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1 Introduction

Gaussianity is a commonly employed assumption in time series analysis and in econometrics in

general. Characteristically, tests for stochastic trends or persistence have been based on ordinary

least squares (OLS) estimation, achieving optimal power properties under normality. For example,

the asymptotic local power envelopes frequently discussed in the unit root literature (see, among

others, Elliott, Rothenberg and Stock, 1996) are derived under the assumption that the latent

innovations driving the processes are Gaussian. In practice, however, many variables in macroeco-

nomics and �nance appear to be driven by heavy-tailed shocks, often exhibiting large and sudden

movements, similar to additive outliers. To give just two examples, Falk and Wang (2003) test the

long-run purchasing power parity hypothesis considering exchange rate returns and in�ation rates to

be heavy-tailed stochastic processes, using residual and likelihood-ratio-based co-integration tests

which explicitly allow for in�nite-variance innovations, while Charemza, Hristova and Burridge

(2005) apply unit root tests to in�ation data allowing for in�nite variance innovations.

As discussed in Rothenberg and Stock (1997), if the data are non-Gaussian but remain �nite

variance, then OLS-based inference typically remains valid in large samples, but is ine¢ cient com-

pared to methods which exploit the correct form of the likelihood. Rothenberg and Stock (1997)

and Jansson (2008) discuss the development of power envelopes for non-Gaussian data; see also

Haldrup and Jansson (2006, pp.260-270) for a useful summary of this material. As Haldrup and

Jansson (2006) discuss, minimal su¢ cient statistics which are derived under the assumption of

Gaussianity are invariant with respect to the distribution of the disturbances as long as these have

an expected value of zero and an unconditional variance of one. The Gaussian asymptotic local

power envelope can therefore be seen as the lower bound of the maximal attainable local asymp-

totic power. Rothenberg and Stock (1997) derive an upper bound on the magnitude of the power

gains available when the innovations are non-Gaussian under the assumption that the underlying

innovation distribution is known. Jansson (2008) derives further results for the case where the inno-

vation distribution is not assumed known. Where the innovations are symmetrically distributed he

demonstrates that the result in Rothenberg and Stock (1997) can be obtained without knowledge

of the innovation distribution.

Since the seminal work of Mandelbrot (1967) and Fama (1965) heavy tails have received con-

siderable attention in the statistics, econometrics and �nance literatures; see Resnick (1997) for a

comprehensive review. Given that unusually large movements in economic and �nancial time series

seem to occur more often than is implied by Gaussianity and that in practice the exact distrib-

ution of the innovations cannot be assumed known, information on the performance of unit root

tests and an evaluation of their resilience with respect to deviations from Gaussianity is of consid-

erable empirical relevance. Moreover, a growing literature on unit root testing in processes with

in�nite-variance innovations, drawn from the �-stable class of distributions, has developed in recent

years; see Ahn, Fotopoulos and He (2001) for a partial review. Chan and Tran (1989) and Rachev,

Mittnik and Kim (1998) detail large sample results for OLS-based unit root tests where the under-

lying data generation process [DGP] is an AR(1) driven by independent and identically distributed
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[IID] heavy-tailed innovations. Knight (1989) develops M -estimation and least absolute deviation

based unit root tests in the context of the same DGP, while Knight (1991) extends these results to

the case where the driving shocks display in�nite-order moving average dynamics. Phillips (1990)

generalises the Phillips and Perron (1988) unit root tests to the context of processes driven by

weakly dependent shocks whose innovations display in�nite variance. More recently, Samarakoon

and Knight (2009) consider M -based testing for unit roots in �nite-order autoregressive processes

driven by in�nite variance innovations. Bootstrap based unit root tests are proposed by Horváth

and Kokoszka (2003), Moreno and Romo (2012), and Cavaliere, Georgiev and Taylor (2016b), the

latter focusing on the popular augmented Dickey Fuller [ADF] tests of Dickey and Fuller (1979).

Chan, Peng and Qi (2006) derive results for inference in a near-integrated �rst-order autoregressive

process with IID innovations and in�nite variance based on quantile regression methods.

Cappuccio and Lubian (2007) investigate the behaviour of a variety of stationarity and non-

stationarity tests under a class of local-to-�nite variance IID errors, originally introduced in Amsler

and Schmidt (1999) and subsequently published as Amsler and Schmidt (2012). The local-to-�nite

variance formulation is intended to deliver an improvement over standard Wiener asymptotics for

data that, on the one hand, possess �nite variance, while on the other hand exhibit heavy-tailed

behaviour that can render the Wiener approximation inadequate in �nite samples. Using this

local-to-�nite variance set up, in this paper we evaluate both analytically and through Monte Carlo

experiments the impact that heavy tailed innovations have on the size and power performance of

popular unit root tests. In particular, we generalise existing results in three directions. First, we

work within a local-to-unity framework, thereby allowing an evaluation of the impact of heavy-

tailed innovations on the asymptotic local power functions of the tests. Second, we allow for the

case where the driving shocks follow a linear process in heavy-tailed innovations rather than simply

follow an IID process. Finally, we explore how variants of the familiar ADF unit root tests which

employ Eicker-White (rather than OLS) standard errors behave when applied to heavy-tailed data.

In conventional stationary regression settings, these standard errors are designed to yield regression

t- and F -tests which are robust to certain forms of heteroskedasticity in the latent error process. It

therefore seems worth exploring how they behave with heavy-tailed data. Our results suggest that

a very simple implementation of Eicker-White can deliver ADF-type tests which display signi�cant

�nite sample power gains relative to other standard tests.

The remainder of the paper is structured as follows. In section 2 we present and discuss

our reference time series model, a local-to-unity autoregressive process driven by shocks which

follow a stable and invertible linear process driven by heavy-tailed innovations. Section 3 brie�y

outlines some of the most widely used unit root tests in the literature, including the variants of

the conventional ADF tests implemented with Eicker-White standard errors. Section 4 details the

large sample behaviour of these unit root statistics when the innovations are heavy-tailed. Section 5

reports results from a Monte Carlo simulation study into the �nite sample size and power properties

of the tests in such cases. Section 6 concludes. All proofs are contained in a mathematical appendix.
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2 Near-Integrated Local-to-Finite Variance Processes

Consider the data fxtgTt=1 generated from the near-integrated process,

xt = �Txt�1 + ut (1)

where x0 = Op(1) and �T := 1�c=T , with c a �xed �nite constant, which characterises the local-to-
unity properties of xt. Our interest lies in testing the unit root null hypothesis H0 : �T = 1 (c = 0)

against the locally stable alternative H1;c : j�Tj < 1 (c > 0), although the large sample results which
we provide do not in fact restrict c to be non-negative and so could also be used to evaluate the

performance of these tests against locally explosive alternatives of the form H1;c� : j�Tj > 1 (c < 0).
In the context of (1) we specify ut to follow a linear process; that is,

ut =  (L)"t; "t = "1t + a
�1
T T 1=2"2t (2)

where  (L) is a potentially in�nite-ordered moving average polynomial, conditions on which will

be speci�ed below. The innovations f"1tgt2Z and f"2tgt2Z are independent sequences with "1t �
IID(0; �21) and where "2t is IID and symmetrically distributed in the normal domain of attraction

of a stable law with characteristic exponent (or tail index) � 2 [1; 2), denoted "2t 2 ND(�); see,
for example, Ibragimov and Linnik (1971, pp.92�93). The normalisation of "2t, by  > 0 and

aT := aT 1=�, is such that the partial sum process of T�1=2"t converges weakly to a Lévy process

with a Wiener component and an �-stable component whose relative weights depend on �1 and .

The process in (2) can be equivalently written as,

ut =  (L)"1t + a
�1
T T 1=2 (L)"2t (3)

= "�1t + a
�1
T T 1=2"�2t

where "�it :=  (L)"it; i = 1; 2: The speci�cation in (2) was originally proposed by Amsler and

Schmidt (1999, 2012) for the particular case where  (L) = 1, so that ut in (2) is also an IID

process. In their case, (3) therefore simpli�es to

ut = "1t + a
�1
T T 1=2"2t. (4)

The error process ut in (3) maintains the in�nite variance property in �nite samples, while

collapsing to the standard �nite variance assumption asymptotically (for T !1 and t �xed); see

also Callegari et al. (2003), Capuccio and Lubain (2007) and Samarakoon and Knight (2009, pp.

330-331). It is important to recognise, however, that the passage to the limit in (4), and in (3), for a

�xed t is distinct from the passage to the limit which occurs for statistics computed by aggregation

over t; in the latter case, the contribution of "2t rather than vanishing as T ! 1 gives rise to a

Lévy �-stable component. Anticipating this functional convergence, we recall its one-dimensional

counterpart. It follows from the de�nition of the ND(�) domain that the non-degenerate limit of
a (scaled and centred) sum of IID ND(�) variables is an �-stable random variable. It is usual to

denote an �-stable distribution by S�(�; �; �); indicating that the distribution is de�ned by four
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parameters: (i) the characteristic exponent �; � 2 (0; 2]; when � = 2 we obtain the Gaussian

distribution with variance 2�2, and when � < 2 the resulting distribution is heavy-tailed with

the key property that the moments E jS�(�; �; �)jr are �nite for r < � and in�nite for r � �,

(ii) the skewness parameter � which determines the shape of the distribution (for � > 0 (< 0)

the distribution is positively (negatively) skewed and for � = 0 it is symmetric), (iii) the scale

parameter �; � 2 R+, and (iv) the location parameter � 2 R. Because we have assumed symmetry
here, we have that a�1T

PT
t=1 "2t ) S�(0; 1; 0), with no need for centring, where ) denotes weak

convergence and noting that the scale parameter in the limit distribution is made unity by an

appropriate choice of the constant a in the de�nition of aT . For more details on stable distributions

see, for example, Feller (1971), and for stable processes, Samorodnitsky and Taqqu (2000).

In what follows, we place the following set of conditions, collectively labelled Assumption A, on
ut of (3).

Assumption A:

A:1 : f"�itgt2Z ; i = 1; 2; are generated by a linear process such that

"�it =  (L)"it =

1X
j=0

 j"ij

with  0 := 1 and  (z) :=
P1

j=0  jz
j has no roots on the closed unit complex disk.

A:2 : f"1tgt2Z is an IID sequence with E["1t] = 0, E["21t] = �21 > 0 and E["
4
1t] <1, t 2 Z.

A:3 : f"2tgt2Z is an IID sequence of symmetrically distributed random variables in the normal

domain of attraction of a stable law with characteristic exponent � 2 [1; 2), denoted as

"2t 2 ND(�): In particular, E["2t] = 0, t 2 Z, whenever the expectation exists.

A:4 : f"1tgt2Z and f"2tgt2Z are independent.

A:5 :
P1

j=0 j
�� j���=2 <1 for some � 2 (0; �)\(0; 1] and the inverse 1+

P1
j=1 �jz

j := (
P1

j=0  jz
j)�1

satis�es
P1

j=1 j�j j� <1.

Remark 2.1: Although the more general assumption � 2 (0; 2) could be considered instead

of � 2 [1; 2), as speci�ed in A.3, values for the tail index in the range � 2 (0; 1) are arguably of
limited empirical relevance for economic and �nancial variables in view of the �niteness of moments

property of �-stable random variables noted above; hence, in what follows we restrict our attention

to � 2 [1; 2). Regarding summability, Assumption A.1 and the condition that
P1

j=0 j
�� j���=2 <1

from Assumption A.5 are su¢ cient for (
P1

j=0  jz
j)�1 to be bounded and bounded away from zero

for jzj � 1. The conditions placed on  (z) in Assumptions A.1 and A.5 imply Assumption 2 of
Chang and Park (2002) and coincide with Assumption A(b,d) of Cavaliere et al. (2016a), allowing

us to use certain results from these papers. �
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Remark 2.2: Assumptions A.2 and A.3 impose an IID condition on f"1tg and f"2tg, respectively.
In the case of f"1tg this can be relaxed to the considerably weaker globally stationary martingale
di¤erence sequence [MDS] assumption of, inter alia, Davidson (1994, p.450), without altering the

limiting results given in this paper. In the case of f"2tg, however, we cannot weaken this assumption
because of the absence in the literature of any counterparts for the IID convergence results given

in Lemma 4.1 below for the case where f"2tg is a MDS. �

3 Unit Root Tests

A large number of procedures has been proposed to test for the presence of an autoregressive unit

root. In this section we brie�y review the most widely used of these tests, summarising known facts

about their behaviour in the pure �nite variance case (i.e., ut = "�1t) and pure in�nite variance case

(i.e., ut = "�2t). We will subsequently evaluate the behaviour of these tests, both analytically and

through Monte Carlo simulations, in the context of heavy-tailed data generated from (1) and (3).

3.1 Augmented Dickey-Fuller Tests

The well-known ADF tests are computed from the sieve regression

�xt = �xt�1 +

pTX
j=1

�j�xt�j + "pT ;t; t = pT + 1; :::; T: (5)

In the context of (5) we can test the unit root null hypothesis, H0, against the locally stable root

alternative, H1;c, using either the ADF t-ratio, tb� := b�=se (b�), or the associated normalised bias
statistic Zb� := Tb�=(1 �PpT

i=1
b�i), where b� and b�j ; j = 1; :::; pT are the OLS slope estimates of �

and �j , j = 1; :::; pT , respectively, and se (b�) is the OLS standard error of b�.
In the pure �nite variance case (ut = "�1t), Chang and Park (2002) show that provided the lag

truncation parameter, pT in (5), satis�es the rate condition 1=pT + p3T =T ! 0 as T !1, and that
standard summability and moment conditions hold, that tb� and Zb� have the usual pivotal Dickey-
Fuller limiting null distributions (which are functionals of a standard Brownian motion process)

regardless of any weak dependence present in ut. Cavaliere et al. (2016b) demonstrate that the

same rate condition is su¢ cient in the pure in�nite variance case, ut = "�2t. In particular, they

show that under the summability conditions of Assumption A.5 this rate condition on pT ensures
that tb� and Zb� have the same limiting null distributions when weak dependence is present as in the
case where ut is IID. In the pure in�nite variance case, however, these limiting null distributions

are functionals of an �-stable motion (with � < 2). The limiting null distributions, in both the

pure �nite variance and pure in�nite variance cases, are special cases of the limiting distributions

we shall report in Theorem 4.1, below.

We will also consider implementations of the ADF t-statistic which, rather than using the OLS

standard error of b�, use Eicker-White standard errors. Such implementations seem worth exploring
in the present context, given that these standard errors are used to control for heteroskedasticity
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in the latent error process in the case of standard stationary regression models. While they will

clearly not control for heavy-tailed behaviour in the present context they might mitigate against

the impact of the type of large innovations associated with heavy-tails. To that end, let �Xt�1 :=

(�xt�1; :::;�xt�pT )
0. Then the Eicker-White analogues of the ADF tb� statistic can be de�ned in

potentially several ways, including tW�̂;i = b�=seW;i (b�), i = 1; 2, where
seW;1 (b�) :=

0@ TX
t=pT+1

x2t�1

1A�10@ TX
t=pT+1

x2t�1b"2pT ;t
1A1=2 (6)

with b"pT ;t denoting the OLS residual from estimating (5), and

seW;2 (b�) :=
0@ TX
t=pT+1

x2t�1 � S1�(S��)�1S01�

1A�10@ TX
t=pT+1

x2t�1b"2pT ;t � S1�;"(S��;")�1S01�;"
1A1=2

(7)

with S1� =
PT

t=pT+1
xt�1�X 0

t�1, S�� =
PT

t=pT+1
�Xt�1�X 0

t�1, S1�;" =
PT

t=pT+1
xt�1�X 0

t�1b"2pT ;t
and S��;" =

PT
t=pT+1

�Xt�1�X 0
t�1b"2pT ;t. In what follows we will focus attention on the tW�̂;1 which

provides a simple theoretical benchmark, but we will also provide some results for tW�̂;2 in order

to make comparison with Demetrescu (2010) who derived the asymptotic null distribution of tW�̂;2
in the pure �nite-variance case, ut = "�1t, for the case where  (L) is the inverse of a �nite AR(p)

polynomial. Speci�cally, from the results in Demetrescu (2010) it follows that under �nite variance,

homoskedasticity (and some additional technical conditions), the standard ADF statistic t�̂ and its

robust versions tW�̂;i, i = 1; 2, are all asymptotically equivalent. One of our �ndings in this paper,

which will be discussed in section 4, is that this is no longer the case when  6= 0 in (3). Not only
does the limit distribution of t�̂ di¤er from those of tW�̂;i, i = 1; 2, but t

W
�̂;1 and t

W
�̂;2 also converge to

di¤erent limiting distributions under the heavy-tailed error speci�cation in (3).

3.2 Phillips-Perron Tests

The so-called Phillips-Perron [PP] unit root tests of Phillips (1987) and Phillips and Perron (1988)

control for weak dependence in ut through non-parametric correction factors, based on consistent

estimates of both the long-run and short-run variances of ut. The PP test statistics are constructed

as

Z� := T
�b�� 1�� 1

2

�b!2u � b�2u�
 
T�2

TX
t=1

x2t�1

!�1
(8)

Zt :=
b�ub!u tb�=1 � 12 �b!2u � b�2u�

 
T�2b!2u TX

t=1

x2t�1

!�1=2
(9)

where b� is the OLS estimate of the slope parameter obtained from regressing xt on xt�1 (t =

1; :::; T ), and tb�=1 := b��1u (b��1)(PT
t=1 x

2
t�1)

1=2, with b�2u := T�1
PT

t=1 bu2t and but := xt�b�xt�1. In the
pure �nite variance case, b�2u is a consistent estimator of the short run variance �2u := E(u2t ) = 	

2�21;

	2 :=
P1

j=0  
2
j . Finally, b!2u, is de�ned such that, at least in the pure �nite variance case, it is a
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consistent estimator of the long-run variance !2u := 2�fu(0) = f (1)g2�21, where fu(�) denotes the
spectral density of ut.

