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Abstract

Bias correction in predictive regressions stabilizes the empirical size properties of OLS-
based predictability tests. This paper shows that bias correction also improves the finite
sample power of tests, in particular so in the context of the extended instrumental variable
(IVX) predictability testing framework introduced by Kostakis et al. (Review of Finan-
cial Studies 2015). Concretely, we introduce new IVX-based statistics subject to a bias
correction analogous to that proposed by Amihud and Hurvich (Journal of Financial
and Quantitative Analysis 2004). Three important contributions are provided: first,
we characterize the effects that bias-reduction adjustments have on the asymptotic dis-
tributions of the IVX test statistics in a general context allowing for short-run dynamics
and heterogeneity; second, we discuss the validity of the procedure when predictors are
stationary as well as near-integrated; and third, we conduct an exhaustive Monte Carlo
analysis to investigate the small-sample properties of the test procedure and its sensi-
tivity to distinctive features that characterize predictive regressions in practice, such as
strong persistence, endogeneity, non-Gaussian innovations and heterogeneity. An applica-
tion of the new procedure to the Welch and Goyal (Review of Financial Studies 2008)

database illustrates its usefulness in practice.
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1 Introduction

Predictive regressions are widely used in economics and finance; see, e.g., Campbell (2008) and
Phillips (2015) for surveys. Typically, the variable of interest is regressed on lagged values of
a predictor and the existence of predictability assessed through the statistical significance of
the resultant estimate of the corresponding slope parameter. However, two important features
of predictors need to be taken into consideration in this analysis: i) many predictors are often
characterized by highly persistent autoregressive dynamics, and ii) many predictors also exhibit
innovations which are strongly correlated to the innovations of the dependent variable. These
features raise serious problems of endogeneity which can lead to sizeably biased estimates in
finite samples (Stambaugh, 1986 and Mankiw and Shapiro, 1986) and to substantial over-
rejections of the null hypothesis of no predictability. The usual asymptotic approximation
employing the (standard) normal distribution performs particularly bad when predictors are
persistent, even though the largest autoregressive roots of the typical predictor candidate are
usually smaller than one — reason for which near-integrated asymptotics has been favoured as
an alternative framework for inference (Elliott and Stock, 1994 and Campbell and Yogo, 2006).
In the context of near-integrated regressors, the limiting distribution of the slope parameter
estimator is not centered at zero, and this bias depends on the mean reversion parameter of
the near-integrated regressor. Although near-integrated asymptotics approximates the finite-
sample behavior of the t-statistic for no predictability considerably better when predictors are
persistent, the exact degree of persistence of a given predictor, and thus the correct critical
values for a predictability test, are not known in advance. Moreover, standard estimation or
pretests also fail in this context (Cavanagh et al., 1995). Similarly, regression misspecification
tests are difficult to conduct; Georgiev et al. (2015) propose for this reason a fixed-regressor
wild bootstrap implementation of a residual stationarity test.

These difficulties have led to the proposal of a number of alternative approaches, which
differ mainly in the assumptions that characterize the stochastic properties of predictors (i.e.,
whether these are stationary or near-integrated); see for instance, Campbell and Yogo (2006);
Jansson and Moreira (2006); Maynard and Shimotsu (2009); Camponovo (2015); Breitung
and Demetrescu (2015) and references therein. The recently proposed extended instrumental
variable estimation approach [denoted IVX] motivated by Magdalinos and Phillips (2009) is be-
coming increasingly popular in predictive regressions, especially because the relevant ¢-statistic
exhibits the same limiting distribution in both, stationary and near-integrated setups and is
in this sense invariant to persistence; see, e.g., Kostakis et al. (2015); Gonzalo and Pitarakis
(2012); Lee (2016) and Phillips and Lee (2013). The reasoning behind the approach consists
in the generation of an instrumental variable whose persistence can be controlled, and this is
achieved by suitably filtering the actual predictor.

To some extent, all methods lose some power by having to robustify against unknown per-

sistence; however, as illustrated by Kostakis et al. (2015) the IVX methodology offers a good



balance between size control and power loss. Since the noise-to-signal ratio in predictive regres-
sions is quite high, one should still strive to improve this balance. For instance, Demetrescu
(2014b) uses a simple variable addition scheme to improve the convergence rates of IVX es-
timators (and thus the local power of the corresponding ¢-tests) when the instrument used is
relatively close to stationarity. However, for instrument choices closer to near-integration a
different approach is required to improve the finite sample power of IVX-based tests without
giving up size control.

To this end, we take a closer look at the class of reduced-bias techniques proposed by
Amihud and Hurvich (2004) and extended by Amihud et al. (2009, 2010); see, inter alia, Bali
(2008), Chun (2009), Avramov et al. (2010) and Johannes et al. (2014) for recent empirical
applications building on this approach. When compared to other available procedures, the
distinctive characteristic of these techniques is that they estimate the predictive slope coefficient
and its standard error in a suitably augmented predictive regression, so that the bias is reduced
to a minimum. While this bias correction was intended to stabilize the size properties of OLS-
based predictability tests, we argue that it may also contribute to improve power, in particular
so for IVX-based testing.

This paper discusses the large-sample behavior of IVX-statistics subject to bias correction,
i.e., the implementation of IVX in an augmented predictive regression context analogous to that
of Amihud and Hurvich (2004), considering both stationary and near integrated predictors. Our
main objectives are threefold: i) to characterize the effects that our bias-reduction adjustments
have on the asymptotic distribution of the IVX-statistics in a general context; ii) to establish
the validity of the procedure when predictors are stationary as well as near-integrated; and
iii) to provide an exhaustive Monte Carlo analysis to investigate the small-sample properties
of the test procedures under distinctive conditions that characterize predictive regressions in
practice, such as strong persistence, endogeneity, non-Gaussian innovations and heterogeneity,
and to contrast them to the properties of available procedures, such as Amihud and Hurvich
(2004), Campbell and Yogo (2006) and the IVX approach proposed by Kostakis et al. (2015).
Finally, we revisit the data set used in Welch and Goyal (2008) to illustrate the application of
the procedure.

The remainder of the paper is organized as follows. Section 2 briefly describes the charac-
teristic features of predictive regressions and the bias-reduction technique proposed by Amihud
and Hurvich (2004), and gives a brief preview of the advantages of the residual-augmented IVX.
Section 3 presents the large-sample theory under empirically relevant assumptions, including for
instance heterogeneity and time-varying unconditional variances. Section 4 discusses the finite
sample performance of several procedures used to test for predictability. Section 5 presents the
analysis of the Welch and Goyal data, and section 6 summarizes and concludes. A technical

appendix collects the proofs of the main theoretical statements put forward in the paper.



2 Predictive regression framework and tests

2.1 The simplest model

To illustrate the issues with predictive regressions in general and the advantages of our approach
in particular, we start by considering the single predictor theoretical model set up analyzed
in Stambaugh (1999) and adopted, among many others, by Amihud and Hurvich (2004) and
Campbell and Yogo (2006). This setting characterizes the joint dynamics of a stochastic process,

{y,}X,, and its posited predictor, {z;}1}}, in a two-equation linear system as,

Y = ﬁxt,l—i—ut, t:2,,T (1)
Ty = ,OIt_l‘i‘Ut (2)

where the innovations &, := (uy, Ut)/ in the two-equation system are typically serially indepen-
dent Gaussian distributed with mean zero and covariance matrix .

In this setting, predictability is formally analyzed by examining whether the null hypothesis,
Hy : B = 0, is statistically rejected through a t-statistic on the OLS estimate B computed from
(1). The usual alternative hypothesis is that 5 > 0, focusing on one-sided tests, but two-sided
tests 0 # 0, are also frequently used in the literature. We shall refer to the resultant least-
squares statistic as {5 in the sequel. It is a well-documented fact that when the correlation,
o between innovations is large and p ~ 1, the distribution of ¢; largely departs from the
typical standard normal limit, posing therefore an interesting challenge on inference; see, e.g.,
Elliott and Stock (1994) and Stambaugh (1999).

Speciﬁcally, under these simple assumptions, weak convergence of the partial sum of &, holds,

y f Z[ST] (ug, v) = (0 Wy (5),0,W, (5)), where (W, (s), W,(s))" is a vector of dependent
standard Wiener processes (see, e.g., Davidson, 1994, Chapter 29). Furthermore, considering
that the autoregressive coefficient p is local to unity, p := 1 — ¢/7, we have, jointly with the
above weak convergence, that \/ifx[sgp] = B, ( ), where BC is an Ornstein-Uhlenbeck [OU]
process driven by W,(s), i.e., B.(s) = W,(s) — ¢ [ e™"W,(r)dr. Given these results it
follows that the limiting distribution of the OLS based t-test, ¢35, computed from (1) when the

predictor is near-integrated is given by

2 ' B.(s)dW,
T T\ fy B(s)ds

where Z is a standard normal variate independent of the Wiener process W, (r) driving B.(r).

Remark 2.1 The assumptions of normality and serial independence allow for considerable
simplification of the exposition, but shall be relazed in the following section by allowing for

more general forms of serial dependence or heterogeneity. O



2.2 Residual Augmented Predictive Regressions

Considering (1) - (2) and stationarity of {x;}, i.e., the additional assumption that p in (2) is
fixed and satisfies |p| < 1, Stambaugh (1986, 1999) shows that the exact OLS bias of 3 in (1)
is YE (p — p), with p denoting the OLS estimate of p and v := 0,,/0? is the slope coefficient
in a regression of u; on v;. Since p is known to be downward biased in small-samples, and
(ug,v)" are typically highly negatively contemporaneously correlated, the autoregressive OLS
bias feeds into the small-sample distribution of 3 causing over-rejections of the null hypothesis
of no predictability, Hy : 5 = 0.

To correct for this effect, Amihud and Hurvich (2004) propose a simple statistical device
that builds upon the OLS estimates obtained from a predictive regression which is augmented
with estimates of v, the innovations to the predictor in (2). The initial motivation for this type

of augmentation is that the null distribution of the t-statistic on ,@ in the infeasible regression

Y = Brio1 + Yo + &y (3)

converges asymptotically to a standard normal distribution irrespectively of the stochastic na-
ture of z; and the degree of contemporaneous correlation of (u;, v¢)’. Although it is tempting
to use some proxy of v; to make this regression feasible, it should be noted that the appealing
asymptotic properties of the infeasible test do not automatically extend to the feasible coun-
terpart resulting from the use of the OLS residuals from (2), say 7;. The reason is that the
bias of p still feeds into the estimation of § via 0, = v, — (p — p) x4—1 and, as a result, the
distribution of the OLS t-statistic for 5 = 0 in this regression, is simply a re-scaling of that of
t5; see Rodrigues and Rubia (2011); Cai and Wang (2014) and Demetrescu (2014a), for further
details.

The distinctive feature of the Amihud and Hurvich (2004) [AH] procedure is that it uses
a bias-adjusted estimate of v; to reduce the bias of B . Thus, the resulting feasible regression

becomes,

Y = Bri_1 +y0; + &y, (4)

where 0] := x;— p*x4_1, with p* denoting finite-sample bias-corrected OLS estimates of p in (2).
The central idea is to obtain a p* as close to unbiasedness as possible. The procedure however
also requires a correction in the form of specific standard errors which is not easily generalized
to higher-order dynamics; see Amihud et al. (2009, 2010).

Remark 2.2 Augmenting linear regression models with covariates is often motivated in terms
of efficiency gains (Faust and Wright, 2011). Arguably, the primary purpose of the residual-
augmented regression in (4) is to stabilize size, with power gains playing a secondary role. This
s partly because the true process of the errors is unobservable and must be replaced by some
empirical prozy (which prompts the correction for ensuring size control of the AH procedure).

