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Abstract

Bias correction in predictive regressions stabilizes the empirical size properties of OLS-

based predictability tests. This paper shows that bias correction also improves the finite

sample power of tests, in particular so in the context of the extended instrumental variable

(IVX) predictability testing framework introduced by Kostakis et al. (Review of Finan-

cial Studies 2015). Concretely, we introduce new IVX-based statistics subject to a bias

correction analogous to that proposed by Amihud and Hurvich (Journal of Financial

and Quantitative Analysis 2004). Three important contributions are provided: first,

we characterize the effects that bias-reduction adjustments have on the asymptotic dis-

tributions of the IVX test statistics in a general context allowing for short-run dynamics

and heterogeneity; second, we discuss the validity of the procedure when predictors are

stationary as well as near-integrated; and third, we conduct an exhaustive Monte Carlo

analysis to investigate the small-sample properties of the test procedure and its sensi-

tivity to distinctive features that characterize predictive regressions in practice, such as

strong persistence, endogeneity, non-Gaussian innovations and heterogeneity. An applica-

tion of the new procedure to the Welch and Goyal (Review of Financial Studies 2008)

database illustrates its usefulness in practice.
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1 Introduction

Predictive regressions are widely used in economics and finance; see, e.g., Campbell (2008) and

Phillips (2015) for surveys. Typically, the variable of interest is regressed on lagged values of

a predictor and the existence of predictability assessed through the statistical significance of

the resultant estimate of the corresponding slope parameter. However, two important features

of predictors need to be taken into consideration in this analysis: i) many predictors are often

characterized by highly persistent autoregressive dynamics, and ii) many predictors also exhibit

innovations which are strongly correlated to the innovations of the dependent variable. These

features raise serious problems of endogeneity which can lead to sizeably biased estimates in

finite samples (Stambaugh, 1986 and Mankiw and Shapiro, 1986) and to substantial over-

rejections of the null hypothesis of no predictability. The usual asymptotic approximation

employing the (standard) normal distribution performs particularly bad when predictors are

persistent, even though the largest autoregressive roots of the typical predictor candidate are

usually smaller than one – reason for which near-integrated asymptotics has been favoured as

an alternative framework for inference (Elliott and Stock, 1994 and Campbell and Yogo, 2006).

In the context of near-integrated regressors, the limiting distribution of the slope parameter

estimator is not centered at zero, and this bias depends on the mean reversion parameter of

the near-integrated regressor. Although near-integrated asymptotics approximates the finite-

sample behavior of the t-statistic for no predictability considerably better when predictors are

persistent, the exact degree of persistence of a given predictor, and thus the correct critical

values for a predictability test, are not known in advance. Moreover, standard estimation or

pretests also fail in this context (Cavanagh et al., 1995). Similarly, regression misspecification

tests are difficult to conduct; Georgiev et al. (2015) propose for this reason a fixed-regressor

wild bootstrap implementation of a residual stationarity test.

These difficulties have led to the proposal of a number of alternative approaches, which

differ mainly in the assumptions that characterize the stochastic properties of predictors (i.e.,

whether these are stationary or near-integrated); see for instance, Campbell and Yogo (2006);

Jansson and Moreira (2006); Maynard and Shimotsu (2009); Camponovo (2015); Breitung

and Demetrescu (2015) and references therein. The recently proposed extended instrumental

variable estimation approach [denoted IVX] motivated by Magdalinos and Phillips (2009) is be-

coming increasingly popular in predictive regressions, especially because the relevant t-statistic

exhibits the same limiting distribution in both, stationary and near-integrated setups and is

in this sense invariant to persistence; see, e.g., Kostakis et al. (2015); Gonzalo and Pitarakis

(2012); Lee (2016) and Phillips and Lee (2013). The reasoning behind the approach consists

in the generation of an instrumental variable whose persistence can be controlled, and this is

achieved by suitably filtering the actual predictor.

To some extent, all methods lose some power by having to robustify against unknown per-

sistence; however, as illustrated by Kostakis et al. (2015) the IVX methodology offers a good
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balance between size control and power loss. Since the noise-to-signal ratio in predictive regres-

sions is quite high, one should still strive to improve this balance. For instance, Demetrescu

(2014b) uses a simple variable addition scheme to improve the convergence rates of IVX es-

timators (and thus the local power of the corresponding t-tests) when the instrument used is

relatively close to stationarity. However, for instrument choices closer to near-integration a

different approach is required to improve the finite sample power of IVX-based tests without

giving up size control.

To this end, we take a closer look at the class of reduced-bias techniques proposed by

Amihud and Hurvich (2004) and extended by Amihud et al. (2009, 2010); see, inter alia, Bali

(2008), Chun (2009), Avramov et al. (2010) and Johannes et al. (2014) for recent empirical

applications building on this approach. When compared to other available procedures, the

distinctive characteristic of these techniques is that they estimate the predictive slope coefficient

and its standard error in a suitably augmented predictive regression, so that the bias is reduced

to a minimum. While this bias correction was intended to stabilize the size properties of OLS-

based predictability tests, we argue that it may also contribute to improve power, in particular

so for IVX-based testing.

This paper discusses the large-sample behavior of IVX-statistics subject to bias correction,

i.e., the implementation of IVX in an augmented predictive regression context analogous to that

of Amihud and Hurvich (2004), considering both stationary and near integrated predictors. Our

main objectives are threefold: i) to characterize the effects that our bias-reduction adjustments

have on the asymptotic distribution of the IVX-statistics in a general context; ii) to establish

the validity of the procedure when predictors are stationary as well as near-integrated; and

iii) to provide an exhaustive Monte Carlo analysis to investigate the small-sample properties

of the test procedures under distinctive conditions that characterize predictive regressions in

practice, such as strong persistence, endogeneity, non-Gaussian innovations and heterogeneity,

and to contrast them to the properties of available procedures, such as Amihud and Hurvich

(2004), Campbell and Yogo (2006) and the IVX approach proposed by Kostakis et al. (2015).

Finally, we revisit the data set used in Welch and Goyal (2008) to illustrate the application of

the procedure.

The remainder of the paper is organized as follows. Section 2 briefly describes the charac-

teristic features of predictive regressions and the bias-reduction technique proposed by Amihud

and Hurvich (2004), and gives a brief preview of the advantages of the residual-augmented IVX.

Section 3 presents the large-sample theory under empirically relevant assumptions, including for

instance heterogeneity and time-varying unconditional variances. Section 4 discusses the finite

sample performance of several procedures used to test for predictability. Section 5 presents the

analysis of the Welch and Goyal data, and section 6 summarizes and concludes. A technical

appendix collects the proofs of the main theoretical statements put forward in the paper.
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2 Predictive regression framework and tests

2.1 The simplest model

To illustrate the issues with predictive regressions in general and the advantages of our approach

in particular, we start by considering the single predictor theoretical model set up analyzed

in Stambaugh (1999) and adopted, among many others, by Amihud and Hurvich (2004) and

Campbell and Yogo (2006). This setting characterizes the joint dynamics of a stochastic process,

{yt}Tt=2, and its posited predictor, {xt}T−1
t=1 , in a two-equation linear system as,

yt = βxt−1 + ut, t = 2, ..., T (1)

xt = ρxt−1 + vt (2)

where the innovations ξt := (ut, vt)
′

in the two-equation system are typically serially indepen-

dent Gaussian distributed with mean zero and covariance matrix Σ.

In this setting, predictability is formally analyzed by examining whether the null hypothesis,

H0 : β = 0, is statistically rejected through a t-statistic on the OLS estimate β̂ computed from

(1). The usual alternative hypothesis is that β > 0, focusing on one-sided tests, but two-sided

tests β 6= 0, are also frequently used in the literature. We shall refer to the resultant least-

squares statistic as tβ̂ in the sequel. It is a well-documented fact that when the correlation,
σuv
σuσv

, between innovations is large and ρ ' 1, the distribution of tβ̂ largely departs from the

typical standard normal limit, posing therefore an interesting challenge on inference; see, e.g.,

Elliott and Stock (1994) and Stambaugh (1999).

Specifically, under these simple assumptions, weak convergence of the partial sum of ξt holds,

i.e., 1√
T

∑[sT ]
t=1 (ut, vt)

′ ⇒ (σuWu (s) , σvWv (s))′, where (Wu(s),Wv(s))
′ is a vector of dependent

standard Wiener processes (see, e.g., Davidson, 1994, Chapter 29). Furthermore, considering

that the autoregressive coefficient ρ is local to unity, ρ := 1 − c/T , we have, jointly with the

above weak convergence, that 1√
T
x[sT ] ⇒ Bc (s), where Bc is an Ornstein-Uhlenbeck [OU]

process driven by Wv(s), i.e., Bc (s) := Wv(s) − c
´ s

0
e−c(s−r)Wv(r)dr. Given these results it

follows that the limiting distribution of the OLS based t-test, tβ̂, computed from (1) when the

predictor is near-integrated is given by

tβ̂ ⇒

√
1− σ2

uv

σ2
uσ

2
v

Z +
σuv
σuσv

´ 1

0
Bc(s)dWv(s)√´ 1

0
B2
c (s)ds

where Z is a standard normal variate independent of the Wiener process Wv(r) driving Bc(r).

Remark 2.1 The assumptions of normality and serial independence allow for considerable

simplification of the exposition, but shall be relaxed in the following section by allowing for

more general forms of serial dependence or heterogeneity. �
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2.2 Residual Augmented Predictive Regressions

Considering (1) - (2) and stationarity of {xt}, i.e., the additional assumption that ρ in (2) is

fixed and satisfies |ρ| < 1, Stambaugh (1986, 1999) shows that the exact OLS bias of β̂ in (1)

is γ E (ρ̂− ρ) , with ρ̂ denoting the OLS estimate of ρ and γ := σuv/σ
2
v is the slope coefficient

in a regression of ut on vt. Since ρ̂ is known to be downward biased in small-samples, and

(ut, vt)
′ are typically highly negatively contemporaneously correlated, the autoregressive OLS

bias feeds into the small-sample distribution of β̂ causing over-rejections of the null hypothesis

of no predictability, H0 : β = 0.

To correct for this effect, Amihud and Hurvich (2004) propose a simple statistical device

that builds upon the OLS estimates obtained from a predictive regression which is augmented

with estimates of vt, the innovations to the predictor in (2). The initial motivation for this type

of augmentation is that the null distribution of the t-statistic on β̂ in the infeasible regression

yt = βxt−1 + γvt + εt (3)

converges asymptotically to a standard normal distribution irrespectively of the stochastic na-

ture of xt and the degree of contemporaneous correlation of (ut, vt)
′. Although it is tempting

to use some proxy of vt to make this regression feasible, it should be noted that the appealing

asymptotic properties of the infeasible test do not automatically extend to the feasible coun-

terpart resulting from the use of the OLS residuals from (2), say v̂t. The reason is that the

bias of ρ̂ still feeds into the estimation of β via v̂t = vt − (ρ̂− ρ)xt−1 and, as a result, the

distribution of the OLS t-statistic for β = 0 in this regression, is simply a re-scaling of that of

tβ̂; see Rodrigues and Rubia (2011); Cai and Wang (2014) and Demetrescu (2014a), for further

details.

The distinctive feature of the Amihud and Hurvich (2004) [AH] procedure is that it uses

a bias-adjusted estimate of vt to reduce the bias of β̂. Thus, the resulting feasible regression

becomes,

yt = βxt−1 + γv̂∗t + εt, (4)

where v̂∗t := xt− ρ̂∗xt−1, with ρ̂∗ denoting finite-sample bias-corrected OLS estimates of ρ in (2).

The central idea is to obtain a ρ̂∗ as close to unbiasedness as possible. The procedure however

also requires a correction in the form of specific standard errors which is not easily generalized

to higher-order dynamics; see Amihud et al. (2009, 2010).

Remark 2.2 Augmenting linear regression models with covariates is often motivated in terms

of efficiency gains (Faust and Wright, 2011). Arguably, the primary purpose of the residual-

augmented regression in (4) is to stabilize size, with power gains playing a secondary role. This

is partly because the true process of the errors is unobservable and must be replaced by some

empirical proxy (which prompts the correction for ensuring size control of the AH procedure).

We argue in the following that power gains can indeed be expected in the IVX framework, while
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at the same time controlling for size. �

2.3 The IVX Test Procedures

2.3.1 The Original IVX Approach

Our interest lies in the evaluation of the impact that the bias correction through augmentation

may have on the IVX approach. The IVX procedure, introduced to predictive regressions by

Kostakis et al. (2015), centers on the construction of instrumental variables from the potential

predictors. This ensures relevance of the instruments while at the same time controlling for

persistence. In particular, for the implementation of the procedure, one uses

zt :=
t−2∑
j=0

%j∆xt−j = (1− %L)−1
+ ∆xt

as instrument for xt, with L standing for the conventional lag operator; the idea is to choose

% := 1− a/T η, with 0 < η ≤ 1, and a ≥ 0 and fixed, such that zt is by construction only mildly

integrated when the predictor xt is (nearly) integrated.