In the pure �nite variance context, ut = "�1t, following Perron and Ng (1996), two alternative

estimators for the long-run variance are usually considered. First, a non-parametric kernel estima-

tor based on the sample autocovariances, b!2u = s2WA, with s
2
WA :=

PT�1
h=�T+1K(h=m)̂h, where

̂h := T�1
PT�jhj

t=1 butbut+jhj, K (�) is a kernel function satisfying the general conditions reported in
Jansson (2002, Assumption A3), and the bandwidth parameter m > 0 satis�es the rate condition

1=m +m2=T ! 0 as T ! 1 (which corresponds to Assumption A4 of Jansson, 2002). Second, a

parametric autoregressive spectral density [ASD] estimator, b!2u = s2AR; of the form suggested by

Berk (1974), with s2AR := s2pT =(1 �
Pk

i=1
b�i)2 and s2pT := T�1

PT
t=pT+1

b"2pT ;t, where b"pT ;t are the
OLS residuals from estimating (5). The conditions for the asymptotic validity of the �nite order

autoregressive approximation in (5) have been discussed in Section 3.1. The consistency of the

short-run variance, s2pT ; follows from Chang and Park (2002) and Berk (1974, p.492) who showed

that, s2pT := T�1
PT

t=pT+1
b"2pT ;1t = T�1

PT
t=1 "

2
1t + op(1)

p! �21:

Although originally proposed for the �nite variance case, the PP test statistics de�ned in (8)

and (9) can also be meaningfully implemented in the pure in�nite variance case. In particular,

the correction factors used in (8) and (9) attain the same purpose of cleansing the limiting null

distributions of the pseudo AR(1) regression statistics b� and tb�=1 from nuisance parameters arising
from weak dependence in ut. The only di¤erence is that while these correction quantities were

previously related to �21 (which can be interpreted as the quadratic variation at the point 1 of

a Brownian motion) they are now related to the quadratic variation at 1 of an in�nite-variance

random process. We give further details on this in Remark 3.1.

Remark 3.1: In the pure �-stable context (� < 2, ut = "�2t), it holds that

a�2T

TX
t=1

"�22t ) 	2[U�]1; (10)

where [U�]1 is the quadratic variation at the point 1 of a Lévy �-stable process U�(r) (see Lemma 4.1
below), 	2 :=

P1
j=0  

2
j and aT := aT 1=�. From Phillips (1990), when b� is a T -consistent estimator

of �T , the same result as in (10) holds if "
�
2t is replaced by the residual b"�2t := xt � b�xt�1; and

hence, Ta�2T b�2u ) 	2[U�]1. Furthermore, if b!2u is de�ned by a kernel procedure (as detailed above),
then it is argued in Phillips (1990, p.53) that Ta�2T b!2u ) f (1)g2[U�]1. The same convergence
holds for the ASD estimator, b!2u = s2AR; based on (5). Speci�cally, in the pure in�nite variance

context the consistency of the estimators b�j ; j = 1; :::; pT ; and the convergence Ta�2T s2pT ) [U�]1
are established in Cavaliere et al. (2016b). Although b�2u and b!2u need to be re-normalised to achieve
non-trivial convergence, no re-normalisations are needed in (8) and (9) because the contributions

of aT cancel out, as does [U�]1 in the limits of the statistics. �

In both the pure �nite variance case and the pure in�nite variance case, under suitable regularity

conditions, the PP Z� statistic is known to share the same limiting null distribution as the ADF
normalised bias statistic, Zb� from (5), while Zt shares the same limiting null distribution as tb�; see,
among others, Phillips (1987), Phillips and Perron (1988), and Phillips (1990).
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3.3 M Unit Root Tests

We also consider the popular trinity of modi�ed or so-calledM unit root tests due to Stock (1999)

and Perron and Ng (1996). These are de�ned as follows:

MSB :=
 b!�2u T�2

TX
t=1

x2t�1

!1=2
(11)

MZ� :=
 
2T�2

TX
t=1

x2t�1

!�1 �
T�1x2T � b!2u� (12)

MZt := MSB �MZ� (13)

where b!2u is as de�ned previously in the context of the PP statistics in (8) and (9). Haldrup and
Jansson (2006) argue that theM tests, when coupled with the modi�ed AIC lag selection method

of Ng and Perron (2001), are preferable to the standard ADF tests in the pure �nite variance

case because of their superior �nite sample properties when weak dependence is present in futg.
Representations for the limiting null distributions of the M statistics in the pure �nite variance

case, under suitable regularity conditions, are provided in, among others, Haldrup and Jansson

(2006). In particular, MZ� and MZt are asymptotically equivalent to Zb� and Zt, respectively.
As with the PP tests discussed above, in the pure in�nite-variance case, ut = "�2t, the M unit

root tests can again be meaningfully implemented with no change in (11)-(13). To the best of our

knowledge the large sample behaviour of the M statistics has not been established in the pure

in�nite variance case. These can be obtained as a special case of the large sample results we will

subsequently provide in section 4.2.

3.4 Breitung�s Variance Ratio Test

Finally, we will also consider the variance ratio test (VRT ) proposed by Breitung (2002),

VRT := T�2

 
TX
t=1

x2t

!�1 TX
t=1

0@ tX
j=1

xj

1A2 : (14)

The variance ratio test has some appealing properties in the pure �nite variance case. First, it

requires no correction, either parametric or non-parametric, to account for any weak dependence

in ut. Second, by virtue of this, it has been advocated by some authors (see, for example, Müller,

2008) as a unit root test which avoids the criticisms of Faust (1996) regarding the (theoretical)

uncontrollability of the size of unit root tests based around (parametric or non-parametric) cor-

rections for general weak dependence in ut. Representations for the limiting null distributions of

the VRT statistic in the pure �nite variance case are given, under suitable regularity conditions,

in Breitung (2002) and Breitung and Taylor (2003). In the pure in�nite-variance case, ut = "�2t,

the VRT test can again be meaningfully implemented with no change needed in the formulation

of (14). Again to the best of our knowledge, the large sample behaviour of the VRT statistic has

not been established in the pure in�nite variance case, and again can be obtained as a special case

of the large sample results we give in section 4.2.
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4 Large Sample Results

As we have seen, in the pure in�nite variance case, ut = "�2t, commonly used unit root tests designed

for the pure �nite variance case, ut = "�1t, may still be implemented without modi�cations to the

functional form of the test statistics. Their limiting null distributions di¤er between the two cases,

however. In the pure �nite variance case these distributions are particular functionals of a Brownian

motion process (which is 2-stable), while in the pure in�nite variance case they take the form of

the corresponding functionals of an �-stable motion (with � < 2). In this section we will show

that under the Amsler and Schmidt (2012) speci�cation in (4), weak convergence is again obtained

(again without modi�cations to the test statistics) and, typically, the resulting limit distributions

are expressible as functionals of a Lévy process with a Wiener and an �-stable (� < 2) component,

corresponding to the two components in (4). The results we give in this section can therefore be

used to evaluate the asymptotic null distributions of the statistics and the asymptotic local power

functions of the associated tests. A by-product of our results is that they also enable us to detail

the limiting null distributions of theM and VRT statistics in the pure in�nite variance case.

4.1 Preliminary Results

Here we present some functional and product moment convergence facts needed for our main

results. For a semi-martingale S, recall that the associated quadratic variation process is given
by [S]r := S2(r) � 2

R r
0 S(u)dS(u), r 2 [0; 1]. In particular, for a standard Brownian motion W

the quadratic variation is deterministic: [�1W ]r = �21r, whereas for a pure jump Lévy �-stable

process (� < 2) it is the sum (in�nite series) of squared jumps until r, which are countably many.

Throughout, the space Dn[0; 1] of cadlag functions on [0; 1] with values in Rn is equipped with
Skorokhod�s (1956) J1 topology.

We �rst state Lemma 4.1 which details the joint weak convergence properties of the (scaled)

partial sum processes relevant for establishing the large sample behaviour of the unit root statistics

from section 3. The proof of Lemma 4.1 is discussed in Remark 4.1.

Lemma 4.1 Let Assumptions A:1�A:5 hold. Then, as T !1, it holds that8<:T�1=2
[rT ]X
t=1

"�1t; a
�1
T

[rT ]X
t=1

"2t; T
�1

[rT ]X
t=1

"�21t ; a
�2
T

[rT ]X
t=1

"22t

9=;)
�
 (1)�1W (r);U�(r);	2�21r; [U�]r

	
(15)

in D4[0; 1], and 8<:a�1T
[rT ]X
t=1

"�2t; a
�2
T

[rT ]X
t=1

"�22t

9=; f:d:d:!
�
 (1)U�(r);	2 [U�]r

	
; (16)

where W and U� are, respectively, independent standard Wiener and Lévy �-stable processes,
f:d:d:!

denotes convergence of the �nite dimensional distributions (f.d.d.) jointly with (15),  (1) :=P1
j=0  j ; 	

2 :=
P1

j=0  
2
j and the norming sequence aT is given by aT := aT 1=�.

10



Remark 4.1: For a proof of the marginal convergence involving the Brownian motion process W

alone, see Phillips (1987) and Hamilton (1994, Proposition 17.3, pp.505-506), and for that involving

U� alone, see Resnick (1986, pp. 94-95), Phillips (1990), Avram and Taqqu (1992), and Phillips

and Solo (1992, p.975). As f"1tgt2Z and f"2tgt2Z are independent, then so are W and U�, and
because W is also continuous a.s., convergence is in D4[0; 1] as asserted in Lemma 4.1. �

Remark 4.2: As shown by Avram and Taqqu (1992) - see also Phillips (1990) and Phillips and

Solo (1992) - the �nite dimensional convergence in (16) cannot be replaced by weak convergence

in D2[0; 1], because the linear structure of the errors under heavy-tails induces collisions of large

jumps in the partial sum process. As discussed by, among others, Phillips and Solo (1992) and

Chan and Zhang (2009), in considering possible dependent noise sequences with in�nite variances

a coarser topology is required to ensure weak convergence of partial sums. For instance, Chan and

Zhang (2009) develop, in a topology known as M1, interesting results for near-integrated processes

under strong dependence and in�nite variances. �

Following Phillips (1987) and given the local-to-unity behaviour of our DGP, we de�ne the

(Gaussian) Ornstein-Uhlenbeck [OU] process Jc(r) :=
R r
0 e

(s�r)cdW (s) =W (r)�c
R r
0 e

(s�r)cW (s)ds,

r 2 [0; 1], generated by the stochastic di¤erential equation dJc(r) = �cJc(r)dr + dW (r); with

Jc(0) = 0: Given the speci�cation of ut considered in (4), we will also require the analogue

of Jc in the �-stable context introduced by Chan (1990); that is, a Lévy driven OU process,

de�ned as Jc;�(r) := U�(r) � c
R r
0 e

(s�r)cU�(s)ds, r 2 [0; 1], and which results from dJc;�(r) =

�cJc;�(r)dr + dU�(r); with Jc;�(0) = 0:
In Lemma 4.2 we now provide intermediate results which will enable us subsequently to provide

characterisations of the limit distributions of the unit root test statistics outlined in Section 2.

Lemma 4.2 is formulated in terms of the process Hc;� := Jc+�Jc;�, where � := =�1. In particular,

relating to the null hypothesis, H0 (where c = 0), H0;� = W + �U� and its quadratic variation
[H0;� ]r satis�es [H0;� ]r = [W ]r + [�U�]r = r + �2[U�]r, r 2 [0; 1]. Although under the conditions of
Lemma 4.1 the weak convergence of T�1=2

P[rT ]
t=1 ut to  (1)�1H0;�(r) holds only in f.d.d. sense, it

is still true that T�1=2
P[rT ]

t=1 "t ) �1H0;�(r) in D[0; 1], which is su¢ cient for Lemma 4.2.

Lemma 4.2 Let fxtg be generated according to the DGP in (1) and (3), and let Assumptions

11



A:1�A:5 hold. Then, as T !1, the following convergence results hold jointly:

i) T�1
TX
t=1

u2t ) 	2�21[H0;� ]1

ii) T�3=2
TX
t=1

xt )  (1)�1

Z 1

0
Hc;�(r)dr

iii) T�2
TX
t=1

x2t�1 ) f (1)g2�21
Z 1

0
H2
c;�(r)dr

iv) T�1
TX
t=1

xt�1ut ) f (1)g2�21
�Z 1

0
Hc;�(r)dH0;�(r) +

1

2

�
1� 	2

f (1)g2

�
[H0;� ]1

�

v) T�1
TX
t=1

xt�1"t )  (1)�21

Z 1

0
Hc;�(r)dH0;�(r)

vi) T�2
TX
t=1

x2t�1"
2
t ) f (1)g2�41

Z 1

0
H2
c;�(r)d[H0;� ]r

where Hc;� := Jc + �Jc;�, with � := =�1, and where [H0;� ]1 = 1 + �2[U�]1, 	2 :=
P1

j=0  
2
j and

 (1) :=
P1

j=0  j.

Remark 4.3: In Lemma 4.2(vi), the presence of a stochastic integral with respect to the quadratic

variation [H0;� ]r is natural on noting that T�2
PT

t=1 x
2
t�1"

2
t is the quadratic variation at 1 of the

process T�1
P[Tr]

t=1 xt�1"t, r 2 [0; 1]. As the latter process has I(r) :=  (1)�21
R r
0 Hc;�(s)dH0;�(s),

r 2 [0; 1], as its weak limit, it is then not surprising that T�2
PT

t=1 x
2
t�1"

2
t converges weakly to the

quadratic variation at 1 of I, which is given by [I]1 := f (1)g2�41
R 1
0 H

2
c;�(r)d[H0;� ]r. It could also

be useful to note thatZ 1

0
H2
c;�(r)d[H0;� ]r =

Z 1

0
H2
c;�(r)dr + �

2
X
r2(0;1]

H2
c;�(r�)f�U�(r)g2;

where
R 1
0 H

2
c;�(r)dr =

�R r
0 Hc;�(s)dW (s)

�
1
and

P
r2(0;1]H

2
c;�(r�)f�U�(r)g2 =

�R r
0 Hc;�(s)dU�(s)

�
1
.

Moreover, the non-zero jumps�U�(r), r 2 (0; 1], are countably many, and
P

r2(0;1]H
2
c;�(r�) f�U�(r)g

2

converges a.s. because Hc;� is bounded a.s. and
P

r2(0;1]f�U�(r)g2 = [U�]1 <1, a.s. �
Recall from section 3.2 that the PP unit root tests are based on modi�cations of the T (b�� 1)

and tb�=1 statistics, obtained from the regression of xt on xt�1. In Proposition 4.1 we detail the

large sample properties of these statistics when xt is generated by the DGP (1) and (3). We

will subsequently use these results in section 4.2 to derive the large sample distributions of the

corresponding PP tests, Z� and Zt.

Proposition 4.1 Let the conditions of Lemma 4.2 hold. Then, as T ! 1, the following weak
convergence results hold:

T
�b�� 1�) �c+

Z 1

0
Hc;�(r)dH0;�(r) +

[H0;� ]1
2

�
1� 	2

f (1)g2
�

Z 1

0
H2
c;�(r)dr
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and

tb�=1 )  (1)

	[H0;� ]
1=2
1

8><>:�c
�Z 1

0
H2
c;�(r)dr

�1=2
+

R 1
0 Hc;�(r)dH0;�(r) +

[H0;� ]1
2

�
1� 	2

f (1)g2
�

�R 1
0 H

2
c;�(r)dr

�1=2
9>=>;

where Hc;� , [H0;� ]1,  (1) and 	 are as de�ned in Lemma 4.2.

Remark 4.4: The proof of Proposition 4.1 follows straightforwardly from the results given in

Lemma 4.2. Hence, as is the case for both the pure �nite variance and pure in�nite variance cases

(see, inter alia, Phillips, 1987, and Phillips, 1990, respectively), the limit distributions of T (b�� 1)
and tb�=1 are not nuisance parameter free, and therefore any procedure based on these statistics
needs to employ corrections for any weak dependence present in ut, and in particular those discussed

in section 3.2. �

4.2 Limiting Distributions of Unit Root Statistics

In Theorem 4.1 we now collect together representations for the limiting distributions of the unit

root statistics detailed in section 3, with the exception of the second heteroskedasticity-robust ADF

statistics tW�̂;2, from section 3.1. This turns out to behave rather di¤erently from the other statistics

and we will discuss aspects of this statistic in section 4.3.

Theorem 4.1 Let the conditions of Lemma 4.2 hold. Then, as T ! 1, the following weak con-
vergence results hold:

i) Provided the lag length pT in (5) satis�es the rate condition that 1=pT + p3T =T ! 0, as T !1,
then the ADF test statistics from section 3.1 satisfy,

Zb� ) �c+

Z 1

0
Hc;�(r)dH0;�(r)Z 1

0
H2
c;�(r)dr

=: Z1;

tb� ) �c

�Z 1

0
H2
c;�(r)dr

�1=2
[H0;� ]

1=2
1

+

Z 1

0
Hc;�(r)dH0;�(r)

[H0;� ]
1=2
1

�Z 1

0
H2
c;�(r)dr

�1=2 =: t1;

tW�̂;1 ) �c

Z 1

0
H2
c;�(r)dr�Z 1

0
H2
c;�(r)d[H0;� ]r

�1=2 +
Z 1

0
Hc;�(r)dH0;�(r)�Z 1

0
H2
c;�(r)d[H0;� ]r

�1=2 ;

ii) Provided the conditions stated on !̂2u in section 3.2 hold, then the PP statistics are such that,

Z� ) Z1 and Zt ) t1;

13



iii) Again provided the conditions stated on !̂2u in section 3.2 hold, then the M statistics from

section 3.3 are such that,

MSB )

0BB@
Z 1

0
H2
c;�(r)dr

[H0;� ]1

1CCA
1=2

; MZ� ) Z1 ; andMZt ) t1;

iv) Breitung�s variance ratio statistic from section 3.4 is such that,

VRT )

Z 1

0

�Z r

0
Hc;�(s)ds

�2
Z 1

0
H2
c;�(r)dr

:

Remark 4.5: All of the limiting distributions given in Theorem 4.1 can be seen to depend,

regardless of whether H0 holds or not, on two key parameters: the maximal moment exponent,

�, characterising the Lévy process U�, and the relative weight � := =�1 of the in�nite-variance

component. It is, however, important to observe that these limiting representations are all invariant

to any weak dependence present in ut. For all of the statistics given, representations for their

limiting null distributions obtain setting c = 0, while expressions for their asymptotic local power

functions can be obtained from the representations with c 6= 0. �

Remark 4.6: The results given in Theorem 4.1 include as special cases the limiting distributions

of unit root test statistics under the pure �nite variance and pure in�nite variance speci�cations.