We argue in the following that power gains can indeed be expected in the IVX framework, while



at the same time controlling for size. U

2.3 The IVX Test Procedures
2.3.1 The Original IVX Approach

Our interest lies in the evaluation of the impact that the bias correction through augmentation
may have on the IVX approach. The IVX procedure, introduced to predictive regressions by
Kostakis et al. (2015), centers on the construction of instrumental variables from the potential
predictors. This ensures relevance of the instruments while at the same time controlling for

persistence. In particular, for the implementation of the procedure, one uses
t—2
2= Z Az = (1— gL)J_r1 Axy
5=0

as instrument for x;, with L standing for the conventional lag operator; the idea is to choose
0:=1—9a/m with 0 <n <1, and a > 0 and fixed, such that z; is by construction only mildly
integrated when the predictor z; is (nearly) integrated.

The resulting IVX estimator of 8 (henceforth 5%%), computed from (1) using 2 as instrument
has a slower convergence rate than the conventional OLS estimator, but is mixed Gaussian in

the limit irrespective of the degree of endogeneity implied by ~. This estimator is given by,

T
five .— DY

- T
thg Zt—1T¢—1

Py Gur/ T 22 .
and its standard error is se (Bm’) = M; note that Kostakis et al. (2015) suggest

ST zame
the use of OLS residuals @; (whose consistency properties do not depend on the persistence

(5)

properties of the instrument z;) for the computation of 62.
Breitung and Demetrescu (2015) analyse the power function of the IVX-based t-test, com-
puted as t;,, = fBive /se (B”“), under local alternatives of the form [ := b/r1/2+7/2 and show

that the limiting distribution under such local alternatives is

o2
ou/a

where Z is a standard normal variate independent of the OU process B.(r), a is the noncentral-

20~ [ B am.) (6)

ity parameter used in p for the construction of the instrument, and ¢, and o, are the standard
deviations of v; and wu;, respectively. Note that the reduced convergence rate of B“’”” has conse-
quences on the type of neighbourhoods where the IVX based test has nontrivial power. This,
however, is the trade off for obtaining a pivotal limiting null distribution. While Kostakis et al.
(2015) show that the power loss is moderate, one would of course prefer to reduce this loss as

much as possible.



2.3.2 The Bias-reduced IVX Approach

Turning our attention to the bias correction approach proposed by Amihud and Hurvich (2004),
note that, the residuals 0] used in the residual-augmented predictive regression in (4) rely on a
bias-corrected estimate of p in order to reduce the endogeneity of the predictor. Interestingly,
since IVX uses a less persistent instrument for estimation than the original predictor, it turns
out that in order to use the residual augmentation approach in the IVX framework it is not
necessary to construct a bias corrected estimator, such as p* used by Amihud and Hurvich
(2004). This is an important advantage of the IVX procedure since it simplifies the analysis
considerably and allows for easy generalisations to higher order dynamics in the predictor as

we will show below.

Remark 2.3 It may be surprising that, although simple augmentation using OLS residuals does
not work for the OLS estimation of the predictive regression, it will work for IVX. Essentially,
the estimation noise (v; — vy) does not affect the IVX estimator given the lower convergence rate
of the latter compared to the OLS estimator. In fact, the improved local power is the same as if
the true v, were used in (4): the local power of the test based on the augmented IVX regression
is obtained by replacing o, with o. in (6); see the next section for more details. Since 0. < oy,
whenever v # 0, we obtain by construction a larger drift term in the distribution under the local
alternative 3 := b/TY?*1/2 This may not increase the convergence rate, but considering the
typically high correlation of the innovations w, and v, (given by °w/s,0,), the ratio (°v/s.) can
be considerably larger than unity and power gains in finite samples are to be expected. This is

confirmed in the Monte Carlo analysis in Section 4. U

The implementation of our bias-reduced IVX approach in the simple introductory setup

given by (1) and (2), is as follows:

T
1. Regress z; on x;_; to obtain the residuals 0y := v, — (p — p) x,_1, where p := p+ Zt;?—x;m
t=2"t—1
is the usual OLS estimator.
T ~
2. Regress 1y, on ¥, to obtain ¢, 1= y, — Y0, = &; + Bay_1 + yv; — Y0y, where § 1= ZZ‘%;;? is
t=

the usual OLS estimator.

3. Regress y; on x;_1 via IVX to obtain B”’x and the corresponding t-statistic, tive: similarly

to the original IVX, it helps if the residuals are computed using the OLS estimator, /3, of

this regression given its consistency and higher convergence rates.

Remark 2.4 Considering y; as the dependent variable provides a convenient way to think
about residual augmented predictive regressions. As discussed in Campbell and Yogo (2006),
the unobservable process [ys — E (ut|vy)] results from subtracting off the part of the innovation
to the predictor variable that is correlated with y,. This provides a less noisy dependent variable

in the regression analysis and, therefore, yields power advantages over conventional predictive
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regressions that steam from a relative gain in statistical efficiency. In particular, since E (¢2) =
(1 — p?) 02, the larger the degree of endogenous correlation in the system, the larger the amount
of variability in the regressand not related to x;_q that can be filtered out — conversely, we can
think of the standard predictive regression analysis as a particularly inefficient tool to detect
predictability when p is large. However, since |y; — E (u|v)] cannot be directly observed, the

feasible representation uses the OLS-based proxy y: in the equation. U

Remark 2.5 In practice, one may need to account for non-zero means of y;; this is accom-
plished by including an intercept in the regression in step 2 and by demeaning the regressor x;
in the IVX regression in step 3 (see Kostakis et al., 2015 for the justification of this demeaning
procedure in step 3). In the near-integrated case, including an intercept in the autoregression
in the first step is typically not needed for the kind of data one has in mind with stock return

predictability, where deterministic trends are in general not an empirical issue. O

Thus, following the three steps above we obtain the bias-corrected IVX estimator, viz.,

T ~ ~ T -~
iz =9 At—-1Y Sive Y _o 2t—1V
5 = Zt 2 ~t t _ 6 o Zt 2 <t t (7)

- T T

and its corresponding standard error,

Oe \/ 25:2 i (8)

thg 2t—1Tt—1

se (wa> = qr ‘

where 7§, := y, — q0; , 0. is the estimate of the standard deviation of ¢; computed from the
A~ ~ T -

residuals &; :== ¢, — fxy_1 and § := % Note that the estimator of the standard error in
t=2"t—1

(8) includes the finite sample correction,

T 2
(7% D ieo Zt—ll’t—1>

~ T T .
o2 Zt:2 Zt2—1 thz x?—l

A detailed discussion of the importance of gr will be presented in the following section, but it

(9)

qr =1+

may be noted that (9) is in principle only required when the predictors used are stationary; see
section 3 for details.

Hence, considering (7) and (8) inference can be performed based on the IVX ¢-statistic,
giv:v = me/se (B“m) (10)

which turns out to remain standard normal irrespectively of the stationarity or near-integratedness

of the regressor.



2.4 Short-run dynamics and heterogeneity

This section looks into the properties of the residual-augmented IVX approach in the empirical
relevant cases where predictors may display short-run dynamics and heterogeneity. Hence, in
this section we lay out a fairly general setting, which is the framework we will use to characterise
the asymptotic properties of the procedures introduced in this paper.

The starting question is how to deal with short-run dynamics in the increments of x;, since
this has implications as to which residuals to use for augmentation in the [IVX testing procedure.
Here, it is the innovations of v; (for which a finite-order AR process is a natural choice) that
should correlate with wu; rather than v, itself, like in the case without short-run dynamics.
The augmentation approach (described in Section 2.2) relies on decomposing the shocks to the
predictive regression as the sum of two orthogonal components; should v; be one of them, this
induces serial correlation in u;, which is not a plausible feature of the null hypothesis of no

predictability. Hence, the general set up considered is formalized in the following assumptions.

Assumption 1 The data is generated according to (1) - (2) with initial condition x1 bounded

&t L O'stget
47 o O-Vtgut

!/ . . . . . .
where (Eqt,&t)" 1S a heterogeneous independent sequence with unity covariance matriz and, for

some & > 0, with uniformly bounded moments E (‘ﬁfﬁ ) and E (‘ﬁff‘s ) Furthermore, let

in probability.

Assumption 2 Let

oe = 0 (Y1) and o, = 0, (Y1), where o.(-) are piecewise Lipschitz continuous functions,

bounded away from zero.

Assumption 3 The errors u; and v; are given as

V¢ = QAU¢—1 + ...+ Ap—1Vt—p+1 + 14

Uy = 5t+’YVta t€Z7

where the innovations (g4, 1;) are contemporaneously orthogonal white noise as indicated in

Assumption 2.

Assumption 4 The autoregressive parameter p is either i) fized when |p| < 1, or i) time-

varying near unity, p := 1 — </ with ¢; := ¢ (Y1) and c(-) is a piecewise Lipschitz function.

Assumption 2 acknowledges that time series (and in particular financial series) may exhibit
permanent volatility changes, which is an important stylized fact of many financial series; see,
among others, Guidolin and Timmermann (2006); Terdsvirta and Zhao (2011); Amado and

Terdsvirta (2013) and Amado and Terasvirta (2014). Such forms of nonstationarity typically
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invalidate the usual standard errors,! and we resort to heteroskedasticity robust [HC] standard
errors (also known as Eicker-White standard errors) to account for this feature. The use of
White standard errors is also recommended by Kostakis et al. (2015) to deal with conditional
heteroskedasticity — albeit under strict stationarity of the error series v;. The AR(p—1) structure
of v; in Assumption 3 is taken as an approximation to more general data generating processes
[DGP]Js. In theory, this would require letting p — oo at suitable rates as T — o0o; however,
dealing with the asymptotics related to the order of augmentation determination is beyond the
scope of this paper, but relevant results can be found, for instance, in Chang and Park (2002).
Finally, Assumption 4 characterises the persistence properties of the predictor. The flexible
near-integrated DGP resulting from Assumption 4 ii) is motivated by the high, yet uncertain
persistence of typical predictor series. Moreover, since persistence is not always constant, in
particular when close to the unit root region, we allow for time variation in persistence in the
near integrated case.

Hence, the implementation of our residual-augmented IVX approach in the general frame-

work described by Assumptions 1 through 4 consists of the following steps:

1. Compute the residuals 7y from an autoregressive model of order p for the predictor xy,

viz.,

p R p .

12 :mt—Z@l‘tﬁ' :Vt_z (¢j_¢j> Tt—j, t=p+1,...,T,

j=1 j=1
with qgj, j = 1,...,p, the OLS autoregressive coefficient estimates. One may use some
information criteria in levels to determine the autoregressive order p (we use Akaike’s
information criteria (AIC) in sections 4 and 5); note that conducting model selection in

levels copes with both the stationary and the integrated cases.

2. Regress y; on 7; to obtain g; as regression residuals. From this regression step we also

obtain 4, the OLS estimate of ~.

3. Finally, regress g; on x; 1 via IVX and use the provided standard errors (see Equation
(12) below) to compute the relevant IVX t-statistic.

From step 3) we thus obtain,
T ~
Bivx L Zt:p+1 thlyt
= :
Zt=p+1 Zt—1Tt—1

which, upon standardization, is used for inference.