The resulting IVX estimator of β (henceforth β̂ivx), computed from (1) using zt as instrument

has a slower convergence rate than the conventional OLS estimator, but is mixed Gaussian in

the limit irrespective of the degree of endogeneity implied by γ. This estimator is given by,

β̂ivx :=

∑T
t=2 zt−1yt∑T

t=2 zt−1xt−1

(5)

and its standard error is se
(
β̂ivx

)
:=

σ̂u
√∑T

t=2 z
2
t−1∑T

t=2 zt−1xt−1
; note that Kostakis et al. (2015) suggest

the use of OLS residuals ût (whose consistency properties do not depend on the persistence

properties of the instrument zt) for the computation of σ̂2
u.

Breitung and Demetrescu (2015) analyse the power function of the IVX-based t-test, com-

puted as tivx := β̂ivx/se
(
β̂ivx

)
, under local alternatives of the form β := b/T 1/2+η/2, and show

that the limiting distribution under such local alternatives is

tivx ⇒ Z + b
σv
√

2

σu
√
a

[
B2
c (1)−

ˆ 1

0

Bc (s) dBc (s)

]
(6)

where Z is a standard normal variate independent of the OU process Bc(r), a is the noncentral-

ity parameter used in % for the construction of the instrument, and σv and σu are the standard

deviations of vt and ut, respectively. Note that the reduced convergence rate of β̂ivx has conse-

quences on the type of neighbourhoods where the IVX based test has nontrivial power. This,

however, is the trade off for obtaining a pivotal limiting null distribution. While Kostakis et al.

(2015) show that the power loss is moderate, one would of course prefer to reduce this loss as

much as possible.
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2.3.2 The Bias-reduced IVX Approach

Turning our attention to the bias correction approach proposed by Amihud and Hurvich (2004),

note that, the residuals v̂∗t used in the residual-augmented predictive regression in (4) rely on a

bias-corrected estimate of ρ in order to reduce the endogeneity of the predictor. Interestingly,

since IVX uses a less persistent instrument for estimation than the original predictor, it turns

out that in order to use the residual augmentation approach in the IVX framework it is not

necessary to construct a bias corrected estimator, such as ρ̂∗ used by Amihud and Hurvich

(2004). This is an important advantage of the IVX procedure since it simplifies the analysis

considerably and allows for easy generalisations to higher order dynamics in the predictor as

we will show below.

Remark 2.3 It may be surprising that, although simple augmentation using OLS residuals does

not work for the OLS estimation of the predictive regression, it will work for IVX. Essentially,

the estimation noise (v̂t − vt) does not affect the IVX estimator given the lower convergence rate

of the latter compared to the OLS estimator. In fact, the improved local power is the same as if

the true vt were used in (4): the local power of the test based on the augmented IVX regression

is obtained by replacing σu with σε in (6); see the next section for more details. Since σε < σu

whenever γ 6= 0, we obtain by construction a larger drift term in the distribution under the local

alternative β := b/T 1/2+η/2. This may not increase the convergence rate, but considering the

typically high correlation of the innovations ut and vt (given by σuv/σuσv), the ratio (σu/σε) can

be considerably larger than unity and power gains in finite samples are to be expected. This is

confirmed in the Monte Carlo analysis in Section 4. �

The implementation of our bias-reduced IVX approach in the simple introductory setup

given by (1) and (2), is as follows:

1. Regress xt on xt−1 to obtain the residuals v̂t := vt−(ρ̂− ρ)xt−1, where ρ̂ := ρ+
∑T
t=2 xt−1vt∑T
t=2 x

2
t−1

is the usual OLS estimator.

2. Regress yt on v̂t to obtain ỹt := yt − γ̂v̂t = εt + βxt−1 + γvt − γ̂v̂t, where γ̂ :=
∑T
t=2 v̂tyt∑T
t=2 v̂

2
t

is

the usual OLS estimator.

3. Regress ỹt on xt−1 via IVX to obtain β̃ivx and the corresponding t-statistic, t̃ivx; similarly

to the original IVX, it helps if the residuals are computed using the OLS estimator, β̂, of

this regression given its consistency and higher convergence rates.

Remark 2.4 Considering ỹt as the dependent variable provides a convenient way to think

about residual augmented predictive regressions. As discussed in Campbell and Yogo (2006),

the unobservable process [yt − E (ut|vt)] results from subtracting off the part of the innovation

to the predictor variable that is correlated with yt. This provides a less noisy dependent variable

in the regression analysis and, therefore, yields power advantages over conventional predictive
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regressions that steam from a relative gain in statistical efficiency. In particular, since E (ε2
t ) =

(1− ρ2)σ2
u, the larger the degree of endogenous correlation in the system, the larger the amount

of variability in the regressand not related to xt−1 that can be filtered out – conversely, we can

think of the standard predictive regression analysis as a particularly inefficient tool to detect

predictability when ρ is large. However, since [yt − E (ut|vt)] cannot be directly observed, the

feasible representation uses the OLS-based proxy ỹt in the equation. �

Remark 2.5 In practice, one may need to account for non-zero means of yt; this is accom-

plished by including an intercept in the regression in step 2 and by demeaning the regressor xt

in the IVX regression in step 3 (see Kostakis et al., 2015 for the justification of this demeaning

procedure in step 3). In the near-integrated case, including an intercept in the autoregression

in the first step is typically not needed for the kind of data one has in mind with stock return

predictability, where deterministic trends are in general not an empirical issue. �

Thus, following the three steps above we obtain the bias-corrected IVX estimator, viz.,

β̃ivx :=

∑T
t=2 zt−1ỹt∑T

t=2 zt−1xt−1

= β̂ivx − γ̂
∑T

t=2 zt−1v̂t∑T
t=2 zt−1xt−1

(7)

and its corresponding standard error,

se
(
β̃ivx

)
:= qT

σ̂ε

√∑T
t=2 z

2
t−1∣∣∣∑T

t=2 zt−1xt−1

∣∣∣ (8)

where ỹt := yt − γ̂v̂t , σ̂ε is the estimate of the standard deviation of εt computed from the

residuals ε̃t := ỹt− β̂xt−1 and β̂ :=
∑T
t=2 xt−1ỹt∑T
t=2 x

2
t−1

. Note that the estimator of the standard error in

(8) includes the finite sample correction,

qT := 1 +

(
γ̂σ̂v

∑T
t=2 zt−1xt−1

)2

σ̂2
ε

∑T
t=2 z

2
t−1

∑T
t=2 x

2
t−1

. (9)

A detailed discussion of the importance of qT will be presented in the following section, but it

may be noted that (9) is in principle only required when the predictors used are stationary; see

section 3 for details.

Hence, considering (7) and (8) inference can be performed based on the IVX t-statistic,

t̃ivx := β̃ivx/se
(
β̃ivx

)
(10)

which turns out to remain standard normal irrespectively of the stationarity or near-integratedness

of the regressor.
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2.4 Short-run dynamics and heterogeneity

This section looks into the properties of the residual-augmented IVX approach in the empirical

relevant cases where predictors may display short-run dynamics and heterogeneity. Hence, in

this section we lay out a fairly general setting, which is the framework we will use to characterise

the asymptotic properties of the procedures introduced in this paper.

The starting question is how to deal with short-run dynamics in the increments of xt, since

this has implications as to which residuals to use for augmentation in the IVX testing procedure.

Here, it is the innovations of vt (for which a finite-order AR process is a natural choice) that

should correlate with ut rather than vt itself, like in the case without short-run dynamics.

The augmentation approach (described in Section 2.2) relies on decomposing the shocks to the

predictive regression as the sum of two orthogonal components; should vt be one of them, this

induces serial correlation in ut, which is not a plausible feature of the null hypothesis of no

predictability. Hence, the general set up considered is formalized in the following assumptions.

Assumption 1 The data is generated according to (1) - (2) with initial condition x1 bounded

in probability.

Assumption 2 Let (
εt

νt

)
:=

(
σεtξεt

σνtξνt

)
where (ξεt, ξνt)

′ is a heterogeneous independent sequence with unity covariance matrix and, for

some δ > 0, with uniformly bounded moments E
(∣∣ξ4+δ

εt

∣∣) and E
(∣∣ξ4+δ

νt

∣∣). Furthermore, let

σεt := σε (t/T) and σνt := σν (t/T), where σ· (·) are piecewise Lipschitz continuous functions,

bounded away from zero.

Assumption 3 The errors ut and vt are given as

vt = a1vt−1 + . . .+ ap−1vt−p+1 + νt

ut = εt + γνt, t ∈ Z,

where the innovations (εt, νt)
′ are contemporaneously orthogonal white noise as indicated in

Assumption 2.

Assumption 4 The autoregressive parameter ρ is either i) fixed when |ρ| < 1, or ii) time-

varying near unity, ρ := 1− ct/T with ct := c (t/T) and c (·) is a piecewise Lipschitz function.

Assumption 2 acknowledges that time series (and in particular financial series) may exhibit

permanent volatility changes, which is an important stylized fact of many financial series; see,

among others, Guidolin and Timmermann (2006); Teräsvirta and Zhao (2011); Amado and

Teräsvirta (2013) and Amado and Teräsvirta (2014). Such forms of nonstationarity typically
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invalidate the usual standard errors,1 and we resort to heteroskedasticity robust [HC] standard

errors (also known as Eicker-White standard errors) to account for this feature. The use of

White standard errors is also recommended by Kostakis et al. (2015) to deal with conditional

heteroskedasticity – albeit under strict stationarity of the error series vt. The AR(p−1) structure

of vt in Assumption 3 is taken as an approximation to more general data generating processes

[DGP]s. In theory, this would require letting p → ∞ at suitable rates as T → ∞; however,

dealing with the asymptotics related to the order of augmentation determination is beyond the

scope of this paper, but relevant results can be found, for instance, in Chang and Park (2002).

Finally, Assumption 4 characterises the persistence properties of the predictor. The flexible

near-integrated DGP resulting from Assumption 4 ii) is motivated by the high, yet uncertain

persistence of typical predictor series. Moreover, since persistence is not always constant, in

particular when close to the unit root region, we allow for time variation in persistence in the

near integrated case.

Hence, the implementation of our residual-augmented IVX approach in the general frame-

work described by Assumptions 1 through 4 consists of the following steps:

1. Compute the residuals ν̂t from an autoregressive model of order p for the predictor xt,

viz.,

ν̂t = xt −
p∑
j=1

φ̂jxt−j = νt −
p∑
j=1

(
φ̂j − φj

)
xt−j, t = p+ 1, . . . , T,

with φ̂j, j = 1, ..., p, the OLS autoregressive coefficient estimates. One may use some

information criteria in levels to determine the autoregressive order p (we use Akaike’s

information criteria (AIC) in sections 4 and 5); note that conducting model selection in

levels copes with both the stationary and the integrated cases.

2. Regress yt on ν̂t to obtain ỹt as regression residuals. From this regression step we also

obtain γ̂, the OLS estimate of γ.

3. Finally, regress ỹt on xt−1 via IVX and use the provided standard errors (see Equation

(12) below) to compute the relevant IVX t-statistic.

From step 3) we thus obtain,

β̃ivx :=

∑T
t=p+1 zt−1ỹt∑T

t=p+1 zt−1xt−1

, (11)

which, upon standardization, is used for inference.

Note that under Assumptions 1 to 4, the standard errors need to take into account two

specific features of the data. First, time varying variances are likely to bias the usual standard

errors asymptotically. Second, while the estimation error (v̂t − vt) has no asymptotic effect on

1This is especially the case when dealing with (near-) integrated regressors; see, e.g., Cavaliere (2004) and
Cavaliere et al. (2010).
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the limiting distribution of β̃ivx in the near-integrated context, it does so when xt is covari-

ance stationary. Yet treating the two cases in a different manner is inconvenient since exact

knowledge about which is actually the relevant case is typically not available. Consequently,

we derive heteroskedasticity-consistent standard errors for the stationary case and show that

these are also valid in the near integrated context. In this way, we use the same statistic with

the same limiting distribution to cover both cases without having to decide which is which –

just like in the original IVX test of Kostakis et al. (2015).

In specific, we use

se
(
β̃ivx

)
:=

√√√√√∑T
t=p+1 z

2
t−1ε̃

2
t + γ̂2Q̂T(∑T

t=p+1 zt−1xt−1

)2 (12)

where the finite-sample correction Q̂T used in (12) is given by

Q̂T =

(
T∑

t=p+1

zt−1x
′
t−p

)(
T∑

t=p+1

xt−px
′
t−p

)−1( T∑
t=p+1

xt−px
′
t−pν̂

2
t

)(
T∑

t=p+1

xt−px
′
t−p

)−1( T∑
t=p+1

zt−1xt−p

)

and xt−p := (xt−1, ..., xt−p)
′. To compute the White-type standard errors in (12) we make

use of the OLS residuals computed from the residual-augmented predictive regression, ε̃t :=

ỹt − β̃olsxt−1 where β̃ols :=
∑T
t=2 xt−1ỹt∑T
t=2 x

2
t−1

, rather than IVX residuals due to the superconsistency

properties of the former in the near-integrated context.

