003) in

an obvious fashion, and applying a result from Giné and Zinn (1990), these two conditions

can be verified in the same way we establish (N4) and (N6) above, and are thus immediate

for a wide range of applications. We thus obtain the following Corollary.
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Corollary 2. Under the conditions of Corollary 1, (B4) and (B6) are fulfilled.

The remaining conditions for the validity of the bootstrap given by Chen, Linton, and

Van Keilegom (2003) are mostly minor strengthenings of those in Theorem 1, that can

be verified irrespective of the presence of generated covariates.

5. Econometric Applications

Semiparametric estimation problems with generated covariates occur in various fields of

econometrics. In this subsection, we discuss two applications in greater detail: estimation

of average treatment effects via regression on the propensity score, and estimation of

production functions in the presence of serially correlated technology shocks. To save

space, we only sketch the construction of estimators, and refer to Appendix B for details

and regularity conditions.

5.1. Regression on the Propensity Score. Consider the potential outcomes frame-

work, which is commonly used in the literature on program evaluation (Imbens, 2004):

Let Y1 and Y0 be the potential outcomes with and without program participation, respec-

tively, D ∈ {0, 1} an indicator of program participation, Y = Y1D + Y0(1 − D) be the

observed outcome, X a vector of exogenous covariates, and let Π(x) = Pr(D = 1|X = x)

be the propensity score. A typical object of interest in this context is the average treat-

ment effect (ATE), defined as

θ0 = E(Y1 − Y0).

Since selection into the program may be nonrandom, this object cannot be obtained

by simply comparing the average outcomes of treated and untreated individuals. How-

ever, when selection depends on observable covariates X only, biases due to nonran-

dom selection into the program can be removed by conditioning on the propensity score

(Rosenbaum and Rubin, 1983). That is, the condition that Y1, Y0⊥D|X implies that

Y1, Y0⊥D|Π(X). Moreover, writing νd(π) = E(Y |D = d,Π(X) = π), we have that

νd(π) = E(Yd|Π(X) = π), and thus by the law of iterated expectations, the ATE is

identified through the relationship

θ0 = E(ν1(Π(X))− ν0(Π(X))). (5.1)
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Similar arguments can be made for other measures of program effectiveness (e.g. Heck-

man, Ichimura, and Todd, 1998). Estimating the ATE by a sample analogue of (5.1)

requires nonparametric estimation of the functions ν1(π) and ν0(π). Since the propen-

sity score is generally unknown and has to be estimated in a first stage, this fits into

our framework with Z ≡ (Y,X, (D,X)), r0(Xr) ≡ Π(X), t(X, r0(Xr), θ) ≡ (D,Π(X)),

m0(z1) ≡ νd(p) and q(z, θ,m0, r0) ≡ ν1(Π(x))− ν0(Π(x))− θ.

Using the path-derivative approach of Newey (1994), Hahn and Ridder (2011) were

the first to derive the form of the influence function for this estimation problem. Here we

complement their result by giving explicit conditions for root-n consistency and asymp-

totic normality of a concrete estimator, which were thus far not available. In particular,

we consider the following sample version of (5.1) as a natural estimate of the ATE:

θ̂ =
1

n

n∑
i=1

(ν̂1(Π̂(Xi))− ν̂0(Π̂(Xi))),

where Π̂(x) is the q-th order local polynomial estimator of Π(x), and ν̂d(π) is the local

linear estimator of νd(π), computed using the first-stage estimates of the propensity score

(alternatively, we could consider a parametric estimator for the propensity score, such

as e.g. Probit). Here the binary covariate D is accommodated via the usual frequency

method, i.e. the estimate ν̂d is computed by local linear regression of Yi on Π̂(Xi) using

the nd =
∑n

i=1 I{Di = d} observations with D = d only. The following proposition gives

the asymptotic properties of the estimator.

Proposition 1. Suppose that the regularity conditions given in Appendix B.1 hold. Then

we have that
√
n(θ̂ − θ0)

d→ N(0,E(Ψ(Y,D,X)2), where

Ψ(Y,D,X) = µ1(X)− µ0(X) +
D(Y − µ1(X))

Π(X)
− (1−D)(Y − µ0(X))

1− Π(X)
− θ0

is the influence function, and µd(x) = E(Y |D = d,X = x) for d = 0, 1.

Under the conditions of the proposition the asymptotic variance of θ̂ equals the cor-

responding semiparametric efficiency bound obtained by Hahn (1998). The estimator

obtained via regression on the estimated propensity score thus has the same first-order

limit properties as other popular efficient estimators of the ATE under unconfoundedness,

such as e.g. the propensity score reweighting estimator of Hirano, Imbens, and Ridder
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(2003) or the estimator in Hahn (1998). Note that the flexibility of our Assumption 4

plays an important role for deriving this result. If we were to assume that the “index

bias” is equal to zero in this application, we would in fact impose the restriction that

νd(x) = µd(x), and thus restrict the distribution of potential outcomes.

5.2. Estimation of Production Functions. When estimating the parameters of

production functions, a simultaneity problem arises if there is contemporaneous correla-

tion between a firm’s inputs and shocks to productivity. In a highly influential paper,

Olley and Pakes (1996) propose a methodology to address this issue, which can be seen

as a control function approach. Here we consider a simplified version of their method,

as described in Levinsohn and Petrin (2003). This setting assumes that firms do not age

and cannot be closed. The Cobb-Douglas model for log output Yt of a firm in period t is

given by

Yt = β0 + βLLt + βKKt + ωt + ηt, (5.2)

where Lt and Kt are labor and capital inputs, respectively, ωt is a productivity index

that follows a first-order Markov process, and ηt is an i.i.d. productivity shock. Here ωt

and ηt are both unobserved. The main difference is that ωt is a state variable, and hence

impacts the firm’s input choices, while ηt has no impact on firm behavior. In particular,

the firms’ investment It in the capital stock is a function of ωt and Kt: It = ιt(ωt, Kt).