(11)

Note that under Assumptions 1 to 4, the standard errors need to take into account two
specific features of the data. First, time varying variances are likely to bias the usual standard

errors asymptotically. Second, while the estimation error (0; — v;) has no asymptotic effect on

!This is especially the case when dealing with (near-) integrated regressors; see, e.g., Cavaliere (2004) and
Cavaliere et al. (2010).
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the limiting distribution of B“’m in the near-integrated context, it does so when x; is covari-
ance stationary. Yet treating the two cases in a different manner is inconvenient since exact
knowledge about which is actually the relevant case is typically not available. Consequently,
we derive heteroskedasticity-consistent standard errors for the stationary case and show that
these are also valid in the near integrated context. In this way, we use the same statistic with
the same limiting distribution to cover both cases without having to decide which is which —
just like in the original IVX test of Kostakis et al. (2015).

In specific, we use

T 2 22 4 A2
se <wa> — Zt:erl 2 &t CiT
T
(Zt:p-H Zt—lxt—1>

where the finite-sample correction QT used in (12) is given by

. T T o T R
Qr = (Z Zt—lw;p> (Z wt—Pw;p> (Z wt_P“’iﬁp’%?) <Z wt—Pxffp) (Z Zt_lwt_l})

t=p+1 t=p+1 t=p+1 t=p+1 t=p+1

and x;_, = (v4_1, ..., T1—p). To compute the White-type standard errors in (12) we make
use of the OLS residuals computed from the residual-augmented predictive regression, &; :=
G, — (% 2,1 where 5o = %, rather than IVX residuals due to the superconsistency
properties of the former in the near-integrated context.

Remark 2.6 One may resort to alternative HC variance estimators, e.q., with correction for
degrees of freedom (HC1). The HC1 wversion is obtained here by multiplying the estimated

variance by Tprfii' g

Remark 2.7 The standard errors in (12) are basically the White standard errors that would
have been appropriate under stationarity of x;, where the estimation error of vy does not vanish

asymptotically. We show that Qr in (12) is dominated under near-integration so that the

standard error in (12) is asymptotically equivalent to the one implied by the near-integrated

T 2 =2
Zt:p+1 Zi-1€%

T
(Zt:p«l»l Zt—lxt—l)

framework, which turns out to be simply \/ s as can be seen in Section 3. Il

Remark 2.8 The near-unit root in x; allows us in principle to use the residuals without the
need to use the finite sample correction, but in finite samples the statistics fare better if the
correction is included (essentially because, in finite samples, any |p| < 1 is “caught between”

stationarity and integration). U

2.5 Extensions to Multiple Predictors

The discussion so far has side-stepped a couple of aspects relevant for empirical work which we
address in this section. They are in fact straightforward extensions of the baseline case and we

shall omit some of the technical details.
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It is often the case that several predictors are simultaneously considered. Thus, the resulting

multiple predictive regression is

v = B'xy 1+ uy

where x;_; follows a K-dimensional vector autoregressive data generating process of order p,

such as,

xr; = Rxy+wvy

p—1
vy = E Aj,vtfj"i_ut
Jj=1

which is either stable or (near) integrated as before depending on the properties of the au-
toregressive coefficient matrix R (v; is taken to be a stable autoregression in either case).
There is endogeneity, possibly in all regressors, expressed as a nonzero coefficient vector in the
decomposition

/
Up = Y Vi + &y,

and the shocks v; and ¢; are heterogeneous, serially independent obeying a multivariate version
of Assumption 3.
The implementation of the IVX approach introduced in this paper in the multiple predictive

regression case is as follows.
1. Get the vector of residuals &, from a vector autoregression of order p,
p
Uy i=o; — E bixi—j, t=p+1,....T,
=1

with ng, j = 1,..., p, the matrix of OLS coefficient estimates. Note that the use of
AIC (or some other information criteria) in levels, for determining the order p, is again

recommended.

2. Regress y; on v, to obtain the adjusted y; as,

with 4 the OLS estimate of the vector of parameters ~.

3. Regress §; on x;_; via IVX with z; 4 := (1 — QL);1 Ax;_, as instruments to obtain wa

and use the standard errors provided in Equation (13) below to conduct inference.

The estimated covariance matrix of wa in this context is given by the familiar “sandwich”

formula,
—_—
~ VT

Cov (8"") = By "My (B7")' (13)

12



where
T
/
BT: E Rt—1L4_1
t=2

and

-1
_ T rox2 / 1 T / T /

-1
T / / T / 1 T /
X (Zt:p—l—l Vv © C'71t—1v,K5131t—p,K> <7 ® (Zt:p—‘,—l C‘Ut—p,Ka:t—p,K> (T Zt:Q wt—I%K'ztl))

with @, x corresponding to the vector stacking all p lags of all K regressors, i.e., @, x :=
(Tpm1 s e o s T K Tt 1y e oy T2, Ky e v o s Tt 1y e - oy Ttp K-

The limiting distribution of Biw is normal in the stationary case and mixed normal in the
near-integrated context; the proofs are simple multivariate extensions of the results from the
single-regressor case (see the following section) so we do not spell them out. More importantly,
individual and joint significance tests have their usual standard normal and y? limiting dis-
tributions irrespective of the persistence and heterogeneity of the DGP as long as the robust

covariance matrix estimator in (13) is used.

3 Asymptotic results

In this section, we analyze the limiting distributional characteristics of the new reduced-bias
IVX tests considering the general framework described in Section 2.4, which also provides
us with the results for the simplest case in Section 2.1 as a particular case. We consider
two different theoretical frameworks that critically determine the stochastic properties of the
predictive variable. On the one hand, we consider stationary predictors, characterized by a
fixed coefficient |p| < 1 in (2), and on the other, we allow for near-integration by considering
p = 1—¢r, with ¢ > 0 and fixed. The main objective of this setting is to acknowledge
the uncertainty that researches face regarding the stochastic properties of the predictor, i.e.,
whether it is stationary or near-integrated when p is close to, but strictly less than unity in
finite samples. This setting includes of course the extreme case of a unit-root when the local
parameter ¢ equals zero (¢ = 0).

In the following, we maintain the predictive regression framework in (1) but allow for sig-
nificant departures from Gaussianity and the restrictive AR(1) structure for the regressor.
We also allow for heterogeneity in the form of time-varying variances, different shapes of the
distributions, and even changes in the persistence of the regressor. Financial variables often
exhibit time-varying variances in addition to GARCH effects; Kostakis et al. (2015) discuss the
GARCH case considering strict stationarity, whereas we relax the i.i.d. assumption by replacing

stationarity with smoothly varying volatility.
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Note first that the time-varying properties of the DGP, as stated in Assumptions 1 through
4, imply different behavior in the limit compared to the Gaussian i.i.d. case. In this case, the
partial sums of v, converge weakly to M (s fo o, ( (r), and the partial sums of &; to
Jy o= (r)dW, (r), with W, and W, 1ndependent standard Wlener processes; the “classical” case
is only recovered when o, and o, are constant. Moreover, the suitably normalized regressor can
be shown to converge weakly to an Ornstein-Uhlenbeck type process driven by the diffusion

M (s), i.e.,
1

VT
-1
where w = (1 - Z?;i aj> ; see, e.g., Cavaliere (2004) for the case with constant c.

In the case where z; is stationary, i.e., |p| < 1 and fixed, the following results can be stated.

T = w/ e~ I OLAM (r) 1= wX (s) (14)
0

Theorem 3.1 Under Assumptions 1, 2, 8 and 4i), we have, as T — oo, that

Qivx d
VT (6 _ 5) 4 N (0,02) (15)
where
a s)ds + 72 o s)ds
U; . ofo Oy g pfo Oy (16)
[ao fo o2 (s) ds]
with o, = (ap...qp 1) and Q = {a‘i_j|}1<”<p where ay, := Y bjbjy, with b; the moving
average coefficients of x;, (1 — pL) " (1 —a L — ... —ap 1 LP7') = >0 b L7 . Furthermore,

VTse (5“””) N o3
and, under the null hypothesis, Hy : § = 0,

five 5 N (0,1). (17)

The limit behavior changes under near-integration as shown in the following Theorem.

Theorem 3.2 Under Assumptions 1, 2, 8 and 4ii), we have, as T — oo, that

2(s)o?(s)ds

TY/2+/2 <wa B 5) = MM | o, afol g

22 (X2(1) ~ [ X (s) dX (s))2

and

se (B77) = w“ 7. (8)0 (5) s (19)

2w2 X2 (1 fo (s)dX (s)

14

rewrite
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where a and n are fived, w* plays the role of the long-run variance (and is defined in (14)),
X(s)= [ e Jre®dtg (r) AW, (1) and, 02 (s) and o2 (s) are the variances of v, and &, respec-

tively. Moreover, under the null hypothesis, Hy : =0,

tive = N (0,1). (20)

The proof of Theorem 3.2 establishes that Q7 = o, (T'™) so that it is dominated in (12)
by ZtT:p 1 2-1&7 which is of exact order O, (I"*") (see the Appendix for details), and the
residuals estimation effect is negligible in the near-integrated case. The near-integrated case is
also more interesting for an evaluation of the local power and for comparison with the original

IVX.2 The power function of the residual augmented IVX is provided next.

Theorem 3.3 Under Assumptions 1, 2, 3 and 4ii), we have for local alternatives B = b/T1/2+n/2,
as T — oo that
202 X2 (1) — [ X (5)dX (s)

tive =N | b - = -
VI o2 ()02 (s) ds

C1]. (21)

Setting w? = 1, 0,(s) = 0, and 0. (s) = 0. leads to the results for the particular case

studied in Section 2.1.

4 Finite sample performance

4.1 Monte Carlo Setup

This section compares the two versions of the IVX procedure, the original IVX test which we
denote as t;,, and the residual augmented version #;,,, with extant procedures under several
heterogeneous DGPs. As benchmarks we use the tests of Campbell and Yogo (2006) and of
Amihud and Hurvich (2004) and Amihud et al. (2010).

Concretely, we generate y; and z; as in equations (1) and (2) but allow for an intercept in

the predictive regression, i.e.,

vy = pt+Brigtu, t=2,...T (22)
Ty = pPTi—1 + vy (23)

and
Vy = A1Vi—1 + €4 (24)

2The local power in the stationary case is easily derived and we omit the details.
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with a; € {—0.5,0,0.5} and e; ~ Nid(0,1). We focus on local alternatives of the form g = /1
for two sample sizes, T = 200 and 1" = 500. To study the empirical size of the tests we let
b =0, and for the local power evaluation we consider b € {5,10, 15,25}, and the persistence of
the predictor is controlled by p := 1 — ¢/7, with ¢ € {0, 10, 20,40,50}. The correlation causing
endogeneity is set to —0.95, which is not an uncommon value in practice; see, e.g., Lewellen
(2004).

The efficient tests of Campbell and Yogo (2006) (denoted as CY') are analysed, and the
residual augmented predictive regression based test of Amihud et al. (2010) (denoted as AHW)
is computed for a fixed p = 2 to keep complexity under control. In comparison, t;,, does not
require specifying the lag length, while for #;,, we chooses p via Akaike’s information criteria
(AIC). Both t;,, and #;,, are computed by demeaning the dependent variable and the regressor,
but not the instrument (see Section 2.5 for details). Since all tests are invariant to the intercept
i, we set p = 0 without loss of generality.

Also, we follow Kostakis et al. (2015) and choose a = 1 and n = 0.95 for the construction of
the instruments in both. We employ the proposed standard errors from (12) in the computation
of t;ys, while, for the classical t;,,, we use White standard errors as recommended by Kostakis

et al. (2015). We shall also consider a version of the original IVX test without White standard
#

T

errors, denoted by t to illustrate the impact of neglected time-varying volatility on the
performance of this approach.

The rejection frequencies are computed at the nominal 5% level based on 10000 Monte Carlo
replications, and all results for the t;,, and %, tests in Tables 1 — 4 are computed based on

standard normal critical values.

