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Abstract

This article proposes bootstrap-based stochastic dominance tests for non-

parametric conditional distributions and their moments. We exploit the fact

that a conditional distribution dominates the other if and only if the di¤er-

ence between the marginal joint distributions is monotonic in the explanatory

variable for each value of the dependent variable. The proposed test statistic

compares restricted and unrestricted estimators of the di¤erence between the

joint distributions, and can be implemented under minimal smoothness require-

ments on the underlying nonparametric curves and without resorting to smooth

estimation. The �nite sample properties of the proposed tests are examined by

means of a Monte Carlo study. We report an application to studying the impact

on post-intervention earnings of the National Supported Work Demonstration,

a randomized labor training program carried out in the 1970s.

Keywords and Phrases: Nonparametric testing; Conditional stochastic

dominance; Conditional inequality restrictions; Least concave majorant; Treat-

ment e¤ects.
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1. INTRODUCTION

Stochastic dominance plays a major role in applied research, particularly in eco-

nomics. It has been used to rank investment strategies, to measure income and poverty

inequality, or to assess the e¤ects of di¤erent treatments, social programs, or policies.

The earliest proposal of Smirnov (1939) in the classical two-sample problem has been

followed by numerous extensions to di¤erent concepts of stochastic dominance un-

der alternative data generating processes assumptions; see e.g. McFadden (1989),

Anderson (1996), Davidson and Duclos (2000), Barrett and Donald (2003), Linton,

Maasoumi and Whang (2005), or Scaillet and Topaloglou (2010), among others. This

literature has been con�ned, however, to unconditional stochastic dominance testing,

and although there are some proposals that can accommodate covariate heterogeneity,

these tests are only consistent under rather strong independent assumptions between

regression errors and covariates. This article proposes consistent tests for conditional

stochastic dominance and other conditional moment inequalities under mild regularity

conditions on the underlying data generating process and without requiring smoothed

estimates.

Related to testing conditional stochastic dominance is the large literature on two-

sided tests for the equality of nonparametric regression curves. Some of these tests

compare smooth estimators of the nonparametric curves, like Härdle and Marron

(1990), Hall and Hart (1990) or King, Hart and Wehrly (1991). Others avoid smooth

estimation of conditional moments by comparing estimates of their integrals, like Del-

gado (1993) or Ferreira and Stute (2004). The literature on one-sided tests of con-

ditional moment restrictions is by contrast rather scarce, and more recent. Tests

for non-positiveness of conditional moments can be based on the positive part of a

smoothed estimator, as it has been suggested by Hall and Yatchew (2005), or Lee and

Whang (2009). A related idea has been implemented by Linton, Song and Whang

(2011), who use the positive part of the di¤erence between sample distributions in

order to test stochastic dominance. One can avoid using smoothers by noticing that

a conditional moment is non-positive if and only if its integral is monotonically non-
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increasing. This fact has been exploited by Kim (2008) and Andrews and Shi (2010)

for constructing con�dence intervals of parameters partially identi�ed by means of

conditional moment inequalities. See also Khan and Tamer (2009) for an application

to censored regression. So, as Andrews and Shi (2010) suggest, a test of monotonicity

on the integrated curve can be used for testing the inequality restrictions.

Our approach is di¤erent. We �rst characterize the problem of testing for monotoc-

ity of the integrated moment as one of testing for concavity, by integrating one more

time. Then, instead of a Wald-type test statistic, as in Kim (2008) or Andrews and Shi

(2010), we consider a Likelihood Ratio (LR)-type approach, comparing restricted and

unrestricted estimates of the double-integrated conditional moment. Our approach

is then more related to classical LR tests for parameter inequality restrictions. See

Dykstra and Robertson (1982, 1983), Robertson, Wright and Dykstra (1988), Wolak

(1989) or Kodde and Palm (1986). However, unlike in this classical literature, our

null hypothesis involves in�nite restrictions. The restricted estimator of the inte-

grated conditional moment is in fact an isotonic estimator, which does not need to use

smoothers. See Barlow et al. (1972) for a comprehensive account of results on isotonic

estimation, and see Durot (2003) and Delgado and Escanciano (2010) for applications

of the isotonic regression principles to conditional moment monotonicity testing. The

proposed test of conditional stochastic dominance is easy to implement using available

algorithms for nonparametric isotonic estimation. Also, it can be implemented under

fairly weak assumptions on the underlying data generating process, and it is fully

data-driven, without requiring user-chosen parameters such as bandwidths.

In this article, we focus on the �rst-order conditional stochastic dominance test-

ing problem in a one-sample setting. Under the null, the di¤erence between the two

conditional distributions, or their moments, is non-positive/non-negative. The null

hypothesis is satis�ed if and only if the di¤erence between the corresponding un-

conditional joint distribution functions is monotonic with respect to the explanatory

variable. Thus, our tests consist of comparing restricted and unrestricted estimates

of the di¤erence between the joint distribution functions. The limiting distribution of

the test statistic is non-pivotal in the least favorable case (l.f.c), i.e. the case under

3



the null closest to the alternative, but critical values can be consistently estimated

with the assistance of a bootstrap procedure as shown below.

The test statistic designed for testing conditional stochastic dominance is easily

adapted to testing inequality restrictions on other conditional moments, possibly in-

dexed by unknown parameters which must be estimated. Likewise, higher-order sto-

chastic dominance can be easily accommodated. Our testing procedure is particularly

well suited for the evaluation of treatment programs. We apply the testing method

to the National Supported Work (NSW) Demonstration program, a randomized labor

training program carried out in the 1970s, which has been employed for illustrating

di¤erent proposals for treatment e¤ect evaluation ever since the landmark article by

Lalonde (1986). In this application we �nd evidence against a non-negative average

treatment e¤ect conditional on age when the whole age distribution is included, and

we show that this rejection is mainly due to young individuals between 17 and 21 years

old. For these young individuals the job training program was not bene�cial. Uncon-

ditional methods are unable to uncover this age heterogeneity in treatment e¤ects.

This feature of the data is also likely to be missed by methods using smoothers, e.g.

testing strategies using uniform con�dence bands of the smoothed conditional average

treatment e¤ect, because of their lack of precision in the tails of the age distribution,

where there are few observations. Hence, this application highlights the merits of the

proposed methodology�the conditional aspect and the gains in precision derived from

estimating integrals rather than derivatives.

We have organized the article as follows. In the next section, we present the testing

procedure. Section 3 is devoted to applications of the basic framework to situations

of particular practical relevance. We consider testing inequality restrictions on condi-

tional moments, possibly indexed by unknown parameters, which is illustrated with

an application to testing conditional treatment e¤ects in social programs. We also

discuss the application of the testing procedure when conditioning to a vector of co-

variates. A Monte Carlo study in Section 4 investigates the �nite sample properties

of the proposal. We also report in this section the application to the NSW study.

In Section 5 we conclude and suggest extensions for future research. Mathematical
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proofs are gathered in an Appendix at the end of the article.

2. CONDITIONAL STOCHASTIC DOMINANCE TESTING

Henceforth, all the random variables are de�ned on a probability space (
;A;P) :

Any generic random vector � takes values in X�; F� denotes its cumulative distribution

function (cdf), and for each pair of random vectors (�1; �2) on (
;A;P) ; F �1j�2 denotes

the conditional cdf of �1 given �2; i.e.