Under suitable conditions, firms that choose to invest have investment functions that are

strictly increasing in the unobserved productivity index, and hence by invertability ωt

can be written as function of capital and investment

ωt = ω(Kt, It).

Substituting this relationship into (5.2), we find that

Yt = βLLt + φt + ηt, (5.3)

where φt = φ(Kt, It) = βKKt + ω(Kt, It). Equation (5.3) is a standard partially linear

model, and thus βL and the function φ(·) can be identified and estimated as in Robinson

(1988) through the usual least squares arguments. To identify the coefficient βK , it is
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assumed that capital does not immediately respond to innovations in the productivity

index ωt, which together with the Markov assumption implies that

ωt = Π(ωt−1) + ξt with E(ξt|ωt−1, Kt) = 0.

We can thus rewrite the output net of labor’s contribution Y ∗t = Yt − βLLt as

Y ∗t = βKKt + Π∗(φt−1 − βKKt−1) + η∗t , (5.4)

with Π∗(x) = Π(x) + β0 and η∗t = ηt + ξt. Note that while equation (5.4) resembles a

partially linear model (given knowledge of βL and φ(·)), its structure is actually somewhat

different, as the coefficient βK appears both in the linear part and inside the unknown

function Π∗. Still, the parameter βK can be characterized as the solution to a profiled

nonlinear least squares problem:

βK = argmin
b

E(Yt − βLLt − bKt − π(φt−1 − bKt−1|b))2, (5.5)

where π(c|b) = E(Yt − βLLt − bKt|φt−1 − bKt−1 = c) for any b ∈ R. Implementing

a sample analogue of (5.5) to estimate βK requires nonparametric estimation of the

function π(·|b) using an estimates of the coefficient βL and the function φ(·), both obtained

by estimating (5.3) in a first stage. This problem fits into our framework with Z ≡

(Yt, Lt, Kt, It, Kt−1, It−1), θ0 ≡ βK , r0(Xr) ≡ (βL, φt−1), T (X, θ, r0) ≡ φt−1 − bKt−1,

m0(·, θ) ≡ π(·|b) and q(Z, θ,m0, r0) ≡ (Yt−βLLt−bKt−π(φt−1−bKt−1|b))(Kt−∂bπ(φt−1−

bKt−1|b)Kt−1).

To give an explicit expression for an estimator β̂K of βK , let β̂L and φ̂(·) be estimates

of βL and φ(·), respectively, obtained via the method in Robinson (1988). For every b ∈ R,

let π̂(·|b) be an estimate of π̂(·|b), computed by local linear regression of Yit− β̂LLit−bKit

on φ̂i,t−1 − bKi,t−1. Then we can define the final estimator as

β̂K = argmin
b

1

n

n∑
i=1

(Yit − β̂LLit − bKit − π̂(φ̂i,t−1 − bKit−1|b))2. (5.6)

Note that computing π̂(·|b) and φ(·) involves the use of a generated dependent variable.

However, compared to the problems arising from the presence of generated covariates,

this issue is straightforward to address for linear smoothers like local linear regression.

To simplify the expression for the influence function, we introduce the following notation:
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Let π(b)(c|b) = ∂aπ(a|b)|a=c + ∂aπ(c|a)|a=b be the total derivative of π(b|b) with respect

to b, and π′(c|b) = ∂cπ(c|b) the ordinary derivative with respect to the first component.

We also define Git = Kit−π(b)(φi,t−1−βKKi,t−1|βK)Ki,t−1 and the “projection residuals”

G⊥t = Gt − E(Gt|φt−1 − βKKt−1) and L⊥t = Lt − E(Lt|φt−1 − βKKt−1).

Proposition 2. Suppose that the regularity conditions given in Appendix B.2 hold. Then

we have that
√
n(β̂K − βK)

d→ N(0,Ω) with

Ω = Qθ−1
0 E

[
(Ψ0 + Ψ1 + Ψ2)(Ψ0 + Ψ1 + Ψ2)>

]
Qθ−1

0 ,

where

Ψ0 = G⊥t η
∗
t

Ψ1 = −E(G⊥t |Kt−1, It−1)π′(φt−1 − βKKt−1|βK)ηt−1

Ψ2 = −E(Gt(L
⊥
t − E(Lt|Kt−1, It−1)π′(φt−1 − βKKt−1|βK)))

× E((Lt − E(Lt|Kt, It))
2)−1(Lt − E(Lt|Kt, It))ηt.

Asymptotic properties of a somewhat more general version the above estimation pro-

cedure were first studied in Pakes and Olley (1995). Our expression for the influence

function given in Proposition 2 differs from their result, even when taking into account

that we only consider a simplified version of their model. The reason is that our deriva-

tion does account for the estimation error from using an estimate of φ(·) when estimating

π̂(·|b), and not only for the estimation error resulting from using an estimate of φ(·)

when evaluating π̂(·|b). In our Proposition 2, both contributions are collected in the

term Ψ1. The estimation problem was also mentioned in an early working paper version

of Hahn and Ridder (2011), but to the best of our knowledge they did not derive an

explicit expression for the influence function, or make any comparison with Pakes and

Olley (1995).