4.2 Empirical size and power performance

Tables 1 and 2 illustrate the empirical size and power properties of the AHW, CY, t;,, and
tive tests under negative and positive short-run dynamics, i.e., considering (24) with a; = —0.5
and a; = 0.5.

From Table 1, which presents the results obtained when v; follows an AR(1) with a; = —0.5
(negative autocorrelation) we observe that when b = 0 and for the values of ¢ considered that
AHW and t;, are slightly oversized, but that this oversizing decreases as the sample size
increases. At the same time, we also observe that ¢;,, displays slightly conservative behaviour.
In this experiment C'Y presents the largest size distortions as a consequence of the negative
short-run dynamics. This feature of the C'Y test has already been noted in the literature; see,
e.g., Jansson and Moreira (2006). Note also that in the unit root case (¢ = 0) there are some
significant size distortions also for the t;,, and AHW tests. Regarding the empirical power we
observe that the #;,, test displays superior power when ¢ > 0, relative to the other procedures.

In the case of positive short-run dynamics, i.e., when a; = 0.5 (see Table 2) we observe

in general size distortions for all tests, with t;,, displaying the most severe distortions when

16



compared to the other procedures, and AHW and t;,, displaying the smallest distortions.
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Table 1: Size and power against local alternatives, negative short-run AR parameter

AHW CY tive  Live AHW CY tive  Live
b T =200 T = 500
0 8.9 1.1 10.6  6.30 9.4 2.5 104 6.3
5 175 283 544 375 17.3  30.7 53.2  39.0
c=0 10 67.8 94.7 935 86.1 659 974 93.0 87.9
15 98.2 994 989 973 97.8 99.8 987 98.1
25 100.0  99.95 100.0 99.9 100.0 100.0 100.0 99.9
T =200 T = 500
0 6.6 0.0 54 5.0 6.8 0.4 46 4.6
5 8.1 0.2 13.8 145 7.2 2.8 12.4 144
c=10 10 17.1 3.8 332 396 150 14.8 31.0 38.7
15 37.0 292 65.1 78.1 33.2 496 61.3 774
25 96.6  94.7 96.8 99.4 95.2 988 96.0 99.5
T =200 T = 500
0 6.4 0.0 41 45 6.4 0.0 41 48
5 7.1 0.0 10.4  12.3 6.4 0.2 94 11.1
c=20 10 13.3 0.0 219 265 11.3 1.6 206 25.4
15 24.5 0.3 405 50.3 19.4 79 372 472
25 68.8 226 84.2 939 60.4 54.3 80.1 93.2
T = 200 T = 500
0 6.0 0.0 43 49 5.8 0.0 4.0 49
5 6.4 0.0 9.1 105 6.0 0.0 85 10.3
c=30 10 11.4 0.0 17.7  21.9 9.1 0.0 15.8  20.2
15 20.1 0.0 324 393 16.1 0.5 284 359
25 54.1 0.3 706 81.3 424 121 63.7 771
T = 200 T = 500
0 6.1 0.1 4.0 4.7 5.5 0.0 4.1 5.0
5 6.8 0.1 89 10.5 5.7 0.0 72 94
c=40 10 10.5 0.1 16.8  20.0 9.1 0.0 14.3 183
15 18.5 0.1 28.1 34.1 13.5 0.0 243 302
25 451 0.1 608 714 34.9 0.8 525 65.2
T =200 T = 500
0 5.9 0.1 3.6 44 5.5 0.0 3.7 5.0
5 6.5 0.1 78 9.7 6.2 0.0 7.1 9.5
c=50 10 10.4 0.1 15.3 194 8.1 0.0 12.5 165
15 16.6 0.1 26.4 321 12.1 0.0 205 26.3
25 41.6 0.1 55.5  64.9 30.2 0.0 451 56.3

Notes: AHW denotes the (2-sided) Amihud, Hurwich and Wang test with lag length p = 2; CY denotes the
Campbell and Yogo test, t;,, is IVX test computed following Kostakis et al. (2015) and %;,, the residual-
augmented IVX test procedure, all with maximal lag length p = [4(7/100)%?%]. The DGP is as in (1) and (2)
with p =1 —¢/T and 8 = b/7. For further details see the text.
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Table 2: Size and power against local alternatives, positive short-run AR parameter

AHW  CY  tiw Live AHW CY Liva tive
b T = 200 T = 500
0 6.5 4.6 11.1 6.6 6.3 4.1 106 6.3
5 94.7 100.0 98.4  96.1 95.7 100.0 985 97.6
c=0 10 100.0 100.0 100.0 99.9 100.0  100.0 100.0 100.0
15 100.0  100.0 100.0 100.0 100.0 100.0 100.0 100.0
25 100.0  100.0 100.0 100.0 100.0  100.0 100.0 100.0
T = 200 T = 500
0 6.3 4.1 8.7 5.7 6.5 3.7 8.6 6.2
5 26.5 644 79.0 729 273 66.0 79.9 749
c=10 10 99.5 100.0 100.0 99.7 99.6  100.0 100.0 99.9
15 100.0  100.0 100.0 100.0 100.0 100.0 100.0 100.0
25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
T = 200 T = 500
0 5.7 3.1 7.2 5.6 5.9 3.1 7.5 5.9
5 16.4  28.6 487  43.9 16.4  31.6 49.2 445
c=20 10 70.2 944 988 97.7 749  96.7 99.3  98.7
15 100.0 100.0 100.0 100.0 96.0 100.0 100.0 100.0
25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
T =200 T = 500
0 6.0 2.2 7.2 5.9 5.8 2.5 7.1 5.6
5 13.3 161 356 323 13.2 187 372 34.1
c=30 10 476 632 868 854 50.5 729 89.8  89.2
15 94.1 982 100.0 99.9 97.0  99.6 100.0 100.0
25 100.0  100.0 100.0 100.0 100.0 100.0 100.0 100.0
T = 200 T = 500
0 5.5 1.6 6.7 5.5 5.2 1.8 6.5 5.5
5 10.2 104 284  26.5 11.0 122 297 274
c=40 10 35.7 402 719  70.2 385 50.3 763 75.0
15 79.5 82.8 984 983 84.4  91.8 99.2 99.2
25 100.0  99.9 100.0 100.0 100.0 100.0 100.0 100.0
T = 200 T = 500
0 6.1 1.3 6.6 5.7 5.3 14 6.7 5.7
5 9.7 72 247 229 9.5 87 259 245
c=50 10 28.1 26.8 61.0 59.0 304 338 649 63.3
15 64.3 623 93.0 92.7 71.2 757 959  95.7
25 99.9 99.1 100.0 100.0 100.0 100.0 100.0 100.0

Note: See Table 1.

19



4.3 Robustness against empirical features of the data

To evaluate the performance of the procedures under other empirically relevant features, in
Tables 3 and 4 we report results for the empirical size under DGPs with time-varying volatility

and time-varying persistence. In specific, we consider five common variance patterns, namely:

1. constant, o2 (s) = 02 (s) = 1;

2. an early upward break, 2 (s) = 02 (s) = 1+ 8[ (s > 0.3);

3. alate upward break, 62 (s) = 02 (s) = 1+ 81 (s > 0.7);
4. an early downward break, o2 (s) = 02 (s) = 9 — 8I(s > 0.3); and

5. a late downward break, o2 (s) = 02 (s) =9 — 8 (s > 0.7),

where I (+) is an indicator function; and to allow for time-varying persistence, we also consider

6 patterns for the localization parameter c:
1. constant close to integration, ¢ (s) = 5;
2. small break towards stationarity, ¢ (s) =5+ 5[ (s > 0.5);
3. large break towards stationarity, ¢ (s) =5+ 20I (s > 0.5);
4. constant close to stationarity, ¢ (s) = 25;
5. small break towards integration, ¢ (s) = 25 — 51 (s > 0.5);
6. large break towards integration, ¢ (s) = 25 — 201 (s > 0.5).

To gauge the necessity of a correction for time-varying variances, we now compute, in addition,
the IVX test without White heteroskedasticity correction and denote it by tﬁm; tive 18 computed
with (the usual) White standard errors, and #;,, is computed using the heteroskedasticity-robust
standard errors from (12) as before.

Tables 3 and 4 confirm the conclusions obtained under the homogenous DGPs. The test
based on t;,, exhibits practically the same behavior under the variance patterns employed here,
but can be oversized for constant small ¢ (here, it is the closeness to the unit root that matters
and not the breaks in ¢). On the other hand, the size control of #;,, is overall quite good, for all
persistence patterns, and the White-type standard errors account for time-varying variances as

well.?

3Unreported simulations show that not employing the White-type standard errors for the ;,, test under
time-varying variances leads to size distortions similar to those of the tfzm test.
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Table 3: Size under breaks in variance and persistence, negative short-run AR parameter

AHW CY Tive AHW CY Tive
c Var T =200 T =500
const 7.6 0.1 9 9.6 5.5 74 1.2 104 10.7 5.9
early up 11.5 0.1 132 98 6.4 11.2 1.6 13.5 9.9 6.6
const small late up 241 0.6 179 96 5.8 252 39 193 10 6.1
early down 21.5 04 151 88 55 221 3.0 164 94 59
late down 10.7 04 113 93 56 111 23 123 96 6.3
T =200 T =500
const 7.0 0.0 83 88 59 7.3 0.7 96 99 6.3
early up 11.7 0.0 121 93 5.9 11.5 1.5 129 96 6.6
up small late up 232 01 164 93 5.6 241 23 174 94 538
early down 222 02 149 82 6 222 28 17 9.3 6.9
late down 109 01 11 86 6.3 11.3 1.8 121 92 6.6
T =200 T = 500
const 6.6 00 72 79 54 6.8 0.3 89 9 6.2
early up 109 0.0 103 81 5.5 115 0.3 11.5 87 59
up large late up 215 0.0 136 85 48 215 03 142 88 5.2
early down 223 02 147 78 6.9 228 2.7 171 8 6.9
late down 11.6 00 105 7.5 6.3 11.3 1.1 114 84 6.9
T =200 T = 500
const 6.2 0.0 56 6.1 5.3 5.6 0.0 6.7 6.7 55
early up 106 0.0 102 7.8 6.1 104 0.0 11.3 81 6.2
const large late up 244 0.1 156 7.8 6.3 245 0.1 168 79 6.7
early down 24.0 0.0 11 55 5.5 232 00 134 64 64
late down 111 0.0 78 58 5.6 11.0 00 84 59 54
T =200 T = 500
const 6.1 0.0 59 6.2 55 6.1 00 71 74 56
early up 109 0.0 104 8 6 1.1 01 111 79 6.1
down small late up 23.6 0.1 164 82 6.9 23.9 0.2 169 82 6.6
early down 234 0.0 107 54 56 232 0.1 125 6.2 5.8
late down 106 0.0 75 59 54 10.8 0.0 93 66 538
T =200 T = 500
const 7.0 00 72 76 5.1 74 02 91 93 59
early up 11.2 0.1 124 94 6.2 11.4 1.3 136 94 6.6
down large late up 250 04 199 91 7.1 254 43 214 9 7.3
early down 21.3 0.0 10 6 4.3 21.3 0.2 11.8 6.8 4.5
late down 102 0.0 89 75 46 103 0.3 95 82 46

Notes: AHW denotes the (2-sided) Amihud, Hurwich and Wang test with lag length p = 2; CY denotes the
Campbell and Yogo test, t# is IVX test computed following Kostakis et al. (2015) but without White correc-