The pure �nite variance (ut = "�1t) limits obtain by setting  = � = 0 and Hc;0 = Jc (H0;0 = W )

in the limiting representations, whereas the limiting distributions in the pure in�nite variance case

(ut = "�2t) obtain by letting � ! 1 and replacing Hc;� by Jc;� (H0;� by U�) in the limits from
Theorem 4.1. For example, in the pure �nite variance case we then have (noting that the stochastic

di¤erential equation satis�ed by Jc(r) is used to write the numerator of (17) more succinctly) that

tW�̂;1 )

Z 1

0
Jc(r)dJc(r)�Z 1

0
J2c (r)dr

�1=2 ; (17)

which is the same as the limiting distribution for the standard ADF statistic tb� in the pure �nite
variance case, whereas in the pure in�nite variance case the limit distributions of the two statistics

are distinct, viz :

tb� )
Z 1

0
Jc;�(r)dJc;�(r)

([U�]1)1=2
�Z 1

0
J2c;�(r)dr

�1=2 ; and tW�̂;1 )

Z 1

0
Jc;�(r)dJc;�(r)�Z 1

0
J2c;�(r)d[U�]r

�1=2 : (18)

Notice, moreover, that for � = 2 the two limiting distributions given in (18) both reduce to the

right member of (17). �
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Remark 4.7: The large sample results given in Theorem 4.1 relate to the case where no determin-

istic component is allowed for in computing the unit root statistic in question. These results can be

generalised to the case where the statistics are computed using de-meaned or de-trended data, as is

typically done in the unit root testing literature. This involves replacing xt in the computation of

the statistics from section 3 by either: the residual bxt := xt� z0tb� obtained from the OLS regression

of xt on zt := 1; where � := � or on zt := (1; t)0; where � := (�; �); or, by setting �T = 1�c=T (where
the value of c is pre-speci�ed according to the deterministic speci�cation considered and the desired

signi�cance level), the residual ext := xt � z0te�, with e� obtained from the quasi-di¤erenced (GLS)

regression of Xc := (x0; x1 � �Tx0;..., xT � �TxT�1)
0 on Zc := (z0; z1 � �T z0;..., zT � �T zT�1)

0,

as in Elliott et al. (1996), where again zt := 1 when de-meaned data is required and zt := (1;

t)0 when de-trended data is required. In terms of the limiting distributions given in Proposition

4.1 and Theorem 4.1, these remain valid in such cases provided the limiting processes H0;� and

Hc;� , and the functionals thereof, are replaced by their appropriate de-meaned (H
k;�
0;� and H

k;�
c;� ;

k = OLS or GLS) or de-trended (Hk;�
0;� and H

k;�
c;� ; k = OLS or GLS) counterparts. In particular,

HOLS;�
i;� (r) := Hi;�(r) �

R 1
0 Hi;�(s)ds; H

OLS;�
i;� (r) := HOLS;�

i;� (r) � 12(r � 1=2)
R 1
0 (s � 1=2)Hi;�(s)ds,

HGLS;�
i;� (r) := Hi;�(r) � rfc�Hi;�(1) + 3(1 � c�)

R 1
0 sHi;�(s)dsg; for i = 0; c, and where c� :=

(1 + c)=(1 + c + c2=3): As in Müller and Elliott (2003), in the case where OLS de-meaning or

de-trending is employed, the term �T bx20 (which weakly converges to HOLS;�
c;� (0)2 under de-meaning

and to HOLS;�
c;� (0)2 under de-trending) needs to be added to the numerator of MZ� from section

3.3 in order thatMZ� andMZt remain asymptotically equivalent to Zb� and tb�, respectively. �

4.3 Further Results Relating to the Eicker-White ADF Tests

We conclude this section with some further considerations regarding the limit distributions of the

statistics tW�̂;1 and t
W
�̂;2 from section 3.1, which modify the corresponding standard ADF test statistics

through the use of Eicker-White rather than OLS standard errors. In section 4.3.1 we �rst explore

the relationship between the limiting distributions of t�̂ and tW�̂;1 in order to try and shed some light

on some of the �ndings we subsequently make in our Monte Carlo study in section 5. Secondly, in

section 4.3.2 we present some material relating to the limiting distribution of tW�̂;2.

4.3.1 Further Discussion of the Large Sample Behaviour of tW�̂;1 Relative to t�̂

Under the conditions of Theorem 4.1, the limiting distribution of the ratio of tW�̂;1 to t�̂ can be shown

to be given by

tW�̂;1
t�̂
)

0BB@ [H0;� ]1
Z 1

0
H2
c;�(r)drZ 1

0
H2
c;�(r)d[H0;� ]r

1CCA
1=2

: (19)

In the pure �nite variance case (ut = "�1t), it is known from Demetrescu (2010) that t�̂ and tW�̂;1 are

asymptotically equivalent, such that the limit in (19) equal to 1 (with the same result holding for the

ratio of tW�̂;2 to t�̂); see also Remark 4.6. In particular, T
�2PT

t=1 x
2
t�1"

2
t = �21T

�2PT
t=1 x

2
t�1+ op(1)
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and s2pT T
�2PT

t=1 x
2
t�1 = �21T

�2PT
t=1 x

2
t�1+ op(1) jointly converge to the same weak limit, so that

the impact of the Eicker-White correction is asymptotically negligible.

In contradistinction, in the pure in�nite variance case (ut = "�2t), the analogue of the result

in Lemma 4.2(vi) is T�2
PT

t=1 x
2
t�1"

2
t ) 4f (1)g2

R 1
0 J

2
c;�(r)d [U�]r, whereas s2pT T

�2PT
t=1 x

2
t�1 )

4f (1)g2 [U�]1
R 1
0 J

2
c;�(r)dr, with the convergence joint and the two weak limits distinct. As a

result, in this case it holds that

tW�̂;1
t�̂
)

0BB@ [U�]1
Z 1

0
J2c;�(r)drZ 1

0
J2c;�(r)d[U�]r

1CCA
1=2

=: � c;�: (20)

In order to gain some insight into how the non-trivial limit in (19) is likely to manifest itself in

the behaviour of the test statistics, we will focus attention on the pure in�nite variance case where

�1 = 0. We might expect that the qualitative conclusions from this exercise would be maintained,

at least for relatively small values of �1, when �1 6= 0. This is indeed con�rmed by the Monte Carlo
simulation results later reported in section 5. To that end, consider decomposing the weak limit of

t�̂ in the pure in�nite variance case into t1 = t
(1)
1 + t

(2)
1 with

t(1)1 := �c

�Z 1

0
J2c;�(r)dr

�1=2
[U�]1=21

and t(2)1 :=

Z 1

0
J2c;�dU�(r)

[U�]1=21
�Z 1

0
J2c;�(r)dr

�1=2 :

Under H0, t
(1)
1 = 0 and so the limiting null distributions of t�̂ and tW�̂;1 are given by t

(2)
1 and �0;�t

(2)
1 ,

respectively. Under Hc (c > 0), however, a shift leftwards by, respectively, t
(1)
1 and � c;�t

(1)
1 occurs.

To quantify these e¤ects, we investigate two special cases: �rst, the null hypothesis, H0, where

c = 0, and second one particular local alternative, Hc for c = 15. For that purpose, in Table 1

we report simulations1 of the cumulative distribution function [cdf] of � c;� for � 2 f1; 1:5; 1:75g,
both unconditionally and conditionally on the event that t(2)1 < �1:95.2 Speci�cally, Table 1

reports values for Fc;�(x) = P [� c;� � x], which is the unconditional cdf of � c;�, and Fc;�(xjt(2)1 <

�1:95) = P [� c;� � xjt(2)1 < �1:95], which corresponds to a cdf of � c;� conditional on t(2)1 taking

a (relatively) large negative value. The purpose is to see how frequently and by what magnitude

the multiplication of t(1)1 and t(2)1 by � c;�, resulting from the Eicker-White correction, in�ates or

de�ates the statistics, both in general and for outcomes in the left tail of t(2)1 which are conducive to

rejections of H0. Although the value of �1:95 is chosen as the �fth percentile of the Dickey-Fuller
distribution in the �nite variance case, qualitative conclusions are the same if the critical value is

taken from the limit null distribution for the true �.

[Please insert Table 1 about here]

1The random processes are discretised over a grid of 10000 points and 10000 replications are performed.
2For both c = 0 and c = 15, the event ft(2)1 < �1:95g occurred with simulated frequencies of 0:028, 0:041 and

0:048 for � = 1, � = 1:5 and � = 1:75, respectively.
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In Table 1, the simulated probabilities for x = 1 correspond to the event that jtW1;1j � jt1j,
where tW1;1 is the weak limit of tW�̂;1, and are highlighted in bold. Starting from the null hypothesis

c = 0, the results suggest that the unconditional distribution of �0;� = tW1;1=t1 displays positive

asymmetry for all values of � considered, yielding a predominance of cases where jtW1;1j > jt1j.
In other words, and with probabilities ranging between 0.8 and 0.6 (decreasing in �), it is seen

that in large samples the Eicker-White correction gives rise to a larger (in magnitude) value of the

t-statistic, and that this e¤ect is more pronounced the smaller is �. Nevertheless, because � c;� and

t1 are not independent, this does not imply, per se, that the Eicker-White corrected ADF test

will reject H0 more frequently than the standard ADF test based on t�̂, even if the same critical

value is used in both tests. In fact, when H0 is true, the results for the cdf of �0;� conditional on

the occurrence of a large negative value of t1 = t
(2)
1 (conducive to rejections of H0), are the exact

opposite of the general case, with predominance of outcomes where jtW1;1j � jt1j and the respective
probabilities ranging from 0.6 to 0.8 (decreasing in �). Thus, although under H0 the Eicker-White

correction more frequently in�ates jt1j than de�ates it, in the proximity of the conventional critical
regions for H0 the situation is reversed and jt1j is more frequently de�ated. In the Monte Carlo
results reported in section 5 it will be seen that this leads to undersizing in the test based on tW�̂;1.

Turning to c = 15, the unconditional cdf of �15;� is essentially unaltered compared to that of

�0;�, while variations in the simulated conditional cdf are minor.3 The conclusions drawn under

H0 for t1, therefore, remain valid under c = 15 for t(2)1 . However, t1 and tW1;1 are now shifted

downwards by, respectively, t(1)1 and � c;�t
(1)
1 which are proportional to �c which, obviously, is

independent of t(2)1 . Therefore, through the downward shift, the unconditionally more frequent

in�ation than de�ation of �c by � c;� becomes relevant and, at least for large c, will dominate the
contribution of t(2)1 and � c;�t

(2)
1 to t1 and tW1;1. In the Monte Carlo results reported in section 5 it

will be seen that this leads to power gains in the test based on tW�̂;1 relative to that based on t�̂.

4.3.2 Some Limiting Results for tW�̂;2

We conclude this section by reporting some asymptotic results for the Eicker-White corrected ADF

tW�̂;2 statistic. Our purpose here is to show that under the Amsler and Schmidt (2012) in�nite vari-

ance speci�cation in (4), the statistics tW�̂;1 and t
W
�̂;2 are not asymptotically equivalent. Speci�cally,

in large samples tW�̂;1 tends to be smaller in magnitude than t
W
�̂;2 and the ratio t

W
�̂;1=t

W
�̂;2 is bounded

away from one, in probability, potentially leading to asymptotically more frequent rejections using

tW�̂;2 than t
W
�̂;1, for the same critical value. As this turns out to be a consequence of the interaction

between the two additive terms, "1t and "2t in (4), which is an artefact of the Amsler-Schmidt

speci�cation, we restrict ourselves to a rigorous yet indirect argument that avoids any explicit

representation of the limiting distribution of tW�̂;2. Moreover, we focus on the case where xt is a

random walk because the lack of asymptotic equivalence in this special case implies that asymptotic

equivalence does not hold in general either. We stress that the random walk case is the simplest,

3 It should of course be noted that the conditional cdf is less precisely simulated because the proportion of repli-

cations where the conditioning event occurs is relatively small by construction.
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yet by no means exceptional, counterexample to asymptotic equivalence.

Our reasoning is as follows. Recall de�nitions (6) and (7). On the one hand, it holds that

TX
t=pT+1

x2t�1b"2pT ;t � S1�;"(S��;")�1S01�;" � TX
t=pT+1

x2t�1b"2pT ;t
by considerations of positive de�niteness, and we also showed in the proof of Theorem 4.1 that,

under its assumptions,

T�2
TX

t=pT+1

x2t�1 � T�2S1�(S��)�1S01� = T�2
TX

t=pT+1

x2t�1 + op(1); (21)

where T�2
PT

t=pT+1
x2t�1 is bounded away from 0 in probability. Therefore, for every � > 0,

P
�
tW�̂;1=t

W
�̂;2 � 1 + �

�
= P (seW;2 (b�) =seW;1 (b�) � 1 + �)! 1

as T !1, under the same conditions as in Theorem 4.1. This could be restated asmax
n
tW�̂;1=t

W
�̂;2; 1

o
P! 1 and interpreted as meaning that in large samples tW�̂;1 tends to be no larger in magnitude than

tW�̂;2. The same result also holds in the pure �nite variance case and does not, by itself, preclude

the asymptotic equivalence of tW�̂;1 and t
W
�̂;2.

On the other hand, however, let xt be a pure random walk with x0 = 0, so that �xt = "t. In

this case we establish, under Assumption A, the existence of a random variable � with support the

interval (0; 1) such that, for every z 2 R where the cdf of � is continuous, it holds that

lim inf
T!1

P
�
tW�̂;1=t

W
�̂;2 � z

�
� P (� � z) : (22)

In particular, it can be concluded that P (tW�̂;1=t
W
�̂;2 < 1)! 1 and, moreover, that tW�̂;1=t

W
�̂;2 is bounded

away from one, in probability.

Details about the random variable � are given in Proposition 4.2, which relies on the weak

convergence of the process
P[Tr]

t=1 ("t; "
2
2t"

0
1t)

0 upon appropriate normalisation, where we de�ne "1t :=

(1; "1;t�1; "21;t�1; "
2
1;t+1)

0.

Proposition 4.2 Under Assumption A it holds that

[Tr]X
t=1

(T�1=2"t; a
�2
T "22t"

0
1t)

0 ) (�1H�;0(r); [U�]r; S(r); Q�(r); Q+(r))0 (23)

in D5[0; 1], where S and Q� are �
2 -stable processes with Q� � 0 a.s. Furthermore, as a consequence,

for the random walk xt =
Pt

s=1 "s inequality (22) holds with

� =

0B@1� �4
hR 1
0 H0;�(r)dS(r)

i2
f�21 + �2 [Q�(1) +Q+(1)]g

R 1
0 H

2
c;�(r)d[H0;� ]r

1CA
1=2

: (24)

Remark 4.8: The dependence structure of the limit random process in (23) can be inferred from

the proof of the proposition given in the Appendix. However, this fact is secondary with respect

to our main point which follows from the functional form of the right-hand side in (24) alone.

Speci�cally, � < 1 a.s. because
R 1
0 H0;�dS 6= 0 a.s. �
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5 Finite Sample Simulations

In this section we report results from an in-depth Monte Carlo simulation study into the �nite

sample size (section 5.2) and local power (section 5.2) properties of the unit root tests considered

in section 3 under the Amsler and Schmidt (2012) local-to-�nite variance speci�cation in (4).

Before doing so we �rst brie�y explore in section 5.1 estimation of the tail index of a best stable

approximation to local-to-�nite variance processes of the form given for ut in (2).

5.1 Tail Index Estimates

Consider ut from (2). By design, the tail index of ut for �xed T coincides with the tail index �

of "2t (whenever  > 0), and therefore, is independent of T . Nevertheless, given the decreasing

weight of "2t in the de�nition of ut, we may also conceive of pseudo tail indices for ut that behave

continuously and converge to 2 as T ! 1, in agreement with the localisation idea. For instance,
we might expect the tail indices of the sequence of stable distributions that, for each T , best

approximate the distribution of ut with respect to some meaningful criterion, to behave in this

way. We adopt the approach of Koutrouvelis (1980,1981), where the approximation criterion is

de�ned in terms of proximity of the characteristic functions, and the corresponding tail indices

(denoted by �u) of the best stable approximation can be estimated by Monte Carlo simulation, by

applying the estimator of Koutrouvelis to samples of generated ut�s.4

To that end, we generate samples of ut; as ut = "1t + T
�1=�2+1=2"2t; for T = 100, 1000, 10000

and 100000 observations, with "1t � IIDN(0; 1) and independent of "2t � IID S�2(0; 1; 0). For the

in�nite variance component, "2t, we consider values of the tail index �2 2 f1; 1:25; 1:5; 1:75; 2g.
To generate data from a stable distribution with index �2 we use the method of Samorodnitsky

and Taqqu (1994, Proposition 1.7.1). As regards the relative weighting parameter between the

�nite and in�nite variance components, , we follow Amsler and Schmidt (2012) and consider

 2 f0:1; 0:316; 1; 3:16; 10; 31:6g.