6. Concluding Remarks

In this paper, we have derived a general asymptotic theory for a large class of semipara-

metric optimization estimators when the infinite-dimensional component is estimated
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using generated covariates. Using our Theorems 2–3, we have shown how general “high-

level” conditions for root-n consistency, asymptotic normality, and the validity of the

bootstrap, given in Chen, Linton, and Van Keilegom (2003) can be verified in such a

context. However, it is important to stress that our arguments are not specific to the

setting in Chen, Linton, and Van Keilegom (2003), but can easily be combined with

the results from other papers on semiparametric estimation that allow for kernel-based

estimators, such as e.g. Newey (1994), Andrews (1994), or Ichimura and Lee (2010). In

certain simple settings for which the conditions in the just mentioned papers are un-

necessarily general, it is straightforward to derive asymptotic properties by applying our

Theorems 2–3 directly to an expansion of the estimator of interest, and mimicking the

arguments in Section 4.1–4.2. Moreover, our results appear to be sufficiently flexible to

allow extending our analysis to semiparametric estimators that are asymptotically nor-

mal but do not satisfy an asymptotic linearity condition, as studied e.g. by Cattaneo,

Crump, and Jansson (2011). We leave the details of the last point for future research.

A. Proofs of Main Results

A.1. Proof of Theorem 2. To simplify notation, we provide the proof only for the special

case dT = 1, i.e. T = T (X, θ, r) is a univariate random variable, but calculated rates are stated

in general form. The proof for higher-dimensional T is conceptually similar. The following

notation is used throughout all our proofs. The unit vector (1, 0, . . . , 0)> in Rp+1 is denoted by

e1. We write

wi(t, θ, r) = (1, (Ti(r, θ)− t)/h, ..., (Ti(r, θ)− t)p/hp)>,

Mh(t, θ, r) =
1

n

n∑
i=1

wi(t, r, θ)wi(t, r, θ)
>Kh(Ti(r, θ)− t),

m∗0(t, θ) = (m0(t, θ), hm′0(t, θ)/2, ..., hpmp
0(t, θ)/p!)>,

and Nh(t, θ) = E(Mh(t, θ)). Furthermore, we set wi(t, θ) = wi(t, θ, r0) and ŵi(t, θ) = wi(t, θ, r̂),

and define Mh(t, θ) and M̂h(t, θ) analogously. Using ε∗(θ) = ε(θ)− ρ(X, θ), we can write

Yi = m0(Ti(θ), θ) + ε∗i (θ) + ρ(Xi, θ) .
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Note that E(ε∗(θ)|X) = 0 for any θ ∈ Θ. With this representation of the dependent variable,

we define the following decompositions of both the real and the oracle estimator:

m̂(t, θ) = m0(t, θ) + m̂A(t, θ) + m̂B(t, θ) + m̂C(t, θ) + m̂D(t, θ) + m̂E(t, θ)

m̃(t, θ) = m0(t, θ) + m̃A(t, θ) + m̃B(t, θ) + m̃C(t, θ) + m̃D(t, θ) + m̃E(t, θ),

with respective components m̂j(t, θ) = e>1 βj(θ, r̂) and m̃j(t, θ) = e>1 βj(θ, r0) defined for j ∈

{A,B,C,D,E} as follows:

βA(θ, r) = argmin
β

n∑
i=1

(ε∗i (θ)− β>wi(t, θ, r))2Kh(Ti(θ, r)− t),

βB(θ, r) = argmin
β

n∑
i=1

(m0(Ti(θ, r0), θ)−m∗0(t, θ)>wi(t, θ, r0)− β>wi(t, θ, r))2Kh(Ti(θ, r)− t),

βC(θ, r) = argmin
β

n∑
i=1

(m∗0(t, θ)>wi(t, θ, r0)−m∗0(t, θ)>wi(t, θ, r)− β>wi(t, θ, r))2Kh(Ti(θ, r)− t),

βD(θ, r) = argmin
β

n∑
i=1

(m∗0(t, θ)>wi(t, θ, r)− β>wi(t, θ, r))2Kh(Ti(θ, r)− t),

βE(θ, r) = argmin
β

n∑
i=1

(ρ(Xi, θ)− β>wi(t, θ, r))2Kh(Ti(θ, r)− t).

Finally, we denote the component-wise differences between the real and the oracle estimator by

Rj,n(t, θ) = m̂j(t, θ)− m̃j(t, θ) for j ∈ {A,B,C,D,E}. (A.1)

The statement of the theorem follows if for any θ ∈ Θ the remainder term Rn(t, θ) = m̂(t, θ)−

m̂∆(t, θ) satisfies ∫
Rn(t, θ)ω(t) dt = OP (n−κ

∗
) .

Here m̂∆(t, θ) = m̃(t, θ) + ϕAn (t, θ, r̂) + ϕBn (t, θ, r̂). The term ϕBn (t, θ, r) is as defined in (3.2) ,

and for p = 1 the term ϕAn (t, θ, r) is also as defined in (3.2). More generally, for uneven p > 1

we set

ϕAn (t, θ, r) = e>1 Nh(θ)−1E(Kh(Ti(r)− t)wi(t, θ, r)m′pol(Ti(r), t, θ)(Ti(r, θ)− Ti(θ)), (A.2)

wherem′pol(u, t, θ) is the derivative ofmpol(u, t, θ) with respect to its first argument andmpol(u, t, θ)

is the following polynomial approximation of m0(u, θ) in a neighborhood of t:

mpol(u, t, θ) = m∗0(t, θ)>(1, (u− t)/h, ..., (u− t)p/(p!hp))>.
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To simplify the notation, we fix θ = θ0 for the rest of the proof and we omit θ as an argument

of functions. To prove Theorem 2, we will then show that∫
RA,n(t)ω(t) dt = OP (n−κ

∗
1), (A.3)∫

RB,n(t)ω(t) dt = OP (n−κ
∗
2), (A.4)∫

RC,n(t)ω(t) dt =

∫
ϕAn (t, r̂)ω(t) dt+OP (n−κ

∗
3 + n−κ

∗
4), (A.5)∫

RE,n(t)ω(t) dt =

∫
ϕBn (t, r̂)ω(t) dt+OP (n−κ

∗
1 + n−κ

∗
2). (A.6)

where the terms Rj,n are defined in (A.1) above. This directly implies the statement of the

theorem since ∫
(m̂(t)− m̃(t))ω(t) dt =

∑
j∈{A,...,E}

∫
Rn,j(t)ω(t) dt, (A.7)

and RD,n(t) ≡ 0 by construction.