> T
tion, and t;,, is the residual-augmented IVX test procedure, all with maximal lag length p = [4(7/100)%-25].
The DGP is as in (1) and (2) with p = 1 — /7 and § = /7 and exhibits time-varying variance. For further
details see the text.
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Table 4: Size under breaks in variance and persistence, positive short-run AR parameter

AHW CY 7, tiwe ~ AHW CY 7, Tive
c Var T =200 T =500
const 6.6 4.5 103 107 6.1 6.3 4.2 105 107 6
early up 10.0 6.8 146 11.2 6.8 10.0 6.6 139 10 6.5
const small late up 22.6 104 195 11.5 6.7 23.4 96 204 109 64
early down 19.9 9.0 171 10.7 6 19.9 8.4 18 105 6.2
late down 9.8 6.7 12,5 106 6.2 9.5 6.1 12.8 103 64
T =200 T =500
const 5.8 4.3 102 109 5.9 6.4 42 103 105 6.1
early up 10.2 6.4 14 11.1 6.3 10.1 6.1 13.5 10.1 6.8
up small late up 21.7 8.7 173 10.7 64 21.9 8.4 185 106 6.1
early down 19.9 9.3 17.7 107 7 19.7 9.4 18.3 10.1 7
late down 9.7 7.1 131 103 6.6 9.7 6.6 13,5 103 7.2
T = 200 T =500
const 5.9 41 93 97 538 5.9 3.7 98 102 64
early up 9.9 5.7 123 10.1 5.9 10.4 52  11.7 9.1 6
up large late up 20.5 6.1 141 99 55 20.7 59 146 9.7 55
early down 20.9 9.7 186 102 76 206 104 195 96 7.7
late down 10.1 71 123 94 6.9 10.4 6.7 126 88 6.6
T =200 T =500
const 5.8 26 8.4 9 6.3 5.6 2.8 8 8.2 6.1
early up 10.9 53 10.8 84 59 10.5 54 11.6 8 6.2
const large late up 22.7 8.0 172 88 7 24.1 9.1 188 94 74
early down 23.1 45 141 78 6.6 22.3 56 154 7.7 6.3
late down 10.7 3.8 102 79 64 10.1 41 103 7.5 5.7
T =200 T =500
const 5.9 29 85 89 59 6.0 30 84 85 59
early up 10.5 55 11.8 88 59 10.7 5.6 11.8 86 6.3
down small late up 23.3 8.8 185 95 7.3 24.2 9.7 192 9.1 7.2
early down 22.2 4.7 15.1 8.7 7 21.8 5.6 159 84 6.8
late down 10.1 39 106 85 6.9 10.3 43 105 78 538
T =200 T = 500
const 6.3 39 95 10 5.8 6.2 36 94 95 5.5
early up 10.3 71 135 99 6.8 11.0 6.7 144 9.7 6.9
down large late up 25.0 128 21.7 104 79 248 127 229 96 74
early down 20.6 44 126 9 5.3 19.8 4.5 13.7 9 5.3
late down 9.7 4.7 106 103 5.6 9.6 42 105 94 49

Note: See Table 3.
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IVX without robust standard errors can be seriously oversized, which, again, was expected;
the worst effect is observed for late upward breaks in the variance. AHW exhibits a similar
pattern, to an even larger extent. We note that breaks in the persistence parameter ¢ tend to
rather have a dampening effect, if any. CY is severely undersized, in line with the previous
experiments for negative short-run correlation. For positive short-run correlation, CY now
controls size fairly well except for late upward and early downward breaks in the variance; the
other three tests do not appear to be sensitive to the sign of the short-run serial correlation of
the predictor. The effects are practically the same for both sample sizes, indicating that the

size distortions are not finite-sample in nature.

5 Excess return predictability

The objective of this empirical part is to re-examine the predictive power of several variables
used in Welch and Goyal (2008), updated with information up to December 2013.% using the
approaches discussed in the previous sections. We look at the claims by Welch and Goyal (2008)
that “evidence suggests that most models are unstable or even spurious” and that “models are

no longer significant even in-sample.”

5.1 Background

According to the findings of Welch and Goyal (2008), most predictive models have performed
poorly in sample over the last 30 years. As they argue for many models any earlier apparent
statistical significance was often based exclusively on years up to and especially on the years of
the Oil shock 1973-1975 (Welch and Goyal, 2008, p. 1456).

Ang and Bekaert (2007), considering a sample from 1935 to 2001, report results for several
subsamples and for the full sample. Since interest rate data is hard to interpret before the 1951
Treasury Accord, Ang and Bekaert (2007) (as well as Lewellen, 2004) consider 1952 as their
starting date. Furthermore, Ang and Bekaert (2007) also indicate that the majority of studies
establish strong evidence of predictability when data before or up to the early 1990s is used.
For instance, Lettau and Ludvigsson (2001) and Goyal and Welch (2003) point out that the
predictive power of the dividend yield weakens with the addition of the 1990s decade.

Several researchers suggest that the disapearance of stock return predictability is due to
parameter instability or structural breaks and identify the disapearance around 1991 (see, e.g.,
Pesaran and Timmermann, 2002; and Lettau and Nieuwerburgh, 2008). A related hypothesis is
that predictability was arbitraged away once discovered, in a scenario similar to the attenuation
of the January effect. Welch and Goyal (2008) argue that predictability has not been significant
in- or out-of-sample over the past 30 years. Still others take a more drastic view and argue that
it was never actually there (e.g., Bossaerts and Hillion, 1999 and Goyal and Welch, 2003).

4We thank A. Goyal for making this data available on his Web site.
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Henkel et al. (2011) reveal that predictability is a phenomenon whose strength is distinc-
tively time-varying. The dividend yield and commonly used term structure variables are ef-
fective predictors almost exclusively during recessions. According to these authors, the robust
prominence of busines cycles in these results suggests a potentially substantial tie to the lit-
erature on the dynamics of expected returns. Campbell and Cochrane (1999), Menzly et al.
(2004) and Bekaert et al. (2009) show that risk premiums are countercyclical and that the time
series behaviour of risk premium is higher during recessions.

Since a time-varying predictive relation is the byproduct of the interacting dynamics of ex-
pected returns and of the predictors, the complex behaviour of the predictors themselves must
be considered when testing for predictability. The underlying fundamentals are the potential
micro-level objectives of firms and central banks whose activities jointly determine aggregate
predictor variables. The business cycle is an important driver of these micromotives and this
lead Henkel et al. (2011) to re-examine predictability using a regime-switching framework capa-
ble of matching the time-varying dynamics of predictors to the dynamics of expected returns. It
is found that predictors are less persistent and more volatile during recessions. Several features
of their analysis stand out: the random walk model of stock prices prevailed in the 1970s based
on CRSP data from the 1960s era expansion; predictability emerged in research of the late
1970s and mid-1980s, following several recessions; and predictability was subsequently doubted
following the long booms of the 1980s and 1990s.

Hence, in line with Ang and Bekaert (2007) and given the availability of data, we revisit the
impact of the addition of the 1990s first, followed by the analysis of the effects of adding the
period from January 2000 to September 2007 and finally the remaining sample period (October
2007 to December 2013). Moreover, in order to remove the possible impact of the Oil shock
(1973-1975) we repeat the analysis starting in 1976.

Given the available empirical evidence of change in strength of predictability of some vari-
ables over time, in what follows we split the sample into eigth periods. These changes appear
to be accompanied by changes in the persistence of the considered regressors.® In particular,
we consider the eight time periods: i) Jan 1952 - Dec 1989; ii) Jan 1952 - Dec 1999; iii) Jan
1952 - Sep 2007; iv) Jan 1952 - Dec 2013; v) Jan 1976 - Dec 1989; vi) Jan 1976 - Dec 1999; vii)
Jan 1976 - Sep 2007; and viii) Jan 1976 - Dec 2013.

5.2 Data

The dependent variable is the equity premium (or excess return), i.e., the total rate of return
on the stock market minus the prevailing short-term interest rate. Stock returns are the con-
tinuously compounded returns on the S&P 500 index, including dividends, and the risk-free
rate is the Treasury-bill rate.

The independent variables used are: i) the 12-month moving sums of dividends (D12) paid

5See the results in Appendix B for more details.
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on the S&P 500 index; ii) the dividend price-ratio (d/p) computed as the difference between the
log of dividends and the log of prices; iii) the dividend yield (d/y) computed as the difference
between the log of dividends and the log of lagged prices; iv) the 12-month moving sums
of earnings on the S&P 500 index (E12); v) the earnings price-ratio (e/p) computed as the
difference between the log of earnings and the log of prices; vi) the dividend payout-ratio (d/e)
computed as the difference between the log of dividends and the log of earnings; vii) the stock
variance (svar) computed as the sum of squared daily returns on the S&P 500; viii) the cross-
sectional beta premium (csp) which measures the relative valuations of high- and low-beta
stocks; ix) the book-to-market ratio (b/m) computed as the ratio of book value to market
value for the Dow Jones industrial average. To include corporate issuing activity we also use x)
the net equity expansion (ntis) computed as the ratio of 12-month moving sums of net issues by
NYSE listed stocks divided by the total end-of-year market capitalization of NYSE stocks; and
xi) the percent equity issuing (eqis), which is the ratio of equity issuing activity as a fraction
of total issuing activity.

A further set of predictors used is: the treasury bills (tbl) rates; the long term government
bond yield (Ity); the term spread (tms) which is the difference between the long term yield on
government bonds and the treasury-bill; the default yield spread (dfy) which is the difference
between BAA and AAA-rated corporate bond yields. The default return spread (dfr) is the
difference between long-term corporate bond and long-term government bond returns; inflation
(infl) which corresponds to the consumer price index (all urban consumers); and long-term
government bond returns (Itr). For details on the construction of these variables and for a

greater description see Welch and Goyal (2008).

5.3 Findings

Tables 5 and 6 report the predictability test results computed from t;,,, tive and the OLS based
tests procedures over four subperiods of analysis starting in January 1952. From Table 5 it is
interesting to observe that the OLS based test procedure finds most evidence of predictability
in the subsample from January 1952 to December 1989, and as we add information the number
of significant predictors decreases. Note that in the subsample from January 1952 to December
1989, based on this procedure, nine variables (d/p, d/y, d/e, tbl, tms, ntis, infl, ltr, svar)
seemed to be significant; whereas in the following subperiods (January 1952 to December 1999;
to September 2007, and to December 2013) the number of significant variables reduced to six
(tbl, lty, tms, ntis, infl, 1tr), to two (infl, Itr) and increases again to six (tbl, lty, tms, infl, ltr,
svar), respectively. However, if we look at the results obtained with the two IVX approaches,
the number of significant predictors is smaller. The original IVX approach for the four periods
under analysis (January 1952 to December 1989; January 1952 to December 1999; January
1952 to September 2007 and January 1952 to December 2013) finds 5, 5, 2 and 4 significant

predictors, respectively; whereas the residual augmented IVX approach proposed in this paper
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finds 5, 6, 2 and 5, respectively.

Performing the same analysis, but starting now in January 1975 instead of January 1952,
the OLS based approach finds 1, 3, 1 and 1 significant predictors in the four subsamples under
analysis (January 1975 to December 1989; January 1975 to December 1999; January 1975 to
September 2007 and January 1976 to December 2013), respectively. Thus, based on this statistic
the period between January 1976 to December 1999 is the one which presents more evidence of
predictability. Using the IVX based approaches, the number of signifcicant predictors is 1, 5, 1
and 3, for the original IVX and 3, 4, 2 and 0 for the residual augmented IVX approach, for the
four subperiods under analysis, respectively. Hence, both IVX based approaches also identify
the period between 1976 and 1999 as the period with strongest evidence of predictability.

