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Abstract

In this paper we present a new technique to estimate varying coefficient models of unknown form

in a panel data framework where individual effects are arbitrarily correlated with the explanatory

variables in a unknown way. The resulting estimator is robust to misspecification in the functional

form of the varying parameters and it is shown to be consistent and asymptotically normal. Fur-

thermore, introducing a transformation, it achieves the optimal rate of convergence for this type of

problems and it exhibits the so called ”oracle” efficiency property. Since the estimation procedure

depends on the choice of a bandwidth matrix, we also provide a method to compute this matrix

empirically. Monte Carlo results indicates good performance of the estimator in finite samples. [1]
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1 Introduction

In the last five decades, an enormous amount of literature has been devoted to the study of panel

data models. Indeed, the availability of this type of data has enriched the complexity of econometric

models and therefore, it has enabled us to extract information and inferences that were not possible

to obtain with pure cross-section or time series models. Traditionally, (see Baltagi (2005) and Hsiao

(2003)) econometric specification of this type of models was concerned with unobserved individuals

heterogeneity and its relationship with the explanatory variables. Much less concern was shown about

the robustness of parameters estimators to deviations from linearity or other distributional assump-

tions. However, as it has been already emphasized in Arellano (2003) most part of panel data models

rely on rather strong assumptions about functional forms and densities. Although in many cases these

assumptions are quite realistic, there exists situations in which the risk of misspecification is high. If

this is the case, standard estimators based in moment conditions are biased and their use might lead

to wrong inference. Among other possibilities, one approach to overcome these problems is to use

fully nonparametric regression techniques. In this context, if the individual effects are assumed to be

uncorrelated with the regressors (random effects) Henderson and Ullah (2005), Lin and Carroll (2000),

Li and Racine (2007) and Ullah and Roy (1998) propose several alternative nonparametric estimators.

If correlation between individual effects and regressors is allowed (fixed effects) then Henderson et al.

(2008) and Lee and Mukherjee (2008) propose a nonaprametric estimator that exhibits good asymp-

totic properties. Although this type of estimators are robust to incorrect specification of the regression

function they show a quite unpleasant property that is the so-called ”curse of dimensionality”. That

is, as far as the number of explanatory variables increases the rate of convergence of these estimators

becomes dramatically slower. To overcome this problem, semiparametric methods have been proposed

in the literature. What is known from previous empirical research or economic theory is modeled

parametrically whereas what is unknown for the researcher is specified nonparametrically. Partially

index models fall within this class of semiparametric models and there have been widely used in panel

data analysis. For the case of random effects see for example Kniesner and Li (2002), Li and Stengos

(1996), Li and Hsiao (1998), Su and Ullah (2010) and You et al. (2010) and for fixed effect models see

Baltagi and Li (2002) and Su and Ullah (2006).

Recently, some empirical problems such as the estimation of returns to education have motivated the

introduction of time varying coefficient models in panel data. As it has been already pointed out in

Su and Ullah (2010), varying coefficient models encompass both nonparametric and partially linear

models, and therefore they offer a quite general setting to handle a great variety of problems. In

the context of varying coefficients, random effect panel data models can be easily estimated through

standard nonparametric techniques as for the case of fully nonparametric models. However, under

fixed effects the task becomes much cumbersome. In fact, as it has been already remarked in Su

and Ullah (2010), traditional techniques for the estimation of this type of models such as standard

differencing methods are hard to use in this framework because without further restrictions it is not

possible to identify the varying parameters. Motivated by a least squares dummy variable model in

parametric panel data analysis, in Sun et al. (2009) is proposed a profile local linear estimator of the
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varying parameters that is consistent and asymptotically normal. Unfortunately, as in all this type

of literature, the estimator relies on a rather strong identification assumption about the heterogeneity

component. Trying to overcome this drawback, in this paper we present an estimator that, based

in differencing techniques, does not need the type of strong identification assumptions assumed in

other contexts and furthermore it does not need of iterative procedures to achieve nice asymptotic

properties. The main idea is borrowed from Yang (2002) who proposed it in a completely different

context and consists in approximating locally at the same point different values of the same function.

The resulting estimator is obtained by a local linear kernel weighted least squares procedure. It turns

out to be consistent and asymptotically normal, although it shows a slow rate of convergence. Then,

we propose a transformation that allows this estimator to achieve an optimal rate of convergence

and a nice ”oracle” efficiency property. We also provide a method to compute the bandwidth matrix

empirically.

The rest of the paper is organized as follows. In Section 2 we set up the model and the estimation

procedure. In Section 3 we study its asymptotic properties and we propose a transformation procedure

that provides an estimator that is ”oracle” efficient and achieves optimal rates of convergence. Section

4 shows how to estimate the bandwidth matrix empirically and finally in Section 5 we present some

simulation results. Finally, Section 6 concludes the paper. The proofs of the main results are collected

in the Appendix.

2 Statistical model and Estimation procedure

Let (Xit, Zit, Yit)i=1,··· ,N ;t=1,··· ,T be a set of independent and identically IRd+q+1-random variables in

the subscript i, where the Yit are scalar response variables and (Xit, Zit)i=1,··· ,N ;t=1,··· ,T are explanatory

IRd+q-random variables.

We assume the response variables are generated by the following statistical model,

Yit = XT
itm(Zit) + µi + vit , i = 1, ..., N ; t = 1, ..., T, (1)

where the function m (Z) = (m1 (Z) , · · · ,md (Z))T is unknown to the researcher and needs to be

estimated. The random errors vit are independent and identically distributed, with zero mean and

homoscedastic variance, σ2
v < ∞. Furthermore, they are independent of µi, Zis and Xis for all i, j.

The unobserved individual effects µi are assumed to be independent and identically distributed with

zero mean and constant variance σ2
µ < ∞. Also, µi is correlated with the Xit’s and/or Zit’s with an

unknown correlation structure. Note that, we do not assume further conditions on the µ’s as it is the

case in Sun et al. (2009) where they assume
∑N

i=1 µi = 0.

This econometric framework corresponds to the so called fixed effect varying coefficient panel data

regression model. Note that correlation of unknown form in the time series is allowed. Furthermore,

independence between the vit-errors and the Xit-variables and/or the Zit-variables is assumed without

loss of generality. We could relax this assumption by assuming some dependence based on second

order moments. For example, heteroskedasticity of unknown form can be allowed and in fact, under
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more complex structures in the variance-covariance matrix a transformation of the estimator proposed

in You et al. (2010) can be developed in our setting. This type of assumption also rules out the

existence of endogenous explanatory variables and imposes strict exogeneity conditions. In this case,

it is also possible to relax these conditions by introducing a instrumental variable method as it is done

in Soberon and Rodriguez-Poo (2012). Finally, all our results hold straightforwardly for the random

coefficient setting.

Using standard nonparametric estimation methods, consistent estimation of the unknown function,

m (·), in (1) is hard to undertake. The main reason is the statistical dependence between µi and Xit

and/or Zit. This dependence produces systematic bias in any standard estimation procedure. As it has

been already pointed out by many authors, see in Su and Ullah (2010), there exist two different ways

to overcome this problem. One is the so called profile least squares method proposed alternatively in

Su and Ullah (2010) and Sun et al. (2009) and the other is based in differencing methods. This last

technique consists in removing the individual effects by taking differences in (1). We then obtain the

following transformation

∆Yit = XT
itm(Zit)−XT

i(t−1)m(Zi(t−1)) + ∆vit, i = 1, ..., N ; t = 2, ..., T. (2)

As it can be clearly remarked, the presence of the function m (·), evaluated at two different values Zit

and Zit−1, makes cumbersome the estimation. One possibility that has been already mentioned by

some authors is to implement a two step procedure. In the first step, the whole expression XT
itm(Zit)−

XT
i(t−1)m(Zi(t−1)) is estimated through a multivariate nonparametric smoother. In a second stage,

m (·) is estimated using for example marginal integration techniques. Its is clear that this estimation

procedure is not very appealing. Among other reasons it is very hard to implement, and to our

knowledge no empirical work has been developed based on these estimators. On the other side, profile

least squares methods, as we have already pointed out before, need some rather strong assumptions

that are not usually considered in panel data models framework. Furthermore, the resulting estimators

do not show the so called ”oracle” efficiency property and they are computationally intensive. In what

follows we present an estimator for m (·) that, based in differencing methods, it is easy to compute and

it does not rely on iterative procedures. Furthermore, applying a simple one step backfitting algorithm

the estimator achieves the optimal rate of convergence and it exhibits the ’oracle’ efficiency property.