F(�1;�2) (t1; t2) =

Z t2

�1
F �1j�2 (t1;

�t2)F�2 (d
�t2) :

Given an R3� valued random vector (Y1; Y2; X) and setsWY � XY1 \XY2 andWX �

XX ; such that WY �WY �WX � X(Y1;Y2;X), we consider the hypothesis

H0 : FY1jX � FY2jX a:s: in the set WY �WX : (1)

The alternative hypothesis H1 is the negation of H0. The discussion is centered in the

case where X is univariate. In Section 4, we consider the implementation when X is

multivariate.

Note that H0 is satis�ed if and only if the di¤erence between the joint distributions,

D (y; x) �
�
F(Y1;X) � F(Y2;X)

�
(y; x)

=

Z x

�1

�
FY1jX � FY2jX

�
(y; �x)FX (d�x) ,

is non-increasing in x 2 WX ; for each y 2 WY : In turn, since the quantile function

F�1X is non-decreasing, a necessary and su¢ cient condition for (1) is that

C (y; u) �
Z u

0

D
�
y; F�1X (�u)

�
d�u

is concave in u 2 UX � FX (WX) ; for each y 2 WY .

Therefore, H0 can be characterized by the least concave majorant (l.c.m.) operator

T , which is de�ned as follows in this bivariate context. Let C be the space of concave

functions on [0; 1]: For any generic measurable function g :WY �UX ! R, T g (y; �) is

the function satisfying the following two properties for each y 2 WY : (i) T g (y; �) 2 C

and (ii) if there exists h 2 C with h � g (y; �) ; then h � T g (y; �). Henceforth, T g
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denotes the function resulting of applying the operator T to the function g (y; �) for

each y 2 WY : Obviously, for a concave function f on [0; 1]; T f = f: Thus, H0 can be

rewritten as an equality restriction,

H0 : T C � C = 0; a:s: in the set WY � UX :

This suggests using as test statistic some functional of an estimator of T C � C. Let

Zn � f(Y1i; Y2i; Xi)gni=1 be independent and identically distributed (iid) observations

of Z � (Y1; Y2; X) : Henceforth, for a given generic sample f�ig
n
i=1 of a possibly multi-

variate random variable �; let F�n denote its corresponding empirical cdf and F�1�n its

corresponding empirical quantile. A natural estimator of C is

Cn (y; u) �
Z u

0

Dn

�
y; F�1Xn (�u)

�
d�u; (y; u) 2 WY � UX ;

where

Dn (y; x) �
�
F(Y1;X)n � F(Y2;X)n

�
(y; x) ; (y; x) 2 WY � UX :

Notice that Dn

�
F�1Y n (v) ; F

�1
Xn (u)

�
; (v; u) 2 [0; 1]2 ; is the sample analog of the di¤er-

ence between the copula functions of (Y1; X) and (Y2; X), D
�
F�1Y (v) ; F�1X (u)

�
, which

has been considered by Remillard and Scaillet (2009) and Bücher and Dette (2010)

for copula equality testing.

The test statistic is the sup�distance between T Cn and Cn; i:e:

�n �
p
n sup
(y;u)2WY �UXn

(T Cn � Cn) (y; u) ; (2)

where UXn � FXn (WX) is the sample analog of UX : Of course, other distances could

be used. Notice that

�̂n =
p
n sup
(y;u)2WY �UXn

Z u

0

�
D0
n �Dn

� �
y; F�1Xn (�u)

�
d�u;

where D0
n

�
y; F�1Xn (u)

�
is the slope of T Cn (y; u) for y �xed. Thus, �̂n is in fact a

distance between a restricted and an unrestricted estimator of the di¤erence between

the joint distribution functions.

2.1. Computation of the test statistic
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Note that, for (y; u) 2 WY � UXn;

Cn (y; u) =
1

n

nX
i=1

�
1fY1i�yg � 1fY2i�yg

�
(u� FXn (Xi)) 1fFXn(Xi)�ug: (3)

Therefore, it is evident from (3) that Cn (y; �) is; for each y 2 WY ; piecewise linear

with knots in UXn; as is T Cn(y; �). For each y 2 WY , we can always write,

Cn

�
y;
l

n

�
=
1

n

lX
j=1

rnj (y) ; l = 1; :::; n;

for a suitable sequence frnj (y)gnj=1 of �rst di¤erences of Cn (y; �) ; with rn1 (y) � 0: In

particular, when there are no ties in fXigni=1, the function rnj (y) is given by,

rnj (y) �
1

n

j�1X
i=1

�
1fY1[i:n]�yg � 1fY2[i:n]�yg

�
; j = 2; :::; n: (4)

where
�
Yj[i:n]

	n
i=1
; j = 1; 2; are the Yj�concomitants of the order statistics fXi:ngni=1;

i.e. Yj[i:n] = Yjk if Xi:n = Xk; j = 1; 2; with X1:n < X2:n < � � � < Xn:n:

The knots of T Cn (y; :) ; for each y 2 WY ; are easily located applying the Pooled

Adjacent Violators Algorithm (PAVA) proposed by Barlow et al. (1972). The input

for the algorithm must be frni (y)gni=1 ; which can be easily computed recursively ac-

cording to (4) when there are no X ties, or simply by computing the increments of

Cn (y; �) in the general case. See Cran (1980) and Bril et al. (1982) for FORTRAN

implementations and de Leeuw et al. (2009) for R routines. Moreover, the maximum

di¤erence of (T Cn � Cn) (y; �) ; with y 2 WY �xed, is attained at one of the points in

UXn, restricting the supremum to a maximum on a �nite number of points for each

n � 1. Furthermore, Cn (y; �) ; and hence T Cn (y; �) ; takes on the same values when y

is between consecutive order statistics of the pooled sample fY1i; Y2igni=1 ; which shows

that supy2WY
can be also computed as a maximum. Hence, we can simply write

�n =
p
n max
(y;u)2(UY n;UXn)

(T Cn � Cn) (y; u) ; (5)

where UY n � fYki : Yki 2 WY ; 1 � i � n; k = 1; 2g. Matlab subroutines for comput-

ing �n are available from the authors upon request.

2.2. Asymptotic distribution
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We discuss now the asymptotic distribution of �n under the least favorable case,

which corresponds to (1) under equality. The limiting distribution follows from the

functional central limit theorem applied to
p
nCn and the continuous mapping theo-

rem. But it must be proved �rst that considering the empirical distribution function

FXn in Cn and in the estimated set UXn; rather than the genuine FX ; does not have

any e¤ect on the asymptotic distribution of the test statistic under the l.f.c. In the

Appendix we characterize the limiting distribution of �n and prove that, under H0;

lim
n!1

P f�n > c�g � �;

where

c� = inf
n
c 2 [0;1) : lim

n!1
P f�n > cg � � in the l.f.c.

o
:

However, c� is hard to estimate directly from the sample. We propose estimating c� by

means of a multiplier-type bootstrap. See Chapter 2.9 in van der Vaart and Wellner

(1996). The asymptotic critical value c� is estimated by

c�n� � inf fc 2 [0;1) : P�n (��n > c) � �g ;

where P�n means bootstrap probability, i.e. conditional on the sample Zn;

��n �
p
n max
(y;u)2(Uyn;UXn)

(T C�n � C�n) (y; u)

and, for each (y; u) 2 WY � UXn;

C�n (y; u) �
1

n

nX
i=1

�
1fY1i�yg � 1fY2i�yg

�
(u� FXn (Xi)) 1fFXn(Xi)�ugVi:

The random variables Vn � fVigni=1 are iid; independently generated from the sample

Zn; according to a random variable V with bounded support, mean zero and vari-

ance one. This type of multiplicative bootstrap has been used in many problems

involving empirical processes with a non-pivotal asymptotic distribution. See for in-

stance Delgado and González-Manteiga (2000) or Scaillet (2005). In practice, c�n� is

approximated as accurately as desired by ��n[B(1��)]; the [B (1� �)]� th order statistic

computed from B replicates
�
��nj
	B
j=1

of ��n: Equivalently, the test can be implemented

8



using the bootstrap p-value p�n = P�n (��n > �n) ; which is also approximated by Monte

Carlo. Our bootstrap test rejects H0 at the � � th nominal level, � 2 (0; 1); when

�n > c�n�; or equivalently p
�
n < �: Next theorem states that the bootstrap test is

consistent and has the right asymptotic size.