We start with the proof of (A.3). Denote Φi(t, r) = e>1 Mh(t, r)−1wi(t, r)Kh(Ti(r) − t) and

write Φi(r) =
∫

Φi(t, r)ω(t) dt. Furthermore let Lh(Ti(r) − t) = Kh(Ti(r) − t)wi(t, r) be a

vector-valued kernel type function. Then it holds that

RA,n(t) =
1

n

n∑
i=1

(Φi(t, r0)− Φi(t, r̂)) ε
∗
i .

Using elementary arguments, one can show that

Mh(Ti(r1), r1)−Mh(Ti(r2), r2) = OP (nηmax)‖r1 − r2‖∞.

uniformly for r1, r2 ∈ R∗n and 1 ≤ i ≤ n. With the help of this bound, we find that, uniformly

for r1, r2 ∈ R∗n and 1 ≤ i ≤ n and some generic constant c > 0 which can take different values

at each appearance

|Φi(r1)− Φi(r2)|

≤
∣∣∣∣∫ [e>1 Mh(t, r1)−1Lh(Ti(r1)− t)− e>1 Mh(t, r2)−1Lh(Ti(r2)− t)

]
ω(t)dt

∣∣∣∣
=

∣∣∣∣∫ [e>1 Mh(Ti(r1)− hu, r1)−1ω(Ti(r1)− hu)

− e>1 Mh(Ti(r2)− hu, r2)−1ω(Ti(r2)− hu)
]
L(u)du

∣∣∣
≤ max

1≤j≤dT
cnηj |Tj(r1)− Tj(r2)|. (A.8)

This last bound can be used to calculate a rough bound on the entropy Hn(λ) of the class of func-

tions i→ Φi(r). Using Assumption 3, this class of functions can be covered by c exp((λn−ηj )−αnχ)
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balls of radius λn−ηj . Thus we find that the entropy Hn(λ) ≤ cmax1≤j≤dt λ
−αjnηjαj+χj for

some constant c > 0. This implies∫ Cn

0
H1/2
n (λ)dλ ≤ cn−(1−αmax/2)δmin+(ηα+χ)max/2

for Cn = n−δmin . We now apply Theorem 8.13 in van de Geer (2009) with Z̄θ = n−1
∑n

i=1 Zi,θ,

Zi,θ = Φi(r)ε
∗
i , θ = r, R = Cn = n−δmin , and a is the entropy bound above. Conditional

on observations X1, ..., Xn, we obtain an exponential bound for Z̄θ uniformly in R∗n since

1
n

∑n
i=1 E[exp(`∗|ε∗i |)|Xi] ≤ C∗ with probability tending to one, for some constants C∗, `∗ > 0

due to Assumption 1 (iv). With standard arguments this yields

sup
r1,r2∈R∗

n

1

n

n∑
i=1

(Φi(r1)− Φi(r2))ε∗i = oP

(
n−(1/2)−(1−αmax/2)δmin+(ηα+χ)max/2

)
. (A.9)

Equation (A.9) provides the desired result (A.3) for RA.

For the proof of (A.4), note that for some nonnegative integers a, b and constants C1, C2 > 0

it holds that
∣∣m0(Ti(r))−m∗0(t)>wi(t, r)

∣∣ ≤ C1n
−(p+1)ηmin and∣∣∣∣∣ 1n

n∑
i=1

Kh(Ti(r1)− t)wai,k(t, r1)wbi,l(t, r1)−Kh(Ti(r2)− t)wai,k(t, r2)wbi,l(t, r2)

∣∣∣∣∣ ≤ C2n
−(δ−η)min

for components l, k and all t ∈ I∗T and r, r1, r2 ∈ R∗n. These two statements directly imply (A.4).

For the proof of (A.5), note that uniformly over 1 ≤ i ≤ n and r ∈ R∗n it holds that

m∗0(t)>wi(t, r0)−m∗0(t)>wi(t, r) = m′pol(Ti(θ), t)(Ti(r)− Ti(r0)) +OP (n−2δmin).

Substituting this expression into RC,n, we find that∫
RC,n(t)ω(t)dt =

1

n

n∑
i=1

Φ∗i (r̂)(Ti(r̂)− Ti(r0)) +OP (n−2δmin),

where

Φ∗i (r) =

∫
e>1 Mh(t, r)−1Lh(Ti(r)− t)m′pol(Ti(r), t)ω(t)dt.

Furthermore, we have that∫
ϕAn (t, r̂)ω(t)dt =

1

n

n∑
i=1

Φ∗i (r0)(Ti(r̂)− Ti(r0)) + oP (n−1/2).

