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Abstract

Reality Checks (RC) are tests designed to deal with situations in which

there is a, possibly large, class of competing forecasting models and one

wants to know if any of these models beats a given benchmark.

However, there are situations in which it is more desirable to allow for

more than one benchmark. For example, we may want to test Granger

causality by comparing two classes of models distinguished by the inclu-

sion of a certain regressor.

Thus, we propose to test the null that none of the alternative models

beats the best of a set of benchmarks. This null can be tested by a

procedure that consists in a straightforward generalization of the statistic

of one of the Reality Checks for nested models of Clark and McCracken

(2012) and a bootstrap that generates the artificial samples according to

a model that nests all the benchmarks. We show by simulations that

the test has the correct empirical size and its power is greater than just

applying the RC test to the best performing benchmark. An application

to causality is presented as well.
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1 Introduction

The Reality Check (RC) was proposed by White (2000) as a means to deal with

situations in which several forecasting models are available. Suppose that in a

certain application, some of them produce better out-of-sample forecasts than

a given benchmark (usually a simpler model). If the number of models is large,

this may well happen by chance and not because there is actually a model better

than the benchmark. White proposed a test for the null that the benchmark

is as good as any one among a set of alternative models. The test statistic is

constructed by taking the following steps: (i) evaluate the out-of-sample fore-

casting errors with a certain loss function, (ii) calculate the differences between

the mean of the benchmark and the means of all the alternative models, and

(iii) take the maximum of these differences. As a consequence of the asymptotic

theory of West (1996), the statistic is approximately distributed as the maxi-

mum of correlated normals for large samples. White also showed how to obtain

critical values of the test using a version of the stationary bootstrap of Politis

and Romano (1994). The Superior Predictive Ability (SPA) test (Hansen, 2005)

is a modification of White’s Reality Check in which greater power is obtained

by normalizing the mean differences by estimates of their standard deviations.

A problem shared by these two tests is that they do not work well in a

scenario that is of particular interest, namely, when the benchmark is nested

in the alternative models (unless the benchmark has no estimated parameters).

The asymptotic normality that is a requisite for White’s RC and Hansen’s SPA

only holds in the nested case when the out-of-sample size P is small compared

to the in-sample size T (more precisely, when the ratio P/T converges to zero).

The theory of predictive ability tests for nested models started shortly after

Diebold and Mariano (1995) and West (1996) introduced the kind of predictive

ability test that is usually known as the Diebold and Mariano test. It became

apparent that for nested models, the tests were not asymptotically normal and

the critical values would have to be drawn from non-standard distributions that

can be expressed as functionals of Brownian motions. The asymptotic theory

of these tests for the nested, one-step forecast case was developed in Clark and

McCracken (2001) and McCracken (2004). On the other hand, in Clark and

2



West (2007), it is argued that the normal distribution can be an acceptable

approximation in some cases. In Clark and McCracken (2005), the theory is

adapted to the case of direct multistep forecasts. They also show that the

critical values can be obtained by means of a parametric bootstrap.

The theory of nested models comparison and the Reality Check converge in

Clark and McCracken (2012), where a test is proposed for the same null hypoth-

esis of the RC, but when the benchmark is nested in all the alternative models.

Here, the asymptotic distribution of the test is the maximum of non-standard

distributions with nuisance parameters. However, the critical values can be ob-

tained by means of a semi-parametric wild bootstrap. In this article, we propose

a generalization of this RC. In particular, we are interested in situations where

there is not a unique benchmark model, but a set of possible ones. In fact, the

case in which the benchmark is perfectly determined beforehand is not the most

natural in macro-economic data (it may be, however, in financial examples such

as the one in White (2000), where the natural benchmark is that the predictand

is a random walk). We can also describe the test as a comparison between two

classes of models in which the null is that the best of one class is at least as

good as the best of the other one.

We had in mind one particular application, namely, to determine if a certain

variable has predictive capacity in forecasting another one or, in other words,

to test Granger causality. This idea underlies some applications, such as the

one in Hansen (2005). We will show in section 6 that the result of the test can

be strongly dependent on the choice of the benchmark. If the benchmark is

not good, the result of the test can mislead to the conclusion that there is a

causality relation when in fact, there is not.