The results in Table 6 agree to a certain extent with the conclusions put forward by Welch
and Goyal (2008) that apparent statistical significance was often based exclusively on years up
to and especially on the years of the Oil Shock of 1973-1975.

6 Conclusions

This paper introduced a new IVX test statistic computed from a residual augmented predictive
regression as considered in Amihud and Hurvich (2004) and reexamined the empirical evidence
on predictability of stock returns of Welch and Goyal (2008) using these new robust methods.

To this end we resorted to IVX estimation and testing, and proposed a residual-augmented
variant that allows practitioners to distinguish more reliably between the null of no predictabil-
ity and the alternative. The method is asymptotically correct under near-integration as well as
under stationarity of the regressor, has improved local power under high regressor persistence,
and allows, e.g., for heterogeneity of the data in the form of time-varying variances.

The results derived here on bias correction can be generalized for other types of instrumental
variable estimation than just IVX. The IV framework of Breitung and Demetrescu (2015),
who distinguish between type-I instruments that are less persistent than the initial regressor
(the IVX instrument is actually of type I; see Breitung and Demetrescu, 2015), and type-1T
instruments that are (stochastically) trending, yet exogenous, allows for a quick discussion:
a careful examination of the arguments presented here shows that they are easily extended
for type-I instruments, but type-II instruments behave like the OLS estimator where residual-
augmentation is not improving on the test procedure even asymptotically.

The provided Monte Carlo evidence shows that the asymptotic improvements are a good
indicative of the finite-sample performance, also in the presence of time-varying volatility or
time varying persistence. Finally, the empirical analysis showed that the bias-adjusted [VX

procedure detected predictability more often than the original IVX procedure.
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A Technical Appendix

A.1 Preliminary Results

Throughout the proofs, we consider that Z;;E oM = 11__—£;k,: = % <ﬁ) < %T" for large

enough 7" and fixed k, where ¢ := 1 — 7 with € (0,1) and a > 0 and fixed. Furthermore, let

C denote a generic constant whose value may change from occurrence to occurrence.

Lemma A.1 Under the assumptions of Theorem 3.1, as T — oo, it follows that

1 T po ol 2 . ._ /
1o 5 Y iy Te1®ip — @, [ 0ods, where a, = (ag, .., ap 1) and @y i= (Tp-1, -y Tpp)

and oy, 15 as defined in Theorem 3.1;

1 T / P 1 9 . . . . .
2. F Zt:p+1 Ty pTy_, — Qfo o.ds, where § is a p X p matriz with generic element a;; =

QXli—j|s
1 T ’ 2 P 1 4 .
S Zt:p—‘rl L pky Vi — Q fo o, (s)ds;

T P 1
4. % Zt:pﬂ 22 82 S g fo o2 (s) o2 (s)ds.

Proof of Lemma A.1

Phillips and Xu (2006) show in their Lemma 1 that %ZthhH T = ap fol o2ds, h =
0,1,...,p — 1; this suffices to establish the results in the first two items. The result in item 3
also follows directly from Lemma 1 of Phillips and Xu (2006), and the proof can be adapted in

a straightforward manner to establish the result in item 4. B

Lemma A.2 Under the assumptions of Theorem 3.2, as T — oo, it follows that

DY 4 N(0,1)

T z2 _2
\/ Zt:Q 2i_1E¢

where Z, = Z;;E v
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Proof of Lemma A.2

Consider s% := = Zt 9 Zj %92 oo, 102, and note that s7 is bounded and bounded away

from zero, since

. T t—2 2 2 T t—2
ming <g<r U m1H1<t<T U i Z 2j J < < maxi<;<7 0, ; MaxX;<i<7 0gy Z 2
T1+77 " = — T14n 0
t=2 j=0 t=2 j=0
To§i=2 52 147
where ), >0 0% ~ CTH™.
Since,
T -~ T . 2 2
Doim -1 _ 1 Z Zt—1€¢ Zt 22 oQ Uyt 1-79¢¢ (25)
T ~9 9 T1/2+77/2 3

st 22 g2
=9 thlgt t=2 Zt72 t—1<t

1 T Zi_1e¢
we show next that Fmmm 320 “50

follows a limiting standard normal distribution by re-
sorting to a central limit theorem for martingale difference [md] arrays (Davidson, 1994, The-

—Z’HQ‘ 20 and ii)

orem 24.3). However, to apply it, we need to show that, i) max; =77 o

52 .2
1 T 215 P
Ti+n thz S% = L

Given that the result in ii) also implies

2
g g
Zt 223 OQQz/tljetﬁ)L (26)
Zt:QZt—IEt

hence the result in (25) would follow.

To verify i), note that uniform boundedness of moments of order 2 + §* for some 6* > 0
of T~"/2%,_,e, suffices to establish this condition. An application of Hélder’s inequality shows
that uniformly bounded 4th order moments of T-"/2%,_; and uniform Ly, s~-boundedness of ¢;

suffices, since 6* may be chosen arbitrarily close to zero, so we check the uniform boundedness
of

t—2 t—2 t—-2 t-2

z4 1
5(5) - S S S S vt s e
=0

Due to the serial independence of 14, the expectation E (v4_;v4_j14_j14_p,) is nonzero only if the

indices are pairwise equal, thus we can simplify (27) as,

24 1 t—2 t—2
-1\ 2 2k 2 2
: (T_) = g 0 0 P E ()
=0 k=0

Since v; is uniformly Ls-bounded, the expectations on the r.h.s. are uniformly bounded for any
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t, k and j, therefore,

24 | 22 = T-2 2
t—1 2j 2%k _ 2 2
=0

which suffices for the required uniform L,-boundedness.

To check condition ii), it suffices to show that

1
A Y # -5t 50 (28)

because 52 is bounded and bounded away from zero (we learn from Lemma A.4 below that

— = fo o, s)ds, but the exact limit does not matter here). To prove (28), write
T =2 -2 T =2 -2
Z Zag = Z Z oo vk ( ) + Z o v kol
=2 j=0 k=0 =2 j=0 k=0
=: Ar+ Br

Note that Z Zk e 2 Ve (5t — aet) builds an md array and as such, is uncorre-
lated in t. Hence, showing :mAT to vanish is not difficult, given that from the uncorrelatedness

of the summands we can write that,

T
1 1
Var <T1+’7 AT> = T Z\/ar <
t=2 —0 k=
1 T —2 ¢t-2 2
2
= Torm ZE ( Q]Qkthth1k> E ((8? — ait) ) )

t=2

t—2 t—2
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Now, &; is uniformly L4-bounded and

t—2 t—2 2 t—2 -2 t—2 -2
N k I m
§ oo Vi—1—jVi—1—k E QJQ Y E Vt 1—jVe—1—kVe—1—1Vt—1— m)
j=0 k=0 7=0 k=0 (=0 m=0

where the expectation on the r.h.s. is, as before, uniformly bounded and nonzero only if the

indices are pairwise equal. Hence,

t—2 t—2 2 t—2 t—2
0<E ( Qijthth1k> <C 0" < CT™
j=0 k=0 j

leading to Var (i Ar) — 0 and thus Ay = o, ().
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Regarding By, note that,

T t-2 T -2 -2
_ qldn 2 2 ( 2 2 |k A 2
By = T sy + § 0™ (v - T Oui—1—j )oZ,+ R
t=2 j=0 t=2 j=0 k=0
J#k

= T1+n8% + BTl + BTQ-

For By, we have from the serial independence and L4-boundedness of v; that

t—2 2 t—2

25 (2 2 2 4 45 ( 2 2 )2
E 0 (thlfj Uzz,tflfj) Oct Ot E 0 E( Vic1—j — Opt—1—j
j=0 Jj=0

< 1

and thusE(‘Zt,%QQJ (Vi i On g)

> < CT2, Hence,

1 C <
L 2
E (‘TH”BTl > < o 2T 0
t=2

and Markov’s inequality indicates that Bry = o, (T'1").

For Brs we proceed similarly,

2

T T
_ kIl m 2 E
= Q]Q 00 O t%s (Vt 1—jVi—1—kVs—1—-1Vs—1— m),

where the expectations on the r.h.s. are nonzero if t —j = s—land t — k = s —m or if
t—j=s—mandt—k=s—1(witht—j=t—kand s—1=s—m being excluded by the
requirement that j # k and [ # m). Note that, for any t, s, j, k,l,m with j # k and [ # m,

2 2
2 2 2 2
020 B (W11 wVs 1 Vs-1-m) < (mtax U€’t> (mtax 0V7t> <C.

Let us now focus on the terms for which ¢t —s =75 —1 =k —m. Thus, fort =s,t=2,...,T,
we obtain
t—2 t—2 s—2 s—2 t—2 t—2 t—2 2
D) ST 9 TR Dol
=0 k=0 1=0 m=0 j=0 k=0 j=0
J#£klF#Fmt—s=j—l=k—m i#£k
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and for s=t—1,t=3,...,T, we have analogously that,

while, for s=t+4+1,t=2,...,T — 1 (or equivalently t = s — 1, s =3,...,T), it follows that,

iz Y ddfdem <o (8392’>2

=0

Repeating the discussion for s =t £ for r =2,...,T — 2, we have
t—2 t—2 s—2 s—2 t—r—2 2
S35 i<t (3
=0 k=0 =0 m=0 5=0

leading to

t=2+r

ii ' >, koQlQm§i<t_2 @2j>2+2j21292r 3 (tzzg )

The same holds when imposing t — s = j — m = k — [, such that, with Zt T2 0% < Z] o 0¥
and ZZ:HT C < C'T, thus, we ultimately have

2

T t-2 t-2
|k 2 143
E E 00 Vi1 k02, <crT
t=2 j=0 k=0
J7#k

and consequently Bre = 0, (T*) when n < 1, as required to complete the proof. B

T
Et:Q Zt—1€t d
2
t=2%t—1%¢t

Lemma A.3 Under the assumptions of Theorem 3.2, it follows, as T — oo, that i)

N . o ST u d N
(0, 1), and ZZ) ﬁ — (0, ].)

t=2*t—1%%

Lemma A.3 Suggests the use of White standard errors in the heteroskedastic near-integrated

\/ Zt 2 t 1 f
) ) Zt:g o .
in cases with and without intercept, and also better finite-sample behavior; see Kostakis et al.

case, W.s.e := with &, the OLS residuals guaranteeing supy;«p €, — & % 0 both

7

(2015). For the stable case, White standard errors are “mandatory” under time heteroskedas-

ticity (Phillips and Xu, 2006).
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Proof of Lemma A.3

We first resort to the Phillips-Solo decomposition of v; and write v; = wiyy + Av; where vy
is a linear process in v; with exponentially decaying coefficients. Let also z; := (1 — QL):L1 N
Thus, denoting z;, = Z;;E @1, like in Lemma A.2, it follows that,

t—1 t—1
= WZ v+ (f)t +(e—1) Z Oy — Qt_1171>
=0 j=1
= wgt + dt7

and it can then easily be shown that Var (Z;;ll ijlﬁt_j) < CT" such that d; is uniformly
Lo-bounded given that o — 1 = —aT~". Similarly, 7-"/2%, is uniformly Lo-bounded itself. We

now show that

1 T w2 T
T 2 1S = iy 2 At +0p (1) (29)
t=2 t=2
and
1 r T
T1/2+77/2 ; zt—lgt = W ; Zt—1Et + Op (1) . (30)

Let us consider first (29). Note that,

T

1
52
T1+n Zzt & = T1+" E :Zt 15+ T1+’7 E Zadyae] + T1+ E d?_ &7,

t=2

Since,
E(|di_et]) = B (di) E ()

and

E(|zdiiel]) < B (32,) E(d2,) E ()
due to the independence of £, and d;_; and of & and z,_;. With E (d7_,) , E (¢}) and T7"E (3%.)
being uniformly bounded, (29) then follows. To establish (30), write

T

1 _ w 5 1

T1/21n/2 Z =18 T a2 Z Z-18 T Z di—16
=2 t=2 t=2

and note that d; 1, has the md property. Hence, Zf:z di—1g = O, (T 1/ 2) due to the uniform
Loy-boundedness and independence of £, and d;—;. Thus, from (29) and (30) we obtain that

T _ T .

thg Zt—1E¢ . Zt:Q Zt—1E¢ & 0. (31)
T _ T .