Thus, for (A.5) we have to show that

1

n

n∑
i=1

(Φ∗i (r̂)− Φ∗i (r0))(Ti(r̂)− Ti(r0)) = OP (n−κ
∗
3 + n−κ

∗
4). (A.10)
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Since |Ti(r̂)−Ti(r0)| = OP (n−δmin) uniformly over r ∈ R∗n and 1 ≤ i ≤ n, one only has to prove

that

|Φ∗i (r)− Φ∗i (r0)| = OP (n−κ
∗
4+δmin + n−δmin)

that uniformly for r ∈ R∗n and 1 ≤ i ≤ n in order to establish (A.10). To see why the last claim

holds, note that we can write:

Φ∗i (r)− Φ∗i (r0) =

∫
e>1 [Mh(t, r)−1Lh(Ti(r)− t)m′pol(Ti(r), t)

−Mh(t, r0)−1Lh(Ti(r0)− t)m′pol(Ti(r0), t)]ω(t)dt

=

∫
e>1 [Mh(Ti(r)− hu, r)−1ω(Ti(r)− hu)m′pol(Ti(r), Ti(r)− hu)

−Mh(Ti(r0)− hu, r0)−1ω(Ti(r0)− hu)m′pol(Ti(r0), Ti(r0)− hu)]L(u)du.

First, it is easy to see that

max
1≤i≤n

sup
r∈R∗

n

sup
t∈I∗T
|ω(Ti(r)− t)− ω(Ti(r0)− t)| = OP (n−δmin) and

max
1≤i≤n

sup
r∈R∗

n

sup
t∈I∗T
|m′pol(Ti(r), Ti(r)− t)−m′pol(Ti(r0), Ti(r0)− t)| = OP (n−δmin)

due to the smoothness of the functions involved. It thus remains to consider the elements of

the matrix Mh(Ti(r)− t, r)−Mh(Ti(r0)− t, r0). Any such element is of the form

1

n

n∑
i=1

[
(Ti(r)− t)uh−uKh(Ti(r)− t)

]
−
[
(Ti(r0)− t)uh−uKh(Ti(r0)− t)

]
for some 0 ≤ u+ ≤ p. We thus show that

1

n

n∑
i=1

[
(Ti(r)− t)uh−uKh(Ti(r)− t)

]
−
[
(Ti(r0)− t)uh−uKh(Ti(r0)− t)

]
= OP (n−δmin + n−κ

∗
4+δmin). (A.11)

uniformly over r ∈ R∗n. Because of Assumption 4(iii), we have that

E
[
(Ti(r)− t)uh−uKh(Ti(r)− t)

]
− E

[
(Ti(r0)− t)uh−uKh(Ti(r0)− t)

]
= OP (n−δmin).

uniformly over r ∈ R∗n. Thus, for a proof of (A.11) it suffices to establish that

1

n

n∑
i=1

[
(Ti(r)− t)uh−uKh(Ti(r)− t)

]
− E

[
(Ti(r)− t)uh−uKh(Ti(r)− t)

]
−
[
(Ti(r0)− t)uh−uKh(Ti(r0)− t)

]
− E

[
(Ti(r0)− t)uh−uKh(Ti(r0)− t)

]
= OP (n−κ

∗
4+δmin).
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The last claim follows from the same type of arguments used in the treatment of RA,n. Taken

together, the above derivation shows that∫
RC,n(t)ω(t) dt =

∫
ϕAn (t, r̂)ω(t) dt+OP (n−κ

∗
4 + n−κ

∗
5),

as claimed

It remains to show (A.6). Note that∫
RE,n(t)ω(t) dt =

1

n

n∑
i=1

[Φi(r̂)− Φi(r0)]ρ(Xi).

Using the same reasoning as in the treatment of RA,n and Assumption 4(i)–(ii), we find that

1

n

n∑
i=1

Φi(r)(ρ(Xi)− E[ρ(Xi)|Ti(r)])− Φi(r0)(ρ(Xi)− E[ρ(Xi)|Ti(r0)]) = OP (n−κ
∗
1)

uniformly for r ∈ R∗n. Note that E[ρ(Xi)|Ti(r0)] = 0. We now use that

1

n

n∑
i=1

Φi(r)E[ρ(Xi)|Ti(r)] =
1

n

n∑
i=1

∫
e>1 Mh(t, r)−1Lh(Ti(r)− t)E[ρ(Xi)|Ti(r)]ω(t)dt

=

∫
ϕBn (t)ω(t)dt+OP (n−κ

∗
2)

uniformly over r ∈ R∗n, and thus (A.6) holds. This concludes the proof of Theorem 2.

A.2. Proof of Theorem 3. First, standard results in e.g. Masry (1996), imply that the

oracle estimator m̃ satisfies

sup
t∈I∗T ,θ∈Θ

|m̃(t, θ)−m0(t, θ)| = oP

(
n−pηmin +

√
log(n)n−(1−η+)

)
.

uniformly over t ∈ I∗T and θ ∈ Θ under the conditions of the theorem. Second, one can show

that

sup
t∈I∗T ,θ∈Θ

|m̂(t, θ)− m̂∆(t, θ)| = oP (n−κ). (A.12)

The statement (A.12) is an extension of Theorem 1 in Mammen, Rothe, and Schienle (2012),

which gives a stochastic expansion of a local linear estimator regression estimator with generated

covariates, and the special case that T (x, r, θ) = r(xr). Generalizing this result to higher order

local polynomials and more general forms of T is conceptually straightforward, and thus a

proof is omitted. With (A.12), the statement of the Theorem follows from a trivial bound on

the leading terms of the expansion m̂∆.
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Remark 1. One could use the additional structure implied by Assumption 5 to prove a some-

what better uniform rate of consistency under some minor additional regularity conditions. In

particular, one can show that

sup
t∈I∗T ,θ∈Θ

|m̂∆(t, θ)− m̃(t, θ)| = OP (n−δmin
√
n−(1−η+) log n+ n−2δmin), (A.13)

which is better than the rate of OP (n−δmin) obtained from a crude bound that appears in

Theorem 3.