Theorem 1 Assume that FX is continuous and fVigni=1 are iid, independent of the

sample Zn, bounded and with mean zero and variance one. Then, for each � 2 [0; 1] ;

(i) under H0; limn!1 P (�n > c�n�) � �, with equality under the l.f.c;

(ii) under H1; limn!1 P (�n > c�n�) = 1.

Our methodology is directly applicable to testing second-order or, more generally,

j � th order conditional stochastic dominance, j � 2, simply replacing the empirical

process Cn by

Cn;j (y; u) �
1

n

nX
i=1

�
1fY1i�yg � 1fY2i�yg

�
(u� FXn (Xi))

j 1fFXn(Xi)�ug; j � 2:

See e.g. McFadden (1989) for discussion of higher-order stochastic dominance.

The test is also applicable to testing inequality restrictions of general conditional

moments, possibly indexed by parameters, and it can be accommodated to situations

with multiple covariates. These application are discussed in the next section.

3. SOME APPLICATIONS OF THE BASIC FRAMEWORK

3.1. Conditional Moment Inequalities with Unknown Parameters

We apply the basic framework to testing inequality restrictions on general condi-

tional moments of functions of the observable variables, which may be indexed by

unknown parameters. That is, given a vector of random variables Z and a measurable

function m� : �Z ! R indexed by a vector of parameters � 2 �; where � � Rk is a

parameter space, the null hypothesis of interest is

H0 : E (m�0(Z)jX = x) � 0 for all x 2 WX and some �0 2 �: (6)

Many applications fall under this setting. When Z = (Y1; Y2; X) andm� (Z) = Y1�Y2;

(6) is the hypothesis that a regression function dominates another. A version of the
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null hypothesis (6) is natural in the evaluation of treatment programs. Let D be an

indicator of participation in the program, i.e. D = 1 if the individual participates in

the treatment and D = 0 otherwise. Denote the observed outcome by Y = Y (1)D +

(1� Y (0)) (1�D) ; where Y (1) and Y (0) are the outcomes of the individual in the

treatment and control groups, respectively. We assume unconfoundedness or selection

on observables, i.e. Y (1) and Y (0) are independent of D; conditional on the covariate

X: The hypothesis of interest is that the treatment is bene�cial for individuals with

x 2 WX ; i.e.

E (Y (0)jX = x) � E (Y (1)jX = x) ; 8x 2 WX : (7)

Let q (x) � E (DjX = x) be the propensity score, and assume that q 2 (0; 1) a.s. In

applied work, it is usually assumed that q (x) = q�0 (x) for some �0 2 � � Rp; where q�
is some cdf indexed by a vector of parameters �; e.g. a probit or a logit speci�cation:

Under these circumstances, using the fact that

E ((q�0 (X)�D)Y jX = x)=fE (Y (0)jX = x)�E (Y (1)jX = x)g q�0 (x) (1�q�0 (x));

the hypothesis in (7) can be rewritten as H0 in (6) with Z = (Y;D;X) and m� (Z) =

(q� (X)�D)Y; which does not have a random denominator. Hsu (2011) implements

Andrews and Shi (2010) methodology to testing (7) based on the increments of the

integrals of smooth estimates of E (Y (0)� Y (1)jX = x) :

When �0 is known, the basic framework presented in the previous section is directly

applicable without changes. Mimicking the proposal in the previous section, for any

generic function m : XZ ! R, we consider the test statistic

��m;n �
p
n max
u2UXn

�
T �Cm;n � �Cm;n

�
(u) ;

where

�Cm;n (u) �
1

n

nX
i=1

m (Zi) (u� FXn (Xi)) 1fFXn(Xi)�ug; u 2 [0; 1]; (8)

estimates �Cm (u) � E
�
m (Z) (u� FX (X)) 1fFX(X)�ug

�
:When �0 is known, tests based

on ��m�0
;n are justi�ed using the same arguments as in Theorem 1. Naturally, the sto-

chastic dominance hypothesis between treatment and control groups conditional on the
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covariate X can be implemented by using Z=(Y;X;D) and m (Z)=(q� (X)�D)1fY�yg;

which is also indexed by y 2 XY : A test for unconditional stochastic dominance has

been recently proposed by Donald and Hsu (2011) based on the di¤erence between

the marginal distribution estimators of Y (0) and Y (1) :

In many applications of practical relevance the moment function m�0 involves an

unknown parameter �0. It happens when comparing productivity indexes, which are

residuals of some production function estimate, see e.g. Delgado, Fariñas and Ruano

(2002). It also happens when testing treatment e¤ects with an unknown conditional

propensity score. In randomized experiments D is independent of X; and hence, q (x)

is constant, say q (x) � �0: In this case, the parameter �0 can be estimated by its

sample analog �n = n�1
Pn

i=1Di; which is the relative frequency of participants in

the treatment: When dealing with non-experimental data, i.e. if D and X are not

mean-independent, q can be modeled by means of a discrete choice model depending

on some unobserved latent variable, leading to q = q�0 for some unknown �0 2 � � Rp.

Given iid observations fZigni=1 of Z; we assume that a
p
n � consistent estimator

of �0 is available, which satis�es the following assumption.

Assumption E: The estimator �n is strongly consistent for �0 and satis�es the fol-

lowing linear expansion:

p
n(�n � �0) =

1p
n

nX
i=1

l�0(Zi) + oP(1);

where l�(�) is such that: (i) E (l�0(Z)) = 0 and L�0 � E (l�0(Z)l�0(Z)0) exists and is

positive de�nite; and (ii) lim�!0 E
�
sup�2�0;j���0j�� jl�(Z)� l�0(Z)j

2� = 0, where �0 is
a neighborhood of �0; �0 � �:

We also need some smoothness on m�: De�ne _m� � @m�=@� a.s.

Assumption S: The moment functionm� is a.s continuously di¤erentiable in a neigh-

borhood of �0; �0 � � , with E
�
jm�0(Z)j

2� <1 and E
�
sup�2�0 j _m�(Z)j

�
<1.