The main idea is to approximate linearly around the same element z0, in the interior of the support of

f (Z), both m (Zit) and m
(
Zi(t−1)

)
. If we do so, then (2) becomes

XT
itm(Zit)−XT

i(t−1)m(Zi(t−1)) ' ∆XT
itm(z0) +

{
XT

it ⊗ (Zit − z0)T −XT
i(t−1) ⊗ (Zi(t−1) − z0)T

}
Dm(z0), (3)

where Dm(z) = vec
(
∂m(z)
∂zT

)
is a dq × 1 vector of first derivatives of m(·). The quantity of interest,

m (z), can be estimated using a local linear least squares kernel estimator (see Fan and Gijbels (1995),
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Ruppert and Wand (1994) or Zhan-Qian (1996)),

minβ

N∑
i=1

T∑
t=2

{
∆Yit − Z̃Titβ

}2
KH (Zit − z0)KH

(
Zi(t−1) − z0

)
(4)

where β =
[
αT , δT

]T
is a d(1 + q)×1 vector, α = m(z0) is a d×1 vector, δ = Dm(z0) is a dq×1 vector

and

Z̃Tit =
[
∆XT

it , XT
it ⊗ (Zit − z0)T −XT

i(t−1) ⊗ (Zi(t−1) − z0)T
]

is a 1× d(1 + q) vector. K is a q-variate kernel such that∫
K(u)du = 1 and KH(u) =

1

|H|1/2
K
(
H−1/2u

)
,

where H is a q × q symmetric positive definite bandwidth matrix.

It is easy to verify that the solution to the minimization problem in (4) can be written in matrix form

as

[
α̂

δ̂

]
=
(
Z̃TWZ̃

)−1
Z̃TW∆Y, (5)

where

W = diag
{
KH(Z12 − z0)KH(Z11 − z0), ...,KH(ZNT − z0)KH(ZN(T−1) − z0)

}
,

∆Y = [∆Y12, ...,∆YNT ]T ,

and

Z̃ =


∆XT

12 XT
12 ⊗ (Z12 − z0)T −XT

11 ⊗ (Z11 − z0)T

...
...

∆XT
NT XT

NT ⊗ (ZNT − z0)T −XT
N(T−1) ⊗ (ZN(T−1) − z0)T

 .
The local weighted linear least squares estimator of m(z0) is then defined as

m̂(z0;H) = eT1

(
Z̃TWZ̃

)−1
Z̃TW∆Y, (6)

where e1 = (Id
...0dq×d) is a d(1 + q)×d selection matrix, Id is a d×d identity matrix and 0dq×d a dq×d

matrix of zeros. Note that the dimensions of W and Z̃ are respectively N(T − 1) × N(T − 1) and

N(T − 1)× d(1 + q).

This estimation procedure, in a especial case where d = 1 and Xit = 1 can be applied to a fully non-

parametric fixed effect panel data model as the one considered in Su and Ullah (2006) and Henderson

et al. (2008). Furthermore, if we make XT
itm (Zit) = m1 (Zit) + X̃T

itβ0, for some real valued function

m1 (·) and (d−1)×1 vector β0 our estimation technique can be applied to estimate consistently m1 (·)
and β0 in either a fixed effect (see Baltagi and Li (2002)) or a random effect setting (see Li and Stengos

(1996)).
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3 Asymptotic properties and the ”oracle” efficient estimator

In this section we investigate some preliminary asymptotic properties of our estimator. In order to do

so, we need the following assumptions

(B.1) Let fZ1t (z1), fZ1t,Z1(t−1)
(z1, z2), fZ1t,Z1(t−1),Z1(t−2)

(z1, z2, z3) be respectively the probability den-

sity functions of Z1t,
(
Z1t, Z1(t−1)

)
and

(
Z1t, Z1(t−1), Z1(t−2)

)
. Then for any point z1, (z1, z2),

(z1, z2, z3) respectively in the support of fZ1t (z1), fZ1t,Z1(t−1)
(z1, z2) and fZ1t,Z1(t−1),Z1(t−2)

(z1, z2, z3),

fZ1t , fZ1t,Z1(t−1)
and fZ1t,Z1(t−1),Z1(t−2)

are continuously differentiable in all their arguments. Fur-

thermore, fZ1t (z1) > 0, fZ1t,Z1(t−1)
(z1, z2) > 0, fZ1t,Z1(t−1),Z1(t−2)

(z1, z2, z3) > 0.

(B.2) Let z be an interior point in the support of fZ1t . All third-order derivatives ofm1 (·) ,m2 (·) , · · · ,md (·)
are continuous.

(B.3) Let (z1, z2) be an interior point in the support of fZ1t,Z1(t−1)
(z1, z2). All conditional moment

functions E
[
XitX

T
it

∣∣Zit = z1, Zi(t−1) = z2

]
, E
[
XitX

T
i(t−1)

∣∣∣Zit = z1, Zi(t−1) = z2

]
,

E
[
Xi(t−1)X

T
i(t−1)

∣∣∣Zit = z1, Zi(t−1) = z2

]
, E
[
∆Xit∆X

T
it

∣∣Zit = z1, Zi(t−1) = z2

]
,

E
[
∆XitX

T
it

∣∣Zit = z1, Zi(t−1) = z2

]
, E

[
∆XitX

T
i(t−1)

∣∣∣Zit = z1, Zi(t−1) = z2

]
have compact sup-

port and they have continuous first order derivatives in all their arguments. Furthermore, let

(z1, z2, z3) be an interior point in the support of fZ1t,Z1(t−1),Z1(t−2)
(z1, z2, z3). The conditional

moment functions E
[
Xi(t−1)X

T
i(t−1)

∣∣∣Zit = z1, Zi(t−1) = z2, Zi(t−2) = z3

]
,

E
[

∆XitX
T
i(t−1)

∣∣∣Zit = z1, Zi(t−1) = z2, Zi(t−2) = z3

]
and E

[
∆XitX

T
i(t−2)

∣∣∣Zit = z1, Zi(t−1) = z2, Zi(t−2) = z3

]
have also compact support and continuous first order derivatives in all their arguments.

(B.4) The kernel function K is symmetric about zero and compactly supported, bounded kernel such

that
∫
uuTK(u)du = µ2 (K) I, where µ2 (K) 6= 0 is a scalar and I is a d× d identity matrix.

(B.5) The moment function

1

T

∑
t

E
[
∆Xit∆X

T
it

∣∣Zit = z1, Zi(t−1) = z2

]
is definite positive in any interior point (z1, z2) in the support of fZ1t,Z1(t−1)

(z1, z2).

Assumptions (B.1) and (B.5) give some smoothness conditions on the functions involved. Assumption

(B.4) includes some particularities of the kernel function. Under these assumptions we now establish

some results on the conditional mean and the conditional variance of the local linear least squares

estimator.

Theorem 3.1 Under Assumptions (B.1)-(B.5) then, if H → 0 such that N |H| → ∞ as N tends to

infinity and T is fixed we get

E {m̂(z0;H)|X11, ..., XNT , Z11, ..., ZNT } −m(z0) =

(
1

T

∑
t

B∆X∆X
t (z0, z0)

)−1
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× 1

T

∑
t

∑
d

{
µ2 (Ku)B∆XX

dt (z0, z0)− µ2 (Kv)B∆XX−1

dt (z0, z0)
}
× tr {Hmd (z0)H}+ op (tr {H}) ,

and

V ar {m̂(z0;H)|X11, ..., XNT , Z11, ..., ZNT } =
2σ2

vR (Ku)R (Kv)

N |H|

(
1

T

∑
t

B∆X∆X
t (z0, z0)

)−1

{1 + op(1)} ,

where

B∆XX
dt (z0, z0) = E

[
∆XitXdit|Zit = z0, Zi(t−1) = z0

]
fZit,Zi(t−1)

(z0, z0) ,

B∆XX−1

dt (z0, z0) = E
[
∆XitXdi(t−1)

∣∣Zit = z0, Zi(t−1) = z0

]
fZit,Zi(t−1)

(z0, z0) ,

B∆X∆X
t (z0, z0) = E

[
∆Xit∆X

T
it

∣∣Zit = z0, Zi(t−1) = z0

]
fZit,Zi(t−1)

(z0, z0) .

The proof of this result is done in the Appendix. As it has already been pointed out in other works the

leading terms in both bias and variance do not depend on the sample and therefore, we can consider

such terms as playing the role of the unconditional bias and variance. Furthermore, we believe that

the conditions established on H are sufficient to show that the other terms are op(1) and therefore it

is possible to show the following result for the asymptotic distribution of m̂(z0;H):

Corollary 3.1 Assume conditions (B.1)-(B.5) hold. Furthermore, there exists a δ > 0 such that

E|Y |2+δ <∞. Then, if H → 0 in such a way that N |H| → ∞ and

max
d

q∑
r=1

q∑
s=1

∂2md (z)

∂zr∂zs
h2
sr

√
N |H| −→ 0 (7)

then

√
N |H| {m̂ (z0;H)−m (z0)} →d N

0, 2σ2
vR (Ku)R (Kv)

(
1

T

∑
t

B∆X∆X
t (z0, z0)

)−1
 ,

as N tends to infinity.

The proof of this result is shown in Appendix.

Note that the rate at which our estimator converges is N |H|. Under the conditions established in

the propositions, our estimator is both consistent and asymptotically normal. However, its rate of

convergence is sub-optimal since the lower rate of convergence for this type of estimators is N |H|1/2.