A.3. Proof of Corollary 1. To prove this result, we first establish a linear stochastic

expansion for the oracle estimator m̃. Using arguments in Masry (1996), Kong, Linton, and

Xia (2010) or Ichimura and Lee (2010), one can show that

m̃(t, θ) =
1

n

n∑
i=1

ϕm̃(t, θ) +O(n−pηmin) +OP (log(n)n−(1−η+)),

uniformly over t ∈ I∗T and θ ∈ Θ, where

ϕm̃ni(t, θ) = e>1 Nh(t)−1w(Ti(θ)− t)Kh(Ti(θ)− t)εi(θ).

with w(t) = (1, t, ..., tp)> and Nh(t, θ) = E(w((Ti(θ) − t)/h, θ)w((T (θ) − t)/h, θ)>Kh(T (θ) −

t)). Next, note that the conditions of the corollary imply that that O(n−pηmin) = o(n−1/2)

and OP (log(n)n−(1−η+)) = oP (n−1/2) and O(n−2δmin) = oP (n−1/2). Applying Theorem 2, we

therefore we find that Qξ0 can be decomposed as follows:

Qξ0[ξ̂ − ξ0] = A1 +A2 +A3 +A4 + oP (n−1/2),

where

A1 =

∫
λm(zm)

1

n

n∑
i=1

ϕm̃ni(zm, θ0)fZm(zm)dzm,

A2 =

∫
λm(zm)ϕAn (zm, θ0, r̂)fZm(zm)dzm,

A3 =

∫
λm(zm)ϕBn (zm, θ0, r̂)fZm(zm)dzm

A4 =

∫
λr(zr)ϕ

r̂
ni(zr, θ0, r̂)fZr(zr)dzr,
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We deal with each of these four terms separately. First, applying standard arguments from

kernel smoothing theory, we find that

A1 =
1

n

n∑
i=1

εi

∫
e>1 Nh(zm)−1w(Ti(θ)− zm)Kh(Ti(θ)− zm)λm(zm)fZm(zm)dzm

=
1

n

n∑
i=1

εi

∫
e>1 Nh(Ti − th)−1w(t)K(t)λm(Ti − th)fZm(Ti − th)dt

=
1

n

n∑
i=1

εiλm(Ti)
fZm(Ti)

fT (Ti)
+O(n−pηmin)

=
1

n

n∑
i=1

ψ1(Zi) + oP (n−1/2)

For the second term, first note that it follows from standard bias calculations for kernel-type

estimators that∫
λm(zm)ϕAn (zm, θ0, r)fZm(zm)dzm

= −E
(
T

(r)
i (X)(r(Xri)− r0(Xri))λm(Ti)m

′
0(Ti)

fZm(Ti)

fT (Ti)

)
+OP (hp)

uniformly for fixed functions r ∈ R∗n. Substituting the expansion for r̂− r0 from Assumption 5

we then directly find that

A2 = − 1

n

n∑
i=1

ν(Wi)E
(
T (r)(X)λm(T )m′0(T )

fZm(T )

fT (T )
Hn(Si, Xr)

∣∣∣∣Si)
+OP (n−pηmin + n−2δmin) + oP (n−1/2)

=
1

n

n∑
i=1

ψA2 (Zi) + oP (n−1/2).

Concerning the term A3, we have that

A3 =

∫∫
λm(zm)

fT (zm)
K ′h(T (x)− zm)(T̂ (x)− T (x))ρ(x)fZm(zm)fX(x) dxdzm

=

∫
1

h

∫
K ′(t)G(T (x) + th) dt(T̂ (x)− T (x))ρ(x)fX(x) dx

=

∫
G′(T (x))(T̂ (x)− T (x))ρ(x)fX(x) dx+O(hp)

=

∫
G′(T (x))T (r)(x)

(
1

n

n∑
i=1

Hn(Si, xr)ν(Wi)

)
ρ(x)fX(x) dx+OP (hp + n−2δmin)

=
1

n

n∑
i=1

ν(Wi)E(G′(T )T (r)(X)Hn(Si, Xr)ρ(X)|Si) +OP (npηmin + n−2δmin)

=
1

n

n∑
i=1

ψB2 (Zi) + oP (n−1/2)
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with G(t) = λm(t)fZm(t)fT (t)−1 and G′(t) = ∂tG(t) using integration by parts to obtain the

fourth equality. Finally, we have

A4 = ν(Wi)E(λr(Xr)Hn(Si, Xr)|Si) + oP (n−1/2)

=
1

n

n∑
i=1

ψ3(Zi) + oP (n−1/2)

using the same type of arguments as the ones applied above. The statement of the corollary

then follows since ψ2 = ψA2 + ψB2 .

A.4. Derivation of Example 1. Suppose that r0 is a q-times continuously differentiable

regression function estimated by qth order local polynomial regression using a bandwidth g and

a kernel function L. Assume that S is continuously distributed with compact support IS , and

that the corresponding density fS is q-times continuously differentiable, bounded, and bounded

away from zero on IS . Then it follows under some further standard regularity conditions (e.g.