[Please insert Table 2 about here]

Table 2 provides the average value (taken across 1000 Monte Carlo replications) of the tail index

estimate, denoted b�u, of ut. The results illustrate the local-to-�nite behaviour of the underlying
distribution of ut. In particular, we observe that, other things being equal, and as might be

expected, b�u will lie further from 2 the bigger is , the smaller is �2 and the smaller is T . For

small values of  ( = 0:1 and  = 0:316) with small samples (T = 100) and as �2 approaches 1,

the empirical average of the empirical stability index b�u can be well below 2, although it quickly
reverts towards 2 as the sample size increases, other things equal. However, it can also be seen

from the results in Table 2 that for  > 0:316; substantially larger sample sizes are required for the

4We also investigated the quantile-based estimator of McCulloch (1986) and found the results to be very similar

(although it should be stressed that the pseudo parameters estimated by this approach need not coincide with those

obtained using Koutrouvelis�s method).
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average of the estimated tail index to lie close to 2; for example, when  = 3:16 and �2 < 2; even

T = 100000 is not a su¢ ciently large sample size to yield a value of the average of b�u close to 2.
5.2 Empirical Size

In this subsection (empirical size) and the next (empirical power) we compare the empirical rejection

frequencies [ERFs] of the unit root tests discussed in this paper to data generated according to

xt = �Txt�1 + ut (25)

where x0 = 0, �T := 1� c=T with c � 0 and �xed. The error process futg is generated as

(1� 'L)ut = (1� �L)"t (26)

where "t = "1t + T�1=�2+1=2"2t, with "1t and "2t generated as detailed in section 5.1. Results are

reported for �2 2 f1; 1:25; 1:5; 1:75; 2g and  2 f0:1; 1; 10g. The �nite sample size and power
of the tests is evaluated for samples of size T = 200 and T = 500; based on 5000 Monte Carlo

replications. All simulations were performed in MATLAB 7.8.0 (R2009a). The size and power

results reported pertain to the empirically most relevant case where the unit root tests are based

on (either OLS or local GLS) de-meaned data. Corresponding results for tests based on de-trended

data were qualitatively similar and can be obtained from the authors on request.

For, the �nite sample size analysis reported in this section we set �T = 1 (c = 0), such that the

unit root null hypothesis holds, and allow for autoregressive and moving average dynamics in the

error term in (26) by allowing ' 2 f�0:5; 0; 0:5g and � 2 f�0:5; 0; 0:5g; respectively. Results are
reported for tests based on the ADF t-statistic, tb�, Breitung�s variance ratio statistic, VRT , the

trinity ofM statistics,MSB,MZ� andMZt, and the Eicker-White corrected ADF tW�̂;1 statistic.
Results are not reported here for the PP tests from section 3.2 or for the normalised bias ADF

test Zb� from section 3.1, because these displayed very unreliable �nite sample size properties in the
presence of serial correlation, a phenomenon also well documented for the former in the pure �nite

variance case. In each case the statistics were compared to the standard (Gaussian) asymptotic

critical values that would be relevant in the pure �nite variance case. We also consider a further test

based on the tW�̂;1 statistic which, rather than using the standard �nite variance critical value, uses

a critical value simulated from the limiting null distribution of this statistic based on the pseudo

tail index estimate, b�u, calculated as outlined in section 5.1. In order to distinguish between these
two tests, we will denote the latter by tW;�ub�;1 in what follows. All tests were run at the nominal

asymptotic 5% level.

For the implementation of the semi-parametric unit root tests, the reported results relate to the

use of parametric ASDEs of the long run variances as we found these to deliver signi�cantly better

�nite sample performance than the corresponding tests based on sums-of-covariances estimators

using either the Bartlett or Quadratic Spectral kernels. The autoregressive lag order used in

constructing the ASDEs was determined using modi�ed MAIC criteria with Schwert�s rule applied

to obtain the maximum lag length allowed; that is, kmaxK := [K
�
T
100

�1=4
] with K = 12. As in
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Perron and Qu (2007) the MAIC criteria is computed based on OLS de-trended data. The same

lag length selection method was used in the context of the standard ADF test, tb� and for the
corresponding Eicker-White corrected ADF tests. The empirical size results for these tests are

reported in Tables 3-8.

[Please insert Tables 3 - 8 about here]

Consider �rst the results for T = 200 reported in Tables 3-5. In the case where no serial

correlation is present in ut (i.e., ' = � = 0) the ERFs conform well in general to the nominal

level. With the exception of the VRT test based on local GLS de-meaned data, the empirical

sizes of the various tests when  = 0:1; 1 and 10, lie between [0.035, 0.067], [0.023, 0.060], and

[0.003, 0.068], respectively. In general, again with the exception of the local GLS de-meaned VRT
test, the tests appear to become more conservative the smaller is �2. Again excluding the VRT
test, little di¤erences are seen between the tests based on OLS de-meaning and the corresponding

tests based on local GLS de-meaning. The behaviour of the VRT test is, however, quite di¤erent

depending on which method of de-meaning is used; while the empirical sizes of VRT test based

on OLS de-meaning show only small deviations from the nominal 5% level, those based on local

GLS de-meaning show a tendency to signi�cant over-sizing as �2 decreases and  increases. For

example, for �2 = 1 and  = 10 the empirical size of the local GLS de-meaned VRT test is close to
11%. In contrast the empirical size of the OLS de-meaned version of the test is 4.4%. It is worth

noting that even in the pure �nite variance case, the results reported in Breitung and Taylor (2003)

show that the VRT based on OLS de-meaned data is preferable to the version based on local GLS
de-meaned data.

Where serial correlation is present in ut (i.e., ' = �0:5 or � = �0:5) the results in Tables
3-5 suggest that in general the empirical sizes of the tests remain quite robust to the heavy tailed

behaviour in ut, particularly bearing in mind the sample size is only T = 200 here. These results

can essentially be summarised as follows: the size of the tb�; VRT , MSB; MZ�; MZt; tWb�;1 and
tW;�ub�;1 tests when ' = �0:5 or � = 0:5 for  = 0:1; 1 and 10, when OLS de-meaning is considered,
lie between [0.029, 0.069], [0.023, 0.059], and [0.004, 0.070], respectively; whereas when local GLS

de-meaning is used, excluding VRT , they lie between [0.039, 0.076], [0.030, 0.068], and [0.019,
0.074], respectively. As is also well known to occur in the pure �nite variance case, empirical sizes

deteriorate in the negative moving average case, where � = �0:5, for some of the tests; in particular,
we observe that for  = 0:1; 1 and 10, when OLS de-meaning is used the empirical sizes of the tests

lies between [0.038, 0.109], [0.042, 0.101] and [0.033, 0.126], respectively, whereas when local GLS

de-meaning is used they lie between [0.054, 0.114], [0.043, 0.123], and [0.035, 0.173], respectively.

The largest distortions are observed for the Eicker-White corrected statistics, whereas tb�; MSB;
MZ� andMZt are close to the 5% nominal signi�cance level.

Excluding the negative moving average case, the Eicker-White corrected ADF tests, tWb�;1 and
tW;�ub�;1 ; become increasingly conservative as  increases, other things equal, particularly for the OLS

de-meaned versions. For example, the OLS de-meaned tWb�;1 and tW;�ub�;1 tests display ERFs of 0.3%

21



and 1.1%, respectively, when  = 10; �2 = 1 and where no serial correlation is present in ut, and

display similar behaviour for ' = �0:5 or � = 0:5): The local GLS de-meaned tWb�;1 and tW;�ub�;1 tests

also become more conservative as  increases when ' = 0; ' = �0:5 or � = 0:5 and �2 = 1;

but, although the tests are conservative, their ERFs are in most cases considerably higher than

those of the corresponding OLS de-meaned tests. Notice that this observed under-sizing seen in the

simulation results accords with the discussion in Section 4.3 concerning the asymptotic distributions

of the Eicker-White corrected ADF statistics in the benchmark case of no deterministics.

Consider now Tables 6 - 8 which display the corresponding results for T = 500. Overall, the

relative performance of the tests remains qualitatively similar to what was seen in the results for

T = 200, although in general the size distortions of the tests improve somewhat relative to T = 200.

This is particularly so in the serially correlated cases considered, as is of course anticipated by the

asymptotic distribution theory presented in section 4.

5.3 Empirical Power

We now turn to a comparison of the �nite sample local power properties of the unit root tests. For

the local power analysis the Monte Carlo data are generated by (25)-(26) for the local alternatives

generated by c 2 f1; :::; 50g. In order to eliminate �nite sample di¤erences between the tests

which are attributable solely to weak dependence, we set ' = � = 0. Results are reported for the

same set of tests as were considered in the �nite sample size simulations in section 5.2 except that

among the threeM tests we only report results for theMSB test, as its �nite sample local power
properties were essentially indistinguishable from those of MZ� and MZt. All comments which
follow regardingMSB therefore apply equally to the correspondingMZ� andMZt tests.

[Please insert Figures 1 - 8 about here]

Consider �rst Figures 1-4 which graph the �nite sample local power properties of both the OLS

and local GLS de-meaned tests for T = 200. A comparison of the results in each of these Figures

suggests that, for both OLS and local GLS de-meaned data, the �nite sample power properties

of the tb�, VRT , and MSB statistics vary relatively little with  and �2, while in contrast the
two Eicker-White corrected tests, tWb�;1 and tW;�ub�;1 , display considerable improvements in power as �2

decreases and as  increases. As is also known to happen in the pure �nite variance case, �nite

sample local power for a given test is higher when local GLS de-meaning is used relative to OLS

de-meaning, although the converse holds for the VRT test; see Elliott et al. (1996) and Breitung

and Taylor (2003), among others. Where OLS de-meaning is used theMSB test is more powerful
than the Eicker-White corrected tests when  = 0:1 for c < 25 with the reverse holding otherwise.

For the larger values of  considered the Eicker-White corrected tests tend to be more powerful than

MSB. These three tests clearly dominate the other tests on power. Where local GLS de-meaned
data is used the Eicker-White corrected tests display superior power properties to the other tests

for all the values of  considered. The MSB and tb� are, however, only marginally less powerful
here than the Eicker-White corrected tests. In the case of local GLS de-meaning the power of the
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VRT test is very much lower than that of all the other tests. In the case of OLS de-meaning it is

more competitive.

Consider next the results in Figures 5-8 which give the corresponding results for T = 500. The

most striking feature of these results is how close they are to the results in Figures 1-4 for T = 200.

Indeed there are almost no discernable di¤erences between the results for the two sample sizes.

This is very encouraging because it suggests that the local asymptotic distribution theory given

in section 4 provides a very close approximation to the �nite sample local power functions of the

tests.

We conclude this section by considering some extra graphs designed to provide further insight

into the changes in the �nite sample power properties of the tests that are seen as �2 decreases

and  increases. To that end, Figures 9 and 10 for T = 200 and T = 500, respectively, depict the

changes that occur, for a given value of �2, in the �nite sample local power properties of the tests

between the two extreme cases considered for the weight parameter, , namely between  = 0:1

and  = 10. For each test what is graphed is the di¤erence between the power for  = 10 and

 = 0:1 scaled by the power for  = 0:1. Essentially then, these graphs show the rate of change in

power of the tests between  = 0:1 and  = 10:

[Please insert Figures 9 and 10 about here]

A number of interesting observations can be drawn from these graphs. First, we again see little

di¤erences between the results for T = 200 and T = 500 con�rming what was seen in Figures 1-8.

Second, it is seen that as �2 decreases then so the use of the Eicker-White correction can prove

useful in increasing power (regardless of whether OLS or local GLS de-meaning is used) and that

this improvement becomes larger the smaller is �2. Moreover, this is not a small sample artifact,

as is seen by comparing Figures 9 and 10. An explanation of this behaviour based on asymptotic

considerations was provided in Section 4.3 for the tests not involving deterministics, although the

same logic seems likely to apply. Third, as c increases then so, other things equal, the power

di¤erences between the two values of  becomes negligible for all of the tests, indicating that for

large c the most relevant determinant of local power for any given test (for a given method of

de-meaning) is the local-to-unity parameter, c. Fourth, among all the tests, the test whose local

power shows least dependence on  is the VRT test. Fifth, the largest power gains among the

tests are seen with the tW;�ub�;1 test, closely followed by tWb�;1, and these gains are generally maximised
for values of c of about 5, exactly the region of the alternative parameter space where maximising

local power is most useful.

6 Conclusions

In this paper, we have provided representations for the large sample distributions of a number of

the most commonly used unit root test statistics in the scenario where the data generation process

is a near-integrated process driven by linear process shocks whose innovations are heavy-tailed,
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following a local-to-�nite variance process. The form of the local-to-�nite variance process we use

is based on the recent framework of Amsler and Schmidt (2012) which models the innovations as

a linear combination of a pure �nite variance component and a pure in�nite variance component,

the latter scaled such that it does not dominate the former in the limit. This has enabled us to

provide analytical expressions for both the limiting null distributions and asymptotic local power

of these tests within this framework, thereby facilitating a comparison of these results with those

which obtain under the standard pure �nite variance assumption and also under a pure in�nite

variance assumption. We have also reported results from a �nite sample Monte Carlo study which

suggest that, although the limiting distributions of the unit root statistics di¤er under local-to-

�nite variance innovations relative to the pure �nite variance case, the impact of such innovations

on standard unit root tests which compare these statistics with the asymptotic critical values which

obtain in the pure �nite variance case can be relatively modest with some of the tests displaying

almost no deviations from the nominal level. Our results suggest that a variant of the usual ADF

tests based on the use of Eicker-White standard errors can deliver signi�cant gains in local power

relative to other standard unit root tests. From an empirical perspective our results are important

in that they help validate the use of standard unit root tests on heavy-tailed data, as is frequently

done in empirical �nance research.

References

Ahn, S.K., S.B. Fotopoulos and L. He (2001) Unit root tests with in�nite variance errors, Econo-

metric Reviews 20(4), 461-483.

Amsler, C. and P. Schmidt (1999) Tests of short memory with thick tailed errors, Cowles Foun-

dation Econometrics Conference �New Developments in Time Series Econometrics.

Amsler, C. and P. Schmidt (2012) Tests of short-memory with thick-tailed errors, Journal of

Business and Economic Statistics 30(3), 381-390.

Avram, F. and M.S. Taqqu (1992) Weak convergence of sums of moving averages in the �-stable

domain of attraction, The Annals of Probability 20(1), 483-503.

Basrak B., R.A. Davis and T. Mikosch (2002) A characterization of multivariate regular variation,

The Annals of Applied Probability 12(3), 908-920.

Berk, K.N. (1974) Consistent autoregressive spectral estimates, The Annals of Statistics 2, 389-

502.

Billingsley, P. (1968) Convergence of probability measures, New york: Wiley.

Breitung, J. (2002) Nonparametric tests for unit roots and cointegration, Journal of Econometrics

108, 343-363.

24



Breitung, J. and A.M.R. Taylor (2003) Corrigendum to. Nonparametric tests for unit roots and

cointegration, Journal of Econometrics 117, 401-404 (J. Econom. 108 (2002) 343�363).

Charemza, W.W., D. Hristova and P. Burridge (2005) Is in�ation stationary?, Applied Economics

37(8), 901-903.

Callegari, F., N. Cappuccio and D. Lubian (2003) Asymptotic inference in time series regressions

with a unit root and in�nite variance errors, Journal of Statistical Planning and Inference

116, 277-303.

Cappuccio, N. and D. Lubian (2007) Asymptotic null distributions of stationarity and nonstation-

arity tests under local-to-�nite variance errors, Annals of the Institute of Statistical Mathe-

matics 59(3), 403-423.

Cavaliere, G., Georgiev, I. and Taylor, A.M.R. (2016a). Sieve inference for in�nite-variance sta-

tionary linear processes. The Annals of Statistics, forthcoming, with on-line supplement.

Cavaliere, G., Georgiev, I. and Taylor, A.M.R. (2016b). Unit root inference for non-stationary

linear processes driven by in�nite variance innovations. Econometric Theory, forthcoming.

Downloadable from https://ideas.repec.org/p/bot/quadip/wpaper130.html.

Chan, N.H. (1990) Inference for near-integrated time series with in�nite variance, Journal of the

American Statistical Association 85(412), 1069-1074.

Chan, N.H., L. Peng and Y. Qi (2006) Quantile inference for near-integrated autoregressive time

series with in�nite variance, Statistica Sinica 16, 15-28.

Chan, N.H. and R.M. Zhang (2009) Inference for nearly nonstationary processes under strong

dependence with in�nite variance, Statistica Sinica 19, 925-947.

Chan, N.H. and L.T. Tran (1989) On the �rst-order autoregressive process with in�nite variance,

Econometric Theory 5(3), 354-362.

Chang, Y. and J.Y. Park (2002) On the asymptotics of ADF tests for unit roots, Econometric

Reviews 21(4), 431-447.

Davidson, J. (1994) Stochastic Limit Theory, Oxford University Press.

Davis, R.A. (1983) Stable limits for partial sums of dependent random variables, The Annals of

Probability 11(2), 262-269.

Davis, R.A. and S. Resnick (1985) Limit theory for moving averages of random variables with

regularly varying tail probabilities, The Annals of Probability 13(1), 179-195.

Demetrescu M. (2010) On the Dickey-Fuller test with White standard errors, Statistical Papers

51, 11-25.

25



Dickey, D.A. and W.A. Fuller (1979) Distribution of the estimators for autoregressive time series

with a unit root, Journal of the American Statistical Association 74, 427-431.

Elliott, G, T.J. Rothenberg and J.H. Stock (1996) E¢ cient tests for an autoregressive unit root,

Econometrica 64, 813-836.

Fama, E.F. (1965) Portfolio analysis in a stable Paretian market, Management Science 11(3),

404-419.

Falk, B. and C.-H. Wang (2003) Testing long-run PPP with in�nite-variance returns, Journal of

Applied Econometrics 18(4), 471-484.

Faust, J. (1996) Near observational equivalence and theoretical size problems with unit root tests,

Econometric Theory 12, 724-731.

Feller, W. (1971) An introduction to probability theory and its applications. Volume II. 2nd Ed.

Wiley, New York.

Haldrup, N., and M. Jansson, 2006, Improving power and size in unit root testing. Palgrave

Handbooks of Econometrics: Vol. 1 Econometric Theory, Chapter 7. T. C. Mills and K.

Patterson (eds.). Palgrave MacMillan, Basingstoke.

Hamilton, J.D. (1994). Time series analysis, Princeton University Press.

Horváth, L. and P. Kokoszka (2003) A bootstrap approximation to a unit root tests statistic for

heavy tailed observations, Statistics and Probability Letters 62, 163-173.