\/thz thflgg \/Zt:Q thfl‘g%
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In a second step we use the same reasoning to show that

T - T
o Z_1E o Z_1E
Zt72 t—1<1 o Zt72 t—1¢¢ £> O (32)
T - T
OIS YO S
Write to this end z; := Z; + r; where r, := — (1 — QL)J_F1 2w,y with

Var () = £ (1- Y <1_Ct7k)’°E<vuvtkg?;: i)

7=1 k=1

Given the uniform Lo-boundedness of the innovations v; and the exponential decay of the
Wold coefficients of vy, |E (v—jui_y)| < Celi=* vt and \/fot is easily shown to be uniformly
Lo-bounded.

The key in establishing (32) is to note that r,_; is independent of &; and uniformly Lo-
bounded, and that 77"E (2% ) is uniformly bounded too whenever T"E (z7,) and E (r?)
are. The arguments employed to show (31) thus apply for z; and Zz; as well, and (32) holds.

23:2 Zt—1E¢ Zt 2575 1€¢
T
Dieo Zt{lgg Zt 2Zt 15t
follows from Lemma A.2.

Summing up, are asymptotically equivalent and the result

The proof of the result in ii) follows along the same lines and we omit the details.l

Lemma A.4 Under the assumptions of Theorem 3.2, it holds, as T — oo, that
1ot S e B [ o2 (s) o2 () ds;
2. ﬁ Zf:pﬂ 2 ul S ;’—Z fol 02 (s) o2 (s)ds where 02 (s) = 02 (s) + 202 (s);
3. T1+n Zt pi1 AT = o <X2< ) — fol X (s)dX (s))

where X (1) is an Ornstein- Uhlenbeck process as defined in (14).

Proof of Lemma A.4

1. To obtain the limit of —'= ZtT:pH 22 €2, we use from the proof of Lemma A.3 (see (26))
the fact that

1 T 1 T t—2
E 2 2 _ 2 § 2j 2
T1+n 1€ — W T14n 0 Jzzt 1—j5 at + Op (1)
t=p+1 t=2 j=0

The Lipschitz property implies that !aut 1-j — §t| < C’% such that

T -2 A
1 2 2 2 9
0= 7 ZZQ Or1-502 ZOWJ&JZQ] <CT2+nZ jer
=2 j=0 =2 =0
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On the r.h.s. we have immediately, as T— oo, that

T t-2
2j
S e 0
t=2 5=0
: t=2 . 9j _ 1?7 (e-1)— (7P -1) £02(t=3) (p—1) 1n 2(t-3) 221
given that >, jo* = = , where W < CT102(t=3) and 2—1)
CT*. We also observe that,
T t—2 T
1 2 9 2% 1 9 o I (11— o*
t=2 5=0 t=2
T T _
1 22 TN B 1 22 @ <Q2(t 1))
1+ vt et 1+ vt et :
s a(l+o) T = a \(1+p

The first summand on the r.h.s. is easily seen to converge to 5 fol 02 (s) o2 (s) ds, while, for the

second, we have

T TN [ p2(t=1) C <
Z Y Z _
TlJr ( ) al Y= O(17") =o(1)
2 —

as required to complete the proof.
2. The proof of 2 is analogous to the proof of 1 and is therefore omitted.

3. Let Sy := 2322 2. We first follow Breitung and Demetrescu (2015, Proof of Corollary

1.2) and show that
1 1

Tz 2t = T
where the o, (1) term is uniform. The arguments are essentially the same as there; the only

difference is having to show that E (|z; — ,—;|) < C+/j for all t and j, which is obvious in their

T+ 0, (1)

i.i.d. setup, but marginally more difficult here. To this end, recall that Az, := v, — 2=

use Liapunov’s and Minkowski’s inequalities to conclude that,

j—1 j—1 2
1
E (|I’t — xt_j|) S \/E (([L‘t — xt—j)Z) = E (Z vt—j — T Z Ct_k;_ll't_k;_l)
k=0 k=0
j—1 2 1 j—1 - 2
< E Vi + — Ci—f— E t_k_l) :
(50)) e (5

and therefore using the uniform boundedness of the variance of xt—\/’il, it follows indeed that

E (Jzr — 2—;]) < CV/j as required.
We then follow Breitung and Demetrescu (2015, Proof of Theorem 2) and obtain via partial
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summation that,

R R
Titn Z Z—1Ti—1 = Titn Z (Sp—1 — Si—2) 1
t=p+1 t=p+1
1

T
1
= T1+n (ST—le—l - Sp—lxp) - m Z St—QA:Bt—l-
t=p+1

Now, since S,_1x, = O, (1) it is negligible in the limit; furthermore note that,

1 T 1 T 1 T
1+ g SioAxy_ = ity g Si_gUp—1 — T E Cr—251—2T1—3.
T T T
t=p+1 t=p+1 t=p+1

For the first summand on the r.h.s., we have using the Phillips-Solo device for the AR process
v;—1 that,

T T T
1 w 1 -
Titn Z Si—2Vi-1 = Ti+n Z Sp—aVp—1 + Titn Z Si-2 AVt
t=p+1 t=p+1 t=p+1
= AT + BT7

where 7, is a linear process with exponentially decaying coefficients.
Since ;4 is independent of S;_5 and the conditions of Hansen (1992) are fulfilled, we have
that,

AT:>%2/01X(S)CIM(S).

Using the partial summation formula on Br, it follows that,

T
1 _ 1 -
BT = m (UT—IST—Q — Up—ISp—l) - ,_ZT"'U Z Ut—QASt—Q’
t=p+1

Since supy<icp |Si| = T"supy<yoq 2| + 0, (TV*7) = O, (TV?**7) and §,_15,-1 = O, (1), it

follows that the first summand on the r.h.s. of the above equation is negligible; for the second,

we have
T T
1 E Up_o/AS, ! E Y
Dy e Vy_9Zi_9.
Titn 28012 = iy {—2Z1—2
t=p+1 t=p+1

Clearly, ©,_o is uniformly Le-bounded, and it is easily shown that 772z is uniformly Ls-
bounded as well. Then, the Cauchy-Schwarz inequality indicates that E (|0,_oz_s|) < CT"/?

such that
E
(s

and ﬁ ZtT:p +1Ut—2AS;_5 vanishes in probability.

T

1 .
1+n Z Ut_QASt_Q

t=p+1

) < OT-"/?
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Hence

T 2 T
1 lag_
Tl+n Z Zt-1Tt-1 = a ? (T1+n Z St—aVi-1 — T2 Z Ct_zxt?—2> +op(1).

t=p+1 t=p+1 t=p+1

Using the weak convergence of S; and x; we obtain

o S i = ;X?(w——(/ X (v - [ 1c<s>xz<s>ds)

2 (- [ xroxe)

Si_ovy_1 converges to an Ito-type integral without bias

Note that, 1nterest1ngly, e Zt_p T
term, unlike F Zt:p 41 Te—2v—1 under serial correlation. This is because S; and x; require
different normalizations, which is essentially the expression of the same mechanism ensuring

mixed Gaussianity of the unadjusted IVX estimator. B

Proof of Theorem 3.1

Consider .
Zive . thp-l-l “t—1Yt
= 5 . (33)
Zt:p-f—l Zt—1T¢—1
Since §; =y, — A0y = Bas_1 + i — A0 + & it follows that we can express 7% as,
T . T
/éiq)x — Zt:p-H Zt—1Yt _ ﬁ n Zt—p—H Zt— 1(’7Vt ’}/Vt + éft) (34)
ZZ:erl Zt—1Tt—1 Zt —pt1 At—1Tt—1

Write for the stable autoregression case

~

=1 —(a—a) z,

with x;_, stacking the p lags of z; and a the corresponding coefficients (of (1 — pL) A (L)),
i.e. the pure autoregressive representation of x;.

Then, analyze

t—3
Zt—1 = E QJAxt—l—j
Jj=0
t—4

= 11— 011+ (0—1) Z T o

=0
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We have that - -
. a . a
(0—1) Z; w9 j = T Z; Oxi_9_j = _ﬁdt—Z
J= J=

where d;_5 is here, with x; a stable autoregression, a mildly integrated process which is known to
be O, (T n/ 2). Furthermore, o= — 0 when ¢ goes to infinity at suitable rates; in the derivations
below, the effect will be quantified precisely whenever needed, but it is important to keep in
mind that z;,_y =~ x;,_ which is a stable autoregression.

We thus have for the numerator of 8% — § in (34) that,

T T T T
Z Zi—1 <€t + YV — ’Ayﬁt) = Z Zt—1€¢ — 7Y Z Zt—1 (ﬁt — Vt> — (’3/ — ")/) Z thlyAt- (35)
t=p+1 t=p+1 t=p+1 t=p+1

The first two summands in (35) deliver a normal distribution. This is because

T T T T
1 1 a T i3
T1/2 Z -1t = i Z L1t = iy, Z d—2; + T1/2 Z o &
t=p+1 t=p+1 t=p+1 t=p+1
T
1
= m Z Ty 1E¢ + Op (1)

t=p+1

with ZtT:p+1 di—sg; = O, (T/**7/%) given the results in the proofs of Lemmas A.2 and A.3,
and ZthpH 0'%e; = O, (T"?) given that Var <ZtT:p+1 Qt_3€t> =0, (ZtT:pH Q2t> = 0, (T").

Furthermore,
R 1 &
T2 Z 21 (h— 1) = — (T Z Ztlil:;p> ﬁ(d —a),
t=p+1 t=p+1
where the OLS autoregressive estimators,
1 & oz
t=p+1 t=p+1

following standard arguments can be shown to have a limiting multivariate normal distribution.
We now show that % Zthz 2124, does not converge to a vector of zeros, such that the limiting

distribution of ﬁ Zt:pH zi—1 (I — 1) is driven by \/LT Zt:pﬂ x;_pvp. Given that

1 1 1 T
T Z 2t-1Lt—p = T Z Tt 1Lt—p — T Z Qt_gxlmt—p - m Z dt—th—pa

t=p+1 t=p+1 t=p+1 t=p+1

the first summand on the r.h.s. gives the desired limit (see Lemma A.1). The second is easily
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seen to vanish since E (z;x;) vanishes at exponential rate (in ¢). For the third, we show that
ZtT:pH di—oxi_, = O, (T') as follows. By resorting to the Phillips-Solo device, it is tedious, yet
straightforward to show that

T T t—3
1 1 . ~ ,
f E dt,Q.’Bt,p = Op (? E dt2th> where dt,Q = E - Q]Vt,Q,j.
J:

t=p+1 t=p+1

Then,
1 < - 1 < -
f Z dt_gl/t_p = f Z dt—p—IVt—p + Op (1) s
t=p+1 t=p+1
and the proofs of Lemmas A.2 and A.3 provide the arguments leading to % Zz;p P Jt_,,_lut_p =

O, (Tl/QTM/Q) = O, (1) as required.