These assumptions are ful�lled under mild moment conditions when, for example,

m� (Z) = "1�1 (Z) � "2�2 (Z) with "i�i : XZ � � ! R, i = 1; 2; known functions and
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� = (�01; �
0
2)
0
: For example the "0is may be the productivity indexes estimated as least

squares residuals of a Cobb-Douglas production function. These assumptions are also

ful�lled in randomized experiments by �n = n�1
Pn

i=1Di; with l� (Z) = (D � �) and

_m� (Z) = Y; provided 0 < �0 < 1 and E (Y 2) <1:

Under these two assumptions and the l.f.c, we show in the Appendix that �Cm�n ;n
(u) ;

de�ned as in (8), has the uniform in u 2 UX representation

�Cm�n ;n
(u) =

1

n

nX
i=1

n
m�0(Zi) (u� FX (Xi)) 1fFX(Xi)�ug + l�0(Zi)

0 �C _m�0
(u)
o
+oP

�
n�1=2

�
:

(9)

This uniform expansion suggests a simple bootstrap approximation based on

�C�m�n ;n
(u) =

1

n

nX
i=1

�
m�n(Zi)

�
(u� FXn (Xi)) 1fFXn(Xi)�ug + l�n(Zi)

0 �C _m�n;n
(u)
�	
Vi;

where fVigni=1 are iid generated as indicated in Theorem 1. Let ���m�n;n
be the bootstrap

test statistic based on �C�m�n ;n
; and denote by �c��;n the corresponding bootstrap critical

value. Our next result is the analogue of Theorem 1 in the current setting.

Theorem 2 Let the assumptions of Theorem 1, E and S hold. Then,

(i) under H0; limn!1 P
�
��m�n;n

> �c��;n

�
� �, with equality under the l.f.c;

(ii) under H1; limn!1 P
�
��m�n;n

> �c��;n

�
= 1.

3.2. Multiple Covariates.

In this subsection we consider testing H0 with X a d�dimensional covariate. We

discuss two approaches. The �rst approach is based on the fact that the null hypothesis

implies that for all � 2 Sd � f� 2 Rd : �0� = 1g;

FY1j�0X (y; �
0x) � FY2j�0X (y; �

0x) for all (y; x) 2 WY �WX : (10)

Escanciano (2006) considered a similar approach for the problem of testing the lack-

of-�t of a regression model, and Kim (2008) has also used this approach for infer-

ences under conditional moment inequalities. For each �xed � 2 Sd; let �̂n(�) de-

note the test statistic in (5) using the sample fY1i; Y2i; �0Xigni=1. The test statistic

for (10) is
R
Sd �̂n(�)d�. In applications, computing the integral can be a cumber-

some task. For that reason, we propose the Monte Carlo approximation �̂n;m �
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m�1Pm
j=1 �̂n(�j); where f�jgmj=1 is a sequence of iid variables from a uniform dis-

tribution in Sd; with m ! 1 as n ! 1: The sequence f�jgmj=1 can be easily gen-

erated from a d�dimensional vector of standard normals, scaled by its norm. Alter-

natively, the researcher may be interested in particular choices of �j: For instance,

�j = (1; 0; :::; 0) 2 Sd leads to a test focusing on the conditional distributions of Yk
given the �rst component of X; k = 1; 2:

The limit distribution of �̂n;m under the l.f.c can be approximated by the boot-

strap distribution of m�1Pm
j=1 �̂

�
n(�j); where �̂

�
n(�j) is the bootstrap approximation

suggested in Section 2, using the same sequence Vn for j = 1; :::;m. The validity of

the resulting bootstrap test follows from combining the empirical processes tools in

Escanciano (2006) with our results of Section 2 in a routine fashion.

Alternatively, following a traditional approach in multivariate modeling, see the

projection pursuit idea of Friedman and Tukey (1974), we could consider the composite

hypothesis,

H0 : FY1j�00X (y; �
0
0x) � FY2j�00X (y; �

0
0x) for all (y; x) 2 WY �WX ; (11)

where �0 is an unknown d�dimensional parameter, �0 2 � � Rd: For instance, such

situation arises in treatment e¤ects when the conditional distribution of (Y;D) given

X satis�es a single-index restriction, i.e. F (Y;D)jX(y; d) = F (Y;D)j�00X(y; d) for some

�0 2 � � Rd: A test for the composite hypothesis can be constructed based on �̂n(�n)

where �n is a consistent estimator of �0 obtained from the single-index restriction,

e.g. by average derivative or semiparametric least squares methods. The parameter

�0 is only identi�ed up to scale; so some normalization is in general needed. Here, it

is technically convenient to normalize the �rst component of � 2 � to 1: In particular,

we assume �01 = 1: Furthermore, we also assume that this coe¢ cient corresponds to a

continuous component X1 of X = (X1; X�1); where X�1 � (X2; :::; Xd): The following

assumption requires smoothness for the conditional distribution of X1 given X�1.

Assumption M: The conditional distribution of X1 given X�1 has a (uniformly)

bounded Lebesgue density. Furthermore, E
�
jXj2

�
<1 and the parameter space � is

compact.
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We now show that under some mild regularity conditions �̂n(�n) and �̂n(�0) have the

same asymptotic distribution under the l.f.c. That is, asymptotically, the estimated

parameters �n do not have any e¤ect on the limiting distribution under l.f.c. See Stute

and Zhu (2005) for a related result in a di¤erent context. The bootstrap consistency

of the test in this single-index model follows combining our results in Theorem 1 and

the next Theorem in a routine fashion.

Theorem 3 Let Assumption M hold. Then, under the l.f.c in (11); if �n is a consis-

tent estimator of �0; then

�̂n(�n) = �̂n(�0) + oP(1):

The result in Theorem 3 is particularly convenient for ease of implementation of our

test, as there is no need for re-estimating the parameters �0 in each bootstrap iteration,

or estimating the in�uence function of the estimator �n. Given data fZig
n
i=1 ; we esti-

mate consistently �0; and then apply the test statistic of Section 2 to fY1i; Y2i; �0nXigni=1,

using the same multiplier-type bootstrap. Our results are also valid for more general

index functions, including semiparametric or nonparametric ones, but formally proving

this is beyond the scope of this article.

4. EMPIRICAL RESULTS

4.1. Monte Carlo Simulations.

This section illustrates the �nite sample performance of the tests by means of simu-

lations and an application to testing treatment e¤ects. The fVigni=1 used in the boot-

strap implementation are independently generated as V with P (V = 1� ') = '=
p
5

and P (V = ') = 1�'=
p
5; where ' is the golden number, i.e. ' =

�p
5 + 1

��
2. See

Mammen (1993) for motivation on this popular choice. The bootstrap critical values

are approximated by Monte Carlo using 1; 000 replications and the simulations are

based on 10; 000 Monte Carlo Experiments. We report rejection probabilities at 10%;

5% and 1% signi�cance levels.

We �rst investigate the size accuracy and power of the proposed conditional sto-

chastic dominance tests for the following designs:

14



(i) Y1 = 1 + "(1); Y2 = 1 + "(2);

(ii) Y1 = exp(X) + "(1); Y2 = exp(X) + "(2);

(iii) Y1 = sin(2�X) + "(1); Y2 = sin(2�X) + "(2);

(iv) Y1 = 1 + "(1); Y2 = 1 +X + "(2);

(v) Y1 = exp(X) + "(1); Y2 = exp(X) +X + "(2);

(vi) Y1 = sin(2�X) + "(1); Y2 = sin(2�X) +X + "(2);

(vii) Y1 = 1 + "(1); Y2 = sin(2�X) + "(2);

(viii) Y1 = exp(X) + "(1); Y2 = exp(X) + sin(2�X) + "(2);

(ix) Y1 = sin(2�X) + "(1); Y2 = 2 sin(2�X) + "(2);

where X is distributed as U [0; 1]; independently of the normal errors "(1) and "(2);

which are independent, have zero mean, and variance �2 = 1=4: Similar designs were

used in Neumeyer and Dette (2003) for testing the equality of regression functions in

a two sample context. Table 1 reports the proportion of rejections for models (i)-(ix)

and sample sizes n = 50; 150 and 300.