Ibragimov U. and Y. Linnik (1971) Independent and stationary sequences of random variables,

Wolters-Noordho¤ Groningen.

Jacod, J. and A.N. Shiryaev (2003) Skorokhod topology and convergence of processes. "Limit

theorems for stochastic processes." Springer Berlin Heidelberg, 324-388.

Jansson, M. (2002) Consistent covariance matrix estimation for linear processes, Econometric

Theory 18, 1449-1459.

Jansson, M. (2008) Semiparametric power envelopes for tests of the unit root hypothesis, Econo-

metrica 76, 1103�1142.

Knight, K. (1989) Limit theory for autoregressive-parameter estimates in an in�nite-variance

random walk, The Canadian Journal of Statistics 17(3), 261-278.

Knight, K. (1991) Limit theory for M-estimates in an integrated in�nite variance processes, Econo-

metric Theory 7, 200-212.

Koutrouvelis, I.A. (1980) Regression-type estimation of the parameters of stable laws, Journal of

the American Statistical Association 75(372).

26



Koutrouvelis, I.A. (1981) An iterative procedure for the estimation of the parameters of stable

law, Communications in Statistics - Simulations and Computations 10(1), 17-28.

Kurtz T. and P. Protter (1991) Weak limit theorems for stochastic integrals and stochastic di¤er-

ential equations, The Annals of Probability 19(3), 1035-1070

Mandelbrot, B. (1967) The variation of some other speculative prices, The Journal of Business

40(4), 393-413.

McCulloch, J. H. (1986) Simple consistent estimators of stable distribution parameters, Commu-

nications in Statistics, Simulation and Computation 15, 1109-1136.

Moreno M. and J. Romo (2012) Unit root bootstrap tests under in�nite variance, Journal of Time

Series Analysis 33, 32-47.

Müller, U.K. (2008) The impossibility of consistent discrimination between I(0) and I(1) processes,

Econometric Theory 24, 616 630.

Müller, U.K. and G. Elliott (2003) Tests for unit roots and the initial condition, Econometrica 71,

1269-1286.

Ng, S., and P. Perron (2001) Lag length selection and the construction of unit root tests with

good size and power, Econometrica 69, 1519-1554.

Paulauskas, V., and S. Rachev (1998) Cointegrated processes with in�nite variance innovations,

The Annals of Applied Probability 8(3), 775-792.

Perron, P. and S. Ng (1996) Useful modi�cations to some unit root tests with dependent errors

and their local asymptotic properties, The Review of Economic Studies 63(3), 435-463.

Perron, P. and Z. Qu (2007) A simple modi�cation to improve the �nite sample properties of Ng

and Perron�s unit root tests, Economics Letters 94(1), 12-19.

Phillips, P.C.B. (1987) Time series regression with a unit root, Econometrica 55, 277-301.

Phillips, P.C.B. (1988) Towards a uni�ed asymptotic theory for autoregression, Biometrica 74,

535-547.

Phillips, P.C.B. and P. Perron (1988) Testing for a unit root in time series regression, Biometrika

75, 335-346.

Phillips, P.C.B. (1990) Time series regression with a unit root and in�nite-variance errors, Econo-

metric Theory 6, 44-62.

Phillips, P.C.B. and V. Solo (1992) Asymptotics for linear precesses, The Annals of Statistics

20(2), 971-1001.

27



Rachev, S.T., S. Mittnik and J., -R., Kim (1998) Time series with unit roots and in�nite-variance

disturbances, Applied Mathematics Letters 11(5), 69-74.

Resnick, S.I. (1986) Point processes, regular variation, and weak convergence, Advances in Applied

Probability 18, 66 - 138.

Resnick, S.I. (1997) Heavy tail modelling and teletra¢ c data (with discussion), The Annals of

Statistics 25, 1805-1869.

Resnick, S.I. and P. Greenwood (1979) A bivariate stable characterization and domains of attrac-

tion, Journal of Multivariate Analysis 9, 206-221.
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A Appendix

For later reference, de�ne Pt :=
Pt�1

j=0 �
t�j
T "t�j and Pi;t :=

Pt�1
j=0 �

t�j
T "i;t�j (i = 1; 2), so that

Pt = P1;t + a�1T T 1=2P2;t. In view of Lemma 4.1, summation by parts can be used to justify

the standard joint convergence (T�1=2P1;[Tr]; a�1T P2;[Tr])0 ) (�1Jc(r); Jc;�(r))
0 in D2[0; 1], which
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by the continuity of Jc(r) implies that T�1=2P[Tr] ) �1Hc;�(r) on D[0; 1]. As a direct result, for

�t :=  (1)Pt it holds on D[0; 1] that

T�1=2�[Tr] ) �1 (1)Hc;�(r): (1)

Recall further that,

ut =  (L)"t =
1X
j=0

 j"t�j

with  (L) :=
P1

j=0  jL
j and "t := "1t + a�1T T 1=2"2t: Thus, considering a Beveridge-Nelson de-

composition of ut we obtain,

ut =  (1)"t + e"t�1 � e"t (2)

where e"t := e (L)"t = P1
j=0

e j"t�j ; with e j := P1
k=j+1  k: Alternatively, considering ut as given

in (3), we can write (2) as,

ut = [ (1)"1t + e"1;t�1 � e"1t] + a�1T T 1=2 [ (1)"2t + e"2;t�1 � e"2t] : (3)

Here the series for e"it; i = 1; 2; are well-de�ned a:s: given thatP1
j=0 je j j� <1 for � of Assumption

A:5 (
P1

j=0 je j j� <P1
k=0 kj kj� <1; cf. Phillips and Solo (1992, pp.976,984)), and e"2t belongs to

the normal domain of attraction of a stable law with characteristic exponent �.

Finally, for xt of (1) we �nd that

xt =
tX

j=0

�jTut�j + �
t
Tx0 =  (1)Pt � e"t + (1� �T ) t�1X

j=1

�j�1T e"t�j + e"0 + �tTx0
= �t � e"t + �t; (4)

where the equality de�nes �t. From maxt=1;:::;T j
Pt�1

j=1 �
j�1
T e"t�j j �PT

t=1 je"1tj+a�1T T 1=2
PT

t=1 je"2tj,
Markov�s inequality and, for � = 1, Karamata�s theorem, it follows that maxt=1;:::;T j�tj = Op(1).

Proof of Lemma 4.2

Without loss of generality under our assumption that x0 = Op(1), we may set x0 = 0 in what

follows.

i) Let 	2 :=
P1

j=0  
2
j . Consider �rst the sample variance of ut, that is,

T�1
TX
t=1

u2t = T�1
TX
t=1

[ (L)"1t]
2 +

2

a2T

TX
t=1

[ (L)"2t]
2 +

2

T 1=2aT

TX
t=1

[ (L)"1t] [ (L)"2t] .

Here T�1
PT

t=1 [ (L)"1t]
2 p! V ar( (L)"11) = 	

2�21 by a law of large numbers [LLN], a
�2
T

PT
t=1 [ (L)"2t]

2

) 	2[U�]1 by Theorem 4.2 of Davis and Resnick (1985), and
PT

t=1 [ (L)"1t] [ (L)"2t] = op(T
1=2aT )

by Markov�s inequality. In fact,

E

�����
TX
t=1

[ (L)"1t] [ (L)"2t]

�����
�

� TEj"1tj�Ej"2tj�(
1X
j=1

j j j�)2 = O(T );
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where � = 1 if � > 1 and � 2 [�=2; 1) is arbitrary if � = 1, so
PT

t=1 [ (L)"1t] [ (L)"2t] = Op(T ) =

op(T
1=2aT ) if � > 1 and

PT
t=1 [ (L)"1t] [ (L)"2t] = O(T 1+�) for all � > 0 if � = 1, with O(T 1+�) =

op(T
1=2aT ) for � 2 (0; 12) in the latter case. By collecting these facts, we establish that,

T�1
TX
t=1

u2t ) 	2�21 + 
2	2[U�]1 = 	2�21

�
1 + �2[U�]1

�
:

ii) Using (4) and the uniform evaluation of �t there, we �nd that

T�3=2
TX
t=1

xt = T�3=2
TX
t=1

�t � T�3=2
TX
t=1

e"t + op(1);
where further

PT
t=1 e"t = Op(T ) by the same argument as for the remainder in (4). Hence, by (1)

and the Continuous mapping theorem [CMT], T�3=2
PT

t=1 xt )  (1)�1
R 1
0 Hc;�dr.

iii) Again by (4) with a uniformly Op(1) remainder �t,

1

4

�����T�1
TX
t=1

(x2t�1 � �2t�1)
����� � T�1

TX
t=1

j�t�1(e"t�1 � �t�1)j+ T�1

4

TX
t=1

(e"t�1 � �t�1)2
� max

t=1;:::;T
j�t�1j(

1

T

TX
t=1

je"2;t�1j+ 1

T 1=2aT

TX
t=1

je"2;t�1j+Op(1))
+T�1

TX
t=1

e"21;t�1 + 1

a2T

TX
t=1

e"22;t�1 + op(T ) = op(T )

becausemaxt=1;:::;T jT�1=2�t�1j ) �1j (1)j sup[0;1] jHc;� j <1 a.s. by (1) and the CMT,
PT

t=1 je"i2;t�1j
= Op(T ), i = 1; 2, by an LLN,

PT
t=1 je"2;t�1j = Op(T ) for � > 1 by an LLN,

PT
t=1 je"2;t�1j = Op(T lT )

with a slowly varying lT for � = 1 by Markov�s inequality, and
PT

t=1 e"22;t�1 = Op(a
2
T ) by Theorem 4.2

of Davis and Resnick (1985). Therefore, T�2
PT

t=1 x
2
t�1 =

PT
t=1 �

2
t�1+op(1)) f (1)g2�21

R 1
0 H

2
c;�dr

by (1) and the CMT.

iv) Regarding T�1
PT

t=1 xt�1ut, following Phillips (1988, 1990) we observe that:

TX
t=1

x2t =
TX
t=1

(�Txt�1 + ut)
2 =

TX
t=1

(�2Tx
2
t�1 + 2�Txt�1ut + u

2
t ):

Since �2T = (1� c=T )2 = 1� 2c=T + c2=T 2, it follows that

TX
t=1

x2t =
TX
t=1

x2t�1 �
2c

T

TX
t=1

x2t�1 +
c2

T 2

TX
t=1

x2t�1 + 2
TX
t=1

xt�1ut �
2c

T

TX
t=1

xt�1ut +
TX
t=1

u2t :

Hence,

x2T =

TX
t=1

�
x2t � x2t�1

�
= �2c

T

TX
t=1

x2t�1 + 2
TX
t=1

xt�1ut +
TX
t=1

u2t + op(T ):
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Thus, we establish that

T�1
TX
t=1

xt�1ut =
1

2

 
T�1x2T + T

�22c
TX
t=1

x2t�1 � T�1
TX
t=1

u2t

!
+ op(1) (5)

From (4), x2T = �2T � 2�T (e"T � �T ) + (e"T � �T )
2, where T�1=2�T ) �1 (1)Hc;�(1) by (1) and

the CMT, and e"T = e"1T +T 1=2a�1T e"2T = e"1T +op(1) = Op(1) because fe"1tg and fe"2tg are stationary
with a.s. �nite terms. Thus, x2T ) f (1)g2�21H2

c;�(1). Considering also Lemma 4.2(i, iii), we

establish that,

T�1
TX
t=1

xt�1ut )
1

2

�
f (1)g2�21H2

c;�(1) + 2c�
2
1f (1)g2

Z 1

0
H2
c;�(r)dr �	2�21[H0;� ]1

�
:

Finally, we obtain the limit in Lemma 4.2(iv) by straightforward manipulations and using the

identity

H2
c;�(1) � [H0;� ]1 � 2c

Z 1

0
H2
c;�(r)dr + 2

Z 1

0
Hc;�(r)dH0;�(r): (6)

v) The convergence of T�1
PT

t=1 xt�1"t can be deduced from part (iv) and the identities

TX
t=1

xt�1"t = f (1)g�1
TX
t=1

xt�1ut +
TX
t=1

xt�1�e"t
= f (1)g�1

TX
t=1

xt�1ut �
TX
t=1

�xte"t + xTe"T
= f (1)g�1

TX
t=1

xt�1ut �
TX
t=1

ute"t + T�1c TX
t=1

xt�1e"t + xTe"T :
Handling mixed products as in the proof of part (i), we �nd that

1

T

TX
t=1

ute"t =
1

T

TX
t=1

u1te"1t + 2

a2T

TX
t=1

u2te"2t + op(1)
) Cov(u11;e"11) + 2[U�]1 1X

i=0

 i
e i = �21[H0;� ]1

1X
i=0

 i
e i

by an LLN and Theorem 4.2 of Davis and Resnick (1985). As j
PT

t=1 xt�1e"tj � maxt=1;:::;T jxtjPT
t=1 je"tj =

Op(T
3=2), see the derivation of (4), and xTe"T = Op(T

1=2), it remains to apply part (iv) toPT
t=1 xt�1ut and to observe that

P1
i=0  i

e i = 1
2(f (1)g

2 �	2).

vi) First, T�2
PT

t=1 x
2
t�1"

2
t = T�2

PT
t=1 �

2
t�1"

2
t + op(1) since, using (4),

TX
t=1

��x2t�1 � �2t�1�� "2t =

TX
t=1

��2�t�1(e"t � �t) + (e"t � �t)2�� "2t
� 2 max

t=1;:::;T
j�tj (

TX
t=1

je"t�1j"2t + max
t=1;:::;T

j�tj
TX
t=1

"2t )

+2
TX
t=1

e"2t�1"2t + 2 max
t=1;:::;T

�2t

TX
t=1

"2t
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with (i) max jT�1=2�tj = Op(1), as a consequence of the fact that it converges weakly, (ii),

TX
t=1

je"t�1j"2t � 2 2X
i;j=1

(a�1T T 1=2)i+2j�3
TX
t=1

je"i;t�1j"2jt = op(T
3=2)

by LLN for j = 1 and by Markov�s inequality for j = 2 :

E(
TX
t=1

je"i;t�1j"22t)�=2 � TX
t=1

Eje"i;t�1j�=2Ej"2tj� = O (T ) ;

so
P
je"i;t�1j"22t = O

�
T 2=�

�
for all � 2 (0; �), (iii), T�1

P
"2t = Op(1), again because it converges

weakly, and (iv),
TX
t=1

e"2t�1"2t � 4 2X
i;j=1

(2a�2T T )i+j�2
TX
t=1

e"2i;t�1"2jt = op(T
2)

by LLN for i = j = 1 and by Markov�s inequality applied to the �=2 powers otherwise.

Second, we turn to T�2
P
�2t�1"

2
t . It holds that (T

�1=2PbTrc
t=1 "t; T

�1PbTrc
t=1 "

2
t )) (�1H�;0(r); �

2
1[H�;0]r)

in D2[0; 1] because, (i), (T�1=2
PbTrc

t=1 "1t; a
�1
T

PbTrc
t=1 "2t; a

�2
T

PbTrc
t=1 "

2
2t)) (�1W (r);U�(r); [U�]r) in

D3[0; 1] by Theorem 4 of Resnick and Greenwood (1979) and the independence of f"1tg and f"2tg,
and (ii),

1

T

bTrcX
t=1

"2t =
1

T

bTrcX
t=1

"21t +
2

a2T

bTrcX
t=1

"22t +
2

T 1=2aT

bTrcX
t=1

"1t"2t ) �21r + 
2[U�]r = �21[H�;0]r (7)

because f"1t"2tg is IID with tail index �, so maxr2[0;1] jT�1=2a�1T
PbTrc

t=1 "1t"2tj
p! 0. By Theorem 2.7

of Kurtz and Protter (1991), it follows that T�2
PT

t=1 �
2
t�1"

2
t = [ (1)]2T�2

PT
t=1(

Pt�1
s=1 "s)

2"2t )
[ (1)]2�41

R
H2
�;0d[H�;0], where condition C2.7 of the theorem can be checked as on pp.784-786 of

Paulauskas and Rachev (1998). Recalling the previous paragraph, we conclude that T�2
PT

t=1 x
2
t�1"

2
t

converges weakly to the same limit as that of T�2
PT

t=1 �
2
t�1"

2
t . �

Proof of Theorem 4.1. To discuss the ADF statistics, we need a precise expression for the

error term in the AR sieve. Thus, if (
P1

i=0  iz
i)�1 = 1 +

P1
i=1 �iz

i, then �xt = �(c=T )xt�1 +PpT
i=1 �i�xt�i + "t;pT with "t;pT = "t + (c=T )

PpT
i=1 �ixt�i�1 +

P1
i=pT+1

�iut�i. Without loss of

generality under our stated rate condition on pT , we proceed with an e¤ective sample size of T

(instead of T � pT ), assuming the availability of pre-sample values related to x0 via equation (1).
The validity of the AR sieve will require that b� computed from (5) should satisfy

Tb� = �c+ T�2 TX
t=1

x2t�1

!�1
T�1

TX
t=1

xt�1"t + op(1): (8)

By standard OLS algebra,

b� = � c

T
+

 
TX
t=1

x2t�1 � S10S�100 S01

!�1 TX
t=1

xt�1"t;pT � S10S�100 S0"

!
; (9)

where S00 :=
PT

t=1�Xt�1�X 0
t�1, S0" :=

PT
t=1�Xt�1"t;pT and S01 :=

PT
t=1�Xt�1xt�1 = S010. We

evaluate S00 �rst. Upon splitting the observations and the product moments into the contributions
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of the �nite and the in�nite variance components, with notation corresponding to decomposition

in (4), we argue in steps that kS00�S(1)00 �S
(2)
00 k� = op(T ), where k � k� denotes the spectral matrix

norm, S(i)00 :=
PT

t=1�Xi;t�1�X 0
i;t�1 (i = 1; 2) and the norming sequence a

�1
T T 1=2 is incorporated

into �X2t. Thus, de�ning CT := fcijgpTi;j=1 with cij :=
PT�1

t=0 �x1t�x2;t�ji�jj, we �nd that

1

2
kS00 � S(1)00 � S

(2)
00 k� � k

TX
t=1

�X1;t�1�X
0
2;t�1k� � kCT k� + p2T max

i=1;:::;pT
f(�x�i)2 + (�xT�i)2g

= kCT k� + p2T fop(pT ) + a�2T TOp(a
2
pT
)g = kCT k� + op(T ) (10)

under p3T =T ! 0. Further, given the Toeplitz structure of CT ,

1

2
kCT k� �

pTX
i=1

jc1ij �
pTX
i=1

j
T�1X
t=0

u1tu2;t�i+1j+Op(pTT 1=2+�), (11)

where Op(pTT 1=2+�), with � > 0 arbitrary, stands for

pTX
i=1

f( c
T
)2
T�1X
t=0

x1;t�1x2;t�i +
c

T
max

t=1;:::;T
(jx1;t�1j+ jx2;t�ij)