Kong, Linton, and Xia, 2010) that

r̂(s)− r0(s) =
1

n

n∑
i=1

e>1 N
S
h (s)−1w(Si − s)Lg(Si − s)ζi +OP (gq + log(n)/(ngds))

uniformly over s ∈ IS , w(t) = (1, t, ..., tp)> as above and NS
h (t) = E(w((Si − s)/g, θ)w((Si −

s)/g, θ)>Lg(Si−s). The remainder term in the last equation can be made as small as oP (n−1/2)

by choosing an appropriate bandwidth if q is sufficiently large. It follows that Assumption 5

is satisfied with ν(Wi) = ζi and Hn(Si, s) = e>1 N
S
h (s)−1w(Si − s)Lg(Si − s). The condition

that E(‖Hn(Si, Sj)‖2) = o(n) holds if ngds → ∞. To obtain the explicit expressions for ψ2

and ψ3, we insert the above relation into the expression from Corollary 1 and apply standard

U-Statistics arguments (e.g. Powell, Stock, and Stoker, 1989).

A.5. Derivation of Example 2. This derivation is trivial and thus omitted.

B. Details on Econometric Applications

B.1. Regression on the Propensity Score. In this section, we give details on the

construction of the estimator θ̂, and the regularity conditions under which Proposition 1 is valid.

The data consist of a sample {(Yi, Di, Xi), i = 1, . . . , n} from the distribution of (Y,D,X). The

estimator of the propensity score Π(x) = E(D|X = x) is given by Π̂(x) = α̂, where

(α̂, β̂) = argmin
α,β

n∑
i=1

(Di − α−
∑

1≤u+≤q
β>u (Xi − x)u)2Lg(Xi − x)
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and Lg(s) =
∏p
j=1 L(sj/g)/g is a dx-dimensional product kernel built from the univariate kernel

L, g is a bandwidth, which for simplicity is assumed to be the same for all components, and∑
1≤u+≤q denotes the summation over all u = (u1, . . . , up) with 1 ≤ u+ ≤ q. Next, for d ∈ {0, 1}

the estimate of νd(π) = E(Y |D = d,Π(X) = π) is given by the third-order local polynomial

estimator: we set ν̂d(π) = α̂d, where

(α̂d, β̂d) = argmin
α,β

n∑
i=1

I{Di = d}(Yi − α−
∑

1≤v≤3

β>v (Π̂(Xi)− π)v)2Kh(Π̂(Xi)− π) ,

with Kh(u) = K(u/h)/h, K a one-dimensional kernel function and h a bandwidth that tends

to zero as the sample size n tends to infinity. The final estimator of θ0 is then given by

θ̂ =
1

n

n∑
i=1

(ν̂1(Π̂(Xi))− ν̂0(Π̂(Xi))).

To prove Proposition 1, we make the following assumptions.

Assumption 6. The sample observations {(Yi, Di, Xi), i = 1, . . . , n} are i.i.d.

Assumption 7. (i) The random vector X is continuously distributed with compact support IX .

Its density function fX is bounded and bounded away from zero on IX , and is also q + 1-times

continuously differentiable for some uneven number q ≥ dX . (ii) The function Π(x) is bounded

away from zero and one on IX , and is also q+1-times continuously differentiable. (iii) For any

d ∈ {0, 1}, the random variable Π(X) is continuously distributed conditional on D = d, with

compact support IΠ. Its conditional density function fΠ|D(·, d) is bounded and bounded away

from zero on IΠ, and is also four times continuously differentiable. (iv) For any d ∈ {0, 1}, the

function νd(π) is four times continuously differentiable on IΠ.

Assumption 8. The residual ε = Y − E(Y |Π(X)) satisfies E[exp(l|ε|)|X] ≤ C almost surely

for a constant C > 0 and l > 0 small enough.

Assumption 9. (i) The function K is twice continuously differentiable and satisfies the fol-

lowing conditions:
∫
K(u)du = 1,

∫
uK(u)du = 0,

∫
|u2K(u)|du <∞, and K(u) = 0 for values

of u not contained in some compact interval, say [−1, 1]. (ii) The function L is k-times con-

tinuously differentiable for some natural number k ≥ max{2, dx/2}, and satisfies the following

conditions:
∫
L(u)du = 1,

∫
uL(u)du = 1, and L(u) = 0 for values of u not contained in some

compact interval, say [−1, 1].

Assumption 10. The bandwidths satisfy h ∼ n−η and g ∼ n−γ with γ = 1/(2q + 1) and

1/8 < η < (q + 2)/(8q + 4).
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Proof of Proposition 1. The proof uses the same arguments as that of Corollary 1 and

Example 1, and thus the details are omitted. The only issue is to show that κ∗ > 1/2. To

see this, note that the conditions of the Proposition imply that Assumption 2 holds with δ =

(q + 1)/(4q + 2) > 1/4, and that Assumption 3 holds with α ≤ q/(q + 1) and χ = 0. The

restrictions on η then ensure that δ− η > (1/2)(δα+χ) and (1− η)/2− η > (1/2)(δα+χ). We

then easily see that κ∗ > 1/2.

B.2. Estimation of Production Functions. In this section, we give details on the

construction of the estimator θ̂, and the regularity conditions under which Proposition 2 is valid.

The data consist of a sample {(Yit, Lit,Kit, Iit,Kit−1, Iit−1), i = 1, . . . , n} from the distribution

of (Yt, Lt,Kt, It,Kt−1, It−1). As a first step, we obtain an estimator β̂L of βL using the method

in Robinson (1988). Under regularity conditions given in that paper,

√
n(β̂L − βL) = E((Lt − E(Lt|Kt, It))

2)−1 1√
n

n∑
i=1

(Lit − E(Lit|Kit, Iit))ηit + oP (1).