In order to achieve optimality we propose to reduce the dimensionality of the problem by adding a

term that cancels asymptotically with one of the two terms and therefore the resulting estimator shows

an asymptotically optimal rate. Let

∆Y
(1)
it = ∆Yit +XT

i(t−1)m(Zi(t−1)) (8)

substituting (2) into (8) we get

∆Y
(1)
it = XT

itm(Zit) + ∆vit. (9)
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As it can be realized in (9), estimation of m (·) is now a q-dimensional problem, and therefore we

can use again a local linear least squares estimation procedure with kernel weights. If we do so, the

optimization problem to solve is the following:

minα,δ

N∑
i=1

T∑
t=2

{
∆Y

(1)
it −

(
XT
itα+XT

it ⊗ (Zit − z0)T δ
)}2

KH(Zit − z0). (10)

Let Z̃
(1)T
it =

[
∆XT

it XT
it ⊗ (Zit − z0)T

]
a 1× d(1 + q) vector and β = [αT , δT ]T a d(1 + q)× 1 vector,

(10) may be written as

minβ

N∑
i=1

T∑
t=2

{
∆Y

(1)
it − Z

(1)T
it β

}2
KH(Zit − z0), (11)

and solving this problem we get

m̃(1)(z0) = eT1

[
Z̃(1)TW (1)Z̃(1)

]−1
Z̃(1)TW (1)∆Y (1), (12)

where Z̃(1) = [Z̃
(1)T
12 , ..., Z̃

(1)T
NT ]T is a N(T − 1)× d(1 + q) matrix, e1 = (Id

...0dqxd) a d(1 + q)× d selection

matrix with Id denoting a d × d identity matrix and 0dqxd a dq × d matrix of zeros while W (1) is a

N(T − 1)×N(T − 1) matrix.

Unfortunately m̃(1)(z0) is an unfeasible estimator for m (·). To avoid this problem we replace m (·) in

(8) by a consistent estimator, m̂ (·;H), defined in (6) and then

∆Ỹ
(1)
it = ∆Yit +XT

i(t−1)m̂(Zi(t−1);H), (13)

∆Ỹ
(1)
it = XT

itm (Zit) +XT
i(t−1)

[
m̂(Zi(t−1);H)−m

(
Zi(t−1)

)]
+ ∆υit. (14)

The local linear least squares estimator of m(z0) is then

m̂(1)(z0;H) = eT1

(
Z̃(1)TW (1)Z̃(1)

)−1
Z̃(1)TW (1)∆Ỹ (1), (15)

where ∆Ỹ (1) =
[
∆Ỹ

(1)
12 , ...,∆Ỹ

(1)
NT

]T
, W (1) = diag{KH(Z12 − z0), ...,KH(ZNT − z0)} and

Z̃(1) =


∆XT

12 XT
12 ⊗ (Z12 − z0)T

...
...

∆XT
NT XT

NT ⊗ (ZNT − z0)T

.

In order to show the asymptotic efficiency of our technique we need the following additional assump-

tions:

(C.1) The kernel function K ∈ L1 and ‖u‖8K(u) ∈ L1.

(C.2) Then for any point z1, (z1, z2), (z1, z2, z3) respectively in the support of fZ1t (z1), fZ1t,Z1(t−1)
(z1, z2)

and fZ1t,Z1(t−1),Z1(t−2)
(z1, z2, z3), fZ1t ≤ C1 < ∞, fZ1t,Z1(t−1)

≤ C2 < ∞ and fZ1t,Z1(t−1),Z1(t−2)
≤

C3 <∞.
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Note that these assumptions are devoted to ensure that both bias and variance rates for m̂ (z0) are

uniform (see Masry (1996)). It is then possible to show the following result

Theorem 3.2 Under Assumptions (B.1)-(B.5), (C.1)-(C.2) then, if H → 0 such that N |H| → ∞ as

N tends to infinity and T is fixed we get

E
{
m̂(1)(z0;H)|X11, ..., XNT , Z11, ..., ZNT

}
−m(z0) =

(
1

T

∑
t

BXXt (z0)

)−1

×µ2 (Ku)

T

∑
t

∑
d

{
BXXdt (z0)

}
× tr {Hmd (z0)H}+ op (tr {H}) ,

and

V ar
{
m̂(1)(z0;H)|X11, ..., XNT , Z11, ..., ZNT

}
=

2σ2
vR (Ku)

N |H|1/2

(
1

T

∑
t

BXXt (z0)

)−1

{1 + op(1)} ,

where

BXXdt (z0) = E [XitXdit|Zit = z0] fZit (z0) ,

BXXt (z0) = E
[
∆Xit∆X

T
it

∣∣Zit = z0

]
fZit (z0) .

The proof of the Theorem 3.2 is done in the Appendix.

Then, we see that m̂(1)(z0;H) enjoys the same asymptotic distribution as m̃(1)(z0;H). This is the so

called ”oracle” efficiency property.

Finally, focusing on the relevant terms of bias and variance of Theorems 1 and 2 and following Ruppert

and Wand (1994) it can be highlighted that each entry of Hm(z0) is a measure of the curvature of m (·)
at z0 in a particular direction. Thus, we can intuitively conclude that the bias is increased when there

is a higher curvature and more smoothing is well described by this leading bias term. Meanwhile, in

terms of the variance we can conclude that it will be penalized by a higher conditional variance of Y

given Z = z0 and sparser data near z0.

4 Bandwidth selection

In this section we propose a method to estimate the variable bandwidth matrix H for each estimator.

Theoretically, one option would be to minimize some measure of discrepancy, as the Mean Square

Error (MSE), with respect to H so the optimal bandwidth matrix could be obtained as

Hopt = arg min
H

MSE {m̂ (·;H)} ,
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where

MSE {m̂(·;H)} = E

{
d∑
l=1

{m̂l(Zit)−ml(Zit)}Xlit

}2

.

Unfortunately, there are some terms of the MSE unknown so this result is not empirically useful and

it is necessary to resort to some alternative approach. In this way and following to Zhang and Lee

(2000) we propose to get an estimator of the H optimal that minimize an estimation of the MSE and

that we call the estimated variable bandwidth matrix (Ĥ).

Let X,Z be vectors of random variables such that X = (X1, · · · , Xd) and Z = (Z1, · · · , Zq), and D the

observed covariates vector, D = (Z111, · · · , Z1NT , · · · , Zq11, · · · , ZqNT , X111, · · · , X1NT , · · · , Xd11, · · · , XdNT )T .

Moreover, let bias (m̂l(z0;H)|D) be the conditional bias of m̂l (z0;H) given D, b(z0;H) = bias (m̂(z0;H)|D)

and the proposed MSE is

MSE {m̂(.)} = E
(
trE

[
{m̂(Zit;H)−m (Zit)}T XitX

T
it {m̂(Zit;H)−m (Zit)}

∣∣∣Z])
= E

(
bT (Z;H)Ω(Z)b(Z;H) + tr {Ω(Z)V ar {m̂(Z;H)|Z,D}}

)
,

where Ω(Z) = E
(
XitX

T
it |Z

)
. Note that

V ar {m̂ (Z;H)|Z,D} = V ar {m̂ (z0;H)|D}|Z=z0
and MSE {m̂(.)} = E

[
E {MSE (m̂(z0;H)|D}|Z=z0

|D
]
,

so we may define the MSE for the local weighted least squares estimator as

MSE {m̂(z0;H)|D} = bT (z0;H)Ω(z0)b(z0;H) + tr {Ω(z0)V ar {m̂(z0;H)|D}} .

However, given that MSE {m̂(z0;H)|D} also depends on some unknown quantities, to obtain Ĥ we

need to estimate both the conditional bias and variance previously. Then, taking the idea of Zhang

and Lee (2000) as benchmark we need an additional assumption:

(D.1) Let z be an interior point in the support of fZ1t . All fifth-order derivatives ofm1(·),m2(·), · · · ,md(·)
are continuous.