T�1X
t=0

(ju1tj+ ju2;t�i+1j)g;

given that maxt=�pT ;:::;T jx1tj = Op(T
1=2) and

PpT
i=1

PT�1
t=0 (ju1;tj + ju2;t�i+1j) � pT

PT�1
t=0 ju1;tj +

pT
PT�1

t=�pT ju2;tj = Op(pT lTT ) with a slowly varying lT (constant except for � = 1). RegardingPT�1
t=0 u1;tu2;t�i+1 = a�1T T 1=2(��i + �

>
i ), with

�Ri :=

T�1X
t=0

1X
u;v=0

 u v"1;t�u"2;t�v�i+1Ij"2;t�v�i+1jRaT ; R 2 f�; >g;

it holds that (i), E
PpT

i=1 j�
�
i j �

PpT
i=1fE(�

�
i )
2g1=2 by Jensen�s inequality, where, using Karamata�s

theorem, we �nd that

E(��i )
2 � TE"211E("

2
21Ij"21j�aT )(

1X
u=0

j uj)4 = O(a2T );

where I denotes the usual indicator function, because f"1tg and f"2tg are independent, E"1;t�u = 0,
E("2;t�v�i+1Ij"2;t�v�i+1j�aT ) = 0 by symmetry, and E("

2
21Ij"21j�aT ) = E("22;t�v�i+1Ij"2;t�v�i+1j�aT ) =

O(T�1a2T ), and (ii), E(
PpT

i=1 j�>i j)� �
PpT

i=1Ej�>i j�, where � = 1 for � > 1, � 2 [�; 1) is arbitrary
for � = 1, and

Ej�>i j� �
T�1X
t=0

1X
u;v=0

j uj�j vj�Ej"11j�E(j"21j�Ij"21j>aT ) = O(a�T )(
1X
u=0

j uj�)2 = O(a�T )

using Karamata�s theorem again, so eventually, by Markov�s inequality, kS00 � S
(1)
00 � S

(2)
00 k� �

Op(pTT
1=2+�) + op(T ) = op(T ), because p3T =T ! 0 as T !1, where � > 0 is arbitrary. Let �p :=

frji�jjgpTi;j=1 with ri :=
P1

j=0  i j+i; then the eigenvalues of �p are bounded and bounded away from

zero under Assumptions A:1 and A:5. As additionally, under p3T =T ! 0, kS(1)00 � T�p�21k� = op(T )
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by Lemma 3 of Berk (1974) and kS(2)00 � a
�2
T T2�p

PT
t=1 "

2
2tk� = op(T ) by Lemma 2 of Cavaliere et

al. (2016a), by combining the previous results it follows that

kT�1S00 � �p(�21 + 2a�2T
TX
t=1

"22t)k� = op(1); (12)

and using inequality (2.15) of Berk (1974), it also holds that

k(T�1S00)�1 � ��1p (�21 + 2a�2T
TX
t=1

"22t)
�1k� = op(1): (13)

Second, S�100 S0" can be decomposed as

(S�100 S
(1)
00 )(S

(1)
00 )

�1S
(1)
0" + (S

�1
00 S

(2)
00 )(S

(2)
00 )

�1S
(2)
0" + S

�1
00

TX
t=1

(�X1;t�1"2t;pT +�X2;t�1"1t;pT );

where k(S(1)00 )�1S
(1)
0" k = op(p

�2
T ) as in Lemma 3.2 of Chang and Park (2002), (S

(2)
00 )

�1S
(2)
0" =

Op(apT a
��1
T +

P1
i=pT+1

j�ij) for all � > 0 as in Equation (7.1) of Cavaliere et al. (2016a), both under
the condition that p2T =T + 1=pT ! 0 as T ! 1, and k

PT
t=1(�X1;t�1"2t;pT + �X2;t�1"1t;pT )k =

Op(pTT
1=2) by Markov�s inequality and Karamata�s theorem as, e.g., for the �rst kind of summands,

k
TX
t=1

�X1;t�1"2t;pT k2 =

pTX
i=1

(

TX
t=1

�x1;t�i"2t;pT )
2

� 2

pTX
i=1

f
TX
t=1

�x1;t�i(a
�1
T T 1=2"2t +

1X
i=pT+1

�iu2;t�i)g2

+2c2pTT
�2 max

t=�pT ;:::;T
x22t(

T�1X
t=1�pT

j�x1tj)2(
1X
i=1

j�ij)2

with maxt=�pT ;:::;T jx2tj = Op(T
1=2),

PT�1
t=1�pT j�x1tj = Op(T ),

E

pTX
i=1

f
TX
t=1

�x1;t�i"2tIj"2tj�aT g
2 = pTTE("

2
21Ij"21j�aT )[E(�x11)

2] = O(pTa
2
T );

E[

pTX
i=1

f
TX
t=1

�x1;t�i"2tIj"2tj>aT g
2]�=2 � pTTE(j"21j�Ij"21j>aT )Ej�x11j

� = O(pTa
�
T )

for � = 1 if � > 1 and � 2 [�; 1) arbitrary if � = 1, and similarly for the terms involving u2t:

E

pTX
m=1

f
TX
t=1

�x1;t�m

1X
i=pT+1

�i

1X
j=0

 j"2;t�i�jIj"2;t�i�j j�aT g
2

� pTTE("
2
21Ij"21j�aT )[E(�x11)

2](

1X
i=pT+1

j�ij
1X
j=0

j j j)2 = o(a2T );

E[

pTX
m=1

f
TX
t=1

�x1;t�m

1X
i=pT+1

�i

1X
j=0

 j"2;t�i�jIj"2;t�i�j j>aT g
2]�=2

� pTTE(j"21j�Ij"21j>aT )Ej�x11j
�

1X
i=pT+1

j�ij�
1X
j=0

j j j� = o(pTa
�
T )
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since pT
P1

i=pT+1
j�ij ! 0,

P1
i=pT+1

j�ij� ! 0 as pT !1. Accounting also for (13), which implies
that kTS�100 k� = Op(1), it follows that for all � > 0,

kS�100 S0"k = Op(p
�2
T + T ��1=2pT +

1X
i=pT+1

j�ij): (14)

Third, it holds that

kS10 � 10pT
TX
t=1

xt�1�xt � Trf(S(1)00 + S
(2)
00 + 2CT )�pT gk = op(T );

where 1pT is a pT -vector of ones, �pT is an upper triangular matrix with ones on and above the

main diagonal, and the di¤erence is due to presample and end-of-sample contributions as in (10).

Thus, further,

kS10k � p
1=2
T j

TX
t=1

xt�1�xtj+ kTr(S(1)00 �pT )k+ kTr(S
(2)
00 �pT )k+ 2kTr(CT�pT )k+ op(T )

� Op(p
1=2
T T ) + p

1=2
T

pTX
i=1

jc1ij = Op(p
1=2
T T ) (15)

since
PT

t=1 xt�1�xt =
PT

t=1 xt�1ut�(c=T )
PT

t=1 x
2
t�1 = Op(T ) by Lemma 4.2(iii,iv), kTr(S(i)00�pT )k =

Op(p
1=2
T T ) (i = 1; 2) is shown in the proof of Lemma 3.2(b) of Chang and Park (2002) and Lemma

A.1(d) of Cavaliere et al. (2016b), and
PpT

i=1 jc1ij = Op(pTT
1=2+�) for all � > 0 by the argument

following (11) and p3T =T ! 0.

From (9), (13), (14) and (15), using the boundedness away from zero in probability of T�2
PT

t=1 x
2
t�1

and the �niteness of
P1

i=1 ij�ij, it follows that

Tb� = �c+ TX
t=1

x2t�1

!�1 TX
t=1

xt�1"t;pT + op(1)

under the rate condition that p3T =T + 1=pT ! 0 as T ! 1. To obtain (8), it remains to observe
that

TX
t=1

xt�1"t;pT =
TX
t=1

xt�1"t +
c

T

pTX
i=1

�i

TX
t=1

x2t�1

+
c

T

pTX
i=1

�i

TX
t=1

xt�1(xt�i�1 � xt�1) +
TX
t=1

xt�1(
1X

i=pT+1

�iut�i);

where
PT

t=1 xt�1(xt�i�1 � xt�1) = op(T
2) uniformly in i = 1; :::; pT by partial summation and the

evaluation of S00, and
PT

t=1 xt�1(
P1

i=pT+1
�iut�i) = op(T ) by relating it to (

PT
t=1 xt�1ut)(

P1
i=pT+1

�i) =

op(T ). Then (8) and Lemma 4.2(iii,v) imply that

Tb�) �c+
R 1
0 Hc;�(r)dH0;�(r)

 (1)
R 1
0 H

2
c;�(r)dr

(16)

under the rate condition that p3T =T + 1=pT ! 0, as T !1, where  (1) = (1�
P1

i=1 �i)
�1.
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The limits of the ADF statistics then follow by examining various normalisations of b�. First,
pTX
i=1

jb�i � �ij = kS�100 S0" � (b�+ c=T )S�100 S01k1 (17)

� p
1=2
T kS�100 S0"k+Op(T�1p

1=2
T )kS�100 k�kS0"k = op(1)

by (13), (14), (15) and the condition p3T =T + 1=pT ! 0. Since
P1

i=pT+1
j�ij ! 0, it follows thatPpT

i=1
b�i p!

P1
i=1 �i, which jointly with (16) yields the limit of Zb�. Second, s2pT = T�1

PT
t=1 b"2pT ;t,

where b"pT ;t are the OLS residuals from (5), satis�es

jTs2pT �
TX
t=1

"2t j �
TX
t=1

(b"pT ;t � "t)2 + 2j TX
t=1

(b"pT ;t � "t)"tj
�

TX
t=1

(b"pT ;t � "t)2 + 2f TX
t=1

(b"pT ;t � "t)2g1=2f TX
t=1

"2t g1=2 = op(T )

since
PT

t=1 "
2
t = Op(T ) and, for �pT := (�1; :::; �pT )

0,

TX
t=1

(b"pT ;t � "t)2 � 3(b�+ c=T )2 TX
t=1

x2t�1 + 3kb�pT � �pT k2kS00k�
+3

TX
t=1

("pT ;t � "t)2 = op(T )

with b�+c=T = Op(T
�1) by (16),

PT
t=1 x

2
t�1 = Op(T

2) by Lemma 4.2(iii), kb�pT ��pT k �PpT
i=1 jb�i�

�ij = op(1) by (17), kS00k� = Op(T ) by (12) with k�pk� = O (1), and

TX
t=1

("pT ;t � "t)2 � 2c2T�2
TX
t=1

(

pTX
i=1

�ixt�i�1)
2 + 2

TX
t=1

(
1X

i=pT+1

�iut�i)
2

� 2c2T�1 max
t=�pT ;:::;T

x2t (
1X
i=1

j�ij)2 + 2
TX
t=1

(
1X

i=pT+1

�iu1;t�i)
2

+22Ta�2T

TX
t=1

(
1X

i=pT+1

�iu2;t�i)
2

+4T 1=2a�1T

TX
t=1

(

1X
i=pT+1

�iu1;t�i)(
1X

i=pT+1

�iu2;t�i) = op(T )

as maxt=�pT ;:::;T x
2
t = Op(T ),

PT
t=1(

P1
i=pT+1

�iu1;t�i)
2 = op(T ) for pT !1 by Markov�s inequal-

ity,
PT

t=1(
P1

i=pT+1
�iu2;t�i)

2 = op(a
2
T ) for pT ! 1 by the proof of Lemma 3 of Cavaliere et al.

(2016a), and
PT

t=1(
P1

i=pT+1
�iu1;t�i)(

P1
i=pT+1

�iu2;t�i) = op(aT ) similarly to the terms involvingP1
i=pT+1

�iu2;t�i in the derivation of (14). Therefore, s
2
pT
= T�1

PT
t=1 "

2
t + op(1) ) �21[H0;� ]1: As

tb� = (PT
t=1 x

2
t�1 � S10S�100 S01)1=2b�s�1pT , its limit now follows from the previous discussion of b�.

Third, along similar lines,

j
TX
t=1

x2t�1(b"pT ;t � "2t )j �
TX
t=1

x2t�1(b"pT ;t � "t)2 + 2j TX
t=1

x2t�1(b"pT ;t � "t)"tj
�

TX
t=1

x2t�1(b"pT ;t � "t)2 + 2f TX
t=1

x2t�1(b"pT ;t � "t)2g1=2f TX
t=1

x2t�1"
2
t g1=2
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is op(T 2) because
PT

t=1 x
2
t�1"

2
t = Op(T

2) by Lemma 4.2(vi) and

TX
t=1

x2t�1(b"pT ;t � "t)2 � max
t=1;:::;T

x2t

TX
t=1

(b"pT ;t � "t)2 = op(T
2)

asmaxt=�pT ;:::;T x
2
t = Op(T ) and

PT
t=1(b"pT ;t�"t)2 = op(T ). Hence, T�2

PT
t=1 x

2
t�1b"pT ;t =PT

t=1 x
2
t�1"

2
t+

op(1) and the limit of tW�̂;1 follows from (16) and Lemma 4.2(iii,vi).

The remaining limits in Theorem 4.1 follow from Proposition 4.1, Lemma 4.2, the convergence

of b�2u :
b�2u = T�1

TX
t=1

û2t = T�1
TX
t=1

u2t + T
�1(b�� 1)2 TX

t=1

x2t�1 + 2T
�1(b�� 1) TX

t=1

xt�1ut

= T�1
TX
t=1

u2t + op(1)) 	2�21[H0;� ]1

which follows from results established above, and the fact that, under the conditions stated in

section 3.2, the weak convergence result b!2u ) f (1)g2�21[H0;� ]1 holds for both b!2u = s2WA andb!2u = s2AR, which again follows from results established above. Indeed, the stated results will hold

for any estimator b!2u whose weak limit is f (1)g2�21[H0;� ]1. We also remark that the weak limits
ofMZ� andMZt obtain readily in the form

MZ� )
H2
c;�(1)� [H0;� ]1

2

Z 1

0
H2
c;�(r)dr

; MZt )
H2
c;�(1)� [H0;� ]1

2 f[H0;� ]1g1=2
�Z 1

0
H2
c;�(r)dr

�1=2 ;
and are seen to be the same as for the tb� and Zt statistics given in parts (i) and (ii) of Theorem
4.1 by using the Îto-type equation (6). �

To introduce the idea behing Proposition 4.2, for lag lengths k between 1 and pT de�ne


̂k := 
̂0 �
TX

t=pT+1

xt�1�X
(k)0
t�1b"2pT ;t( TX

t=pT+1

�X
(k)
t�1�X

(k)0
t�1b"2pT ;t)�1 TX

t=pT+1

xt�1�X
(k)0
t�1b"2pT ;t;

where 
̂0 :=
PT

t=pT+1
x2t�1b"2pT ;t and �X(k)

t�1 := (�xt�1; :::;�xt�k)
0. Using the poisitive de�niteness

of
PT

t=pT+1
(xt�1;�X 0

t�1)(xt�1;�X
0
t�1)

0b"2pT ;t, it follows that 
̂k1 � 
̂k2 for any k1 < k2 between 0

and pT . As a result, it holds that

seW;1 (b�) = ( TX
t=pT+1

x2t�1)
�1
̂

1=2
0 � (

TX
t=pT+1

x2t�1)
�1
̂

1=2
1 � (

TX
t=pT+1

x2t�1)
�1
̂1=2pT

:

If we could show that 
̂1=21 =
̂
1=2
0 converges weakly to some r.v. �, then from the previous chain of

inequalities it would follow that

lim inf
T!1

P

0@( TX
t=pT+1

x2t�1)
�1
̂1=2pT

=seW;1 (b�) � z

1A � P (� � z)
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for all z 2 R where the cdf of � is continuous. Finally, in view of (21), also

lim inf
T!1

P
�
tW�̂;1=t

W
�̂;2 � z

�
= lim inf

T!1
P (seW;2 (b�) =seW;1 (b�) � z) � P (� � z)

would hold.

We turn to the weak convergence of 
̂1=21 =
̂
1=2
0 in the case where xt is a pure random walk and

x0 = 0. Under the rate condition of Theorem 4.1, we can replace pT by 1 in the de�nition of 
̂k

without changing their limit behaviour. First, T�2
̂0 = T�2
PT

t=1 x
2
t�1b"pT ;t = T�2

PT
t=1 x

2
t�1"

2
t +

op(1) ) �41
R 1
0 H

2
c;�(r)d[H0;� ]r, with  (1) = 1 for the random walk, as established in the proof of

Theorem 4.1. Second, we need to discuss

T�2
̂1 = T�2
̂0 � fT�1
TX
t=2

(�Xt�1)
2b"21;tg�1fT�3=2 TX

t=2

�Xt�1xt�1b"21;tg2
with �Xt = �xt = "t, where, as a result of a standard argument,

T�3=2
TX
t=2

xt�1�Xt�1b"21;t = 2
TX
t=1

(T�1=2xt�1)
�
a�2T "1;t�1"

2
2t

�
+ op(1);

T�1
TX
t=2

(�Xt�1)
2b"21;t = T�1

TX
t=1

"2t�1"
2
t + op(1)

= T�1
TX
t=1

"21;t�1"
2
1;t + a

�2
T 2

TX
t=1

("21;t�1"
2
2;t + "

2
2;t�1"

2
1;t) + op(1)

as T ! 1. To obtain the weak limit � of 
̂1=21 =
̂
1=2
0 as in (24), it remains to show that, in terms

of the limiting processes in eq. (23),

TX
t=1

(T�1=2xt�1)
�
a�2T "1;t�1"

2
2t

�
) �1

Z 1

0
H�;0(r)dS(r); (18)

T�1
TX
t=1

"21;t�1"
2
1;t + a

�2
T 2

TX
t=1

("21;t�1"
2
2;t + "

2
2;t�1"

2
1;t) ) �41 + 

2(Q�(1) +Q+(1)) (19)

jointly with the convergence of 
̂0, which we do next.