Remark 2.6 One may resort to alternative HC variance estimators, e.g., with correction for

degrees of freedom (HC1). The HC1 version is obtained here by multiplying the estimated

variance by T
T−p−3

. �

Remark 2.7 The standard errors in (12) are basically the White standard errors that would

have been appropriate under stationarity of xt, where the estimation error of ν̂t does not vanish

asymptotically. We show that Q̂T in (12) is dominated under near-integration so that the

standard error in (12) is asymptotically equivalent to the one implied by the near-integrated

framework, which turns out to be simply

√ ∑T
t=p+1 z

2
t−1ε̃

2
t

(
∑T
t=p+1 zt−1xt−1)

2 as can be seen in Section 3. �

Remark 2.8 The near-unit root in xt allows us in principle to use the residuals without the

need to use the finite sample correction, but in finite samples the statistics fare better if the

correction is included (essentially because, in finite samples, any |ρ| < 1 is “caught between”

stationarity and integration). �

2.5 Extensions to Multiple Predictors

The discussion so far has side-stepped a couple of aspects relevant for empirical work which we

address in this section. They are in fact straightforward extensions of the baseline case and we

shall omit some of the technical details.
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It is often the case that several predictors are simultaneously considered. Thus, the resulting

multiple predictive regression is

yt = β′xt−1 + ut

where xt−1 follows a K-dimensional vector autoregressive data generating process of order p,

such as,

xt = Rxt−1 + vt

vt =

p−1∑
j=1

Ajvt−j + νt

which is either stable or (near) integrated as before depending on the properties of the au-

toregressive coefficient matrix R (vt is taken to be a stable autoregression in either case).

There is endogeneity, possibly in all regressors, expressed as a nonzero coefficient vector in the

decomposition

ut := γ ′νt + εt,

and the shocks νt and εt are heterogeneous, serially independent obeying a multivariate version

of Assumption 3.

The implementation of the IVX approach introduced in this paper in the multiple predictive

regression case is as follows.

1. Get the vector of residuals ν̂t from a vector autoregression of order p,

ν̂t := xt −
p∑
j=1

Φ̂jxt−j, t = p+ 1, . . . , T,

with Φ̂j, j = 1, ..., p, the matrix of OLS coefficient estimates. Note that the use of

AIC (or some other information criteria) in levels, for determining the order p, is again

recommended.

2. Regress yt on ν̂t to obtain the adjusted ỹt as,

ỹt = yt − γ̂ ′ν̂t

with γ̂ the OLS estimate of the vector of parameters γ.

3. Regress ỹt on xt−1 via IVX with zt−1 := (1− %L)−1
+ ∆xt−1 as instruments to obtain β̃

ivx

and use the standard errors provided in Equation (13) below to conduct inference.

The estimated covariance matrix of β̃
ivx

in this context is given by the familiar “sandwich”

formula,
̂

Cov
(
β̃
ivx
)

= B−1
T MT

(
B−1
T

)′
(13)
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where

BT =
T∑
t=2

zt−1x
′
t−1

and

MT =
∑T

t=2 zt−1z
′
t−1ε̃

2
t +

(
γ ′ ⊗

(
1
T

∑T
t=2 zt−1x

′
t−p,K

)(∑T
t=p+1 xt−p,Kx

′
t−p,K

)−1
)
×

×
(∑T

t=p+1 νtν
′
t ⊗ xt−p,Kx′t−p,K

)(
γ ⊗

(∑T
t=p+1 xt−p,Kx

′
t−p,K

)−1 (
1
T

∑T
t=2 xt−p,Kz

′
t−1

))
with xt−p,K corresponding to the vector stacking all p lags of all K regressors, i.e., x′t−p,K :=

(xt−1,1, . . . , xt−1,K , xt−2,1, . . . , xt−2,K , . . . , xt−p,1, . . . , xt−p,K).

The limiting distribution of β̃
ivx

is normal in the stationary case and mixed normal in the

near-integrated context; the proofs are simple multivariate extensions of the results from the

single-regressor case (see the following section) so we do not spell them out. More importantly,

individual and joint significance tests have their usual standard normal and χ2 limiting dis-

tributions irrespective of the persistence and heterogeneity of the DGP as long as the robust

covariance matrix estimator in (13) is used.

3 Asymptotic results

In this section, we analyze the limiting distributional characteristics of the new reduced-bias

IVX tests considering the general framework described in Section 2.4, which also provides

us with the results for the simplest case in Section 2.1 as a particular case. We consider

two different theoretical frameworks that critically determine the stochastic properties of the

predictive variable. On the one hand, we consider stationary predictors, characterized by a

fixed coefficient |ρ| < 1 in (2), and on the other, we allow for near-integration by considering

ρ := 1 − c/T , with c ≥ 0 and fixed. The main objective of this setting is to acknowledge

the uncertainty that researches face regarding the stochastic properties of the predictor, i.e.,

whether it is stationary or near-integrated when ρ̂ is close to, but strictly less than unity in

finite samples. This setting includes of course the extreme case of a unit-root when the local

parameter c equals zero (c = 0).

In the following, we maintain the predictive regression framework in (1) but allow for sig-

nificant departures from Gaussianity and the restrictive AR(1) structure for the regressor.

We also allow for heterogeneity in the form of time-varying variances, different shapes of the

distributions, and even changes in the persistence of the regressor. Financial variables often

exhibit time-varying variances in addition to GARCH effects; Kostakis et al. (2015) discuss the

GARCH case considering strict stationarity, whereas we relax the i.i.d. assumption by replacing

stationarity with smoothly varying volatility.
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Note first that the time-varying properties of the DGP, as stated in Assumptions 1 through

4, imply different behavior in the limit compared to the Gaussian i.i.d. case. In this case, the

partial sums of νt converge weakly to M (s) :=
´ s

0
σν (r) dWv (r), and the partial sums of εt to´ s

0
σε (r) dWε (r), with Wε and Wv independent standard Wiener processes; the “classical” case

is only recovered when σu and σv are constant. Moreover, the suitably normalized regressor can

be shown to converge weakly to an Ornstein-Uhlenbeck type process driven by the diffusion

M (s), i.e.,
1√
T
x[sT ] ⇒ ω

ˆ s

0

e−
´ s
r c(t)dtdM (r) := ωX (s) (14)

where ω =
(

1−
∑p−1

j=1 aj

)−1

; see, e.g., Cavaliere (2004) for the case with constant c.

In the case where xt is stationary, i.e., |ρ| < 1 and fixed, the following results can be stated.

Theorem 3.1 Under Assumptions 1, 2, 3 and 4i), we have, as T →∞, that

√
T
(
β̃ivx − β

)
d→ N

(
0, σ2

β

)
(15)

where

σ2
β :=

α0

´ 1

0
σ2
v (s)σ2

ε (s) ds+ γ2α′pΩ
−1αp

´ 1

0
σ4
v (s) ds[

α0

´ 1

0
σ2
v (s) ds

]2 (16)

with αp := (α0 . . . αp−1)′ and Ω :=
{
α|i−j|

}
1≤i,j≤p, where αh :=

∑
bjbj+h with bj the moving

average coefficients of xt, (1− ρL)−1 (1− a1L− . . .− ap−1L
p−1) =

∑
j≥0 bjL

j. Furthermore,

√
Tse

(
β̃ivx

)
p→
√
σ2
β

and, under the null hypothesis, H0 : β = 0,

t̃ivx
d→ N (0, 1) . (17)

The limit behavior changes under near-integration as shown in the following Theorem. rewrite

XdX

cor-

rectly!

Theorem 3.2 Under Assumptions 1, 2, 3 and 4ii), we have, as T →∞, that

T
1/2+η/2

(
β̃ivx − β

)
⇒MN

0,
a
´ 1

0
σ2
ν (s)σ2

ε (s) ds

2ω2
(
X2 (1)−

´ 1

0
X (s) dX (s)

)2

 (18)

and

se
(
β̃ivx

)
⇒
√

a

2ω2

√´ 1

0
σ2
ν (s)σ2

ε (s) ds

X2 (1)−
´ 1

0
X (s) dX (s)

(19)

14



where a and η are fixed, ω2 plays the role of the long-run variance (and is defined in (14)),

X (s) =
´ s

0
e−
´ s
r c(t)dtσv (r) dWv (r) and, σ2

ν (s) and σ2
ε (s) are the variances of vt and εt, respec-

tively. Moreover, under the null hypothesis, H0 : β = 0,

t̃ivx ⇒ N (0, 1) . (20)

The proof of Theorem 3.2 establishes that QT = op (T 1+η) so that it is dominated in (12)

by
∑T

t=p+1 z
2
t−1ε̃

2
t which is of exact order Op (T 1+η) (see the Appendix for details), and the

residuals estimation effect is negligible in the near-integrated case. The near-integrated case is

also more interesting for an evaluation of the local power and for comparison with the original

IVX.2 The power function of the residual augmented IVX is provided next.

Theorem 3.3 Under Assumptions 1, 2, 3 and 4ii), we have for local alternatives β = b/T 1/2+η/2,

as T →∞ that

t̃ivx ⇒ N

b√2ω2

a

X2 (1)−
´ 1

0
X (s) dX (s)√´ 1

0
σ2
ν (s)σ2

ε (s) ds
, 1

 . (21)

Setting ω2 = 1, σv (s) = σv and σε (s) = σε leads to the results for the particular case

studied in Section 2.1.

4 Finite sample performance

4.1 Monte Carlo Setup

This section compares the two versions of the IVX procedure, the original IVX test which we

denote as tivx and the residual augmented version t̃ivx, with extant procedures under several

heterogeneous DGPs. As benchmarks we use the tests of Campbell and Yogo (2006) and of

Amihud and Hurvich (2004) and Amihud et al. (2010).

Concretely, we generate yt and xt as in equations (1) and (2) but allow for an intercept in

the predictive regression, i.e.,

yt = µ+ βxt−1 + ut, t = 2, ..., T (22)

xt = ρxt−1 + vt (23)

and

vt = a1vt−1 + et (24)

2The local power in the stationary case is easily derived and we omit the details.
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with a1 ∈ {−0.5, 0, 0.5} and et ∼ N id(0, 1). We focus on local alternatives of the form β = b/T

for two sample sizes, T = 200 and T = 500. To study the empirical size of the tests we let

b = 0, and for the local power evaluation we consider b ∈ {5, 10, 15, 25}, and the persistence of

the predictor is controlled by ρ := 1− c/T , with c ∈ {0, 10, 20, 40, 50}. The correlation causing

endogeneity is set to −0.95, which is not an uncommon value in practice; see, e.g., Lewellen

(2004).

The efficient tests of Campbell and Yogo (2006) (denoted as CY ) are analysed, and the

residual augmented predictive regression based test of Amihud et al. (2010) (denoted as AHW )

is computed for a fixed p = 2 to keep complexity under control. In comparison, tivx does not

require specifying the lag length, while for t̃ivx we chooses p via Akaike’s information criteria

(AIC). Both tivx and t̃ivx are computed by demeaning the dependent variable and the regressor,

but not the instrument (see Section 2.5 for details). Since all tests are invariant to the intercept

µ, we set µ = 0 without loss of generality.

Also, we follow Kostakis et al. (2015) and choose a = 1 and η = 0.95 for the construction of

the instruments in both. We employ the proposed standard errors from (12) in the computation

of t̃ivx, while, for the classical tivx, we use White standard errors as recommended by Kostakis

et al. (2015). We shall also consider a version of the original IVX test without White standard

errors, denoted by t#ivx, to illustrate the impact of neglected time-varying volatility on the

performance of this approach.

The rejection frequencies are computed at the nominal 5% level based on 10000 Monte Carlo

replications, and all results for the tivx and t̃ivx tests in Tables 1 – 4 are computed based on

standard normal critical values.

4.2 Empirical size and power performance

Tables 1 and 2 illustrate the empirical size and power properties of the AHW , CY , tivx and

t̃ivx tests under negative and positive short-run dynamics, i.e., considering (24) with a1 = −0.5

and a1 = 0.5.

From Table 1, which presents the results obtained when vt follows an AR(1) with a1 = −0.5

(negative autocorrelation) we observe that when b = 0 and for the values of c considered that

AHW and tivx are slightly oversized, but that this oversizing decreases as the sample size

increases. At the same time, we also observe that t̃ivx displays slightly conservative behaviour.

In this experiment CY presents the largest size distortions as a consequence of the negative

short-run dynamics. This feature of the CY test has already been noted in the literature; see,

e.g., Jansson and Moreira (2006). Note also that in the unit root case (c = 0) there are some

significant size distortions also for the tivx and AHW tests. Regarding the empirical power we

observe that the t̃ivx test displays superior power when c > 0, relative to the other procedures.