Thus, in the bandwidth selector procedure that we propose we first calculate the conditional bias based

on a Taylor expansion of order (g+1). Combining this approximation with (6)

E {m̂(z0;H)|D} −m(z0) = eT1

(
Z̃TWZ̃

)−1
Z̃TW

(
1

2
Qb(z0)Db2(z0) +

1

3!
Q

(g+1)
b (z0)Db(g+1)(z0) +Rb(z0)

)
,

where Db2(z0) = vec
(
H(2)
m (z0)

)
and Db(g+1)(z0) = vec

(
H(g+1)
m (z0)

)
are dq2 and dq(g+1) vectors that

contains the vec operator of the Hessian and the (g+1)th derivative matrix of the d-th component of

m(·), respectively, and

Qb(z0) = Sb1(z0)− Sb2(z0), Q
(g+1)
b (z0) = S

(g+1)
b1 (z0)− S(g+1)

b2 (z0)

Sb1(z0) =
[
STb1,12(z0), ..., STb1,NT (z0)

]T
, S

(g+1)
b1 (z0) =

[
S

(g+1)T
b1,12 (z0), ..., S

(g+1)T
b1,NT (z0)

]T
,

Sb2(z0) =
[
STb2,11(z0), ..., STb2,N(T−1)(z0)

]T
, S

(g+1)
b2 (z0) =

[
S

(g+1)T
b2,11 (z0), ..., S

(g+1)T
b2,N(T−1)(z0)

]T
,
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with

Sb1,it(z0) =
[
{Xit ⊗ (Zit − z0)⊗ (Zit − z0)}T

]
,

Sb2,i(t−1)(z0) =
[{
Xi(t−1) ⊗

(
Zi(t−1) − z0

)
⊗
(
Zi(t−1) − z0

)}T ]
,

S
(g+1)
b1,it (z0) =

[{
Xit ⊗ (Zit − z0)(g+1)

}T]
,

S
(g+1)
b2,i(t−1)(z0) =

[{
Xi(t−1) ⊗

(
Zi(t−1) − z0

)(g+1)
}T]

.

Thereby, the conditional bias to estimate is

b(z0;H) = eT1

(
Z̃TWZ̃

)−1
Z̃TWZ̃(g+1)D, (16)

where

Z̃(g+1) = 
{Sb1,12(z0)− Sb2,11(z0)} {S3

b1,12(z0)− S3
b2,11(z0) · · · {S(g+1)

b1,12 (z0)− S(g+1)
b2,11 (z0)}

...
...

. . .
...

{Sb1,NT (z0)− Sb2,N(T−1)(z0)} {S3
b1,NT (z0)− S3

b2,N(T−1)(z0)} · · · {S(g+1)
b1,NT (z0)− S(g+1)

b2,N(T−1)(z0)}

 ,
and

D =
[
DT
b2(z0), DT

b3(z0), · · · , DT
b(g+1)(z0)

]T
is a vector of unknown functions that need to be estimated. For convenience we take g = 2 so Z̃3 is a

N(T − 1)× dq2(1 + q) matrix and D3 a dq2(1 + q)× 1 vector.

To estimate the vector D3b we use a local polynomial regression of order g = 3 (g> 1) with a bandwidth

matrix H∗ so

D̂bk = eTk

(
Z̃T(g+1)W∗Z̃(g+1)

)−1
Z̃T(g+1)W∗∆Y, k = 2, · · · , 4 (17)

where W∗ = diag
{
KH∗(Z12 − z0)KH∗(Z11 − z0), · · · ,KH∗(ZNT − z0)KH∗(ZN(T−1) − z0)

}
is a N(T −

1) × N(T − 1) matrix, eTk =

(
0dqk×d(1+

∑k−1
g=1 q

g)

...Idqk×dqk
...0dqk×d(

∑4
g=k+1 q

g)

)
is a dqk × d(1 +

∑4
g=1 q

g)

vector where I is an identity matrix and 0 a matrix of zeros.

Note that the initial bandwidth matrix H∗ can be obtained by the minimizer of some residual squares

criterion (RSC), as Fan and Gijbels (1995), and then the conditional bias can be already estimated.

Secondly, we calculate the conditional variance that can be written as

V ar {m̂ (z0;H) |D} = eT1

(
Z̃TWZ̃

)−1
Z̃TWVWZ̃

(
Z̃TWZ̃

)−1
e1

where V = E
(
∆v∆vT |D

)
is a N(T − 1)×N(T − 1) matrix that contains the Vij ’s matrices described

in (31). Using the information of (31), V = σ2
vA where A is a N(T − 1)×N(T − 1) matrix of constant,

the variance can be rewritten as

V ar {m̂(z0;H)|D} = eT1

(
Z̃TWZ̃

)−1
Z̃TWAWZ̃

(
Z̃TWZ̃

)−1
e1σ

2
v . (18)

11



To calculate (18) we need to estimate the unknown quantity σ2
v for which we use the following nor-

malized weighted residual sum of squares from a (g+1)th-order polynomial fit

σ̂2
v =

1

tr(W∗)− tr
{

(Z̃T
(g+1)W∗Z̃(g+1))−1Z̃T

(g+1)W∗AW∗Z̃(g+1)

} N∑
i=1

T∑
t=2

(
∆Yit −∆Ŷ∗it

)2

KH∗(Zit−z0)KH∗(Zi(t−1)−z0),

(19)

where ∆Y∗it = Z̃T(g+1)itD + ∆v∗it, g = 3, ∆v∗it is the idiosyncratic error term and

∆Ŷ∗ =
[
∆Ŷ∗12, ...,∆Ŷ∗NT

]T
= Z̃(g−1)

[
Z̃T(g+1)W∗Z̃(g+1)

]−1
Z̃T(g+1)W∗∆Y.

Once known σ2
v the conditional variance can be already calculated.

To get the Ω(z0) matrix it is necessary to estimate the rll′ (z0) element of this matrix, where l, l′ = 1, ..., d

and Ω(z0) = E(XlitX
T
l′it|Z = z0), through a fully nonparametric model. For that, we can use some

standard nonparametric techniques such as the Nadaraya-Watson estimator (see Härdle (1990)).

Finally, using (16)-(19) we obtain the following estimate of MSE {m̂(z0;H)|D},

M̂SE {m̂(z0;H)|D} = D̂T Z̃T(g+1)WZ̃
(
Z̃TWZ̃

)−1 (
Ω̂⊗ e1+qe

T
1+q

)(
Z̃TWZ̃

)−1
Z̃TWZ̃(g+1)D̂+

tr

{(
Z̃TWZ̃

)−1
Z̃TWAWZ̃

(
Z̃TWZ̃

)−1 (
Ω̂⊗ e(1+q)e

T
(1+q)

)
σ̂2
v

} (20)

for (g + 1) and the minimizer of this expression is Ĥ, the estimated variable bandwidth matrix for the

local lineal estimator with kernel weights.

Meanwhile, to get the estimated variable bandwidth matrix for the “oracle” estimator we adapt the

prior procedure to the particularities of this estimator so now Ĥ is selected solving

Ĥ = arg min
H

M̂SE
{
m̂(1) (z0;H) |D

}
,

where for (g = 2),

M̂SE
{
m̂(1) (z0;H) |D

}
= E

[
b(1)T (z0;H)Ω(z0)b(1)(z0;H) + tr

{
Ω(z0)V ar{m̂(1)(z0;H)|D}

}]
=

= D̂(1)T Z̃
(1)T
(g+1)W

(1)Z̃(1)
[
Z̃(1)TW (1)Z̃(1)

]−1 (
Ω̂⊗ e1+qe

T
1+q

) [
Z̃(1)TW (1)Z̃(1)

]−1
Z̃(1)TW (1)Z̃

(1)
(g+1)D̂

(1)

+ tr

{[
Z̃(1)TW (1)Z̃(1)

]−1
Z̃(1)TW (1)

(
Aσ̂2

v + V̂
)
W (1)Z̃(1)

[
Z̃(1)TW (1)Z̃(1)

]−1 (
Ω̂⊗ e(1+q)e

T
(1+q)

)}
being V̂ = diag{E

(
∆v̂1∆v̂T1 |D

)
, · · · , E

(
∆v̂N∆v̂TN |D

)
}, ∆v̂it = XT

i(t−1)

{
m̂
(
Zi(t−1)

)
− E

(
m̂
(
Zi(t−1)

)
|D
)}

and b(1) (z0;H) = bias
(
m̂(1)(z0;H)|D

)
.

5 Monte Carlo experiment

In this section we report some Monte Carlos simulation results to examine whether the proposed

estimators perform reasonably well in finite samples when µi are fixed effects.
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We consider the following varying-coefficient nonparametric models,

Yit = µi +XT
ditm (Zqit) + vit, i = 1, · · · , N ; t = 1, · · · , T ; d, q = 1, 2

where Xdit and Zqit are scalars random variables; vit is an i.i.d.N(0,1) random variable; and m(.) is

a pre-specified function to be estimated. The observations follow a data generating process where

Zqit = wqit + wqi(t−1), being wqit an i.i.d. uniformly distributed [0,Π/2] random variable; and Xdit =

0.5Xdi(t−1) + ξit, with ξit being an i.i.d.N(0,1).

We consider three different cases of study,

(1) Yit = X1itm1 (Z1it) + µ1i + vit

(2) Yit = X1itm1 (Z1it, Z2it) + µ2i + vit

(3) Yit = X1itm1 (Z1it) +X2itm2 (Z2it) + µ1i + vit,

where the chosen functionals form are m1 (Z1it) = sin (Z1itΠ), m1 (Z1it, Z2it) = sin ((Z1it, Z2it) Π) and

m2 (Z1it) = exp
(
−Z2

1it

)
; and we experiment with two specifications for the fixed effects,

(a) µ1i depends on Z1it, where the dependence is imposed by generating µ1i = c0Z1i. + ui for i =

2, · · · , N and Z1i. = T−1
∑

t Z1it.