Other examples of such comparisons between forecasting model classes are

those mentioned in Pincheira (2011): (1) time-series models compared to eco-

nomic models, (2) simple combination strategies vs complex combination schemes,

(3) models that use the aggregate CPI and models that use disaggregate com-

ponents and (4)linear and nonlinear models.

Consequently, we want a test for the null that the best of a class of bench-

marks is at least as good as the best of a class of alternatives. There are at least

two obvious ways to generalize the MSE-t statistic of Clark and McCracken
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(2012) to the case of multiple benchmarks and we analyze both of them. We

obtain the asymptotic distribution of the test and propose a variant of their

fixed-regressor wild bootstrap for this case. We also show the results of some

Monte Carlo experiments that are designed to resemble some cases of interest

and an application to real data.

In section 2 we introduce the less technical assumptions, the tests and the

essential notation. In section 3 we describe the asymptotic behavior of the

statistics, relegating the details to a mathematical appendix. In section 4, we

propose a variation of the wild bootstrap. Finally, the results of the simulations

(section 5) and of the real-data application (section 6) are presented.

2 Comparison of multiple benchmarks to multi-

ple alternatives

In this section, we will begin by motivating the test with a theoretical example

and describing the environment, notation and the assumptions the are required

for its contents. The most technical assumptions are confined to the mathemat-

ical appendix and here we only discuss those that are necessary to understand

the implications of the null hypothesis.

2.1 A theoretical example

Assume that the bivariate series (x(1)
t , yt) satisfies the model

x
(1)
t = φ1yt−1 + ε1,t,

yt = φ2yt−2 + ε2,t,

where ε1,t and ε2,t are uncorrelated. Then, x
(1)
t does not Granger-cause yt and

the optimal predictor of yt+1 using {xt−j , yt−j}p
j=0 is ŷt+1 = φ2yt−1 for any

p ≥ 1. However, for p = 0, there is a predictor of the form ŷt+1 = β2x
(1)
t , with

β2 6= 0 that has less Mean Squared Error (MSE) than the optimal univariate

AR(1) predictor, that is ŷt+1 = 0. Suppose that we are performing a RC test to

see if it is possible to predict better yt+1 using as inputs some of the indicators

{x(k)
t }k. If the benchmark is the AR(1), then we will probably reject because
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of x
(1)
t , when in fact, the AR(2) is the best model and it cannot be improved

using x
(1)
t .

On the other hand, if we design a test for the null that no alternative model

beats the best AR(p) with p ≤ P , we can avoid that kind of errors, or at least

to make them less likely when P is large enough.

2.2 Environment and null hypothesis

The notation will be quite similar to Clark and McCracken (2012). We consider

forecasts of yt+τ using linear models. By n, we denote the number of available

predictors. We will use indexes such as i to denote subsets of {1, . . . , n} and

xi,t is the vector that comprises the values of the predictors that belong to the

set i at time t. The indexes i can be equivalently interpreted as models. The

vector that includes all the n predictors is denoted by xt.

Assumption 1. For any i, we estimate the vector of parameters β̂i,t by direct

linear squares with a recursive scheme, that is

β̂i,t = arg minβ

t∑
s=1

|ys+τ − x′i,sβ|2.

With the estimated parameters, we build forecasts ŷi,t+τ = x′i,tβ̂i,t for t =

T, . . . , T + P − τ . The forecast errors are ûi,t+τ = yt+τ − ŷi,t+τ . Among the 2n

possible models, we will restrict the analysis to the elements of two particular

classes, I and J . Generally, i and j will denote models in I and J respectively,

whereas ` indicates models that may belong either to I or to J .

We are interested in the mean squared forecasting errors. Let σ2
τ (`) be the

population mean squared error of model `, that is, E(u`,t+τ )2, where u`,t+τ =

yt+τ − x′`,tβ
∗
` and β∗` is the population parameter vector of model `. The popu-

lation forecasts errors of the full model are ut = yt+τ − x′tβ
∗.