In the case of positive short-run dynamics, i.e., when a1 = 0.5 (see Table 2) we observe

in general size distortions for all tests, with tivx displaying the most severe distortions when
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compared to the other procedures, and AHW and t̃ivx displaying the smallest distortions.
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Table 1: Size and power against local alternatives, negative short-run AR parameter

AHW CY tivx t̃ivx AHW CY tivx t̃ivx

b T = 200 T = 500

0 8.9 1.1 10.6 6.30 9.4 2.5 10.4 6.3
5 17.5 28.3 54.4 37.5 17.3 30.7 53.2 39.0

c = 0 10 67.8 94.7 93.5 86.1 65.9 97.4 93.0 87.9
15 98.2 99.4 98.9 97.3 97.8 99.8 98.7 98.1
25 100.0 99.95 100.0 99.9 100.0 100.0 100.0 99.9

T = 200 T = 500

0 6.6 0.0 5.4 5.0 6.8 0.4 4.6 4.6
5 8.1 0.2 13.8 14.5 7.2 2.8 12.4 14.4

c = 10 10 17.1 3.8 33.2 39.6 15.0 14.8 31.0 38.7
15 37.0 29.2 65.1 78.1 33.2 49.6 61.3 77.4
25 96.6 94.7 96.8 99.4 95.2 98.8 96.0 99.5

T = 200 T = 500

0 6.4 0.0 4.1 4.5 6.4 0.0 4.1 4.8
5 7.1 0.0 10.4 12.3 6.4 0.2 9.4 11.1

c = 20 10 13.3 0.0 21.9 26.5 11.3 1.6 20.6 25.4
15 24.5 0.3 40.5 50.3 19.4 7.9 37.2 47.2
25 68.8 22.6 84.2 93.9 60.4 54.3 80.1 93.2

T = 200 T = 500

0 6.0 0.0 4.3 4.9 5.8 0.0 4.0 4.9
5 6.4 0.0 9.1 10.5 6.0 0.0 8.5 10.3

c = 30 10 11.4 0.0 17.7 21.9 9.1 0.0 15.8 20.2
15 20.1 0.0 32.4 39.3 16.1 0.5 28.4 35.9
25 54.1 0.3 70.6 81.3 42.4 12.1 63.7 77.1

T = 200 T = 500

0 6.1 0.1 4.0 4.7 5.5 0.0 4.1 5.0
5 6.8 0.1 8.9 10.5 5.7 0.0 7.2 9.4

c = 40 10 10.5 0.1 16.8 20.0 9.1 0.0 14.3 18.3
15 18.5 0.1 28.1 34.1 13.5 0.0 24.3 30.2
25 45.1 0.1 60.8 71.4 34.9 0.8 52.5 65.2

T = 200 T = 500

0 5.9 0.1 3.6 4.4 5.5 0.0 3.7 5.0
5 6.5 0.1 7.8 9.7 6.2 0.0 7.1 9.5

c = 50 10 10.4 0.1 15.3 19.4 8.1 0.0 12.5 16.5
15 16.6 0.1 26.4 32.1 12.1 0.0 20.5 26.3
25 41.6 0.1 55.5 64.9 30.2 0.0 45.1 56.3

Notes: AHW denotes the (2-sided) Amihud, Hurwich and Wang test with lag length p = 2; CY denotes the

Campbell and Yogo test, tivx is IVX test computed following Kostakis et al. (2015) and t̃ivx the residual-
augmented IVX test procedure, all with maximal lag length p = [4(T/100)0.25]. The DGP is as in (1) and (2)
with ρ = 1− c/T and β = b/T . For further details see the text.
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Table 2: Size and power against local alternatives, positive short-run AR parameter

AHW CY tivx t̃ivx AHW CY tivx t̃ivx

b T = 200 T = 500

0 6.5 4.6 11.1 6.6 6.3 4.1 10.6 6.3
5 94.7 100.0 98.4 96.1 95.7 100.0 98.5 97.6

c = 0 10 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0
15 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

T = 200 T = 500

0 6.3 4.1 8.7 5.7 6.5 3.7 8.6 6.2
5 26.5 64.4 79.0 72.9 27.3 66.0 79.9 74.9

c = 10 10 99.5 100.0 100.0 99.7 99.6 100.0 100.0 99.9
15 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

T = 200 T = 500

0 5.7 3.1 7.2 5.6 5.9 3.1 7.5 5.9
5 16.4 28.6 48.7 43.9 16.4 31.6 49.2 44.5

c = 20 10 70.2 94.4 98.8 97.7 74.9 96.7 99.3 98.7
15 100.0 100.0 100.0 100.0 96.0 100.0 100.0 100.0
25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

T = 200 T = 500

0 6.0 2.2 7.2 5.9 5.8 2.5 7.1 5.6
5 13.3 16.1 35.6 32.3 13.2 18.7 37.2 34.1

c = 30 10 47.6 63.2 86.8 85.4 50.5 72.9 89.8 89.2
15 94.1 98.2 100.0 99.9 97.0 99.6 100.0 100.0
25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

T = 200 T = 500

0 5.5 1.6 6.7 5.5 5.2 1.8 6.5 5.5
5 10.2 10.4 28.4 26.5 11.0 12.2 29.7 27.4

c = 40 10 35.7 40.2 71.9 70.2 38.5 50.3 76.3 75.0
15 79.5 82.8 98.4 98.3 84.4 91.8 99.2 99.2
25 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0

T = 200 T = 500

0 6.1 1.3 6.6 5.7 5.3 1.4 6.7 5.7
5 9.7 7.2 24.7 22.9 9.5 8.7 25.9 24.5

c = 50 10 28.1 26.8 61.0 59.0 30.4 33.8 64.9 63.3
15 64.3 62.3 93.0 92.7 71.2 75.7 95.9 95.7
25 99.9 99.1 100.0 100.0 100.0 100.0 100.0 100.0

Note: See Table 1.
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4.3 Robustness against empirical features of the data

To evaluate the performance of the procedures under other empirically relevant features, in

Tables 3 and 4 we report results for the empirical size under DGPs with time-varying volatility

and time-varying persistence. In specific, we consider five common variance patterns, namely:

1. constant, σ2
ε (s) = σ2

ν (s) = 1;

2. an early upward break, σ2
ε (s) = σ2

ν (s) = 1 + 8I (s > 0.3);

3. a late upward break, σ2
ε (s) = σ2

ν (s) = 1 + 8I (s > 0.7);

4. an early downward break, σ2
ε (s) = σ2

ν (s) = 9− 8I (s > 0.3); and

5. a late downward break, σ2
ε (s) = σ2

ν (s) = 9− 8I (s > 0.7),

where I (·) is an indicator function; and to allow for time-varying persistence, we also consider

6 patterns for the localization parameter c:

1. constant close to integration, c (s) = 5;

2. small break towards stationarity, c (s) = 5 + 5I (s > 0.5);

3. large break towards stationarity, c (s) = 5 + 20I (s > 0.5);

4. constant close to stationarity, c (s) = 25;

5. small break towards integration, c (s) = 25− 5I (s > 0.5);

6. large break towards integration, c (s) = 25− 20I (s > 0.5).

To gauge the necessity of a correction for time-varying variances, we now compute, in addition,

the IVX test without White heteroskedasticity correction and denote it by t#ivx; tivx is computed

with (the usual) White standard errors, and t̃ivx is computed using the heteroskedasticity-robust

standard errors from (12) as before.

Tables 3 and 4 confirm the conclusions obtained under the homogenous DGPs. The test

based on tivx exhibits practically the same behavior under the variance patterns employed here,

but can be oversized for constant small c (here, it is the closeness to the unit root that matters

and not the breaks in c). On the other hand, the size control of t̃ivx is overall quite good, for all

persistence patterns, and the White-type standard errors account for time-varying variances as

well.3

3Unreported simulations show that not employing the White-type standard errors for the t̃ivx test under
time-varying variances leads to size distortions similar to those of the t#ivx test.
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Table 3: Size under breaks in variance and persistence, negative short-run AR parameter

AHW CY t#ivx t̃ivx AHW CY t#ivx t̃ivx

c Var T = 200 T = 500

const 7.6 0.1 9 9.6 5.5 7.4 1.2 10.4 10.7 5.9
early up 11.5 0.1 13.2 9.8 6.4 11.2 1.6 13.5 9.9 6.6

const small late up 24.1 0.6 17.9 9.6 5.8 25.2 3.9 19.3 10 6.1
early down 21.5 0.4 15.1 8.8 5.5 22.1 3.0 16.4 9.4 5.9
late down 10.7 0.4 11.3 9.3 5.6 11.1 2.3 12.3 9.6 6.3

T = 200 T = 500

const 7.0 0.0 8.3 8.8 5.9 7.3 0.7 9.6 9.9 6.3
early up 11.7 0.0 12.1 9.3 5.9 11.5 1.5 12.9 9.6 6.6

up small late up 23.2 0.1 16.4 9.3 5.6 24.1 2.3 17.4 9.4 5.8
early down 22.2 0.2 14.9 8.2 6 22.2 2.8 17 9.3 6.9
late down 10.9 0.1 11 8.6 6.3 11.3 1.8 12.1 9.2 6.6

T = 200 T = 500

const 6.6 0.0 7.2 7.9 5.4 6.8 0.3 8.9 9 6.2
early up 10.9 0.0 10.3 8.1 5.5 11.5 0.3 11.5 8.7 5.9

up large late up 21.5 0.0 13.6 8.5 4.8 21.5 0.3 14.2 8.8 5.2
early down 22.3 0.2 14.7 7.8 6.9 22.8 2.7 17.1 8 6.9
late down 11.6 0.0 10.5 7.5 6.3 11.3 1.1 11.4 8.4 6.9

T = 200 T = 500

const 6.2 0.0 5.6 6.1 5.3 5.6 0.0 6.7 6.7 5.5
early up 10.6 0.0 10.2 7.8 6.1 10.4 0.0 11.3 8.1 6.2

const large late up 24.4 0.1 15.6 7.8 6.3 24.5 0.1 16.8 7.9 6.7
early down 24.0 0.0 11 5.5 5.5 23.2 0.0 13.4 6.4 6.4
late down 11.1 0.0 7.8 5.8 5.6 11.0 0.0 8.4 5.9 5.4

T = 200 T = 500

const 6.1 0.0 5.9 6.2 5.5 6.1 0.0 7.1 7.4 5.6
early up 10.9 0.0 10.4 8 6 11.1 0.1 11.1 7.9 6.1

down small late up 23.6 0.1 16.4 8.2 6.9 23.9 0.2 16.9 8.2 6.6
early down 23.4 0.0 10.7 5.4 5.6 23.2 0.1 12.5 6.2 5.8
late down 10.6 0.0 7.5 5.9 5.4 10.8 0.0 9.3 6.6 5.8

T = 200 T = 500

const 7.0 0.0 7.2 7.6 5.1 7.4 0.2 9.1 9.3 5.9
early up 11.2 0.1 12.4 9.4 6.2 11.4 1.3 13.6 9.4 6.6

down large late up 25.0 0.4 19.9 9.1 7.1 25.4 4.3 21.4 9 7.3
early down 21.3 0.0 10 6 4.3 21.3 0.2 11.8 6.8 4.5
late down 10.2 0.0 8.9 7.5 4.6 10.3 0.3 9.5 8.2 4.6

Notes: AHW denotes the (2-sided) Amihud, Hurwich and Wang test with lag length p = 2; CY denotes the

Campbell and Yogo test, t#ivx is IVX test computed following Kostakis et al. (2015) but without White correc-

tion, and t̃ivx is the residual-augmented IVX test procedure, all with maximal lag length p = [4(T/100)0.25].
The DGP is as in (1) and (2) with ρ = 1 − ct/T and β = b/T and exhibits time-varying variance. For further
details see the text.
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Table 4: Size under breaks in variance and persistence, positive short-run AR parameter

AHW CY t#ivx t̃ivx AHW CY t#ivx t̃ivx

c Var T = 200 T = 500

const 6.6 4.5 10.3 10.7 6.1 6.3 4.2 10.5 10.7 6
early up 10.0 6.8 14.6 11.2 6.8 10.0 6.6 13.9 10 6.5

const small late up 22.6 10.4 19.5 11.5 6.7 23.4 9.6 20.4 10.9 6.4
early down 19.9 9.0 17.1 10.7 6 19.9 8.4 18 10.5 6.2
late down 9.8 6.7 12.5 10.6 6.2 9.5 6.1 12.8 10.3 6.4

T = 200 T = 500

const 5.8 4.3 10.2 10.9 5.9 6.4 4.2 10.3 10.5 6.1
early up 10.2 6.4 14 11.1 6.3 10.1 6.1 13.5 10.1 6.8

up small late up 21.7 8.7 17.3 10.7 6.4 21.9 8.4 18.5 10.6 6.1
early down 19.9 9.3 17.7 10.7 7 19.7 9.4 18.3 10.1 7
late down 9.7 7.1 13.1 10.3 6.6 9.7 6.6 13.5 10.3 7.2

T = 200 T = 500

const 5.9 4.1 9.3 9.7 5.8 5.9 3.7 9.8 10.2 6.4
early up 9.9 5.7 12.3 10.1 5.9 10.4 5.2 11.7 9.1 6

up large late up 20.5 6.1 14.1 9.9 5.5 20.7 5.9 14.6 9.7 5.5
early down 20.9 9.7 18.6 10.2 7.6 20.6 10.4 19.5 9.6 7.7
late down 10.1 7.1 12.3 9.4 6.9 10.4 6.7 12.6 8.8 6.6

T = 200 T = 500

const 5.8 2.6 8.4 9 6.3 5.6 2.8 8 8.2 6.1
early up 10.9 5.3 10.8 8.4 5.9 10.5 5.4 11.6 8 6.2

const large late up 22.7 8.0 17.2 8.8 7 24.1 9.1 18.8 9.4 7.4
early down 23.1 4.5 14.1 7.8 6.6 22.3 5.6 15.4 7.7 6.3
late down 10.7 3.8 10.2 7.9 6.4 10.1 4.1 10.3 7.5 5.7

T = 200 T = 500

const 5.9 2.9 8.5 8.9 5.9 6.0 3.0 8.4 8.5 5.9
early up 10.5 5.5 11.8 8.8 5.9 10.7 5.6 11.8 8.6 6.3

down small late up 23.3 8.8 18.5 9.5 7.3 24.2 9.7 19.2 9.1 7.2
early down 22.2 4.7 15.1 8.7 7 21.8 5.6 15.9 8.4 6.8
late down 10.1 3.9 10.6 8.5 6.9 10.3 4.3 10.5 7.8 5.8

T = 200 T = 500

const 6.3 3.9 9.5 10 5.8 6.2 3.6 9.4 9.5 5.5
early up 10.3 7.1 13.5 9.9 6.8 11.0 6.7 14.4 9.7 6.9

down large late up 25.0 12.8 21.7 10.4 7.9 24.8 12.7 22.9 9.6 7.4
early down 20.6 4.4 12.6 9 5.3 19.8 4.5 13.7 9 5.3
late down 9.7 4.7 10.6 10.3 5.6 9.6 4.2 10.5 9.4 4.9

Note: See Table 3.