(b) µ2i depends on Z1it, Z2it through the generating process µ2i = c0Zi. + ui for i = 2, · · · , N and

Zi. = 1
2

(
Z1i. + Z2i.

)
.

where in both cases ui is an i.i.d.N (0, 1) random variable and c0 = 0.5 controls de correlation between

the unobservable individual heterogeneity and some of the regressors of the model.

In the experiment we use 1000 Monte Carlo replications (Q). The number of period (T) is fixed at three,

while the number of cross-sections (N) is varied to be 50, 100 and 200. In addition, the Gaussian kernel

has been used and, as Henderson et al. (2008), the bandwidth is chosen as H = σ̂z(N(T − 1))−1/5,

where σ̂z is the sample standard deviation of {Zqit}N,Ti=1,t=2.

We report estimation results for both proposed estimators and as measure of their estimation accuracy

we use the Integrated Squared Error (ISE). Thus, denoting the subscript r the rth replication,

ISE {m̂l (z0;H)} =
1

Q

Q∑
r=1

∫ { d∑
l=1

(m̂lr (z0;H)−mlr (z0))Xit,lr

}2

f(z0)dz0

which can me approximated by the Averaged Mean Squared Error (AMSE)

AMSE {m̂ (z0;H)} =
1

Q

Q∑
r=1

1

NT

N∑
i=1

T∑
t=2

{
d∑
l=1

{m̂lr(z0;H)−mlr(z0)}Xit,lr

}2

,

The simulations results are summarized in Table 1, 2 and 3, respectively.
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Table 1: AMSE for d=1 and q=1.

Table 2: AMSE for d=1 and q=2.

Table 3: AMSE for d=2 and q=1.

We further carried out a simulation study to analyze the behavior in finite samples of the multivariate

locally estimator with kernels weights, m̂ (z0;H), and the ”oracle” estimator, m̂(1) (z0;H), proposed

in Sections 2 and 3. Looking at Tables 1, 2 and 3 we can highlight the following.

On one hand, as the proposed estimators are based on a first difference transformation, the bias and

the variance of both estimators do not depend on the values of the fixed effects so their estimation

accuracy are the same for different values of c0.

On the other hand, from Tables 1, 2 and 3 we can see that both estimators carry out quite well. For

all T, as N increases the AMSE of both estimators are lower, as we expected. This is due to the

asymptotic properties of the estimators described previously. In addition, these results also allow us to

test the hypothesis that the ”oracle” estimator generates an improvement in the rate of convergence.

Specifically, for the univariate case, Tables 1 and 3, we may appreciate that the achievement of both

estimators are quite similar while, on the contrary, in the multivariate case, Table 2, the rate of

convergence of the ”oracle” estimator is faster that the multivariate locally estimator as we expected.

In addition, as we can see in Table 2 results of the local polynomial estimator reflect the “curse of

dimensionality” property given that as the dimensionality of Zit increases the AMSE is greater. Thus,

the backfitting estimator has an efficiency gain over the local polynomial estimator, as we suspect.

6 Conclusion

This paper introduces a new technique that estimates varying coefficient models of unknown form in a

panel data framework where individual effects are arbitrarily correlated with the explanatory variables
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in a unknown way. The resulting estimator is robust to misspecification in the functional form of the

varying parameters and we have shown that it is consistent and asymptotically normal. Furthermore

we have shown that it achieves the optimal rate of convergence for this type of problems and it exhibits

the so called ”oracle” efficiency property. Since the estimation procedure depends on the choice of a

bandwidth matrix, we also provide a method to compute this matrix empirically. Monte Carlo results

indicates good performance of the estimator in finite samples.

7 Appendix

Proof of Theorem 3.1

Taking conditional expectations in (6) and noting that

E(vit|X11, ..., XNT , Z11, ..., ZNT ) = 0, t = 2, · · · , T, i = 1, · · · , N

then

E{m̂(z0;H)|X11, ..., XNT , Z11, ..., ZNT } = eT1 (Z̃TWZ̃)−1Z̃TWM (21)

where M =

[{
XT

12m(Z12)−XT
11m(Z11)

}T
, ...,

{
XT
NTm(ZNT )−XT

N(T−1)m(ZN(T−1))
}T]T

.

Taylor’s Theorem implies that

M = Z̃

[
m(z0)

Dm(z0)

]
+

1

2
Qm(z0) +R(z0), (22)

where

Qm(z0) = Sm1(z0)− Sm2(z0), (23)

Sm1(z0) = [STm1,12(z0), ..., STm1,NT (z0)]T ,

Sm2(z0) = [STm2,11(z0), ..., STm2,N(T−1)(z0)]T

and

Sm1,it(z0) =
[
{Xit ⊗ (Zit − z0)}T Hm(z0)(Zit − z0)

]
,

Sm2,i(t−1)(z0) =
[
{Xi(t−1) ⊗ (Zi(t−1) − z0)}THm(z0)(Zi(t−1) − z0)

]
.

We denote by

Hm(z) =


Hm1(z)

Hm2(z)
...

Hmd(z)

 ,
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a dq × q matrix such that Hmd(z) is the Hessian matrix of the d-th component of m (·) and R(z) is

a vector of Taylor series remainder terms. Furthermore, as it is already pointed out in Ruppert and

Wand (1994), using (B.1) we get

eT1 (Z̃TWZ̃)−1Z̃TWR(z0) = op (tr {H}) ,

and then,

E {m̂(z0;H)|X11, ..., XNT , Z11, ..., ZNT } −m(z0) =
1

2
eT1 (Z̃TWZ̃)−1Z̃TWQm(z0). (24)

Notice that expression Dm(z0) in (22) vanishes since

eT1 [Z̃TWZ̃]−1Z̃TW

[
m(z0)

Dm(z0)

]
= eT1

[
m(z0)

Dm(z0)

]
= m(z0). (25)

For the sake of simplicity let us denote

Kit =
1

|H|1/2
K
(
H−1/2 (Zit − z0)

)
,

now, define the symmetric block matrix

(NT )−1Z̃TWZ̃ =

(
A11
NT A12

NT

A21
NT A22

NT

)
(26)

where,

A11
NT = (NT )−1

∑
it

∆Xit∆X
T
itKitKi(t−1),

A12
NT = (NT )−1

∑
it

∆Xit

{
XT
it ⊗ (Zit − z0)T −XT

i(t−1) ⊗ (Zi(t−1) − z0)T
}
KitKi(t−1),

A21
NT = (NT )−1

∑
it

{
Xit ⊗ (Zit − z0)−Xi(t−1) ⊗ (Zi(t−1) − z0)

}
∆XT

itKitKi(t−1),

A22
NT = (NT )−1

∑
it

{
Xit ⊗ (Zit − z0)−Xi(t−1) ⊗ (Zi(t−1) − z0)

}
×{

XT
it ⊗ (Zit − z0)T −XT

i(t−1) ⊗ (Zi(t−1) − z0)T
}
KitKi(t−1).

Using standard results from density estimation and as the variables are i.i.d. in the subscript i we can

show that, as N tends to infinity,

A11
NT =

1

T

∑
t

B∆X∆X
t (z0, z0) + op(1), (27)

and

B∆X∆X
t (z0, z0) = E

[
∆Xit∆X

T
it |Zit = z0, Zi(t−1) = z0

]
fZit,Zi(t−1)

(z0, z0),

is a d× d matrix, for t = 2, · · · , T .

Furthermore, using assumptions (B.1) to (B.5), as N tends to infinity

A12
NT =

1

T

∑
t

{
DB∆XX

t (z0, z0) (Id ⊗ µ2 (Ku)H)−DB∆XX−1

t (z0, z0) (Id ⊗ µ2 (Kv)H)
}

+ op(H). (28)
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DB∆XX
t (Z1, Z2) and DB∆XX−1

t (Z1, Z2) are respectively d× dq gradient matrices defined as

DB∆XX
t (Z1, Z2) =


∂b∆XX

t11 (Z1,Z2)

∂ZT
1

· · · ∂b∆XX
t1d (Z1,Z2)

∂ZT
1

...
. . .

...
∂b∆XX

td1 (Z1,Z2)

∂ZT
1

· · · ∂b∆XX
tdd′ (Z1,Z2)

∂ZT
1

 ,

and

b∆XXtdd′ (Z1, Z2) = E
[
∆XditXd′it|Zit = Z1, Zi(t−1) = Z2

]
fZit,Zi(t−1)

(Z1, Z2) .

The other gradient matrix is

DB∆XX−1

t (Z1, Z2) =


∂b

∆XX−1
t11 (Z1,Z2)

∂ZT
1

· · · ∂b
∆XX−1
t1d (Z1,Z2)

∂ZT
1

...
. . .

...