TABLE 1 ABOUT HERE

Models (i)-(iii) fall under the null hypothesis. We observe that our bootstrap test

exhibits good size accuracy, even when n = 50. The power is moderate for n = 50

under alternatives (iv)-(viii), and uniformly high for any alternative with n = 150.

The highest power is achieved for the alternative (ix), where the regression functions

cross at one point.

In our second experiment, we study the �nite sample performance of the treatment

e¤ects test discussed in Subsection 3.1. We consider the design,

Y (0) = 1�X + "(1); (12)

Y (1) = 1� c+ (4c2 � 1)X + cX2 + "(2);
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whereX; "(1) and "(2) are generated as independent U [0; 1] variables, and c is a positive

constant. The treatment indicator is generated as D = 1(U (3) � U (4)); where U (3) and

U (4) are independent copies of "(1) and "(2). The observed outcome is Y = Y (1)D +

(1� Y (0)) (1�D). The l.f.c. corresponds to c = 0 and, as c increases, the design

deviates from the null in a direction somewhat similar to that observed in the empirical

application in Subsection 4.2.

The top panel of Figure 1 reports the percentage of rejections as a function of c;

for values of c from 0 to 2 at intervals of 0.25, and with n = 100 and 300. For c = 0;

the size accuracy is excellent, with a proportion of rejections, when n = 100; of 1.1%,

5.1% and 10.1% at 1%, 5% and 10% of signi�cance, respectively. The empirical power

is non-decreasing in c; is low for c = 0:25, detects alternatives with c � 0:5; and

stabilizes for c � 0:75:

In the third experiment, we relax the the conditional mean independence between

D and X; and generate data from (12) but with D = 1(�0 + �0X � "); where

�0 � (�0; �0) = (1; 0:2) is assumed to be unknown, and " follows a standard normal

distribution, independently of the standard normal covariate X and the errors "(1)

and "(2): The propensity score is modeled by a probit model, and the parameter �0

is estimated by the conditional maximum likelihood estimator. The bottom panel

of Figure 1 reports the percentage of rejections as a function of c; for sample sizes

n = 100 and 300. The results for the non-randomized experiment with a probit

propensity score are qualitatively the same as for the randomized experiment.

FIGURES 1 AND 2 ABOUT HERE

Overall, the simulations show that the proposed bootstrap tests exhibit fairly good

size accuracy and power for relatively small sample sizes, with uniform power across

all alternatives considered.

4.2. An Application to Experimental Data.

We apply the proposed testing method to studying the e¤ectiveness of the National

Supported Work (NSW) Demonstration program. The NSW was a randomized, tem-

porary employment program carried out in the U.S. during the mid-1970s to help
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disadvantaged workers. In an in�uential article, Lalonde (1986) used the NSW ex-

perimental data to examine the performance of alternative statistical methods for

analyzing non-experimental data. Variations and subsamples of this data set were

later reanalyzed by Dehejia and Wahba (1999). We use the original data for males

in Lalonde (1986) to illustrate our procedure. For a comprehensive description of the

experimental data see Lalonde (1986) and Dehejia and Wahba (1999).

The data consist of 297 treatment group observations and 425 control group obser-

vations. Our dependent variable Y is the increment in earnings, measured in 1982

dollars, between 1978 (post-intervention year) and 1975 (pre-intervention year). To

illustrate our methods we choose as independent variable X age. Figure 2 plots the

kernel regression estimates for the period 1975-1978 with age restricted to its 10%

and 90% quantiles in order to avoid boundary biases. We used a Gaussian kernel

with bandwidth values 1 and 2 for the control and treatment groups, respectively.

Cross-validation led to smaller bandwidths of 0.55 and 1.38, respectively, which imply

under-smoothing. Nonparametric smoothed estimates suggest a positive treatment,

specially for old workers. Parametric tests carried out in Lalonde (1986) for signi�-

cance of the unconditional average treatment e¤ect also indicated a positive e¤ect.

FIGURE 3 ABOUT HERE

The null hypothesis is that the conditional treatment e¤ect is non-negative, as in

(7). The treatment was randomized, and hence, our hypothesis corresponds to (6)

with m�0 (Z) = (�0 �D)Y; where �0 = E (D) is consistently estimated by �n =

n�1
Pn

i=1Di: The test statistic is implemented as in Section 3.1. In Table 2 we report

the bootstrap p-values over 10,000 bootstrap replications of our test for several values

of al in WX = [al; 55]: The value al = 17 corresponds to the full support of age in the

data. Table 2 also contains the sample sizes of the control and treatment groups, n1

and n0; respectively.

TABLE 2 ABOUT HERE

As evidenced from Table 2, our test rejects the null hypothesis of non-negative

impact of the NSW Demonstration program at 5% when the whole age distribution

17



is included (al = 17): Our results, in contrast with previous �ndings in the literature,

provide evidence of treatment e¤ect heterogeneity in age. Figure 2 and Table 2 suggest

that the rejection is due to young individuals between 17 and 21 years old for whom

the job training program was not bene�cial, as measured by the incremental earnings

between post-intervention and pre-intervention years. This feature of the data is

likely to be missed by methods using smoothers, e.g. testing strategies using uniform

con�dence bands for E (Y (0)� Y (1)jX = x), because their lack of precision in the

tails of the age distribution imply a lack of power against small deviations of the null

in the direction observed in this data.

To check the robustness of the previous results to the inclusion of other covariates

in the NSW study we consider a single-index semiparametric speci�cation as in Sec-

tion 3.2. The covariates in the NSW study are, in addition to age, educ=years of

schooling; black=1 if black, 0 otherwise; hisp=1 if hispanic, 0 otherwise; married=1

if married, 0 otherwise; and ndegr=1 if no high school degree, 0 otherwise. We spec-

ify E (Y jX) = E (Y j �00X) ; and estimate the parameter �0 by the minimum average

variance estimator (MAVE) proposed in Xia, Tong, Li and Zhu (2002), which allows

continuous and discrete covariates. We implement the MAVE with a Gaussian kernel

and a cross-validation method for choosing the bandwidth parameter. Matlab codes

for implementing the estimator and cross-validated bandwidth are available from the

�rst author�s web page. The bootstrap p-values obtained from 10.000 replications are

reported in the third column of Table 2. For a better comparison with the previous

results, we consider the same subsamples, divided according to age. The null hypoth-

esis is still rejected when considering the full range of the age distribution, but the

test does not reject when considering subsamples with older individuals. In view of

the previous results, the latter is likely to be driven by a decrease in precision because

of the semiparametric smoothed estimation involved.

5. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK.

This article has proposed a methodology for testing one-sided conditional moment

restrictions, with two distinctive features. On one hand, the tests can be imple-
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mented under minimal requirements on the smoothness of the underlying nonpara-

metric curves and without resorting to smooth estimation. On the other hand, the

new tests can be easily computed using the e¢ cient PAVA algorithm, already im-

plemented in many statistical packages. We have shown how the proposed methods

can be applied to accommodate composite hypotheses of di¤erent nature and multiple

covariates. Finally, we have illustrated the practical usefulness of our methods with

an application to evaluating treatment e¤ects in social programs.