22



IVX without robust standard errors can be seriously oversized, which, again, was expected;

the worst effect is observed for late upward breaks in the variance. AHW exhibits a similar

pattern, to an even larger extent. We note that breaks in the persistence parameter c tend to

rather have a dampening effect, if any. CY is severely undersized, in line with the previous

experiments for negative short-run correlation. For positive short-run correlation, CY now

controls size fairly well except for late upward and early downward breaks in the variance; the

other three tests do not appear to be sensitive to the sign of the short-run serial correlation of

the predictor. The effects are practically the same for both sample sizes, indicating that the

size distortions are not finite-sample in nature.

5 Excess return predictability

The objective of this empirical part is to re-examine the predictive power of several variables

used in Welch and Goyal (2008), updated with information up to December 2013.4 using the

approaches discussed in the previous sections. We look at the claims by Welch and Goyal (2008)

that “evidence suggests that most models are unstable or even spurious” and that “models are

no longer significant even in-sample.”

5.1 Background

According to the findings of Welch and Goyal (2008), most predictive models have performed

poorly in sample over the last 30 years. As they argue for many models any earlier apparent

statistical significance was often based exclusively on years up to and especially on the years of

the Oil shock 1973-1975 (Welch and Goyal, 2008, p. 1456).

Ang and Bekaert (2007), considering a sample from 1935 to 2001, report results for several

subsamples and for the full sample. Since interest rate data is hard to interpret before the 1951

Treasury Accord, Ang and Bekaert (2007) (as well as Lewellen, 2004) consider 1952 as their

starting date. Furthermore, Ang and Bekaert (2007) also indicate that the majority of studies

establish strong evidence of predictability when data before or up to the early 1990s is used.

For instance, Lettau and Ludvigsson (2001) and Goyal and Welch (2003) point out that the

predictive power of the dividend yield weakens with the addition of the 1990s decade.

Several researchers suggest that the disapearance of stock return predictability is due to

parameter instability or structural breaks and identify the disapearance around 1991 (see, e.g.,

Pesaran and Timmermann, 2002; and Lettau and Nieuwerburgh, 2008). A related hypothesis is

that predictability was arbitraged away once discovered, in a scenario similar to the attenuation

of the January effect. Welch and Goyal (2008) argue that predictability has not been significant

in- or out-of-sample over the past 30 years. Still others take a more drastic view and argue that

it was never actually there (e.g., Bossaerts and Hillion, 1999 and Goyal and Welch, 2003).

4We thank A. Goyal for making this data available on his Web site.
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Henkel et al. (2011) reveal that predictability is a phenomenon whose strength is distinc-

tively time-varying. The dividend yield and commonly used term structure variables are ef-

fective predictors almost exclusively during recessions. According to these authors, the robust

prominence of busines cycles in these results suggests a potentially substantial tie to the lit-

erature on the dynamics of expected returns. Campbell and Cochrane (1999), Menzly et al.

(2004) and Bekaert et al. (2009) show that risk premiums are countercyclical and that the time

series behaviour of risk premium is higher during recessions.

Since a time-varying predictive relation is the byproduct of the interacting dynamics of ex-

pected returns and of the predictors, the complex behaviour of the predictors themselves must

be considered when testing for predictability. The underlying fundamentals are the potential

micro-level objectives of firms and central banks whose activities jointly determine aggregate

predictor variables. The business cycle is an important driver of these micromotives and this

lead Henkel et al. (2011) to re-examine predictability using a regime-switching framework capa-

ble of matching the time-varying dynamics of predictors to the dynamics of expected returns. It

is found that predictors are less persistent and more volatile during recessions. Several features

of their analysis stand out: the random walk model of stock prices prevailed in the 1970s based

on CRSP data from the 1960s era expansion; predictability emerged in research of the late

1970s and mid-1980s, following several recessions; and predictability was subsequently doubted

following the long booms of the 1980s and 1990s.

Hence, in line with Ang and Bekaert (2007) and given the availability of data, we revisit the

impact of the addition of the 1990s first, followed by the analysis of the effects of adding the

period from January 2000 to September 2007 and finally the remaining sample period (October

2007 to December 2013). Moreover, in order to remove the possible impact of the Oil shock

(1973-1975) we repeat the analysis starting in 1976.

Given the available empirical evidence of change in strength of predictability of some vari-

ables over time, in what follows we split the sample into eigth periods. These changes appear

to be accompanied by changes in the persistence of the considered regressors.5 In particular,

we consider the eight time periods: i) Jan 1952 - Dec 1989; ii) Jan 1952 - Dec 1999; iii) Jan

1952 - Sep 2007; iv) Jan 1952 - Dec 2013; v) Jan 1976 - Dec 1989; vi) Jan 1976 - Dec 1999; vii)

Jan 1976 - Sep 2007; and viii) Jan 1976 - Dec 2013.

5.2 Data

The dependent variable is the equity premium (or excess return), i.e., the total rate of return

on the stock market minus the prevailing short-term interest rate. Stock returns are the con-

tinuously compounded returns on the S&P 500 index, including dividends, and the risk-free

rate is the Treasury-bill rate.

The independent variables used are: i) the 12-month moving sums of dividends (D12) paid

5See the results in Appendix B for more details.
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on the S&P 500 index; ii) the dividend price-ratio (d/p) computed as the difference between the

log of dividends and the log of prices; iii) the dividend yield (d/y) computed as the difference

between the log of dividends and the log of lagged prices; iv) the 12-month moving sums

of earnings on the S&P 500 index (E12); v) the earnings price-ratio (e/p) computed as the

difference between the log of earnings and the log of prices; vi) the dividend payout-ratio (d/e)

computed as the difference between the log of dividends and the log of earnings; vii) the stock

variance (svar) computed as the sum of squared daily returns on the S&P 500; viii) the cross-

sectional beta premium (csp) which measures the relative valuations of high- and low-beta

stocks; ix) the book-to-market ratio (b/m) computed as the ratio of book value to market

value for the Dow Jones industrial average. To include corporate issuing activity we also use x)

the net equity expansion (ntis) computed as the ratio of 12-month moving sums of net issues by

NYSE listed stocks divided by the total end-of-year market capitalization of NYSE stocks; and

xi) the percent equity issuing (eqis), which is the ratio of equity issuing activity as a fraction

of total issuing activity.

A further set of predictors used is: the treasury bills (tbl) rates; the long term government

bond yield (lty); the term spread (tms) which is the difference between the long term yield on

government bonds and the treasury-bill; the default yield spread (dfy) which is the difference

between BAA and AAA-rated corporate bond yields. The default return spread (dfr) is the

difference between long-term corporate bond and long-term government bond returns; inflation

(infl) which corresponds to the consumer price index (all urban consumers); and long-term

government bond returns (ltr). For details on the construction of these variables and for a

greater description see Welch and Goyal (2008).

5.3 Findings

Tables 5 and 6 report the predictability test results computed from tivx, t̃ivx and the OLS based

tests procedures over four subperiods of analysis starting in January 1952. From Table 5 it is

interesting to observe that the OLS based test procedure finds most evidence of predictability

in the subsample from January 1952 to December 1989, and as we add information the number

of significant predictors decreases. Note that in the subsample from January 1952 to December

1989, based on this procedure, nine variables (d/p, d/y, d/e, tbl, tms, ntis, infl, ltr, svar)

seemed to be significant; whereas in the following subperiods (January 1952 to December 1999;

to September 2007, and to December 2013) the number of significant variables reduced to six

(tbl, lty, tms, ntis, infl, ltr), to two (infl, ltr) and increases again to six (tbl, lty, tms, infl, ltr,

svar), respectively. However, if we look at the results obtained with the two IVX approaches,

the number of significant predictors is smaller. The original IVX approach for the four periods

under analysis (January 1952 to December 1989; January 1952 to December 1999; January

1952 to September 2007 and January 1952 to December 2013) finds 5, 5, 2 and 4 significant

predictors, respectively; whereas the residual augmented IVX approach proposed in this paper
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finds 5, 6, 2 and 5, respectively.

Performing the same analysis, but starting now in January 1975 instead of January 1952,

the OLS based approach finds 1, 3, 1 and 1 significant predictors in the four subsamples under

analysis (January 1975 to December 1989; January 1975 to December 1999; January 1975 to

September 2007 and January 1976 to December 2013), respectively. Thus, based on this statistic

the period between January 1976 to December 1999 is the one which presents more evidence of

predictability. Using the IVX based approaches, the number of signifcicant predictors is 1, 5, 1

and 3, for the original IVX and 3, 4, 2 and 0 for the residual augmented IVX approach, for the

four subperiods under analysis, respectively. Hence, both IVX based approaches also identify

the period between 1976 and 1999 as the period with strongest evidence of predictability.

The results in Table 6 agree to a certain extent with the conclusions put forward by Welch

and Goyal (2008) that apparent statistical significance was often based exclusively on years up

to and especially on the years of the Oil Shock of 1973-1975.

6 Conclusions

This paper introduced a new IVX test statistic computed from a residual augmented predictive

regression as considered in Amihud and Hurvich (2004) and reexamined the empirical evidence

on predictability of stock returns of Welch and Goyal (2008) using these new robust methods.

To this end we resorted to IVX estimation and testing, and proposed a residual-augmented

variant that allows practitioners to distinguish more reliably between the null of no predictabil-

ity and the alternative. The method is asymptotically correct under near-integration as well as

under stationarity of the regressor, has improved local power under high regressor persistence,

and allows, e.g., for heterogeneity of the data in the form of time-varying variances.

The results derived here on bias correction can be generalized for other types of instrumental

variable estimation than just IVX. The IV framework of Breitung and Demetrescu (2015),

who distinguish between type-I instruments that are less persistent than the initial regressor

(the IVX instrument is actually of type I; see Breitung and Demetrescu, 2015), and type-II

instruments that are (stochastically) trending, yet exogenous, allows for a quick discussion:

a careful examination of the arguments presented here shows that they are easily extended

for type-I instruments, but type-II instruments behave like the OLS estimator where residual-

augmentation is not improving on the test procedure even asymptotically.

The provided Monte Carlo evidence shows that the asymptotic improvements are a good

indicative of the finite-sample performance, also in the presence of time-varying volatility or

time varying persistence. Finally, the empirical analysis showed that the bias-adjusted IVX

procedure detected predictability more often than the original IVX procedure.
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A Technical Appendix

A.1 Preliminary Results

Throughout the proofs, we consider that
∑t−1

j=0 %
kj = 1−%kt

1−%k = T η

a

(
1−%kt

1+%+...+%k−1

)
≤ 1

ka
T η for large

enough T and fixed k, where % := 1− a
T η

with η ∈ (0, 1) and a > 0 and fixed. Furthermore, let

C denote a generic constant whose value may change from occurrence to occurrence.

Lemma A.1 Under the assumptions of Theorem 3.1, as T →∞, it follows that

1. 1
T

∑T
t=p+1 xt−1xt−p

p→ α
′
p

´ 1

0
σ2
vds, where αp := (α0, . . . , αp−1) and xt−p := (xt−1, ..., xt−p)

′

and αh is as defined in Theorem 3.1;

2. 1
T

∑T
t=p+1 xt−px

′
t−p

p→ Ω
´ 1

0
σ2
vds, where Ω is a p × p matrix with generic element aij =

α|i−j|;

3. 1
T

∑T
t=p+1 xt−px

′
t−pν

2
t

p→ Ω
´ 1

0
σ4
v (s) ds;

4. 1
T

∑T
t=p+1 z

2
t−1ε

2
t

p→ α0

´ 1

0
σ2
v (s)σ2

ε (s) ds.