∂b
∆XX−1
td1 (Z1,Z2)

∂ZT
1

· · · ∂b
∆XX−1
tdd (Z1,Z2)

∂ZT
1

 ,

and

b
∆XX−1

tdd′ (Z1, Z2) = E
[
∆XditXd′it−1|Zit = Z1, Zi(t−1) = Z2

]
fZit,Zi(t−1)

(Z1, Z2) .

Finally,

A22
NT =

1

T

∑
t

[
BXXt (z0, z0)⊗ µ2(Ku)H + BX−1X−1

t (z0, z0)⊗ µ2(Kv)H
]

+ op(H), (29)

where

BXXt (z0, z0) = E
[
XitX

T
it

∣∣Zit = z0, Zi(t−1) = z0

]
fZit,Zi(t−1)

(z0, z0) ,

and

BX−1X−1

t (z0, z0) = E
[
Xi(t−1)X

T
i(t−1)

∣∣∣Zit = z0, Zi(t−1) = z0

]
fZit,Zi(t−1)

(z0, z0) .

Using the the results shown in (27), (28) and (29) we obtain

NT
(
Z̃TWZ̃

)−1
=

(
C11 C12

C21 C22

)
, (30)

where

C11 =

(
1

T

∑
t

B∆X∆X
t (z0, z0)

)−1

+ op(1),

C12 = −

(
1

T

∑
t

B∆X∆X
t (z0, z0)

)−1 [
1

T

∑
t

{
DB∆XX

t (z0, z0) (Id ⊗ µ2 (Ku)H)−DB∆XX−1

t (z0, z0) (Id ⊗ µ2 (Kv)H)
}]

×

(
1

T

∑
t

[
BXX
t (z0, z0)⊗ µ2 (Ku)H + BX−1X−1

t (z0, z0)⊗ µ2 (Kv)H
])−1

+ op(1),

C21 =

(
1

T

∑
t

[
BXX
t (z0, z0)⊗ µ2 (Ku)H + BX−1X−1

t (z0, z0)⊗ µ2 (Kv)H
])−1

×

[
1

T

∑
t

{
DB∆XX

t (z0, z0) (Id ⊗ µ2 (Ku)H)−DB∆XX−1

t (z0, z0) (Id ⊗ µ2 (Kv)H)
}]T ( 1

T

∑
t

B∆X∆X
t (z0, z0)

)−1

+op(1),

C22 =

(
1

T

∑
t

[
BXX
t (z0, z0)⊗ µ2(Ku)H + BX−1X−1

t (z0, z0)⊗ µ2(Kv)H
])−1

+ op
(
H−1

)
.
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Also it is straightforward to show that the terms in

(NT )−1Z̃TWSm1(z0)

=

 (NT )−1
∑

it ∆Xit

{
XT
it ⊗ (Zit − z0)T

}
Hm(z0)(Zit − z0)KitKi(t−1)

(NT )−1
∑

it

{
Xit ⊗ (Zit − z0)−Xi(t−1) ⊗ (Zi(t−1) − z0)

}{
XT
it ⊗ (Zit − z0)T

}
Hm(z0)(Zit − z0)KitKi(t−1)

 ,

are asymptotically equal to

(NT )−1
∑
it

∆Xit

{
XT
it ⊗ (Zit − z0)T

}
Hm(z0)(Zit − z0)KitKi(t−1)

=
µ2 (Ku)

T

∑
t

∑
d

E
[
∆XitXdit|Zit = z0, Zi(t−1) = z0

]
fZit,Zi(t−1)

(z0, z0)× tr {Hmd (z0)H}+ op (tr {H}) ,

and

(NT )−1
∑
it

{
Xit ⊗ (Zit − z0)−Xi(t−1) ⊗ (Zi(t−1) − z0)

}{
XT
it ⊗ (Zit − z0)T

}
Hm(z0)(Zit − z0)KitKi(t−1)

=
1

T

∑
t

∫
BXXt (z0, z0)⊗

(
H1/2u

)(
H1/2u

)T
Hm (z0)

(
H1/2u

)
K (u)K (v) dudv

− 1

T

∑
t

∫
BX−1X
t (z0, z0)⊗

(
H1/2v

)(
H1/2u

)T
Hm (z0)

(
H1/2u

)
K (u)K (v) dudv + op

(
H3/2

)
= Op

(
H3/2

)
.

Finally, the terms in

(NT )−1Z̃TWSm2(z0) =

 (NT )−1
∑

it ∆Xit

{
XT

i(t−1) ⊗ (Zi(t−1) − z0)T
}
Hm(z0)(Zi(t−1) − z0)KitKi(t−1)

(NT )−1
∑

it

{
Xit ⊗ (Zit − z0)−Xi(t−1) ⊗ (Zi(t−1) − z0)

}{
XT

i(t−1) ⊗ (Zi(t−1) − z0)T
}
Hm(z0)(Zi(t−1) − z0)KitKi(t−1)


are of order

(NT )−1
∑
it

∆Xit

{
XT
i(t−1) ⊗ (Zi(t−1) − z0)T

}
Hm(z0)(Zi(t−1) − z0)KitKi(t−1)

=
µ2 (Kv)

T

∑
t

∑
d

E
[
∆XitXdi(t−1)

∣∣Zit = z0, Zi(t−1) = z0

]
fZit,Zi(t−1)

(z0, z0)× tr {Hmd (z0)H}+ op (tr {H}) ,

and

(NT )−1
∑
it

{
Xit ⊗ (Zit − z0)−Xi(t−1) ⊗ (Zi(t−1) − z0)

}{
XT

i(t−1) ⊗ (Zi(t−1) − z0)T
}
Hm(z0)(Zi(t−1) − z0)KitKi(t−1)

=
1

T

∑
t

∫
BXX−1

t (z0, z0)⊗
(
H1/2u

)(
H1/2v

)T
Hm (z0)

(
H1/2v

)
K (u)K (v) dudv

− 1

T

∑
t

∫
BX−1X−1

t (z0, z0)⊗
(
H1/2v

)(
H1/2v

)T
Hm (z0)

(
H1/2v

)
K (u)K (v) dudv + op

(
H3/2

)
= Op

(
H3/2

)
.
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Taking into account (23), (24) and the previous results the asymptotic bias can be written as

E {m̂(z0;H)|X11, ..., XNT , Z11, ..., ZNT } −m(z0)

=
1

2
eT1

(
Z̃TWZ̃

)−1

Z̃TW {Sm1 (z0)− Sm2 (z0)}+ op (tr {H}) =

(
1

T

∑
t

B∆X∆X
t (z0, z0)

)−1

× 1

T

∑
t

∑
d

{
µ2 (Ku)E

[
∆XitXdit|Zit = z0, Zi(t−1) = z0

]
− µ2 (Kv)E

[
∆XitXdi(t−1)

∣∣Zit = z0, Zi(t−1) = z0

]}
×fZit,Zi(t−1)

(z0, z0) tr {Hmd (z0)H}+ op (tr {H}) .

To obtain an asymptotic expression for the variance let us first define the (N(T − 1)× 1)-vector ∆v =

(∆v1, · · · ,∆vN )T where ∆vi = (∆vi2, ...,∆viT )T and let E
(
∆v∆vT

)
= V be a N(T − 1) ×N(T − 1)

matrix that contains the Vij ’s matrices

Vij = E(∆vi∆v
T
j |Xi1, ..., XiT , Zi1, ..., ZiT ) =


2σ2

v , for i = j, t = s

−σ2
v , for i = j, |t = s| < 2.

0, for i = j, |t = s| ≥ 2.

(31)

Then, taking into account that

m̂(z0;H)− E {m̂(z0;H)|X11, ..., XNT , Z11, ..., ZNT } = eT1

(
Z̃TWZ̃

)−1
Z̃TW∆v, (32)

the variance of m̂ (z0;H) can be written as

V ar {m̂(z0;H)|X11, ..., XNT , Z11, ..., ZNT }

= eT1 (Z̃TWZ̃)−1Z̃TWVW T Z̃(Z̃TWZ̃)−1e1. (33)

The upper left entry of 1
NT Z̃

TWVW T Z̃ is

2σ2
v

NT

∑
it

∆Xit∆X
T
itK

2
itK

2
i(t−1) −

σ2
v

NT

∑
it

∆Xit∆X
T
i(t−1)KitK

2
i(t−1)Ki(t−2)

=
2σ2

vR (Ku)R (Kv)

T |H|
∑
t

B∆X∆X
t (z0, z0) {1 + op(1)}+Op

(
|H|1/2

)
. (34)

The upper right block is

2σ2
v

NT

∑
it

∆Xit

{
XT
it ⊗ (Zit − z0)T −XT

i(t−1) ⊗ (Zi(t−1) − z0)T
}
K2
itK

2
i(t−1)

− σ2
v

NT

∑
it

∆Xit

{
XT
i(t−1) ⊗ (Zi(t−1) − z0)T −XT

i(t−2) ⊗ (Zi(t−2) − z0)T
}
KitK

2
i(t−1)Ki(t−2)

= I1 − I2. (35)