Our basic results can be extended to other situations of practical interest. For

instance, a straightforward extension of our results consist of allowing serial dependent

observations. This has important applications in a number of settings, see e.g. tests

of superior predictive ability in Hansen (2005). The extension to time series does not

pose any additional di¢ culties, as long as the the weak convergence of the process
p
nCn holds. There is, however, an extensive literature providing su¢ cient conditions

for weak convergence of empirical processes under weak dependence, see e.g. Linton,

Maasoumi and Whang (2005) and Scaillet and Topaloglou (2010) for applications in

the context of stochastic dominance testing.

In the rest of this section, we discuss extensions of the basic framework to cases where

smoothing cannot be avoided. Most notably, the conditional stochastic dominance test

can also be applied when the covariate observations are di¤erent in each sample by

introducing covariate-matching techniques. See e.g. Hall and Turlach (1997), Hall,

Huber and Speckman (1997), Koul and Schick (1997, 2003), Cabus (1998), Neumeyer

and Dette (2003), Pardo-Fernández, van Keilegom and González-Manteiga (2007) or

Srihera and Stute (2010). These techniques use smooth estimators, typically kernels.

In particular, proposals by Cabus (1998) and Neumeyer and Dette (2003), designed for

testing the equality of nonparametric regression curves in a two sample context, can

be easily accommodated to one-sided testing by applying the methodology presented

in this article.

Another important extension would consist of allowing the function m� in (6) to

be indexed by an in�nite dimensional nuisance parameter �. For instance, this is the

case in the context of non-experimental treatment e¤ects when the propensity score
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q is nonparametrically speci�ed. When �0 is a nonparametric function estimated by

kernels, or other smoothing techniques, the corresponding �Cm�n;n
is asymptotically

equivalent to a U � process under the l.f.c. The test can also be implemented in this

case by means of a multiplier bootstrap on the Hoe¤ding�s projection, along the lines

suggested by Delgado and González-Manteiga (2001). A detailed analysis of these

extensions is beyond the scope of this article and is deferred to future work.

APPENDIX

Before proving the main results of the article, we �rst introduce some notation.

For a generic set G; let `1(G) be the Banach space of all uniformly bounded real

functions on G equipped with the uniform metric kfkG � supz2G jf(z)j. In this article

we consider convergence in distribution of empirical processes in the metric space

(`1(G); k�kG) in the sense of J. Ho¤mann-Jørgensen (see, e.g., van der Vaart and

Wellner, 1996). For any generic Euclidean random vector � on a probability space

(
;A;P), �� denotes its state space and P� its induced probability measure with

corresponding distribution function F� (�) = P� (�1; �] : Given iid observations f�ig
n
i=1

of �, P�n denotes the empirical measure, which assigns a mass n�1 to each observation,

i.e. P�nf � n�1
Pn

i=1 f (�i) : Let F�n (�) � P�n(�1; �] be the corresponding empirical

cdf: Likewise, the expectation is denoted by P�f =
R
fdP�: The empirical process

evaluated at f is G�nf with G�n �
p
n (P�n � P�) : Let k�k2;P be the L2(P ) norm, i.e.

kfk22;P =
R
f 2dP . When P is clear from the context, we simply write k�k2 � k�k2;P .

Let j�j denote the Euclidean norm, i.e. jAj2 = A>A. For a measurable class of functions

G from XZ to R, let k�k be a generic pseudo-norm on G, i.e. a norm except for the

property that kfk = 0 does not necessarily imply that f � 0. Let N(";G; k�k) be the

covering number with respect to k�k, i.e. the minimal number of "-balls with respect

to k�k needed to cover G. Given two functions l; u 2 G the bracket [l; u] is the set

of functions f 2 G such that l � f � u. An "-bracket in k�k is a bracket [l; u] with

kl � uk � ": The covering number with bracketing N[�](";G; k�k) is the minimal number

of "-brackets with respect to k�k needed to cover G. Let HB be the collection of all

non-decreasing functions F : R! [0; 1] of bounded variation less or equal than 1, and
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de�ne � � [�1;1]�[0; 1]: Finally, throughout K is a generic positive constant that

may change from expression to expression.

We �rst state an auxiliary result from the empirical process literature. De�ne the

generic class of measurable functions G � fz ! m(z; �; h) : � 2 �; h 2 Hg, where �

and H are endowed with the pseudo-norms j�j� and j�jH, respectively. The following

result is part of Theorem 3 in Chen, Linton and van Keilegom (2003).

Lemma A1: Assume that for all (�0; h0) 2 � � H, m(z; �; h) is locally uniformly

L2(P ) continuous, in the sense that

E

"
sup

�:j�0��j�<�;h:jh0�hjH<�
jm(Z; �; h)�m(Z; �0; h0)j2

#
� K�s,

for all su¢ ciently small � > 0 and some constant s 2 (0; 2]. Then,

N[�](";G; k�k2) � N
�� "

2K

�2=s
;�; j�j�

�
�N

�� "

2K

�2=s
;H; j�jH

�
.

Proof of Theorem 1: Throughout Zi � (Y1i; Y2i; Xi) ; i � 1; �z � (�y1; �y2; �x) 2 �Z :

Let ~Cn be de�ned as Cn but with FXn replaced by the true cdf FX : Set �n �
p
n (T Cn � Cn) ; and similarly de�ne ~�n with ~Cn replacing Cn: The proof of The-

orem 1(i) follows three steps: �rst, we prove that tests based on �n and ~�n are

asymptotically equivalent under the l.f.c, that is,

sup
(y;u)2WY �UXn

�n(y; u) = sup
(y;u)2WY �UXn

~�n(y; u) + oP (1) : (13)

Second, we prove that the supremum in UXn in the test statistic can be replaced by a

supremum in UX ; that is,

sup
(y;u)2WY �UXn

~�n(y; u) = sup
(y;u)2WY �UX

~�n(y; u) + oP (1) : (14)

Finally, we prove the asymptotic behaviour of the test under H0 and H1, not just

under the l.f.c:

We proceed with the proof of (13). To that end, we shall prove that ~Cn and Cn are

asymptotically equivalent under the l.f.c. First, de�ne the classes of functions

G1 � f(�y1; �y2) 2 �Y1 � �Y2 ! �y (�y1; �y2) � 1f�y1�yg � 1f�y2�yg : y 2 [�1;1]g
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and

G2 � f�x 2 �X ! fu;F (�x) � (u� F (�x)) 1fF (�x)�ug : u 2 [0; 1]; F 2 HBg:

De�ne the product class H � G1 � G2; and notice that ~Cn (y; u) = PZnhy;u;FX ; where

hy;u;F (�z) � f1f�y1�yg � 1f�y2�ygg (u� F (�x)) 1fF (�x)�ug

belongs to H. We prove that H is PZ�Donsker. By Example 2.10.8 in van der Vaart

and Wellner (1996) and the fact that G1 is PZ�Donsker it su¢ ces to prove that G2 is

PZ�Donsker. To that end, note that for each (u; F ) 2 [0; 1]�HB; using the triangle

inequality and the simple inequality ja+ � b+j2 � ja� bj2 for all a; b 2 R; where

a+ = maxfa; 0g; we obtain

E
�
sup jfu1;F1(X)� fu;F (X)j

2� � K�2;
where the supremum is over the set u1 2 [0; 1] and F1 2 HB such that ju1 � uj � �

and supx2R jF1(x)� F (x)j � �; respectively. By Lemma A1 and Theorem 19.5 in van

der Vaart (1998), the class G2; and hence H; is PZ�Donsker.