Proof of Lemma A.1

Phillips and Xu (2006) show in their Lemma 1 that 1
T

∑T
t=h+1 xtxt−h

p→ αh
´ 1

0
σ2
vds, h =

0, 1, . . . , p − 1; this suffices to establish the results in the first two items. The result in item 3

also follows directly from Lemma 1 of Phillips and Xu (2006), and the proof can be adapted in

a straightforward manner to establish the result in item 4. �

Lemma A.2 Under the assumptions of Theorem 3.2, as T →∞, it follows that∑T
t=2 z̃t−1εt√∑T
t=2 z̃

2
t−1ε

2
t

d→ N (0, 1)

where z̃t =
∑t−1

j=0 %
jνt−j.
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Proof of Lemma A.2

Consider s2
T := 1

T 1+η

∑T
t=2

∑t−2
j=0 %

2jσ2
ν,t−1−jσ

2
ε,t and note that s2

T is bounded and bounded away

from zero, since

min1≤t≤T σ
2
ν,t min1≤t≤T σ

2
ε,t

T 1+η

T∑
t=2

t−2∑
j=0

%2j ≤ s2
T ≤

max1≤t≤T σ
2
ν,t max1≤t≤T σ

2
ε,t

T 1+η

T∑
t=2

t−2∑
j=0

%2j

where
∑T

t=2

∑t−2
j=0 %

2j ∼ CT 1+η.

Since, ∑T
t=2 z̃t−1εt√∑T
t=2 z̃

2
t−1ε

2
t

=
1

T 1/2+η/2

T∑
t=2

z̃t−1εt
sT

√√√√∑T
t=2

∑t−2
j=0 %

2jσ2
ν,t−1−jσ

2
ε,t∑T

t=2 z̃
2
t−1ε

2
t

, (25)

we show next that 1
T 1/2+η/2

∑T
t=2

z̃t−1εt
sT

follows a limiting standard normal distribution by re-

sorting to a central limit theorem for martingale difference [md] arrays (Davidson, 1994, The-

orem 24.3). However, to apply it, we need to show that, i) maxt
1

T 1/2+η/2

∣∣∣ z̃t−1εt
sT

∣∣∣ p→ 0 and ii)

1
T 1+η

∑T
t=2

z̃2t−1ε
2
t

s2T

p→ 1.

Given that the result in ii) also implies√√√√∑T
t=2

∑t−2
j=0 %

2jσ2
ν,t−1−jσ

2
ε,t∑T

t=2 z̃
2
t−1ε

2
t

p→ 1, (26)

hence the result in (25) would follow.

To verify i), note that uniform boundedness of moments of order 2 + δ∗ for some δ∗ > 0

of T−η/2z̃t−1εt suffices to establish this condition. An application of Hölder’s inequality shows

that uniformly bounded 4th order moments of T−η/2z̃t−1 and uniform L4+δ∗-boundedness of εt

suffices, since δ∗ may be chosen arbitrarily close to zero, so we check the uniform boundedness

of

E

(
z̃4
t−1

T 2η

)
=

1

T 2η

t−2∑
j=0

t−2∑
k=0

t−2∑
l=0

t−2∑
m=0

%j%k%l%m E (νt−jνt−kνt−lνt−m) . (27)

Due to the serial independence of νt, the expectation E (νt−jνt−kνt−lνt−m) is nonzero only if the

indices are pairwise equal, thus we can simplify (27) as,

E

(
z̃4
t−1

T 2η

)
=

1

T 2η

t−2∑
j=0

t−2∑
k=0

%2j%2k E
(
ν2
t−jν

2
t−k
)
.

Since νt is uniformly L4-bounded, the expectations on the r.h.s. are uniformly bounded for any
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t, k and j, therefore,

0 ≤ E

(
z̃4
t−1

T 2η

)
≤ C

1

T 2η

t−2∑
j=0

t−2∑
k=0

%2j%2k = C
1

T 2η

(
t−2∑
j=0

%2j

)2

≤ C
1

T 2η

(
T−2∑
j=0

%2j

)2

≤ C

which suffices for the required uniform L4-boundedness.

To check condition ii), it suffices to show that

1

T 1+η

T∑
t=2

z̃2
t−1ε

2
t − s2

T

p→ 0 (28)

because s2
T is bounded and bounded away from zero (we learn from Lemma A.4 below that

s2
T → 1

2a

´ 1

0
σ2
ν (s)σ2

u (s) ds, but the exact limit does not matter here). To prove (28), write

T∑
t=2

z̃2
t−1ε

2
t =
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2
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=: AT +BT .

Note that
∑t−2

j=0

∑t−2
k=0 %

j%kνt−1−jνt−1−k
(
ε2
t − σ2

ε,t

)
builds an md array and as such, is uncorre-

lated in t. Hence, showing 1
T 1+ηAT to vanish is not difficult, given that from the uncorrelatedness

of the summands we can write that,
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(
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)
=

1
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Now, εt is uniformly L4-bounded and

E
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)2
 =
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m=0

%j%k%l%m E (νt−1−jνt−1−kνt−1−lνt−1−m)

where the expectation on the r.h.s. is, as before, uniformly bounded and nonzero only if the

indices are pairwise equal. Hence,

0 ≤ E

( t−2∑
j=0
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%j%kνt−1−jνt−1−k

)2
 ≤ C
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leading to Var
(
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T 1+ηAT

)
→ 0 and thus AT = op (T 1+η).
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Regarding BT , note that,

BT = T 1+ηs2
T +
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t−2∑
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t−1−j − σ2
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)
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For BT1 we have from the serial independence and L4-boundedness of νt that
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and Markov’s inequality indicates that BT1 = op (T 1+η).

For BT2 we proceed similarly,

E


 T∑

t=2

t−2∑
j=0

t−2∑
k=0

j 6=k

%j%kνt−1−jνt−1−kσ
2
ε,t


2

=
T∑
t=2

T∑
s=2

t−2∑
j=0

t−2∑
k=0

j 6=k

s−2∑
l=0

s−2∑
m=0

l 6=m

%j%k%l%mσ2
ε,tσ

2
ε,s E (νt−1−jνt−1−kνs−1−lνs−1−m) ,

where the expectations on the r.h.s. are nonzero if t − j = s − l and t − k = s − m or if

t− j = s−m and t− k = s− l (with t− j = t− k and s− l = s−m being excluded by the

requirement that j 6= k and l 6= m). Note that, for any t, s, j, k, l,m with j 6= k and l 6= m,

σ2
ε,tσ

2
ε,s E (νt−1−jνt−1−kνs−1−lνs−1−m) ≤

(
max
t
σ2
ε,t

)2 (
max
t
σ2
ν,t

)2

≤ C.

Let us now focus on the terms for which t− s = j − l = k −m. Thus, for t = s, t = 2, . . . , T ,

we obtain
t−2∑
j=0

t−2∑
k=0

s−2∑
l=0

s−2∑
m=0

j 6=k,l 6=m,t−s=j−l=k−m

%j%k%l%m =
t−2∑
j=0

t−2∑
k=0

j 6=k

%2j%2k ≤

(
t−2∑
j=0

%2j

)2

;
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and for s = t− 1, t = 3, . . . , T , we have analogously that,

t−2∑
j=0

t−2∑
k=0

s−2∑
l=0

s−2∑
m=0

j 6=k,l 6=m,t−s=j−l=k−m

%j%k%l%m ≤ %2

(
t−3∑
j=0

%2j

)2

while, for s = t+ 1, t = 2, . . . , T − 1 (or equivalently t = s− 1, s = 3, . . . , T ), it follows that,

t−2∑
j=0

t−2∑
k=0

s−2∑
l=0

s−2∑
m=0

j 6=k,l 6=m,t−s=j−l=k−m

%j%k%l%m ≤ %2

(
s−3∑
l=0

%2l

)2

.

Repeating the discussion for s = t± r for r = 2, . . . , T − 2, we have

t−2∑
j=0

t−2∑
k=0

s−2∑
l=0

s−2∑
m=0

j 6=k,l 6=m,t−s=j−l=k−m

%j%k%l%m ≤ 2%2r

(
t−r−2∑
j=0

%2j

)2

,

leading to

T∑
t=2

T∑
s=2

t−2∑
j=0

t−2∑
k=0

s−2∑
l=0

s−2∑
m=0

j 6=k,l 6=m,t−s=j−l=k−m

%j%k%l%m ≤
T∑
t=2

(
t−2∑
j=0

%2j

)2

+ 2
T−2∑
r=1

%2r

T∑
t=2+r

(
t−r−2∑
j=0

%2j

)2

.

The same holds when imposing t− s = j −m = k − l, such that, with
∑t−r−2

j=0 %2j ≤
∑T−1

j=0 %
2j

and
∑T

t=2+r C ≤ CT , thus, we ultimately have

E


 T∑

t=2

t−2∑
j=0

t−2∑
k=0

j 6=k

%j%kνt−1−jνt−1−kσ
2
ε,t


2 ≤ CT 1+3η

and consequently BT2 = op (T 1+η) when η < 1, as required to complete the proof. �

Lemma A.3 Under the assumptions of Theorem 3.2, it follows, as T →∞, that i)
∑T
t=2 zt−1εt√∑T
t=2 z

2
t−1ε

2
t

d→

N (0, 1) ; and ii)
∑T
t=2 zt−1ut√∑T
t=2 z

2
t−1u

2
t

d→ N (0, 1).

Lemma A.3 suggests the use of White standard errors in the heteroskedastic near-integrated

case, W.s.e :=

√∑T
t=2 z

2
t−1ε̂

2
t∑T

t=2 z
2
t−1

with ε̂t the OLS residuals guaranteeing sup2≤t≤T |ε̂t − εt|
p→ 0 both

in cases with and without intercept, and also better finite-sample behavior; see Kostakis et al.

(2015). For the stable case, White standard errors are “mandatory” under time heteroskedas-

ticity (Phillips and Xu, 2006).
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Proof of Lemma A.3

We first resort to the Phillips-Solo decomposition of vt and write vt = ωνt + ∆ṽt where ṽt

is a linear process in νt with exponentially decaying coefficients. Let also z̄t := (1− %L)−1
+ vt.

Thus, denoting z̃t =
∑t−1

j=0 %
jνt−j like in Lemma A.2, it follows that,

z̄t = ω

t−1∑
j=0

%jνt−j +

(
ṽt + (%− 1)

t−1∑
j=1

%j−1ṽt−j − %t−1ṽ1

)
= ωz̃t + dt,

and it can then easily be shown that Var
(∑t−1

j=1 %
j−1ṽt−j

)
≤ CT η such that dt is uniformly

L2-bounded given that %− 1 = −aT−η. Similarly, T−η/2z̃t is uniformly L2-bounded itself. We

now show that
1

T 1+η

T∑
t=2

z̄2
t−1ε

2
t =

ω2

T 1+η

T∑
t=2

z̃2
t−1ε

2
t + op (1) (29)

and
1

T 1/2+η/2

T∑
t=2

z̄t−1εt =
ω

T 1/2+η/2

T∑
t=2

z̃t−1εt + op (1) . (30)

Let us consider first (29). Note that,

1

T 1+η

T∑
t=2

z̄2
t−1ε

2
t =

ω2

T 1+η

T∑
t=2

z̃2
t−1ε

2
t +

2ω

T 1+η

T∑
t=2

z̃t−1dt−1ε
2
t +

1

T 1+η

T∑
t=2

d2
t−1ε

2
t .

Since,

E
(∣∣d2

t−1ε
2
t

∣∣) = E
(
d2
t−1

)
E
(
ε2
t

)
and

E
(∣∣z̃t−1dt−1ε

2
t

∣∣) ≤√E
(
z̃2
t−1

)
E
(
d2
t−1

)
E
(
ε2
t

)
due to the independence of εt and dt−1 and of εt and zt−1. With E

(
d2
t−1

)
, E (ε2

t ) and T−η E
(
z̃2
t−1

)
being uniformly bounded, (29) then follows. To establish (30), write

1

T 1/2+η/2

T∑
t=2

z̄t−1εt =
ω

T 1/2+η/2

T∑
t=2

z̃t−1εt +
1

T 1/2+η/2

T∑
t=2

dt−1εt

and note that dt−1εt has the md property. Hence,
∑T

t=2 dt−1εt = Op

(
T 1/2

)
due to the uniform

L2-boundedness and independence of εt and dt−1. Thus, from (29) and (30) we obtain that∑T
t=2 z̄t−1εt√∑T
t=2 z̄

2
t−1ε

2
t

−
∑T

t=2 z̃t−1εt√∑T
t=2 z̃

2
t−1ε

2
t

p→ 0. (31)
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In a second step we use the same reasoning to show that∑T
t=2 z̄t−1εt√∑T
t=2 z̄

2
t−1ε

2
t

−
∑T

t=2 zt−1εt√∑T
t=2 z

2
t−1ε

2
t

p→ 0. (32)

Write to this end zt := z̄t + rt where rt := − (1− %L)−1
+

ct
T
xt−1 with

Var

(
1√
T
xt

)
=

1

T

t∑
j=1

t∑
k=1

(
1− ct−j

T

)j (
1− ct−k

T

)k
E (vt−jvt−k) ≤

1

T

t∑
j=1

t∑
k=1

|E (vt−jvt−k)| .

Given the uniform L2-boundedness of the innovations νt and the exponential decay of the

Wold coefficients of vt, |E (vt−jvt−k)| ≤ Ce|j−k| ∀t and 1√
T
xt is easily shown to be uniformly

L2-bounded.