Then using standard kernel density results, under (A.1) to (A.5) we get

I1 =
2σ2

v

T |H|
∑
t

∫ {
B∆XX
t

(
z0 +H1/2u, z0 +H1/2v

)
⊗
(
H1/2u

)T
−B∆XX−1

t

(
z0 +H1/2u, z0 +H1/2v

)
⊗
(
H1/2v

)T}
K2(u)K2(v)dudv {1 + op(1)}
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I2 =
2σ2

v

T |H|1/2
∑
t

∫ {
B∆XX−1

t

(
z0 +H1/2u, z0 +H1/2v, z0 +H1/2w

)
⊗
(
H1/2v

)T
−B∆XX−2

t

(
z0 +H1/2u, z0 +H1/2v, z0 +H1/2w

)
⊗
(
H1/2w

)T}
K(u)K2(v)K(w)dudvdw {1 + op(1)} ,

where

B∆XX
t (z0, z0) = E

[
∆XitX

T
it

∣∣Zit = z0, Zi(t−1) = z0

]
fZit,Zi(t−1)

(z0, z0) ,

B∆XX−1

t (z0, z0) = E
[

∆XitX
T
i(t−1)

∣∣∣Zit = z0, Zi(t−1) = z0

]
fZit,Zi(t−1)

(z0, z0) ,

B∆XX−1

t (z0, z0, z0) = E
[

∆XitX
T
i(t−1)

∣∣∣Zit = z0, Zi(t−1) = z0, Zi(t−2) = z0

]
fZit,Zi(t−1)

(z0, z0, z0) ,

B∆XX−2

t (z0, z0, z0) = E
[

∆XitX
T
i(t−2)

∣∣∣Zit = z0, Zi(t−1) = z0, Zi(t−2) = z0

]
fZit,Zi(t−1)

(z0, z0, z0) .

It is straightforward to show that I1 = Op

(
1
|H|‖H‖

)
+ op

(
1
|H|‖H‖

)
and I2 = Op

(
1

|H|1/2 ‖H‖
)

+

op

(
1

|H|1/2 ‖H‖
)

, as N tends to infinity. ‖ · ‖ is a certain norm, for example ‖H‖ =
(∑

i,j h
2
ij

)1/2
.

Finally, the lower-right block is

2σ2
v

NT

∑
it

{
Xit ⊗ (Zit − z0)−Xi(t−1) ⊗ (Zi(t−1) − z0)

}{
XT

it ⊗ (Zit − z0)T −XT
i(t−1) ⊗ (Zi(t−1) − z0)T

}
K2

itK
2
i(t−1)

− σ2
v

NT

∑
it

{
Xit ⊗ (Zit − z0)−Xi(t−1) ⊗ (Zi(t−1) − z0)

}
×
{
XT

i(t−1) ⊗ (Zi(t−1) − z0)T −XT
i(t−2) ⊗ (Zi(t−2) − z0)T

}
KitK

2
i(t−1)Ki(t−2) = I1 − I2, (36)

where

I1 =
2σ2

vµ2

(
K2
)
R (Kv)

T |H|
∑
t

BXXt (z0, z0)⊗H +
2σ2

vµ2

(
K2
)
R (Ku)

T |H|
∑
t

BX−1X−1

t (z0, z0)⊗H +Op (|H|) ,

I2 =
σ2
vµ2

(
K2
)

T |H|1/2
∑
t

BX−1X−1

t (z0, z0, z0)⊗H +Op

(
|H|1/2

)
.

So now, substituting (30), (34), (35) and (36) into (33) we obtain

V ar {m̂(z0;H)|X11, ..., XNT , Z11, ..., ZNT } =
2σ2

vR (Ku)R (Kv)

N |H|

(
1

T

∑
t

B∆X∆X
t (z0, z0)

)−1

{1 + op(1)} .

Proof of Corollary 3.1

Let

m̂ (z0;H)−m (z0) = {m̂ (z0;H)− E [m̂ (z0;H)|X11, · · · , XNT , Z11, · · · , ZNT ]}

+ {E [m̂ (z0;H)|X11, · · · , XNT , Z11, · · · , ZNT ]−m (z0)} ≡ I1 + I2.
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We will first show that under conditions of the corollary I2 = op

(
1√
N |H|

)
, as N tends to infinity. In

order to do so, recall that under conditions in Theorem 3.1

E {m̂ (z0;H)|X11, · · · , XNT , Z11, · · · , ZNT } −m(z0)

=

(
1

T

∑
t

B∆X∆X
t (z0, z0)

)−1
1

T

∑
t

∑
d

{
µ2 (Ku)B∆XX

dt (z0, z0)− µ2 (Kv)B∆XX−1

dt (z0, z0)
}

(37)

×tr {Hmd (z0)H}+Op

(
H3/2

)
+ op (tr {H}) .

By the law of iterated expectations,

E {m̂ (z0;H)} =

∫
E {m̂ (z0;H)|X11, · · · , XNT , Z11, · · · , ZNT } dF (X11, · · · , XNT , Z11, · · · , ZNT ) .

The leading term in (37) does not depend on the sample and furthermore, under the conditions

established in the corollary the remainder terms are op(1). Hence,

I2 = E {m̂ (z0;H)|X11, · · · , XNT , Z11, · · · , ZNT } −m (z0;H) + op(1).

Condition (7) applies and the proof is done.

Now we show that

√
N |H|I1 → N

0, 2σ2
vR (Ku)R (Kv)

(
1

T

∑
t

B∆X∆X
t (z0, z0)

)−1
 ,

as N tends to infinity.

In order to show this let

m̂ (z0;H)− E {m̂ (z0;H)|X11, · · · , XNT , Z11, · · · , ZNT } = eT1

(
Z̃TWZ̃

)−1
Z̃TW∆v, (38)

where ∆v = [∆v11, · · · ,∆vNT ]T . Under conditions (B.1) to (B.5) and recalling that (Xit, Zit) are i.i.d

random variables in the sub-index i, we directly apply the Lindeberg-Levy Central Limit Theorem and

we obtain
1√
N |H|

Z̃TW∆v →d N (0,D) , N →∞,

where D has been already defined in (34), (35) and (36). Finally, using (30) and applying the Cramer-

Wold device the proof is done.

Proof of Theorem 3.2

The proof of this result follows the same lines as in the proof of Theorem 3.1. Let

m̂(1)(z0;H) = eT1 (Z̃(1)TW (1)Z̃(1))−1Z̃(1)TW (1)∆Ỹ (1). (39)
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Then proceeding as before in the proof of Theorem 3.1 we get

E
{
m̂(1)(z0;H)|X11, ..., XNT , Z11, ..., ZNT

}
= eT1

(
Z̃(1)TW (1)Z̃(1)

)−1
Z̃(1)TW (1)

[
M (1) +M (2)

]
, (40)

where

M (1) =
[{
XT

12m(Z12)
}T

, · · · ,
{
XT

NTm(ZNT )
}T ]T

,

M (2) =
[{
XT

11 {E {m̂(Z11;H)|X11, ..., ZNT } −m(Z11)}
}T

, · · · ,{
XT

N(T−1)

{
E
{
m̂(ZN(T−1);H)|X11, ..., ZNT

}
−m(ZN(T−1))

}}T
]T

are N(T − 1)× 1 vectors. We can approximate M (1) through a Taylor’s expansion, i.e.

M (1) = Z̃(1)

[
m(z0)

Dm(z0)

]
+

1

2
Q(1)
m (z0) +R(z0),

where,

Q(1)
m (z0) =

[
S

(1)T
m,12(z0), · · · , S(1)T

m,NT (z0)
]T
,

and

S
(1)
m,it(z0) =

{
XT
it ⊗ (Zit − z0)T

}
Hm(z0)(Zit − z0).

Using (B.1) we get

eT1 (Z̃(1)TWZ̃)−1Z̃(1)TW (1)R(z0) = op (tr {H}) ,

and therefore,

E
{
m̂(1)(z0;H)|X11, ..., XNT , Z11, ..., ZNT

}
−m(z0)

= eT1

(
Z̃(1)TW (1)Z̃(1)

)−1
Z̃(1)TW (1)

{
1

2
Q(1)
m (z0) +M (2)

}
+ op (tr {H}) . (41)

To obtain an asymptotic expression for the bias we first calculate

1

NT
Z̃(1)TW (1)Z̃(1) =(

(NT )−1
∑

itXitX
T
itKit (NT )−1

∑
itXit

{
XT
it ⊗ (Zit − z0)T

}
Kit

(NT )−1
∑

it {Xit ⊗ (Zit − z0)}XT
itKit (NT )−1

∑
it {Xit ⊗ (Zit − z0)}

{
XT
it ⊗ (Zit − z0)T

}
Kit

)
.