Proof of Proposition 4.2. First, we argue that

[Tr]X
t=1

0BB@
a�1T "2t

a�2T "t"
2
2t

T�1=2"1t

1CCA) (U�(r); [U�]r; S(r); Q�(r); Q+(r); �1W (r))0 (20)

in D6[0; 1], where W is independent of the remaining components of the limit process. Second, as

W is continuous a.s., (23) obtains by an application of the CMT.

To start from a situation with tail-balanced components, we introduce zt := (sgn("2t); "0t)
0 and

Zt := zt"
2
2t, where sgn("2t) := 1 if "2t � 0 and sgn("2t) := �1 if "2t < 0; then zt and "22t are

independent under symmetry of "2t. Since zt have �nite variance, Zt are regulary varying with

tail index �=2 (the same as "22t), by the multivariate Breiman lemma (Proposition A.1 of Basrak
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et al., 2002). If we were given an IID sequence fz�t g = f(sgn("2t); "�0t )0g independent of f"22tg and
with each "�t distributed like "1, for Z

�
t = z�t "

2
2t it would hold that a

�2
T

P[Tr]
t=1 Z

�
t ) L(r) in D5[0; 1],

where L is a �=2-stable Lévy process with series representation L (r) =
P1

i=1 IfUi�rg�
�2=�
i �i, f�igi

is the partial sum sequence of an IID standard exponential sequence, fUigi is an IID sequence

of uniform random variables on [0; 1], and f�igi, fUigi and f�igi
d
= fz�i gi are jointly independent.

This conclusion could be drawn from a point-process convergence like (4.4) of Resnick (1986), which

implies convergence to a Lévy process (see, e.g., Theorem 4.1 of Tyran-Kamińska (2010)), and the

series representation would follow from the form of the limit Poisson random measure (see Rosiński

(2001)).

Although fztg is not IID, a�2T
P[Tr]

t=1 Zt converges like a
�2
T

P[Tr]
t=1 Z

�
t by a result of Tyran-Kamińska

(2010) for regularly varying processes with isolated extremes in the sense of Davis (1983). Specif-

ically, the periods of extreme values are inherited from "2t, which is IID and trivially has isolated

extremes. This fact allows also for a direct proof of convergence, by approximation, as follows.

Possibly upon an expansion of the probability space, take f"�t g distributed as before and indepen-
dent of f"1t; "2tg. For a �xed � > 0, let It be the indicator of the event that fja�1T "2tj > � and

ja�1T "2;t�2j � � and fja�1T "2;t+2j � �g. Then ~Zt = �t�Zt+(1� �t�)Z�t , t 2 N, de�nes an IID sequence
independent of f"2tg, and hence, a�2T

P[Tr]
t=1

~Zt ) L(r) in D5[0; 1]. On the other hand, for every

� > 0,

lim
�!0

lim sup
T!1

P

 
max

s=1;:::;T

a�2T
sX
t=1

( ~Zt � Zt)
 � �

!
= 0;

which by Theorem 4.2 of Billingsley (1968) implies that also a�2T
P[Tr]

t=1 Zt ) L(r) in D5[0; 1]. In

fact, let

et = fV ar("22tIfja�1T "2;t�2j��g)g
�1=2f"22tIfja�1T "2;t�2j��g � E("

2
2tIfja�1T "2;t�2j��g)g;

since
PT

t=1 �t� =
PT

t=1 Ifja�1T "2tj>�g with probability approaching one as T ! 1, with the same
probability it holds that

max
s=1;:::;T

a�2T
sX
t=1

( ~Zt � Zt)
 = max

s=1;:::;T

a�2T
[Tr]X
t=1

"22tIfja�1T "2tj<�g("
�
t � "t)


� T 1=2E(a�2T "22tIfja�1T "2tj��g) maxr2[0;1]

T�1=2
[Tr]X
t=1

("�t � "t)


+fTE(a�4T "42tIfja�1T "2;t�2j��g)g

1=2 max
s=1;:::;T

T�1=2
[Tr]X
t=1

et("
�
t � "t)

 ;
where T 1=2E(a�2T "22tIfja�1T "2;tj��g)! 0 as T !1 and TE(a�4T "42tIfja�1T "2;tj��g)! �4���=(4��)! 0

as T !1 followed by � ! 0, both by Karamata�s theorem, whereas the maximum over r does not

depend on � and converges weakly as T !1 to the maximum on [0; 1] of a Wiener processes, while

the maximum over s is OP (1) as T !1, uniformly in �, by Kolmogorov�s maximal inequality.
Approximation can again be used to argue that the convergence a�2T

P[Tr]
t=1 Zt ) L(r) is joint

with WT (r) ) �1W (r) in D6[0; 1]. To this end, consider additionally an IID sequence f"��1t g
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independent of the random elements introduced so far and with "��1t distributed like "11. Next, in

WT replace "1t by "��1t whenever "1t was retained in f ~Ztg :

WT;�(r) =WT (r) + T
�1=2

[Tr]X
t=1

�t�("
��
t�1 + "

��
t+1 � "t�1 � "t+1):

Then WT;� is distributed like WT , so WT;�(r) ) W (r). Since WT;�(r) and a
�2
T

P[Tr]
t=1

~Zt are inde-

pendent, their convergence is joint and to independent limits. On the other hand, since

max
r2[0;1]

kWT;�(r)�WT (r)k � (E�t�)
1=2 max

r2[0;1]

T�1=2
[Tr]X
t=1

�t� � E�t�
fV ar(�t�)g1=2

("��t�1 + "
��
t+1 � "t�1 � "t�2)


+E�t� max

r2[0;1]

T�1=2
[Tr]X
t=1

("��t�1 + "
��
t+1 � "t�1 � "t�2)

 P! 0

as T ! 1, because E�t� ! 0 and the maxima over r converge weakly to maxima of Wiener

processes with variances independent of �, we can conclude that a�2T
P[Tr]

t=1 Zt and WT (r) converge

like a�2T
P[Tr]

t=1
~Zt and WT;�(r):0@a�2T bTrcX

t=1

Z 0t;WT (r)

1A0 )  1X
i=1

IfUi�rg�
�2=�
i �0i; �1W (r)

!0
(21)

in D6[0; 1] as T !1, with independent jump and Wiener components.
To obtain the unbalanced-tail convergence (20), for every � > 0 consider the J1-continuous

(Jacod and Shiryaev (2003), Corollary VI.2.8) map G� : D6[0; 1] 7! D7[0; 1] de�ned for V 2 D6[0; 1]
by

V
G�7�!

0@X
s�r

g�(�V1(s)); V
0 (r)

1A0
r2[0;1]

;

where g� (x) = sgn(x)
p
jxjfIjxj�2� + Ijxj2[�;2�)(��1jxj � 1)g is continuous and vanishes on (��; �).

From the CMT it follows that, jointly with (21),

bTrcX
t=1

g�(a
�2
T sgn("2t)"

2
2t))

1X
i=1

IfUi�rgg�(�
�2=�
i �i1):

Further, by Kolmogorov�s maximal inequality and Karamata�s theorem, for all � > 0 it holds that

P

0@ sup
r2[0;1]

������
bTrcX
t=1

(g�(a
�2
T sgn("2t)"

2
2t))� a�1T "2t)

������ � �

1A � ��2a�2T TE("221Ija�1T "21j�
p
2�)

!
T!1

1

�2
�

2� �(2�)
1��

2 !
�!0

0;

whereas

sup
r2[0;1]

�����
1X
i=1

IfUi�rgfg�(�
�2=�
i �i1)� ��2=�i �i1g

����� �
1X
i=1

Ij��2=�i j�2��
�2=�
i =

1X
j=minfi:j��2=�i j�2�g

�
�2=�
j

a:s:!
�!0

0

40



because ��2=�j � j�2=� a.s. implies minfi : j��2=�i j � 2�g ! 1 a.s. when � ! 0. Therefore, by

Theorem 4.2 of Billingsley (1968),0@a�1T bTrcX
t=1

"2t; a
�2
T

bTrcX
t=1

Z 0t;WT (r)

1A0 )  1X
i=1

IfUi�rg(�
�1=�
i �i1;�

�2=�
i �0i)

0; �1W (r)

!
;

which by the CMT implies (20), and hence, (23), with

(U�(r); [U�]r; S(r); Q�(r); Q+(r))0 =
1X
i=1

IfUi�rg(�
�1=�
i �i1;�

�2=�
i (1; �i3; �i4; �i5)

0)0:

From here (19) follows directly. As to (18), it follows from Theorerm 2.7 of Kurtz and Protter

(1991) since the UT (uniform tightness) condition can be checked as on pp.784-786 of Paulauskas

and Rachev (1998). �
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Figure 1: Local power of unit root tests under OLS and local GLS de-meaning when
T = 200. The DGP is (25) and (26) with c ∈ {0, 1, 2, ..., 50} and ϕ = θ = 0.
Key: tρ̂
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Figure 2: Local power of unit root tests under OLS and local GLS de-meaning
when T = 200. The DGP is (25) and (26) with c ∈ 0, 1, 2, ..., 50 and ϕ = θ = 0.
Key: tρ̂
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Figure 3: Local power of unit root tests under OLS and local GLS de-meaning
when T = 200. The DGP is (25) and (26) with c ∈ 0, 1, 2, ..., 50 and ϕ = θ = 0.
Key: tρ̂
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Figure 4: Local power of unit root tests under OLS and local GLS de-meaning
when T = 200. The DGP is (25) and (26) with c ∈ 0, 1, 2, ..., 50 and ϕ = θ = 0.
Key: tρ̂
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Figure 5: Local power of unit root tests under OLS and local GLS de-meaning
when T = 500. The DGP is (25) and (26) with c ∈ 0, 1, 2, ..., 50 and ϕ = θ = 0.
Key: tρ̂
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Figure 6: Local power of unit root tests under OLS and local GLS de-meaning
when T = 500. The DGP is (25) and (26) with c ∈ 0, 1, 2, ..., 50 and ϕ = θ = 0.
Key: tρ̂
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Figure 7: Local power of unit root tests under OLS and local GLS de-meaning
when T = 500. The DGP is (25) and (26) with c ∈ 0, 1, 2, ..., 50 and ϕ = θ = 0.
Key: tρ̂
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Figure 8: Local power of unit root tests under OLS and local GLS de-meaning
when T = 500. The DGP is (25) and (26) with c ∈ 0, 1, 2, ..., 50 and ϕ = θ = 0.
Key: tρ̂
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Figure 9: Local power variation of the unit root tests. The DGP is (25) and (26) with c ∈ 0, 1, 2, ..., 50, ϕ = θ = 0 and T = 200.

Key: tρ̂

50 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
0 10 20 30 40 50

−1

−0.5

0

0.5

1

1.5

2

2.5

c

tρ VRT MSB tρ,1
W tρ,1

W,α
u; VRT

50 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
0 10 20 30 40 50

−1

−0.5

0

0.5

1

1.5

2

2.5

c

tρ VRT MSB tρ,1
W tρ,1

W,α
u; MSB

50 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
0 10 20 30 40 50

−1

−0.5

0

0.5

1

1.5

2

2.5

c

tρ VRT MSB tρ,1
W tρ,1

W,α
u; tWρ̂,1

50 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
0 10 20 30 40 50

−1

−0.5

0

0.5

1

1.5

2

2.5

c

tρ VRT MSB tρ,1
W tρ,1

W,α
u; tW,αu

ρ̂,1

50 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
0 10 20 30 40 50

−1

−0.5

0

0.5

1

1.5

2

2.5

c

tρ VRT MSB tρ,1
W tρ,1

W,α
u.



OLS de-meaning

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

1.5

2

2.5

3

c

(a) α = 1.75

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

1.5

2

2.5

3

c

(b) α = 1.50

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

1.5

2

2.5

3

c

(c) α = 1.25

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

1.5

2

2.5

3

c

(d) α = 1.00

GLS de-meaning

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

1.5

2

2.5

c

(e) α = 1.75

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

1.5

2

2.5

c

(f) α = 1.50

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

1.5

2

2.5

c

(g) α = 1.25

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

1.5

2

2.5

c

(h) α = 1.00

Figure 10: Local power variation of the unit root tests. The DGP is (25) and (26) with c ∈ 0, 1, 2, ..., 50, ϕ = θ = 0 and T = 500.
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Table 1. Unconditional `(u)' and conditional `(c)' cdfs of τc,α at x ∈ {0.5, 1, 1.5, 2, 3}

x, α 1
(u)

1
(c)

1.5
(u)

1.5
(c)

1.75
(u)

1.75
(c)

1
(u)

1
(c)

1.5
(u)

1.5
(c)

1.75
(u)

1.75
(c)

c = 0 c = 15
0.5 0.13 0.80 0.12 0.53 0.08 0.31 0.13 0.80 0.12 0.53 0.07 0.30
1 0.23 0.89 0.32 0.77 0.37 0.67 0.23 0.89 0.32 0.77 0.36 0.67
1.5 0.31 0.95 0.51 0.92 0.70 0.91 0.32 0.95 0.51 0.92 0.69 0.91
2 0.37 0.98 0.62 0.98 0.81 0.98 0.38 0.98 0.62 0.98 0.80 0.98
3 0.47 1.00 0.73 1.00 0.88 0.99 0.46 1.00 0.73 1.00 0.87 0.99

Table 2. Average estimate of α̂u

T = 100 T = 1000 T = 10000 T = 100000
α2 α̂u α̂u α̂u α̂u

γ = 0.1 2.00 1.97 1.99 2.00 2.00
1.75 1.97 1.99 2.00 2.00
1.50 1.96 1.99 2.00 2.00
1.25 1.96 1.99 2.00 2.00
1.00 1.96 1.99 2.00 2.00

γ = 0.316 2.00 1.97 1.99 2.00 2.00
1.75 1.96 1.98 1.99 1.99
1.50 1.94 1.97 1.99 1.99
1.25 1.93 1.97 1.99 1.99
1.00 1.92 1.97 1.99 2.00

γ = 1 2.00 1.98 1.99 2.00 2.00
1.75 1.89 1.91 1.93 1.94
1.50 1.84 1.89 1.93 1.96
1.25 1.82 1.90 1.95 1.98
1.00 1.81 1.92 1.97 1.99

γ = 3.16 2.00 1.98 1.99 2.00 2.00
1.75 1.79 1.80 1.81 1.82
1.50 1.62 1.68 1.75 1.82
1.25 1.55 1.71 1.83 1.92
1.00 1.58 1.81 1.92 1.97

γ = 10 2.00 1.98 1.99 2.00 2.00
1.75 1.76 1.76 1.76 1.76
1.50 1.52 1.53 1.56 1.61
1.25 1.31 1.43 1.59 1.74
1.00 1.24 1.57 1.80 1.92

γ = 31.6 2.00 1.98 2.00 2.00 2.00
1.75 1.76 1.75 1.75 1.75
1.50 1.51 1.50 1.51 1.52
1.25 1.25 1.28 1.35 1.47
1.00 1.03 1.26 1.58 1.81



Table 3. Empirical size of unit root tests under OLS and local GLS de-meaning. The DGP is (25) and (26) with T = 200 and γ = 0.1.

OLS de-meaning Local GLS de-meaning

ϕ θ α2 tρ̂ VRT MSB MZϕ MZt tWρ̂,1 tW,α̂u

ρ̂,1 tρ̂ VRT MSB MZϕ MZt tWρ̂,1 tW,α̂u

ρ̂,1

0 0 1.75 0.042 0.052 0.035 0.038 0.037 0.054 0.047 0.049 0.056 0.051 0.046 0.047 0.057 0.049

1.5 0.044 0.052 0.039 0.040 0.039 0.058 0.049 0.051 0.066 0.051 0.049 0.050 0.060 0.051

1.25 0.045 0.047 0.037 0.038 0.036 0.053 0.047 0.050 0.058 0.051 0.049 0.047 0.059 0.067

1 0.040 0.046 0.036 0.035 0.035 0.046 0.051 0.048 0.061 0.050 0.047 0.048 0.057 0.065

0.5 0 1.75 0.040 0.044 0.048 0.046 0.041 0.055 0.050 0.045 0.052 0.058 0.052 0.051 0.056 0.053

1.5 0.038 0.045 0.049 0.048 0.043 0.056 0.054 0.051 0.062 0.062 0.058 0.058 0.064 0.052

1.25 0.044 0.041 0.050 0.049 0.043 0.057 0.051 0.051 0.055 0.063 0.059 0.057 0.060 0.066

1 0.040 0.040 0.043 0.043 0.039 0.045 0.056 0.046 0.058 0.058 0.053 0.052 0.059 0.067

-0.5 0 1.75 0.041 0.060 0.029 0.030 0.032 0.067 0.061 0.046 0.059 0.044 0.042 0.043 0.065 0.057

1.5 0.043 0.060 0.033 0.033 0.032 0.069 0.065 0.050 0.070 0.049 0.046 0.046 0.070 0.056

1.25 0.042 0.056 0.034 0.036 0.031 0.066 0.058 0.048 0.062 0.045 0.044 0.046 0.066 0.076

1 0.036 0.054 0.030 0.031 0.032 0.058 0.065 0.047 0.064 0.043 0.039 0.043 0.064 0.073

0 0.5 1.75 0.034 0.050 0.039 0.037 0.040 0.057 0.050 0.040 0.057 0.054 0.047 0.047 0.057 0.050

1.5 0.032 0.050 0.041 0.042 0.038 0.056 0.053 0.046 0.064 0.057 0.054 0.053 0.065 0.054

1.25 0.036 0.045 0.047 0.046 0.040 0.055 0.050 0.043 0.057 0.054 0.050 0.051 0.062 0.067

1 0.035 0.044 0.041 0.039 0.039 0.048 0.054 0.040 0.061 0.049 0.046 0.044 0.058 0.065

0 -0.5 1.75 0.045 0.075 0.044 0.044 0.039 0.108 0.097 0.064 0.071 0.059 0.055 0.057 0.100 0.097

1.5 0.041 0.077 0.046 0.045 0.038 0.102 0.104 0.064 0.072 0.058 0.057 0.057 0.101 0.094

1.25 0.049 0.071 0.048 0.048 0.045 0.106 0.094 0.062 0.070 0.055 0.054 0.054 0.099 0.112

1 0.045 0.068 0.041 0.044 0.039 0.097 0.109 0.061 0.067 0.057 0.054 0.054 0.101 0.114



Table 4. Empirical size of unit root tests under OLS and local GLS de-meaning. The DGP is (25) and (26) with T = 200 and γ = 1.