The key in establishing (32) is to note that rt−1 is independent of εt and uniformly L2-

bounded, and that T−η E
(
z2
t−1

)
is uniformly bounded too whenever T−η E

(
z̄2
t−1

)
and E (r2

t )

are. The arguments employed to show (31) thus apply for zt and z̄t as well, and (32) holds.

Summing up,
∑T
t=2 zt−1εt√∑T
t=2 z

2
t−1ε

2
t

and
∑T
t=2 z̃t−1εt√∑T
t=2 z̃

2
t−1ε

2
t

are asymptotically equivalent and the result

follows from Lemma A.2.

The proof of the result in ii) follows along the same lines and we omit the details.�

Lemma A.4 Under the assumptions of Theorem 3.2, it holds, as T →∞, that

1. 1
T 1+η

∑T
t=p+1 z

2
t−1ε

2
t

p→ ω2

2a

´ 1

0
σ2
ν (s)σ2

ε (s) ds;

2. 1
T 1+η

∑T
t=p+1 z

2
t−1u

2
t

p→ ω2

2a

´ 1

0
σ2
ν (s)σ2

u (s) ds where σ2
u (s) = σ2

ε (s) + γ2σ2
ν (s);

3. 1
T 1+η

∑T
t=p+1 zt−1xt−1 ⇒ ω2

a

(
X2 (1)−

´ 1

0
X (s) dX (s)

)
where X (r) is an Ornstein-Uhlenbeck process as defined in (14).

Proof of Lemma A.4

1. To obtain the limit of 1
T 1+η

∑T
t=p+1 z

2
t−1ε

2
t , we use from the proof of Lemma A.3 (see (26))

the fact that
1

T 1+η

T∑
t=p+1

z2
t−1ε

2
t = ω2 1

T 1+η

T∑
t=2

t−2∑
j=0

%2jσ2
ν,t−1−jσ

2
ε,t + op (1) .

The Lipschitz property implies that
∣∣σ2
ν,t−1−j − σ2

ν,t

∣∣ ≤ C j
T

such that

0 ≤ 1

T 1+η

∣∣∣∣∣
T∑
t=2

t−2∑
j=0

%2jσ2
ν,t−1−jσ

2
ε,t −

T∑
t=2

σ2
ν,tσ

2
ε,t

t−2∑
j=0

%2j

∣∣∣∣∣ ≤ C
1

T 2+η

T∑
t=2

t−2∑
j=0

j%2j.
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On the r.h.s. we have immediately, as T→∞, that

1

T 2+η

T∑
t=2

t−2∑
j=0

j%2j → 0

given that
∑t−2

j=0 j%
2j =

t%2(t−3)(%−1)−(%2(t−2)−1)
(%2−1)2

, where
∣∣∣ t%2(t−3)(%−1)

(%2−1)2

∣∣∣ ≤ CT 1+η%2(t−3) and
∣∣∣%2(t−2)−1

(%2−1)2

∣∣∣ ≤
CT 2η. We also observe that,

1

T 1+η

T∑
t=2

σ2
ν,tσ

2
ε,t

t−2∑
j=0

%2j =
1

T 1+η

T∑
t=2

σ2
ν,tσ

2
ε,t

T η

a

(
1− %2(t−1)

1 + %

)

=
1

T 1+η

T∑
t=2

σ2
ν,tσ

2
ε,t

T η

a (1 + %)
− 1

T 1+η

T∑
t=2

σ2
ν,tσ

2
ε,t

T η

a

(
%2(t−1)

1 + %

)
.

The first summand on the r.h.s. is easily seen to converge to 1
2a

´ 1

0
σ2
ν (s)σ2

ε (s) ds, while, for the

second, we have

1

T 1+η

T∑
t=2

σ2
ν,tσ

2
ε,t

T η

a

(
%2(t−1)

1 + %

)
≤ C

aT

T∑
t=2

%2(t−1) = O
(
T η−1

)
= o (1)

as required to complete the proof.

2. The proof of 2 is analogous to the proof of 1 and is therefore omitted.

3. Let St :=
∑t

j=2 zt. We first follow Breitung and Demetrescu (2015, Proof of Corollary

1.2) and show that
1

T 1/2+η
St =

1

a
√
T
xt + op (1)

where the op (1) term is uniform. The arguments are essentially the same as there; the only

difference is having to show that E (|xt − xt−j|) ≤ C
√
j for all t and j, which is obvious in their

i.i.d. setup, but marginally more difficult here. To this end, recall that ∆xt := vt− ct−1

T
xt−1and

use Liapunov’s and Minkowski’s inequalities to conclude that,

E (|xt − xt−j|) ≤
√

E
(
(xt − xt−j)2) =

√√√√√E

( j−1∑
k=0

vt−j −
1

T

j−1∑
k=0

ct−k−1xt−k−1

)2


≤

√√√√√E

( j−1∑
k=0

vt−j

)2
+

1√
T

j−1∑
k=0

|ct−k−1|

√√√√E

((
xt−k−1√

T

)2
)

;

and therefore using the uniform boundedness of the variance of xt−k−1√
T

, it follows indeed that

E (|xt − xt−j|) ≤ C
√
j as required.

We then follow Breitung and Demetrescu (2015, Proof of Theorem 2) and obtain via partial
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summation that,

1

T 1+η

T∑
t=p+1

zt−1xt−1 =
1

T 1+η

T∑
t=p+1

(St−1 − St−2)xt−1

=
1

T 1+η
(ST−1xT−1 − Sp−1xp)−

1

T 1+η

T∑
t=p+1

St−2∆xt−1.

Now, since Sp−1xp = Op (1) it is negligible in the limit; furthermore note that,

1

T 1+η

T∑
t=p+1

St−2∆xt−1 =
1

T 1+η

T∑
t=p+1

St−2vt−1 −
1

T 2+η

T∑
t=p+1

ct−2St−2xt−2.

For the first summand on the r.h.s., we have using the Phillips-Solo device for the AR process

vt−1 that,

1

T 1+η

T∑
t=p+1

St−2vt−1 =
ω

T 1+η

T∑
t=p+1

St−2νt−1 +
1

T 1+η

T∑
t=p+1

St−2∆ṽt−1

=: AT +BT ,

where ṽt is a linear process with exponentially decaying coefficients.

Since νt−1 is independent of St−2 and the conditions of Hansen (1992) are fulfilled, we have

that,

AT ⇒
ω2

a

ˆ 1

0

X (s) dM (s) .

Using the partial summation formula on BT , it follows that,

BT =
1

T 1+η
(ṽT−1ST−2 − ṽp−1Sp−1)− 1

T 1+η

T∑
t=p+1

ṽt−2∆St−2.

Since sup1≤t≤T |St| = T η sup1≤t≤T |xt| + op
(
T 1/2+η

)
= Op

(
T 1/2+η

)
and ṽp−1Sp−1 = Op (1), it

follows that the first summand on the r.h.s. of the above equation is negligible; for the second,

we have
1

T 1+η

T∑
t=p+1

ṽt−2∆St−2 =
1

T 1+η

T∑
t=p+1

ṽt−2zt−2.

Clearly, ṽt−2 is uniformly L2-bounded, and it is easily shown that T−η/2zt is uniformly L2-

bounded as well. Then, the Cauchy-Schwarz inequality indicates that E (|ṽt−2zt−2|) < CT η/2

such that

E

(∣∣∣∣∣ 1

T 1+η

T∑
t=p+1

ṽt−2∆St−2

∣∣∣∣∣
)
≤ CT−η/2

and 1
T 1+η

∑T
t=p+1 ṽt−2∆St−2 vanishes in probability.
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Hence

1

T 1+η

T∑
t=p+1

zt−1xt−1 =
1

a

x2
T−1

T
− 1

a

(
aω

T 1+η

T∑
t=p+1

St−2νt−1 −
1

T 2

T∑
t=p+1

ct−2x
2
t−2

)
+ op (1) .

Using the weak convergence of St and xt we obtain

1

T 1+η

T∑
t=p+1

zt−1xt−1 ⇒
ω2

a
X2 (1)− ω2

a

(ˆ 1

0

X (s) dM (s)−
ˆ 1

0

c (s)X2 (s) ds

)
≡ ω2

a

(
X2 (1)−

ˆ 1

0

X (s) dX (s)

)
.

Note that, interestingly, 1
T 1+η

∑T
t=p+1 St−2vt−1 converges to an Itô-type integral without bias

term, unlike 1
T 1

∑T
t=p+1 xt−2vt−1 under serial correlation. This is because St and xt require

different normalizations, which is essentially the expression of the same mechanism ensuring

mixed Gaussianity of the unadjusted IVX estimator. �

Proof of Theorem 3.1

Consider

β̃ivx :=

∑T
t=p+1 zt−1ỹt∑T

t=p+1 zt−1xt−1

. (33)

Since ỹt := yt − γ̂ν̂t = βxt−1 + γνt − γ̂ν̂t + εt it follows that we can express β̃ivx as,

β̃ivx :=

∑T
t=p+1 zt−1ỹt∑T

t=p+1 zt−1xt−1

= β +

∑T
t=p+1 zt−1(γνt − γ̂ν̂t + εt)∑T

t=p+1 zt−1xt−1

. (34)

Write for the stable autoregression case

ν̂t := νt − (â− a)′ xt−p

with xt−p stacking the p lags of xt and a the corresponding coefficients (of (1− ρL) A (L)),

i.e. the pure autoregressive representation of xt.

Then, analyze

zt−1 =
t−3∑
j=0

%j∆xt−1−j

= xt−1 − %t−3x1 + (%− 1)
t−4∑
j=0

%jxt−2−j.
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We have that

(%− 1)
t−4∑
j=0

%jxt−2−j = − a

T η

t−4∑
j=0

%jxt−2−j = − a

T η
dt−2

where dt−2 is here, with xt a stable autoregression, a mildly integrated process which is known to

be Op

(
T η/2

)
. Furthermore, %t−3 → 0 when t goes to infinity at suitable rates; in the derivations

below, the effect will be quantified precisely whenever needed, but it is important to keep in

mind that zt−1 ≈ xt−1 which is a stable autoregression.

We thus have for the numerator of β̃ivx − β in (34) that,

T∑
t=p+1

zt−1 (εt + γνt − γ̂ν̂t) =
T∑

t=p+1

zt−1εt − γ
T∑

t=p+1

zt−1 (ν̂t − νt)− (γ̂ − γ)
T∑

t=p+1

zt−1ν̂t. (35)

The first two summands in (35) deliver a normal distribution. This is because

1

T 1/2

T∑
t=p+1

zt−1εt =
1

T 1/2

T∑
t=p+1

xt−1εt −
a

T 1/2+η

T∑
t=p+1

dt−2εt +
x1

T 1/2

T∑
t=p+1

%t−3εt

=
1

T 1/2

T∑
t=p+1

xt−1εt + op (1)

with
∑T

t=p+1 dt−2εt = Op

(
T 1/2+η/2

)
given the results in the proofs of Lemmas A.2 and A.3,

and
∑T

t=p+1 %
t−3εt = Op

(
T η/2

)
given that Var

(∑T
t=p+1 %

t−3εt

)
= Op

(∑T
t=p+1 %

2t
)

= Op (T η).

Furthermore,

1

T 1/2

T∑
t=p+1

zt−1 (ν̂t − νt) = −

(
1

T

T∑
t=p+1

zt−1x
′
t−p

)
√
T (â− a) ,

where the OLS autoregressive estimators,

√
T (â− a) =

(
1

T

T∑
t=p+1

xt−px
′
t−p

)−1

1√
T

T∑
t=p+1

xt−pνt,

following standard arguments can be shown to have a limiting multivariate normal distribution.

We now show that 1
T

∑T
t=2 zt−1xt−p does not converge to a vector of zeros, such that the limiting

distribution of 1
T 1/2

∑T
t=p+1 zt−1 (ν̂t − νt) is driven by 1√

T

∑T
t=p+1 xt−pνt. Given that

1

T

T∑
t=p+1

zt−1xt−p =
1

T

T∑
t=p+1

xt−1xt−p −
1

T

T∑
t=p+1

%t−3x1xt−p −
a

T 1+η

T∑
t=p+1

dt−2xt−p,

the first summand on the r.h.s. gives the desired limit (see Lemma A.1). The second is easily
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seen to vanish since E (x1xt) vanishes at exponential rate (in t). For the third, we show that∑T
t=p+1 dt−2xt−p = Op (T ) as follows. By resorting to the Phillips-Solo device, it is tedious, yet

straightforward to show that

1

T

T∑
t=p+1

dt−2xt−p = Op

(
1

T

T∑
t=p+1

d̃t−2νt−p

)
where d̃t−2 :=

t−3∑
j=0

%jνt−2−j.

Then,

1

T

T∑
t=p+1

d̃t−2νt−p =
1

T

T∑
t=p+1

d̃t−p−1νt−p +Op (1) ,

and the proofs of Lemmas A.2 and A.3 provide the arguments leading to 1
T

∑T
t=p+2 d̃t−p−1νt−p =

Op

(
T 1/2+η/2

T

)
= Op (1) as required.