Using standard properties of kernel density estimators, under conditions (A.1) to (A.5) and as N tends

to infinity,

(NT )−1
∑
it

XitX
T
itKit =

1

T

∑
t

BXXt (z0) + op(1),

(NT )−1
∑
it

Xit

{
XT
it ⊗ (Zit − z0)T

}
Kit =

1

T

∑
t

DBXXt (z0) (Id ⊗ µ2 (Ku)H) + op (H) ,

(NT )−1
∑
it

{Xit ⊗ (Zit − z0)}
{
XT
it ⊗ (Zit − z0)T

}
Kit =

1

T

∑
t

BXXt (z0)⊗ µ2 (Ku)H + op (H) .
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Note that BXXt (z0) and DBXXt (z0) are defined as in the proof of Theorem 3.1 but the moment functions

now are taken conditionally only to Zit = z0.

Using the previous results,

NT
(
Z̃(1)TW (1)Z̃(1)

)−1
=

(
C(1)

11 C(1)
12

C(1)
21 C(1)

22

)
, (42)

where

C(1)
11 =

(
1

T

∑
t

BXXt (z0)

)−1

+ op(1),

C(1)
12 = −

(
1

T

∑
t

BXXt (z0)

)−1 [
1

T

∑
t

DBXXt (z0)

]( 1

T

∑
t

BXXt (z0)

)−1

⊗ Iq

+ op(1),

C(1)
22 =

(
1

T

∑
t

BXXt (z0)⊗ µ2 (Ku)H

)−1

+ op
(
H−1

)
.

Furthermore the terms in

(NT )−1 1

2
Z̃(1)TW (1)Q(1)

m (z0) = (43)(
(NT )−1

∑
itXit

{
XT
it ⊗ (Zit − z0)T

}
Hm(z0)(Zit − z0)Kit

(NT )−1
∑

it {Xit ⊗ (Zit − z0)}
{
XT
it ⊗ (Zit − z0)T

}
Hm(z0)(Zit − z0)Kit

)
are of order

µ2 (Ku)

T

∑
t

∑
d

E [XitXdit|Zt = z0] fZit(z0)× tr {Hmd (z0)}+ op (tr {H})

and Op
(
H3/2

)
, respectively. In order to evaluate the asymptotic bias of the last term we have to

calculate

(NT )−1Z̃(1)TW (1)M (2) = (44)(
(NT )−1

∑
itXitX

T
i(t−1)

(
E
{
m̂(Zi(t−1))

∣∣X11, · · · , XNT , Z11, · · · , ZNT
}
−m(Zi(t−1))

)
Kit

(NT )−1
∑

it {Xit ⊗ (Zit − z0)}XT
i(t−1)

(
E
{
m̂(Zi(t−1))

∣∣X11, · · · , XNT , Z11, · · · , ZNT
}
−m(Zi(t−1))

)
Kit

)
.

It is straightforward to show that

(NT )−1
∑
it

XitX
T
i(t−1)

(
E
{
m̂(Zi(t−1))

∣∣X11, · · · , XNT , Z11, · · · , ZNT
}
−m(Zi(t−1))

)
Kit = Op (tr {H}) ,

as N tends to infinity, and

(NT )−1
∑
it

{Xit ⊗ (Zit − z0)}XT
i(t−1)

(
E
{
m̂(Zi(t−1))

∣∣X11, · · · , XNT , Z11, · · · , ZNT
}
−m(Zi(t−1))

)
Kit

= op (tr {H}) ,

as N tends to infinity.

Now substitute the asymptotic expressions for (42), (43) and (44) into (41) apply that |H| → 0 in such

a way that N |H| → ∞ and we have shown that the asymptotic bias in m̂(1) (z0;H) is of the same
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order as it is in m̃(1) (z0;H).

For the variance term, recall that substituting (13) into (15) and taking conditional expectations on

the sample values

m̂(1)(z0;H)− E
{
m̂(1)(z0;H)|X11, ..., XNT , Z11, ..., ZNT

}
= eT1

(
Z̃(1)TW (1)Z̃(1)

)−1
Z̃(1)TW (1)∆v

+eT1

(
Z̃(1)TW (1)Z̃(1)

)−1
Z̃(1)TW (1)v̂,

where v̂ = (v̂1, · · · , v̂N )T is a (N(T − 1)× 1)-vector, such that

v̂i =

({
XT
i0r (Zi0;H)

}T
, · · · ,

{
XT
i(T−1)r

(
Zi(T−1);H

)}T)T
,

i = 1, · · · , N , and

r
(
Zi(t−1);H

)
= m̂

(
Zi(t−1);H

)
− E

{
m̂
(
Zi(t−1);H

)
|X11, ..., XNT , Z11, ..., ZNT

}
,

i = 1, · · · , N ; t = 2, · · · , T .

Then, the variance of m̂(1) (z0;H) takes the form

Var
{
m̂(1) (z0;H)

∣∣∣X11, · · · , XNT , Z11, · · · , ZNT

}
(45)

= eT1

(
Z̃(1)TW (1)Z̃(1)

)−1

Z̃(1)TW (1)VW (1)T Z̃(1)
(
Z̃(1)TW (1)Z̃(1)

)−1

e1

+ eT1

(
Z̃(1)TW (1)Z̃(1)

)−1

Z̃(1)TW (1)E
{
v̂v̂T

∣∣X11, · · · , XNT , Z11, · · · , ZNT

}
W (1)T Z̃(1)

(
Z̃(1)TW (1)Z̃(1)

)−1

e1

+ 2eT1

(
Z̃(1)TW (1)Z̃(1)

)−1

Z̃(1)TW (1)E
{
v̂∆vT

∣∣X11, · · · , XNT , Z11, · · · , ZNT

}
W (1)T Z̃(1)

(
Z̃(1)TW (1)Z̃(1)

)−1

e1.

≡ I1 + I2 + I3.

Following exactly the same lines as in the proof of the variance term in Theorem 3.1 we get, as N

tends to infinity,

I1 =
2σ2

vR (Ku)

N |H|1/2

(
1

T

∑
t

BXXt (z0)

)−1

{1 + op(1)} . (46)

In order to calculate the asymptotic order of I2, we just need to calculate

1

NT
Z̃(1)TW (1)E

{
v̂v̂T

∣∣X11, · · · , XNT , Z11, · · · , ZNT
}
W (1)T Z̃(1). (47)

The upper left entry is

(NT )−1
∑
i

∑
ts

XitX
T
i(t−1)E

{
r
(
Zi(t−1);H

)
r
(
Zi(s−1);H

)T ∣∣∣X11, · · · , XNT , Z11, · · · , ZNT

}
Xi(s−1)X

T
isKitKis.

(48)

Applying the Cauchy-Schwarz inequality for covariance matrices then (48) is bounded by

(NT )−1
∑
i

∑
ts

XitX
T
i(t−1)vec1/2

{
diag

(
E
{
r
(
Zi(t−1);H

)
r
(
Zi(t−1);H

)T ∣∣∣X11, · · · , XNT , Z11, · · · , ZNT
})}

×vec1/2
{

diag
(
E
{
r
(
Zi(s−1);H

)
r
(
Zi(s−1);H

)T ∣∣∣X11, · · · , XNT , Z11, · · · , ZNT
})}T

Xi(s−1)X
T
isKitKis.
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Now, note that under the conditions of the Theorem 3.1

vec
{

diag
(
E
{
r (z;H) r (z;H)T

∣∣∣X11, · · · , XNT , Z11, · · · , ZNT
})}

= Op

(
1

N |H|

)
,

uniformly in z, and therefore (48) is of order Op

(
1

N |H|

)
.

Following the same lines, it is easy to show that the upper right entry of (47) is

(NT )−1
∑
i

∑
ts

XitX
T
i(t−1)E

{
r
(
Zi(t−1);H

)
r
(
Zi(s−1);H

)T ∣∣∣X11, · · · , XNT , Z11, · · · , ZNT

}
×Xi(s−1) {Xis ⊗ (Zis − z0)}T KitKis = op

(
1

N |H|

)
,

and finally the lower right entry of (47) is

(NT )−1
∑
i

∑
ts

{Xit ⊗ (Zit − z0)}XT
i(t−1)E

{
r
(
Zi(t−1);H

)
r
(
Zi(s−1);H

)T ∣∣∣X11, · · · , XNT , Z11, · · · , ZNT

}
×Xi(s−1) {Xis ⊗ (Zis − z0)}T KitKis = Op

(
1

N |H|

)
.

Now, combining results in (42) and (47) we show that I2 = op

(
1

N |H|

)
. Finally a standard Cauchy-

Schwarz inequality is enough to show that I3 = op

(
1

N |H|

)
and then the proof of the result is closed.

26



References

Arellano, M. (2003). “Panel Data Econometrics”. Oxford University Press.

Baltagi, B. (2005). “Econometrics Analysis of Panel Data (2nd edition)”. Wiley, New York.

Baltagi, B. and Q. Li (2002). “Series estimation of partially linear panel data models with fixed effects”.

Annals of Economic and Finance 3, 103–116.

Fan, Y. and I. Gijbels (1995). “Local polynomial modelling and its applications”. Chapman & Hall.
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