OLS de-meaning Local GLS de-meaning

ϕ θ α2 tρ̂ VRT MSB MZϕ MZt tWρ̂,1 tW,α̂u

ρ̂,1 tρ̂ VRT MSB MZϕ MZt tWρ̂,1 tW,α̂u

ρ̂,1

0 0 1.75 0.046 0.047 0.036 0.036 0.039 0.042 0.044 0.043 0.067 0.045 0.039 0.040 0.052 0.060

1.5 0.050 0.052 0.036 0.038 0.043 0.032 0.040 0.046 0.070 0.051 0.044 0.042 0.057 0.055

1.25 0.053 0.052 0.039 0.039 0.047 0.025 0.033 0.047 0.079 0.056 0.046 0.044 0.053 0.046

1 0.056 0.045 0.034 0.040 0.053 0.026 0.023 0.032 0.090 0.043 0.031 0.033 0.043 0.047

0.5 0 1.75 0.045 0.040 0.041 0.045 0.044 0.043 0.045 0.041 0.063 0.052 0.045 0.046 0.055 0.062

1.5 0.050 0.045 0.050 0.049 0.051 0.035 0.041 0.044 0.067 0.062 0.054 0.050 0.056 0.059

1.25 0.049 0.046 0.050 0.049 0.052 0.027 0.031 0.049 0.076 0.068 0.058 0.057 0.054 0.048

1 0.055 0.038 0.042 0.046 0.057 0.026 0.024 0.034 0.086 0.051 0.040 0.038 0.044 0.048

-0.5 0 1.75 0.042 0.053 0.029 0.030 0.032 0.052 0.055 0.041 0.070 0.038 0.034 0.036 0.059 0.066

1.5 0.048 0.060 0.033 0.035 0.039 0.039 0.055 0.045 0.073 0.045 0.038 0.039 0.067 0.065

1.25 0.050 0.059 0.034 0.035 0.042 0.035 0.043 0.045 0.082 0.052 0.043 0.042 0.059 0.056

1 0.056 0.052 0.029 0.037 0.051 0.032 0.034 0.033 0.093 0.039 0.030 0.032 0.048 0.057

0 0.5 1.75 0.039 0.043 0.038 0.040 0.039 0.043 0.048 0.038 0.060 0.049 0.043 0.043 0.057 0.060

1.5 0.042 0.050 0.041 0.042 0.048 0.036 0.042 0.038 0.069 0.054 0.047 0.045 0.054 0.049

1.25 0.044 0.051 0.046 0.045 0.050 0.027 0.032 0.043 0.080 0.060 0.051 0.050 0.052 0.048

1 0.051 0.043 0.035 0.042 0.056 0.025 0.023 0.030 0.086 0.045 0.035 0.035 0.042 0.049

0 -0.5 1.75 0.052 0.066 0.043 0.045 0.042 0.089 0.101 0.056 0.080 0.052 0.049 0.049 0.097 0.108

1.5 0.057 0.072 0.050 0.055 0.051 0.081 0.098 0.061 0.077 0.059 0.053 0.053 0.116 0.108

1.25 0.056 0.071 0.051 0.056 0.053 0.070 0.084 0.061 0.093 0.064 0.056 0.056 0.112 0.106

1 0.064 0.068 0.051 0.057 0.061 0.069 0.065 0.050 0.104 0.059 0.045 0.043 0.111 0.123



Table 5. Empirical size of unit root tests under OLS and local GLS de-meaning. The DGP is (25) and (26) with T = 200 and γ = 10.

OLS de-meaning Local GLS de-meaning

ϕ θ α2 tρ̂ VRT MSB MZϕ MZt tWρ̂,1 tW,α̂u

ρ̂,1 tρ̂ VRT MSB MZϕ MZt tWρ̂,1 tW,α̂u

ρ̂,1

0 0 1.75 0.046 0.045 0.034 0.036 0.039 0.031 0.052 0.045 0.068 0.049 0.044 0.044 0.054 0.054

1.5 0.056 0.051 0.039 0.042 0.052 0.016 0.057 0.040 0.076 0.047 0.040 0.038 0.045 0.057

1.25 0.056 0.050 0.038 0.039 0.057 0.007 0.037 0.033 0.093 0.047 0.035 0.033 0.037 0.068

1 0.067 0.044 0.039 0.044 0.066 0.003 0.011 0.024 0.106 0.046 0.027 0.026 0.024 0.031

0.5 0 1.75 0.044 0.038 0.046 0.045 0.044 0.033 0.052 0.044 0.065 0.056 0.050 0.051 0.055 0.057

1.5 0.056 0.045 0.046 0.048 0.058 0.019 0.058 0.041 0.073 0.058 0.049 0.047 0.044 0.061

1.25 0.056 0.046 0.044 0.047 0.061 0.007 0.037 0.032 0.089 0.057 0.043 0.040 0.038 0.067

1 0.065 0.040 0.043 0.050 0.070 0.004 0.011 0.021 0.103 0.055 0.033 0.029 0.024 0.031

-0.5 0 1.75 0.046 0.051 0.029 0.031 0.036 0.044 0.063 0.044 0.072 0.044 0.040 0.040 0.063 0.064

1.5 0.056 0.057 0.033 0.038 0.049 0.025 0.069 0.039 0.081 0.043 0.038 0.036 0.054 0.069

1.25 0.056 0.057 0.033 0.036 0.053 0.013 0.049 0.031 0.098 0.045 0.031 0.030 0.048 0.074

1 0.067 0.050 0.036 0.045 0.065 0.007 0.019 0.023 0.108 0.041 0.027 0.023 0.030 0.041

0 0.5 1.75 0.038 0.043 0.037 0.036 0.043 0.032 0.054 0.036 0.067 0.049 0.045 0.044 0.053 0.056

1.5 0.051 0.049 0.040 0.045 0.056 0.019 0.057 0.033 0.074 0.050 0.040 0.039 0.043 0.061

1.25 0.049 0.049 0.037 0.041 0.058 0.007 0.039 0.028 0.091 0.049 0.038 0.036 0.034 0.061

1 0.061 0.043 0.035 0.043 0.069 0.006 0.013 0.019 0.103 0.042 0.027 0.025 0.020 0.028

0 -0.5 1.75 0.050 0.063 0.044 0.044 0.044 0.077 0.113 0.059 0.078 0.055 0.050 0.049 0.101 0.109

1.5 0.063 0.070 0.052 0.055 0.060 0.060 0.126 0.052 0.084 0.056 0.049 0.049 0.108 0.131

1.25 0.063 0.069 0.050 0.055 0.065 0.044 0.114 0.048 0.104 0.062 0.047 0.047 0.114 0.173

1 0.074 0.065 0.055 0.061 0.074 0.033 0.062 0.035 0.114 0.056 0.038 0.035 0.118 0.150



Table 6. Empirical size of unit root tests under OLS and local GLS de-meaning. The DGP is (25) and (26) with T = 500 and γ = 0.1.

OLS de-meaning Local GLS de-meaning

ϕ θ α2 tρ̂ VRT MSB MZϕ MZt tWρ̂,1 tW,α̂u

ρ̂,1 tρ̂ VRT MSB MZϕ MZt tWρ̂,1 tW,α̂u

ρ̂,1

0 0 1.75 0.044 0.053 0.045 0.045 0.042 0.050 0.050 0.045 0.054 0.045 0.046 0.045 0.051 0.050

1.5 0.044 0.050 0.043 0.044 0.041 0.046 0.049 0.054 0.051 0.053 0.052 0.053 0.056 0.048

1.25 0.042 0.054 0.043 0.046 0.042 0.050 0.044 0.049 0.051 0.051 0.049 0.049 0.054 0.051

1 0.043 0.054 0.047 0.046 0.042 0.044 0.040 0.048 0.056 0.050 0.047 0.047 0.051 0.063

0.5 0 1.75 0.045 0.051 0.052 0.052 0.046 0.051 0.054 0.045 0.053 0.047 0.046 0.046 0.053 0.050

1.5 0.043 0.047 0.051 0.050 0.043 0.045 0.051 0.052 0.050 0.055 0.053 0.053 0.054 0.048

1.25 0.043 0.051 0.051 0.052 0.043 0.048 0.044 0.049 0.050 0.054 0.052 0.052 0.054 0.052

1 0.044 0.051 0.052 0.051 0.045 0.044 0.040 0.049 0.055 0.051 0.052 0.051 0.053 0.062

-0.5 0 1.75 0.043 0.056 0.042 0.042 0.040 0.057 0.057 0.047 0.055 0.045 0.045 0.046 0.055 0.055

1.5 0.042 0.053 0.041 0.041 0.038 0.049 0.056 0.051 0.053 0.051 0.048 0.048 0.059 0.051

1.25 0.041 0.057 0.039 0.042 0.038 0.054 0.047 0.049 0.052 0.049 0.046 0.046 0.057 0.055

1 0.044 0.056 0.044 0.044 0.040 0.048 0.046 0.047 0.057 0.047 0.045 0.046 0.053 0.063

0 0.5 1.75 0.043 0.052 0.051 0.054 0.048 0.056 0.056 0.048 0.053 0.052 0.049 0.049 0.055 0.053

1.5 0.040 0.049 0.052 0.054 0.047 0.049 0.052 0.049 0.051 0.054 0.052 0.052 0.056 0.049

1.25 0.041 0.053 0.050 0.051 0.046 0.053 0.044 0.047 0.047 0.051 0.051 0.052 0.053 0.052

1 0.036 0.053 0.053 0.050 0.045 0.045 0.045 0.046 0.056 0.054 0.049 0.048 0.054 0.062

0 -0.5 1.75 0.050 0.062 0.057 0.056 0.049 0.077 0.078 0.058 0.054 0.056 0.055 0.054 0.073 0.074

1.5 0.049 0.060 0.056 0.055 0.047 0.075 0.075 0.059 0.057 0.056 0.054 0.056 0.074 0.068

1.25 0.047 0.061 0.058 0.059 0.049 0.073 0.068 0.058 0.054 0.057 0.052 0.055 0.073 0.072

1 0.048 0.061 0.057 0.057 0.044 0.067 0.065 0.057 0.060 0.052 0.052 0.055 0.074 0.081



Table 7. Empirical size of unit root tests under OLS and local GLS de-meaning. The DGP is (25) and (26) with T = 500 and γ = 1.

OLS de-meaning Local GLS de-meaning

ϕ θ α2 tρ̂ VRT MSB MZϕ MZt tWρ̂,1 tW,α̂u

ρ̂,1 tρ̂ VRT MSB MZϕ MZt tWρ̂,1 tW,α̂u

ρ̂,1

0 0 1.75 0.049 0.050 0.046 0.047 0.047 0.041 0.051 0.046 0.054 0.051 0.047 0.047 0.051 0.058

1.5 0.052 0.050 0.046 0.048 0.053 0.028 0.040 0.042 0.063 0.051 0.044 0.043 0.048 0.046

1.25 0.050 0.053 0.046 0.047 0.048 0.022 0.029 0.038 0.064 0.048 0.039 0.037 0.039 0.048

1 0.052 0.043 0.043 0.044 0.051 0.021 0.024 0.033 0.074 0.044 0.034 0.031 0.040 0.042

0.5 0 1.75 0.049 0.047 0.048 0.047 0.049 0.041 0.054 0.046 0.052 0.052 0.049 0.047 0.048 0.062

1.5 0.053 0.046 0.049 0.053 0.056 0.028 0.046 0.044 0.063 0.051 0.045 0.047 0.049 0.050

1.25 0.048 0.049 0.052 0.054 0.050 0.025 0.032 0.039 0.061 0.051 0.043 0.042 0.039 0.049

1 0.052 0.041 0.048 0.046 0.055 0.023 0.026 0.032 0.073 0.045 0.037 0.036 0.041 0.043

-0.5 0 1.75 0.048 0.053 0.045 0.045 0.047 0.045 0.049 0.046 0.056 0.047 0.044 0.045 0.053 0.059

1.5 0.052 0.054 0.044 0.045 0.050 0.031 0.042 0.042 0.064 0.049 0.041 0.041 0.051 0.046

1.25 0.049 0.055 0.046 0.046 0.047 0.027 0.037 0.039 0.065 0.048 0.040 0.039 0.041 0.049

1 0.051 0.044 0.042 0.042 0.051 0.025 0.024 0.032 0.075 0.042 0.033 0.031 0.044 0.043

0 0.5 1.75 0.044 0.049 0.052 0.052 0.051 0.043 0.048 0.043 0.056 0.051 0.046 0.046 0.050 0.064

1.5 0.049 0.049 0.051 0.054 0.055 0.030 0.044 0.041 0.062 0.052 0.044 0.044 0.049 0.048

1.25 0.047 0.051 0.051 0.054 0.050 0.025 0.030 0.038 0.062 0.055 0.045 0.043 0.043 0.049

1 0.049 0.042 0.047 0.049 0.055 0.024 0.025 0.032 0.072 0.045 0.036 0.035 0.042 0.046

0 -0.5 1.75 0.053 0.059 0.052 0.056 0.055 0.067 0.074 0.053 0.055 0.054 0.050 0.051 0.070 0.085

1.5 0.058 0.060 0.055 0.060 0.059 0.050 0.064 0.054 0.065 0.056 0.051 0.050 0.072 0.073

1.25 0.055 0.062 0.061 0.062 0.055 0.044 0.049 0.047 0.067 0.060 0.049 0.046 0.074 0.079

1 0.058 0.050 0.055 0.054 0.057 0.042 0.042 0.041 0.081 0.050 0.042 0.039 0.080 0.082



Table 8. Empirical size of unit root tests under OLS and local GLS de-meaning. The DGP is (25) and (26) with T = 500 and γ = 10.

OLS de-meaning Local GLS de-meaning

ϕ θ α2 tρ̂ VRT MSB MZϕ MZt tWρ̂,1 tW,α̂u

ρ̂,1 tρ̂ VRT MSB MZϕ MZt tWρ̂,1 tW,α̂u

ρ̂,1

0 0 1.75 0.045 0.048 0.041 0.044 0.044 0.029 0.056 0.044 0.050 0.048 0.043 0.043 0.044 0.048

1.5 0.053 0.054 0.044 0.047 0.054 0.017 0.057 0.037 0.067 0.047 0.040 0.038 0.041 0.055

1.25 0.058 0.053 0.046 0.049 0.059 0.007 0.027 0.028 0.079 0.042 0.030 0.028 0.028 0.047

1 0.062 0.048 0.045 0.048 0.064 0.002 0.007 0.025 0.095 0.040 0.025 0.024 0.022 0.025

0.5 0 1.75 0.046 0.044 0.048 0.047 0.045 0.028 0.054 0.045 0.048 0.049 0.048 0.048 0.045 0.048

1.5 0.055 0.050 0.047 0.049 0.058 0.017 0.058 0.038 0.066 0.051 0.043 0.041 0.042 0.057

1.25 0.057 0.050 0.050 0.051 0.062 0.007 0.027 0.029 0.078 0.045 0.033 0.032 0.031 0.050

1 0.063 0.044 0.048 0.050 0.066 0.003 0.007 0.026 0.092 0.045 0.032 0.029 0.022 0.023

-0.5 0 1.75 0.045 0.050 0.039 0.041 0.042 0.034 0.060 0.044 0.051 0.047 0.043 0.042 0.049 0.050

1.5 0.054 0.057 0.043 0.044 0.052 0.019 0.062 0.037 0.068 0.044 0.038 0.037 0.043 0.059

1.25 0.057 0.055 0.045 0.048 0.059 0.010 0.031 0.027 0.080 0.041 0.030 0.028 0.031 0.052

1 0.062 0.052 0.043 0.049 0.063 0.005 0.010 0.025 0.096 0.041 0.025 0.025 0.026 0.027

0 0.5 1.75 0.042 0.047 0.044 0.046 0.048 0.031 0.056 0.042 0.052 0.049 0.044 0.044 0.046 0.052

1.5 0.054 0.052 0.049 0.051 0.057 0.019 0.063 0.037 0.066 0.050 0.043 0.041 0.044 0.058

1.25 0.057 0.053 0.052 0.055 0.063 0.007 0.032 0.029 0.078 0.047 0.035 0.034 0.034 0.050

1 0.061 0.047 0.051 0.054 0.068 0.003 0.010 0.028 0.094 0.048 0.032 0.032 0.023 0.028

0 -0.5 1.75 0.052 0.056 0.050 0.053 0.050 0.052 0.088 0.056 0.053 0.056 0.053 0.052 0.071 0.076

1.5 0.060 0.062 0.054 0.057 0.061 0.037 0.093 0.048 0.073 0.055 0.047 0.048 0.070 0.093

1.25 0.064 0.060 0.055 0.061 0.066 0.022 0.058 0.039 0.083 0.052 0.040 0.040 0.067 0.097

1 0.069 0.057 0.058 0.060 0.073 0.014 0.025 0.038 0.099 0.053 0.039 0.037 0.074 0.085


	local_JFE
	Iliyan_Rob_Paulo_Tables_V3