Thus, by a stochastic equicontinuity argument and the Glivenko-Cantelli theorem

sup
(y;u)2�

jGZnhy;u;FXn �GZnhy;u;FX j !p 0:

Furthermore, since under the l.f.c PZh = 0; for all h 2 H;

sup
(y;u)2�

jPZnhy;u;FXn � PZnhy;u;FX j = oP
�
n�1=2

�
;

and hence,

sup
(y;u)2�

���Cn (y; u)� ~Cn (y; u)
��� = oP �n�1=2� : (15)

In order to prove (13); we must show the continuity in the metric space (`1(�); k�k�)

of the functional ' : `1(�) 7�! R+ de�ned as

'(f) � sup
(y;u)2�

(T f � f)(y; u):

To that end, note that Lemma 2.2 in Durot and Tocquet (2003) implies that for each

f; g 2 `1(�),

sup
u2[0;1]

j(T f � T g) (y; u)j � sup
u2[0;1]

j(f � g) (y; u)j for each y 2 R �xed:
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Since the last inequality holds for all y 2 R; for any f; g 2 `1(�);

j'(f)� '(g)j � kT f � T qk� + kf � gk�

� 2 kf � gk� ;

which shows that ' is continuous with respect to k�k� : Then, (13) follows from (15)

and the continuity of ':

We now prove (14) under the l.f.c. We have shown above that H is a Donsker

class, i.e. GZn converges in distribution to a PZ � bridge as a random element of

(`1 (H) ; k�kH) ; which in turn implies that ~Cn (y; u) = PZnhy;u;FX ; and hence Cn by

(15), converges in distribution under the l.f.c to a tight Gaussian process C1 in `1(�)

with zero mean and covariance function

K(v1; v2) � E (hv1;FX (Z)hv2;FX (Z)) ; vj = (yj; uj); j = 1; 2: (16)

In particular, these arguments prove that ~�n is stochastically equicontinuous in `1(�)

with respect to the pseudo-metric k�k2 : Hence, from the triangle inequality, the

equicontinuity of ~�n and the Glivenko-Cantelli theorem,����� sup
(y;u)2WY �UXn

~�n(y; u)� sup
(y;u)2WY �UX

~�n(y; u)

�����
=

����� sup
(y;x)2WY �WX

~�n(y; FXn (x))� sup
(y;x)2WY �WX

~�n(y; FX (x))

�����
� sup

(y;x)2WY �WX

��� ~�n(y; FXn (x))� ~�n(y; FX (x))
���

� sup
y2WY , ju�u0j��n

��� ~�n(y; u)� ~�n(y; u
0)
���

= oP (1) ;

where �n � supx2WX
jFXn(x)� FX(x)j.

Hence, by (13)-(14) and the continuous mapping theorem, �n converges in distrib-

ution under the l.f.c. to

'(C1) � sup
(y;u)2WY �UX

(T C1 � C1) (y; u) :

We now study the behaviour of the test, not just under the l.f.c, but under H0 and

the alternative hypothesis. To that end, we de�ne Gn � Cn � C: Then, by de�nition
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of the l.c.m the function T Gn(y; �)+C(y; �) is above Cn (y; �) and is concave in u 2 UX
under H0; since both T Gn(y; �) and C(y; �) are concave. Hence, T Gn+C is uniformly

above T Cn: Thus, under H0;

p
n (T Cn � Cn) �

p
n (T Gn �Gn) : (17)

Under the l.f.c C(y; u) � 0; and hence Gn = Cn, so (17) becomes an equality.

Now, the multiplier functional limit theorem (Theorem 2.9.6 in van der Vaart and

Wellner, 1996) and the continuous mapping theorem imply that, for all x � 0;

P�n (��n > x)!a:s: 1� F'(x);

where F' is the cdf of k
p
n (T G1 �G1)kWY �UX , with G1 a tight Gaussian process

in `1(WY � UX) with zero mean and covariance function (16). Being the cdf of

a continuous mapping of a Gaussian process, F' is continuous, see Lifshits (1982).

Hence, by (17), under H0;

P
�
�n > c

�
n;�

�
� P

�

pn (T Gn �Gn)

WY �UX
> c�n;�

�
= �+ o(1),

with equality under the l.f.c. Under the alternative H1 it can be easily shown that �n

diverges to in�nity, and because c�n;� = O (1) a.s.,

P
�
�n > c

�
n;�

�
! 1:

This completes the proof of Theorem 1. �

Proof of Theorem 2: Applying a classical mean value theorem argument, uniformly

in u 2 [0; 1] ;
�Cm�n ;n

(u) = �Cm�0
;n (u) + �C _m~�n

;n (u)
0 (�n � �0); (18)

where ~�n is an intermediate point that satis�es
���~�n � �0��� � j�n � �0j a.s. De�ne the

class of functions on XZ

H1 � fz ! _m�(z) (u� F (x)) 1fF (x)�ug : u 2 [0; 1]; F 2 HB; � 2 �0g:
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By Examples 19.7 and 19.11 in van der Vaart (1998) and by Problem 8 in van der

Vaart and Wellner (1996, pg. 204), H1 is a Glivenko-Cantelli class under Assumption

S. Thus, by Assumption E and the classical Glivenko-Cantelli theorem, uniformly in

u 2 [0; 1],
�C _m~�n

;n(u) = �C _m�0
(u) + oP(1): (19)

Next, de�ne the class of functions

H2 � fz ! qu;F (z) � m�0(z) (u� F (x)) 1fF (x)�ug : u 2 [0; 1]; F 2 HBg:

Note that for all u 2 [0; 1] and F 2 HB;

E
�
sup jqu1;F1(Z)� qu;F (Z)j

2� � K�2;
where the supremum is over the set u1 2 [0; 1] and F1 2 HB such that ju1 � uj � � and

supx2R jF1(x)� F (x)j � �; respectively. By Lemma A1 and Theorem 19.5 in van der

Vaart (1998), the class H2 is PZ�Donsker. Hence, by the classical Glivenko-Cantelli

theorem

sup
u2[0;1]

jGZnqu;FXn �GZnqu;FX j !p 0:

Furthermore, since under the l.f.c PZq = 0; for all q 2 H2;

sup
u2[0;1]

��� �Cm�0
;n (u)� ~Cm�0

;n (u)
��� = oP �n�1=2� ; (20)

where ~Cm�0
;n is de�ned as �Cm�0

;n but with FXn replaced by the true cdf FX : Then,

(18), (19) and (20) yield (9) under the l.f.c.

We now prove the validity of the bootstrap approximation. Using the mean value

theorem, we write

1

n

nX
i=1

m�n(Zi) (u� FXn (Xi)) 1fFXn(Xi)�ugVi

=
1

n

nX
i=1

m�0(Zi) (u� FXn (Xi)) 1fFXn(Xi)�ugVi

+(�n � �0)0
1

n

nX
i=1

_m~�n
(Zi) (u� FXn (Xi)) 1fFXn(Xi)�ugVi

� I1n(u) + I2n(u); (21)
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where ~�n is an intermediate point that satis�es
���~�n � �0��� � j�n � �0j a.s.