The third summand in (35) is

Zztht:( ( Zztll/t—i‘ Zztl )

t=p+1 t=p+1 —p+1
= o (1)

\Q>

since ¥ is easily shown to be consistent for -, \/LT ZtT:p 121y = O, (1) like in the case of

\/LT ZtT:pH 2184, and \/LT ZtT:pH 21 (0y — 1) = O, (1) as above. Hence,
T
Z (e¢ + v — V1)

1 & 1 & 1 & -
- Y it (33 ) (5 3 ) 3 )

t=p+1 t=p+1 t=p+1 t p+1

Furthermore, it is shown along the lines of the discussion of 77 327

1 Zt—1Lt—p that

T T

Z Z—1€¢ = Z Ty160+0p (1)

t=p+1 t=p+1

51~
3\

for both ﬁ ZtT:pH 216 and ﬁ ZtT:pH x;_pvy, Theorem 24.3 in Davidson (1994) is easily
checked to apply (see Lemma A.1 for the convergence of the sample covariance matrices);
since x;_,v; and z,_1&, are orthogonal thanks to the uncorrelatedness of v, and ¢, the term
\/LT ZtT:p 11 %t-1 (60 + v — A1) is asymptotically normal with mean zero and asymptotic vari-

ance

1 1
ap / o2(s)o? (s)ds+7v*(ag...ap 1) Q2 (ag. .. ap_l)// ot (s)ds.
0 0
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Checking that
1 < 1 ..
T D cf O
t=p+1

estimates the above asymptotic variance consistently is straightforward and we omit the details.

Proof of Theorem 3.2

Standard OLS algebra shows that the residuals 74 are numerically the same as in the autore-
gressive representation of x; if resorting to the error-correction representation, which is more

convenient with near-integration. We may thus write
b= vi— (6= 0) w1~ (6 — @) Ay

with Ax;_,11 stacking the first p — 1 lags of Az, and ¢ := 1 (p — 1) (the vector o depends on
all autoregressive coefficients of x;, but its exact value is irrelevant here).

We have the same representation as in (35), i.e.,

T T T T
Z Zt—1 (5t + Yy — ’AYﬁt) = Z Zt—1E€¢ — 7 Z -1 (f/t - Vt) - (’AY - ’Y) Z 21y,
t=p+1 t=p+1 t=p+1 t=p+1

yet z; is now a mildly integrated variable. Still, Lemmas A.3 and A.4 show that

1 T
T1/241/2 Z “t—18

t=p+1

is asymptotically normal with variance w? fol 02 (s) 02 (s) ds, whereas the remaining term can

be re-written as

T T T
1 A 1 A 1 .
i O 1 =) = g 3 A (67 0) ~rmm D Aadel (@ -a).

t=p+1 t=p+1 t=p+1
In the limit, this vanishes because (gﬁ — gz5> is O, (T') and (& — a) = O, (T~/?) as standard
analysis of near-unit root autoregressions shows, while, at the same time,

T

Z z211 = O (THn)

t=p+1
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(see Lemma A.4.3) and we only need to show that

T

Z 21 AT,y =0y (T).

t=p+1

This is known to be the case when z;_; is a near-integrated or stationary variable; we discuss
here the case where z; is an [VX instrument. Examining Zt:p 4o Zt-1 Ax;_q as a representative

for the whole vector,

T T T
1 A 1 n 1
— g Zt—1RTt1 = # E Zt—1Vt—1 T 75 g Ctzt—1T¢—2
T T T2 ’
t=p+1 t=p+1 t=p+1

it is easily shown that both j—% and j—% are uniformly Lo-bounded, hence E (% Zf:p 1 CtZt—1$t—2> =

O (1). Moreover, %ZtT:p 11 Zt—10—1 is itself O (1), which can be shown along the lines of the

discussion for % > qi—2xi—, in the proof of Theorem 3.1. W

Proof of Theorem 3.3

Since the residual effect of ¢; and 14 is easily checked to be negligible, the correction Qr is
negligible under the local alternative as well and we have for the residual-augmented IVX
t-statistic that,

Jive Z?:p+1 Zt—1 (gt + Blmtfl)

t = 1
b1 T > - +0p ( )
therl 216t

S pi1 1€ T D tepa1 HAT
t=p+1 ~t—1<t i b T1+n t=p+1 ~t—1Lt—1
T 2 .2 1 T 2 .2
\/ Zt:p+1 2i—1Et \/T1+n Zt:p+1 Zi_1€¢

The first summand on the r.h.s. converges to a standard normal distribution, Z; note that Z

+0,(1).

would indeed be independent of the limit process of the regressor x; since z;_1¢; and v; are
orthogonal. Thus, the result follows with Lemma A.4, items 1 and 3. W

B Tests for Persistence Change

In this section, for completeness, we provide a brief overview of the persistence change tests
of Harvey et al. (2006), which where used to evaluate whether the series under analysis had

undergone some persistence change over time.
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B.1 The generic persistence change model

We follow Harvey et al. (2006) and Busetti and Taylor (2004) and consider the following data
generation process (DGP),

Ty = d;ﬂ +Tt

Ty = PTio1 T U0

where ry = 0, d; is a set of deterministic variables, such as a constant or, if necessary, a constant
and time trend, v, is taken to satisfy Assumption 3 (together with 2), and p; obeys Assumption 4
in the most general case. For compatibility with the existing literature on testing for changes in
persistence we shall assume the variance functions in Assumption 2 to be constant throughout.

Four relevant hypothesis can be considered:

1. Hy : x; is I(1) (i.e. nonstationary) throughout the sample period. Harvey et al. (2006)

set pp =1 —¢/1, ¢ >0, so as to allow for unit root and near unit root behaviour.

2. Hy : x4 is 1(0) changing to I(1) (in other words, stationary changing to nonstationary) at
time [7*T); that is p; = p, p < 1 for t < [7*T] and p; = 1 — ¢/ for t > [7*T]. The change
point proportion, 7*, is assumed to be an unknown point in A = [r, 7], an interval in

(0,1) which is symmetric around 0.5;
3. Hy : x4 is I(1) changing to I(0) (i.e. nonstationary changing to stationary) at time [7*77;

4. Hy : x; is I1(0) (stationary) throughout the sample period.

B.2 The ratio-based persistence change tests

In the context of no breaks, Kim (2000), Kim et al. (2002) and Busetti and Taylor (2004)
introduced tests for the constant I(0) DGP (Hj) against the 1(0) — I(1) change (Hp;) which

are based on the ratio statistic,

(T -1 Y ( > )

t=[rT]+1 \i=[rT]+1
K 7] = [rT) t 2
e 5 (Lo
=1 \i=1
where 0;, is the residual from the OLS regression of z; on d; for t = 1,...,[rT] and 0;, is the

OLS residual from the regression of x; on d; for t = [7T]+1,...,T.
Since the true change point, 7%, is assumed unknown Kim (2000), Kim et al. (2002) and
Busetti and Taylor (2004) consider three statistics based on the sequence of statistics { K.,
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7 € A}, where A = [1, 7] is a compact subset of [0,1], i.e.,

[Tu]

MS = Tt Kisry; (36)
s=[7]
[Tu] 1
ME =1 Tt — K, ; 37
n * Z[] exp |:2 [ T]:| ( )
s=|1;
MX = max K (38)

se{[n).[rul}

where T, = [r,] — [1] + 1, and 7; and 7, correspond to the (arbitrary) lower and upper values
assumed for 7*. Limit results and critical values for the statistics in (36) - (38) can be found
in Harvey et al. (2006).

Remark B.1 The procedure in (36) corresponds to the mean score approach of Hansen (1991),
(87) is the mean exponential approach of Andrews and Ploberger (1994) and finally (38) is the
mazimum Chow approach of Davies (1977); see also Andrews (1993). O

In order to test Hy against the I(1) - 1(0) (Hyp) hypothesis, Busetti and Taylor (2004)
suggest the sequence of reciprocals of Ky, t = [7/T), ..., [7,T]. They define M S®, M E® and M X%
as the respective analogues of M'S, ME and M X, with K[.7) replaced by K - ;] throughout.
Furthermore, to test against an unknown direction of change (that is either a change from I(0)
to I(1) or vice versa), they also propose M SM = max [MS, MSR] , MEM = max [ME, MER] ,
and M XM = max [MX, MX"]. Thus, tests which reject for large values of MS, ME, and
M X can be used to detect Hy;, tests which reject for large values of M ST, ME® and M X"
can be used to detect Hyo, and MSM, MEM and MX™ can be used to detect either Hy; or
Hyp.

Harvey et al. (2006) also introduce a set of modified test statistics such that the cdfs of the
statistics under the null (Hg) and alternative (H;) coincide asymptotically at an asymptotic
critical value associated with a given significance level.

The first modified tests proposed where M S,, = exp(—byJ17)M S, ME,, = exp(—byJ17) M E
and M X, = exp(—bsJi7)M X, where by, k = 1,2, 3 are fixed constants and the modification
also makes use of the unit root test proposed by Park (1990), defined as J; r which consists

of 7! times the Wald statistic for testing the joint hypothesis v4.1 = ... = 79 = 0 in the
regression,
9
= 2,0+ Z vt + error, t=1,..T.
i=k+1

Note that under Hy, Ji 7 is O,(T ') so that exp(—byJir) — 1, k = 1,2, 3, and therefore MS,,,
ME,, and M X,, are simply equivalent to the MS, M E and M X statistics.
The choice of b, k = 1,2, 3 ensures that, for a significance level, 100a%, the corresponding

asymptotic upper-tail critical value of M .S,,, M E,, and M X,, under either Hy or H; is identical
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to the corresponding upper-tail critical values of M'S, M E and M X under H,. These statistics
have the same limiting distribution under Hj.

A further variante of modified procedures proposed by Harvey et al. (2006) is obtained by
replacing J; r with Jpi, = rTrlei[{lJL[TT], where Jy 7] is T-! times the Wald statistic for testing

the joint hypothesis y441 = ... = 79 = 0 in the regression,

9
T = 2,0 + Z vt + error, t=1,..,[77T).
i=k+1

Note that also in his case, under Hy, Jyuin is Op(T™") so that exp(—bfJmin) — 1, k = 1, 2, 3.
Therefore, M Sy, min = exp(—biJmin) M S, ME,, nin = exp(=b5Juin) ME and M X, nin =
exp(—b% Jmin) M X.

The reciprocal versions of these test, MSE MER MXEand MSE . MEER . MXE .

are constructed in a similar way, i.e., MSE = exp(—b;Jir)MSE, MEER = exp(—byJyr) M ER
and MXE = exp(—bsJi7)MXT; as well as MSH = exp(—=biJE YMST MEER =

exp(—bsJE YME®R and MXE . = exp(—b3JE )M X%, where JE = minJirr and Jyr)r
TE
is T~! times the Wald statistic for testing the joint hypothesis Y441 = ... = 79 = 0 in the
regression,
9
T = 2,0+ Z yit" + error, t=[T)+1,..,T.

1=k+1

Finally, the modified tests against an unknown direction of change are simply given as, M SM =

exp(—blle)MSM, ME% = eXp(-bgle)MEM, and MXT]XI = exp(—bgle)MXM; as well

as MSM . = exp(—b min[Jm, JE )MSM, MEM . = exp(—b;min[Jyi,, J5 )M EM and
]\4)(%111in = exp(—b} min[Jiin, Jﬁin])MXM.

B.3 Test outcomes

Table 7 gives the test outcomes for the null of constant persistence of the predictors considered
in Section 5. We decided upon visual inspection whether a constant or a constant with linear
trend is to be modeled as deterministic component d;. Except for E12, there is serious evidence

of time-varying persistence of the examined series.
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