The third summand in (35) is

γ̂ − γ√
T

T∑
t=p+1

zt−1ν̂t = (γ̂ − γ)

(
1√
T

T∑
t=p+1

zt−1νt +
1√
T

T∑
t=p+1

zt−1 (ν̂t − νt)

)
= op (1)

since γ̂ is easily shown to be consistent for γ, 1√
T

∑T
t=p+1 zt−1νt = Op (1) like in the case of

1√
T

∑T
t=p+1 zt−1εt, and 1√

T

∑T
t=p+1 zt−1 (ν̂t − νt) = Op (1) as above. Hence,

1√
T

T∑
t=p+1

zt−1 (εt + γνt − γ̂ν̂t)

=
1√
T

T∑
t=p+1

zt−1εt + γ

(
1

T

T∑
t=p+1

zt−1x
′
t−p

)(
1

T

T∑
t=p+1

xt−px
′
t−p

)−1

1√
T

T∑
t=p+1

xt−pνt + op (1) .

Furthermore, it is shown along the lines of the discussion of T−1
∑T

p+1 zt−1xt−p that

1√
T

T∑
t=p+1

zt−1εt =
1√
T

T∑
t=p+1

xt−1εt + op (1) .

for both 1√
T

∑T
t=p+1 zt−1εt and 1√

T

∑T
t=p+1 xt−pνt, Theorem 24.3 in Davidson (1994) is easily

checked to apply (see Lemma A.1 for the convergence of the sample covariance matrices);

since xt−pνt and zt−1εt are orthogonal thanks to the uncorrelatedness of νt and εt, the term
1√
T

∑T
t=p+1 zt−1 (εt + γνt − γ̂ν̂t) is asymptotically normal with mean zero and asymptotic vari-

ance

α0

ˆ 1

0

σ2
v (s)σ2

ε (s) ds+ γ2 (α0 . . . αp−1) Ω−1 (α0 . . . αp−1)′
ˆ 1

0

σ4
v (s) ds.
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Checking that

1

T

T∑
t=p+1

z2
t−1ε̂

2
t +

1

T
γ̂2Q̂T

estimates the above asymptotic variance consistently is straightforward and we omit the details.

�

Proof of Theorem 3.2

Standard OLS algebra shows that the residuals ν̂t are numerically the same as in the autore-

gressive representation of xt if resorting to the error-correction representation, which is more

convenient with near-integration. We may thus write

ν̂t := νt −
(
φ̂− φ

)
xt−1 − (α̂−α)′∆xt−p+1

with ∆xt−p+1 stacking the first p− 1 lags of ∆xt and φ := 1
ω

(ρ− 1) (the vector α depends on

all autoregressive coefficients of xt, but its exact value is irrelevant here).

We have the same representation as in (35), i.e.,

T∑
t=p+1

zt−1 (εt + γνt − γ̂ν̂t) =
T∑

t=p+1

zt−1εt − γ
T∑

t=p+1

zt−1 (ν̂t − νt)− (γ̂ − γ)
T∑

t=p+1

zt−1ν̂t,

yet zt is now a mildly integrated variable. Still, Lemmas A.3 and A.4 show that

1

T 1/2+η/2

T∑
t=p+1

zt−1εt

is asymptotically normal with variance ω2
´ 1

0
σ2
v (s)σ2

ε (s) ds, whereas the remaining term can

be re-written as

1

T 1/2+η/2

T∑
t=p+1

zt−1 (ν̂t − νt) = − 1

T 1/2+η/2

T∑
t=p+1

zt−1xt−1

(
φ̂− φ

)
− 1

T 1/2+η/2

T∑
t=p+1

zt−1∆x′t−p+1 (α̂−α) .

In the limit, this vanishes because
(
φ̂− φ

)
is Op (T−1) and (α̂−α) = Op

(
T−1/2

)
as standard

analysis of near-unit root autoregressions shows, while, at the same time,

T∑
t=p+1

zt−1xt−1 = Op

(
T 1+η

)
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(see Lemma A.4.3) and we only need to show that

T∑
t=p+1

zt−1∆x′t−p+1 = Op (T ) .

This is known to be the case when zt−1 is a near-integrated or stationary variable; we discuss

here the case where zt is an IVX instrument. Examining
∑T

t=p+2 zt−1∆xt−1 as a representative

for the whole vector,

1

T

T∑
t=p+1

zt−1∆xt−1 =
1

T

T∑
t=p+1

zt−1vt−1 +
1

T 2

T∑
t=p+1

ctzt−1xt−2,

it is easily shown that both zt√
T

and xt√
T

are uniformly L2-bounded, hence E
(

1
T 2

∑T
t=p+1 ctzt−1xt−2

)
=

O (1). Moreover, 1
T

∑T
t=p+1 zt−1vt−1 is itself Op (1), which can be shown along the lines of the

discussion for 1
T

∑
qt−2xt−p in the proof of Theorem 3.1. �

Proof of Theorem 3.3

Since the residual effect of εt and νt is easily checked to be negligible, the correction QT is

negligible under the local alternative as well and we have for the residual-augmented IVX

t-statistic that,

t̃ivxβ1 =

∑T
t=p+1 zt−1 (εt + β1xt−1)√∑T

t=p+1 z
2
t−1ε

2
t

+ op (1)

=

∑T
t=p+1 zt−1εt√∑T
t=p+1 z

2
t−1ε

2
t

+ b
1

T 1+η

∑T
t=p+1 zt−1xt−1√

1
T 1+η

∑T
t=p+1 z

2
t−1ε

2
t

+ op (1) .

The first summand on the r.h.s. converges to a standard normal distribution, Z; note that Z
would indeed be independent of the limit process of the regressor xt since zt−1εt and νt are

orthogonal. Thus, the result follows with Lemma A.4, items 1 and 3. �

B Tests for Persistence Change

In this section, for completeness, we provide a brief overview of the persistence change tests

of Harvey et al. (2006), which where used to evaluate whether the series under analysis had

undergone some persistence change over time.
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B.1 The generic persistence change model

We follow Harvey et al. (2006) and Busetti and Taylor (2004) and consider the following data

generation process (DGP),

xt = d′tβ + rt

rt = ρtrt−1 + vt

where r0 = 0, dt is a set of deterministic variables, such as a constant or, if necessary, a constant

and time trend, vt is taken to satisfy Assumption 3 (together with 2), and ρt obeys Assumption 4

in the most general case. For compatibility with the existing literature on testing for changes in

persistence we shall assume the variance functions in Assumption 2 to be constant throughout.

Four relevant hypothesis can be considered:

1. H1 : xt is I(1) (i.e. nonstationary) throughout the sample period. Harvey et al. (2006)

set ρt = 1− c/T , c ≥ 0, so as to allow for unit root and near unit root behaviour.

2. H01 : xt is I(0) changing to I(1) (in other words, stationary changing to nonstationary) at

time [τ ∗T ]; that is ρt = ρ, ρ < 1 for t ≤ [τ ∗T ] and ρt = 1− c/T for t > [τ ∗T ]. The change

point proportion, τ ∗, is assumed to be an unknown point in Λ = [τl, τu], an interval in

(0,1) which is symmetric around 0.5;

3. H10 : xt is I(1) changing to I(0) (i.e. nonstationary changing to stationary) at time [τ ∗T ];

4. H0 : xt is I(0) (stationary) throughout the sample period.

B.2 The ratio-based persistence change tests

In the context of no breaks, Kim (2000), Kim et al. (2002) and Busetti and Taylor (2004)

introduced tests for the constant I(0) DGP (H0) against the I(0) − I(1) change (H01) which

are based on the ratio statistic,

K[τT ] =

(T − [τT ])−2
T∑

t=[τT ]+1

(
t∑

i=[τT ]+1

ṽiτ

)2

[τT ]−2
[τT ]∑
t=1

(
t∑
i=1

v̂iτ

)2

where v̂iτ is the residual from the OLS regression of xt on dt for t = 1, ..., [τT ] and ṽiτ is the

OLS residual from the regression of xt on dt for t = [τT ] + 1, ..., T .

Since the true change point, τ ∗, is assumed unknown Kim (2000), Kim et al. (2002) and

Busetti and Taylor (2004) consider three statistics based on the sequence of statistics {K[τT ],
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τ ∈ Λ}, where Λ = [τl, τu] is a compact subset of [0,1], i.e.,

MS = T−1
∗

[τu]∑
s=[τl]

K[sT ]; (36)

ME = ln

T−1
∗

[τu]∑
s=[τl]

exp

[
1

2
K[sT ]

] ; (37)

MX = max
s∈{[τl],...,[τu]}

K[sT ] (38)

where T∗ = [τu] − [τl] + 1, and τl and τu correspond to the (arbitrary) lower and upper values

assumed for τ ∗. Limit results and critical values for the statistics in (36) - (38) can be found

in Harvey et al. (2006).

Remark B.1 The procedure in (36) corresponds to the mean score approach of Hansen (1991),

(37) is the mean exponential approach of Andrews and Ploberger (1994) and finally (38) is the

maximum Chow approach of Davies (1977); see also Andrews (1993). �

In order to test H0 against the I(1) - I(0) (H10) hypothesis, Busetti and Taylor (2004)

suggest the sequence of reciprocals of Kt, t = [τlT ], ..., [τuT ]. They define MSR, MER and MXR

as the respective analogues of MS, ME and MX, with K[τT ] replaced by K−1
[τT ] throughout.

Furthermore, to test against an unknown direction of change (that is either a change from I(0)

to I(1) or vice versa), they also propose MSM = max
[
MS,MSR

]
, MEM = max

[
ME,MER

]
,

and MXM = max
[
MX,MXR

]
. Thus, tests which reject for large values of MS, ME, and

MX can be used to detect H01, tests which reject for large values of MSR, MER and MXR

can be used to detect H10, and MSM , MEM , and MXM can be used to detect either H01 or

H10.

Harvey et al. (2006) also introduce a set of modified test statistics such that the cdfs of the

statistics under the null (H0) and alternative (H1) coincide asymptotically at an asymptotic

critical value associated with a given significance level.

The first modified tests proposed where MSm = exp(−b1J1T )MS, MEm = exp(−b2J1T )ME

and MXm = exp(−b3J1T )MX, where bk, k = 1, 2, 3 are fixed constants and the modification

also makes use of the unit root test proposed by Park (1990), defined as J1,T which consists

of T−1 times the Wald statistic for testing the joint hypothesis γk+1 = ... = γ9 = 0 in the

regression,

xt = z′tβ +
9∑

i=k+1

γit
i + error, t = 1, ..., T.

Note that under H0, J1,T is Op(T
−1) so that exp(−bkJ1T )→ 1, k = 1, 2, 3, and therefore MSm,

MEm and MXm are simply equivalent to the MS, ME and MX statistics.

The choice of bk, k = 1, 2, 3 ensures that, for a significance level, 100a%, the corresponding

asymptotic upper-tail critical value of MSm, MEm and MXm under either H0 or H1 is identical
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to the corresponding upper-tail critical values of MS, ME and MX under H0. These statistics

have the same limiting distribution under H0.

A further variante of modified procedures proposed by Harvey et al. (2006) is obtained by

replacing J1,T with Jmin = min
τ∈Λ

J1,[τT ], where J1,[τT ] is T−1 times the Wald statistic for testing

the joint hypothesis γk+1 = ... = γ9 = 0 in the regression,

xt = z′tβ +
9∑

i=k+1

γit
i + error, t = 1, ..., [τT ].

Note that also in his case, under H0, Jmin is Op(T
−1) so that exp(−b∗kJmin) → 1, k = 1, 2, 3.

Therefore, MSm min = exp(−b∗1Jmin)MS, MEm min = exp(−b∗2Jmin)ME and MXm min =

exp(−b∗3Jmin)MX.

The reciprocal versions of these test, MSRm, MER
m, MXR

m and MSRm min, MER
m min, MXR

m min,

are constructed in a similar way, i.e., MSRm = exp(−b1J1T )MSR, MER
m = exp(−b2J1T )MER

and MXR
m = exp(−b3J1T )MXR; as well as MSRm min = exp(−b∗1JRmin)MSR, MER

m min =

exp(−b∗2JRmin)MER and MXR
m min = exp(−b∗3JRmin)MXR, where JRmin = min

τ∈Λ
J[τT ],T and J[τT ],T

is T−1 times the Wald statistic for testing the joint hypothesis γk+1 = ... = γ9 = 0 in the

regression,

xt = z′tβ +
9∑

i=k+1

γit
i + error, t = [τT ] + 1, ..., T.

Finally, the modified tests against an unknown direction of change are simply given as, MSMm =

exp(−b1J1T )MSM , MEM
m = exp(−b2J1T )MEM , and MXM

m = exp(−b3J1T )MXM ; as well

as MSMm min = exp(−b∗1 min[Jmin, J
R
min])MSM , MEM

m min = exp(−b∗2 min[Jmin, J
R
min])MEM and

MXM
m min = exp(−b∗3 min[Jmin, J

R
min])MXM .

B.3 Test outcomes

Table 7 gives the test outcomes for the null of constant persistence of the predictors considered

in Section 5. We decided upon visual inspection whether a constant or a constant with linear

trend is to be modeled as deterministic component dt. Except for E12, there is serious evidence

of time-varying persistence of the examined series.
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