Noticing that the class of real-valued measurable functions on XZ �XV

H1;� � f(z; v)! _m�(z) (u� F (x)) 1fF (x)�ugv : u 2 [0; 1]; F 2 HB; � 2 �0g;

is a Glivenko-Cantelli class, and using Assumption E, one concludes that I2n(u) =

oP�n
�
n�1=2

�
a.s., uniformly in u 2 [0; 1]. Next, de�ne the class on XZ �XV ;

H2;� � f(z; v)! hu;F (z; v) � m�0(z) (u� F (x)) 1fF (x)�ugv : u 2 [0; 1]; F 2 HBg:

The class H2;� is P(Z;V )�Donsker, since H2 is PZ�Donsker, see Theorem 2.9.2 in van

der Vaart and Wellner (1996). Then, since P�nh = 0 a.s, for all h 2 H2;�;

I1n(u) =
1

n

nX
i=1

m�0(Zi) (u� FX (Xi)) 1fFX(Xi)�ugVi + oP�n
�
n�1=2

�
; a.s. (22)

On the other hand, by Assumption E and a strong uniform law of large numbers,

V ar�

 
1p
n

nX
i=1

fl�n(Zi; Xi)� l�0(Zi; Xi)gVi

!

=
1

n

nX
i=1

fl�n(Zi; Xi)� l�0(Zi; Xi)g
2

= o (1) ; a.s.

Thus,
1p
n

nX
i=1

l�n(Zi; Xi)Vi =
1p
n

nX
i=1

l�0(Zi; Xi)Vi + oP�n (1) ; a.s. (23)

The expansions (21), (22) and (23), and the multiplier central limit theorem, see

Theorem 2.9.2 in van der Vaart and Wellner (1996), imply that �C�m�n ;n
converges

weakly (almost surely) to the same weak limit as �Cm�n ;n
in
�
`1 (UX) ; k�kUX

�
: From

this point, the rest of the proof follows the reasoning of Theorem 1 in a routine fashion.

Details are omitted. �

Proof of Theorem 3: The proof follows the same steps as that of Theorem 1. Hence,

to save space we only discuss here the di¤erences. Let F̂Xn denote the empirical cdf
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of f�0nXigni=1 and let Ĉn be de�ned as ~Cn but with F̂Xn replacing the true cdf F�00X :

Set �̂n �
p
n
�
T Ĉn � Ĉn

�
: De�ne the class of functions

G3 � f�x 2 �X ! fu;F;�(�x) � (u� F (�0�x)) 1fF (�0�x)�ug : u 2 [0; 1]; F 2 LB; � 2 �g;

where LB is the set of Liptschitz functions inHB; i.e, for all z1 and z in R; with z1 � z;

F (z1)� F (z) � K[z1 � z]:

We prove that G3 is PZ�Donsker. To that end, note that for each (u; F ) 2 [0; 1]�HB;

using the triangle inequality and the simple inequality ja+ � b+j2 � ja� bj2 for all

a; b 2 R; where a+ = maxfa; 0g; we obtain

E
h
sup

��fu1;F1;�1(X)� fu;F;�(X)��2i � 2E
h
sup jF1 (�01X)� F2 (�01X)j

2
i

+2E
h
sup jF2 (�01X)� F2 (�02X)j

2
i

� K
�
1 + E

�
jXj2

��
�2;

where the supremum is over the set u1 2 [0; 1]; F1 2 LB and �1 2 � such that

ju1 � uj � �; supx2R jF1(x)� F (x)j � � and j�1 � �j � �; respectively. By Lemma

A1, the class G3; and hence H � G1 � G3; is PZ�Donsker.

We now prove that P
�
F̂Xn 2 LB

�
! 1 as n!1: First, notice that F̂Xn 2 HB for

each n � 1: Also, by Chebyshev inequality, for all z1 � z and any constant K1 > 0;

P
�
F̂Xn (z1)� F̂Xn (z) > K1[z1 � z]

�
� K�1

1 [z1 � z]�1E
h
F̂Xn (z1)� F̂Xn (z)

i
� K�1

1 [z1 � z]�1E [ŝ(z1; z)] ;

where ŝ(z1; z) � 1f�0nX�z1g � 1f�0nX�zg: By Assumption M, and de�ning �n =: (1; �
0
n)
0;

E [ŝ1(z1; z)] = E
�
1fz��0nX�1�X1�z1��0nX�1g

�
= E

�
FX1jX�1 (z1 � �0nX�1; X�1)� FX1jX�1 (z � �0nX�1; X�1)

�
� K[z1 � z]:

Choosing K1 su¢ ciently large we obtained the desired result.

Similarly, it can be shown that F̂Xn is uniformly consistent for F�00X ; since the class

f1f�0�x�zg : z 2 R; � 2 �g is Glivenko-Cantelli, the map � 2 � ! E
�
1f�0X�zg

�
is

continuous under Assumption M and �n is consistent for �0:
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Thus, by a stochastic equicontinuity argument and the Glivenko-Cantelli theorem

sup
(y;u)2�

���GZnhy;u;FXn;�n �GZnhy;u;F�00X ;�0���!p 0;

where hy;u;F;�(�z) � f1f�y1�yg � 1f�y2�ygg (u� F (�0�x)) 1fF (�0�x)�ug: From the arguments

of Theorem 1, we conclude that under the l.f.c.

sup
(y;u)2WY �UXn

�̂n(y; u) = sup
(y;u)2WY �UXn

~�n(y; u) + oP (1) :

From here, the same arguments of Theorem 1 lead to

�̂n(�n) = �̂n(�0) + oP(1);

under the l.f.c: �
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TABLES

Table 1: Rejection probabilities

n 50 150 300

Model � 10% 5% 1% 10% 5% 1% 10% 5% 1%

(i) 0.099 0.042 0.006 0.104 0.050 0.008 0.109 0.056 0.009

(ii) 0.098 0.045 0.006 0.099 0.052 0.085 0.105 0.054 0.010

(iii) 0.099 0.046 0.006 0.101 0.050 0.087 0.109 0.053 0.011

(iv) 0.757 0.631 0.331 0.982 0.962 0.855 0.999 0.998 0.991

(v) 0.752 0.628 0.323 0.984 0.965 0.858 1.000 0.999 0.993

(vi) 0.749 0.630 0.323 0.982 0.963 0.855 1.000 0.999 0.993

(vii) 0.830 0.667 0.235 0.999 0.994 0.924 1.000 1.000 1.000

(viii) 0.827 0.662 0.227 0.998 0.993 0.930 1.000 1.000 1.000

(ix) 0.988 0.966 0.803 1.000 1.000 0.999 1.000 1.000 1.000
1000 Bootstrap replications. 10000 Monte Carlo simulations.

Table 2: Nonparametric tests for the NSW

al n1 n0 Bootstrap p-value Bootstrap p-value

Age Single-Index

17 425 297 0.0280 0.0321

18 395 275 0.0081 0.2623

19 346 249 0.0207 0.6640

20 308 224 0.0239 0.6003

21 271 203 0.2034 0.6481

22 252 182 0.0758 0.3347

23 227 165 0.2550 0.4243

24 208 143 0.6342 0.4041
10000 Bootstrap replications. Cross-validated bandwidth.
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Figure 1: 5% Empirical power function for (12): Randomized experiment (Top

panel) and Probit Model (Bottom panel). MC replications 10000. B = 1000.

18 20 22 24 26 28 30 32 34
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Ea
rn

in
gs

 in
 7

8­
75

 (Y
, in

 th
ou

sa
nd

 d
ol

la
rs

)

Age in  y ears  (X)

Kernel Smoothing Regres s ion

Control Group
Treatment Group

Figure 2: Nonparametric kernel estimates of the conditional means of changes in

earnings between 1978 and 1975, as a function of age.
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