Next, the estimator of φ(·) is given by φ̂(a, b) = α̂, where

(α̂, β̂) = argmin
α,β

n∑
i=1

((Yit − β̂LLit)− α−
∑

1≤u+≤q
βTu ((Kit, Iit)− (a, b))u)2Lg((Kit, Iit)− (a, b)),

and Lg(s) =
∏p
j=1 L(sj/g)/g is a dx-dimensional product kernel built from the univariate kernel

L, g is a bandwidth, which for simplicity is assumed to be the same for all components, and∑
1≤u+≤q denotes the summation over all u = (u1, . . . , up) with 1 ≤ u+ ≤ q. To simplify the

exposition below, we also define an infeasible estimator of φ(·) that uses the true value of the

dependent variable. We set φ̂∗(a, b) = α̂, where

(α̂, β̂) = argmin
α,β

n∑
i=1

((Yit − βLLit)− α−
∑

1≤u+≤q
βTr ((Kit, Iit)− (a, b))u)2Lg((Kit, Iit)− (a, b)).

We also define φ̂t = φ̂(Kt, Lt). Next, for every b the estimator of π(·|b) is given by the third-order

local polynomial estimator π̂(c|b) = α̂, where

(α̂, β̂) = argmin
α,β

n∑
i=1

((Yit−β̂LLit−bKit)−α−
∑

1≤v≤3

β>v (φ̂it−1−bKit−1−c)v)2Kh(φ̂it−1−bKit−1−c) ,

with Kh(u) = K(u/h)/h, K a one-dimensional kernel function, and h a bandwidth that tends

to zero as the sample size n tends to infinity. Again, we also define an infeasible estimator that

uses the true value of the dependent variable. We set π̂∗(c|b) = α̂, where

(α̂, β̂) = argmin
α,β

n∑
i=1

((Yit−βLLit−bKit)−α−
∑

1≤v≤3

β>v (φ̂it−1−bKit−1−c)v)2Kh(φ̂it−1−bKit−1−c) ,
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Our final estimator is then given as a solution to an empirical moment condition. Let

Mn(b) =
1

n

n∑
i=1

(Yit − β̂LLit − bKit − π̂(φit−1 − bKit−1|b))(Kit − ∂bπ̂(φit−1 − bKit−1|b)Kit−1)

Then the final estimator β̂K satisfies Mn(β̂K) = 0.

To prove Proposition 2, we make the following assumptions. We remark that Assumption 12

follows under standard regularity conditions for the estimation of partially linear models, see

e.g. Robinson (1988).

Assumption 11. The sample observations {(Yit, Lit,Kit, Iit,Kit−1, Iit−1), i = 1, . . . , n} are

i.i.d.

Assumption 12. The estimator β̂L satisfies

√
n(β̂L − βL) = E((Lt − E(Lt|Kt, It))

2)−1 1√
n

n∑
i=1

(Lit − E(Lit|Kit, Iit))ηit + oP (1).

Assumption 13. (i) The random vector St−1 = (Kt−1, It−1) is continuously distributed with

compact support IS. Its density function fS is bounded and bounded away from zero on IS, and

is also q+ 1-times continuously differentiable for some uneven number q ≥ 3. (ii) The function

φ(s) is q + 1-times continuously differentiable. (iii) Suppose that βK ∈
∫

(B) for some known

compact set B. For any b ∈ B, the random variable Tt−1(b) = φ(St−1)− bKt−1 is continuously

distributed with compact support IT . Its density function fT (·, b) is bounded and bounded away

from zero on IT , uniformly over b ∈ B. The density is also four times continuously differentiable.

(iv) For any b ∈ B, the function π(·, b) is four times continuously differentiable on IT .

Assumption 14. For any b ∈ B, the residual ε(b) = (Yt − βLLt − bKt)− π(Tt−1(b)|b) satisfies

E[exp(l|ε(b)|)|St−1] ≤ C almost surely for a constant C > 0 and l > 0 small enough.

Assumption 15. (i) The function K is two times continuously differentiable and satisfies the

following conditions:
∫
K(u)du = 1,

∫
uK(u)du = 0,

∫
|u2K(u)|du < ∞, and K(u) = 0 for

values of u not contained in some compact interval, say [−1, 1]. (ii) The function L is k-times

continuously differentiable for some natural number k ≥ 2, and satisfies the following conditions:∫
L(u)du = 1,

∫
uL(u)du = 1, and L(u) = 0 for values of u not contained in some compact

interval, say [−1, 1].

Assumption 16. The bandwidths satisfy h ∼ n−η and g ∼ n−γ with γ = 1/(2q + 1) and

1/8 < η < (q + 2)/(8q + 4).
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Proof of Proposition 2. Again, we can use the same arguments as that of Corollary 1 and

Example 1 to show this result. To show that κ∗ > 1/2 under the conditions of the proposition,

we proceed as in the proof of Proposition 1. To derive the influence function, it is useful to note

that (4.2)–(4.3) hold with

λm(c) = −E(Gt|Tt−1 = c)

λr(c1, c2) = −(E(π′(Tt−1)Gt|St−1 = c1),E(Gt|Lt = c2))>.

Moreover, the proof uses that

φ̂t−1 = φ̂∗t−1 − E(Lt−1|Kt−1, It−1)(β̂L − β0) + oP (n−1/2)

π̂(c|b) = π̂∗(c|b)− (β̂L − βL)E(Lt|φt−1 − bK,t−1 = c) + oP (n−1/2).

This follows directly from the linearity of the local polynomial smoothing operator.
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Escanciano, J., D. Jacho-Chávez, and A. Lewbel (2010): “Identification and Estimation

of Semiparametric Two Step Models,” Unpublished manuscript.

(2011): “Uniform Convergence for Semiparametric Two Step Estimators and Tests,”

Unpublished manuscript.
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