The null hypothesis is

H0 : min
i∈I

σ2
τ (i) ≤ min

j∈J
σ2

τ (j),

that is, no model in J beats the best model in I.

We want to preserve one idea of the single-benchmark RC, namely, that the

benchmark is a simpler model. However, it would be too strong to assume that
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all i ∈ I are nested in all j ∈ J . For example, when testing causality of a variable

zt to yt, I should contain models with only lags of yt, whereas the models in J

would use as well lags of zt. In this case, in order that i is nested in j for all

i ∈ I, j ∈ J , it would be necessary to force that all bivariate models include as

many lags of yt as the largest univariate model, what is clearly undesirable.

The following assumption gives space for many applications, as we will see

in section 5 while preserving the idea of small vs large models, simplifying the

asymptotic theory and allowing to obtain the critical values by a fixed-regressor

bootstrap.

Assumption 2. (a) ∀i ∈ I and a ∈ {1, . . . , n}, ∃j ∈ J such that i ∪ {a} ⊆ j.

(b) There is a certain k0 ⊂ {1, . . . , n} such that ∀i ∈ I, i ⊆ k0.

In the case of Granger causality, k0 is the set of the lags of the predictand

and thus, i ∈ I represent univariate models and j ∈ J multivariate ones.

2.3 Test statistics

Let d̂ij,t = û2
i,t+τ − û2

j,t+τ , d̄ij = (P − τ + 1)−1
∑T+P−τ

t=T d̂ij,t and γ̂dij (l) =

(P − τ + 1)−1
∑T+P−τ

t=T+l (d̂ij,t − d̄ij)(d̂ij,t−l − d̄ij). We can use the covariances

γ̂dij (l) to estimate the long-run covariance of d̄ij as (P − τ + 1)−1/2Ŝdij =
∑l̄

l=−l̄ K(l/L)γ̂dij (l), where K(·) is a certain kernel and L is a truncation pa-

rameter and γ̂dij (−l) = γ̂dij (l). Then, we build the one-to-one comparison

statistics as MSE-tij = (P − τ + 1)−1/2d̄ij/Ŝdij . Finally, the test statistics are

MSE-t-mM = min
i∈I

max
j∈J

MSE-tij (1)

and

MSE-t-Mm = max
j∈J

min
i∈I

MSE-tij . (2)

When I has only one model, then MSE-t-mM and MSE-t-Mm reduce to the

MSE-t statistic of Clark and McCracken (2012). On the other hand, note that

if MSE` = (P − τ + 1)−1
∑T+P−τ

t=T û2
`,t, then mini∈I maxj∈J (MSEi −MSEj) =

maxj∈J mini∈I(MSEi−MSEj) = mini∈I MSEi−minj∈J MSEj . Hence, the fact

that MSE-t-mM and MSE-t-Mm do not coincide is a consequence of dividing

the MSE differences by the variance estimator Ŝdij . The choice among MSE-t-

mM and MSE-t-Mm is relevant in more than one respect. As we show below,
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there is a significant difference of power, but MSE-t-Mm is also more related to

an extension of the test that we will outline in section 4.

3 Asymptotics

Let us denote by k1 the set of the regressors that have nonzero parameters

in the full model x′tβ
∗. The null hypothesis and assumption 2 together imply

that there is a reordering of the regressors such that xt = (x′k0,t, x
′
kc
0,t)

′ and

β∗ = (β∗k0

′,0′)′. Now, let I0 and J0 be the sets of models in I and J that nest

k1 ∩ k0 and k1 respectively. That is, I0 comprises the ”good” models of I and

J0 the ”good” models of J .

Under the null, k1 ⊆ k0, so k1 ∩ k0 = k1 and all the good models include

k1. Hence, all of them have the same population forecasting error, whereas the

remaining ones, that is, the ”bad” ones in (I \ I0) ∪ (J \ J0) have greater error.

When we compare one of the ”good” models to one of the ”bad” ones, the

corresponding MSE-tij statistic diverges to either −∞ or +∞. A consequence

of this is that in (1) and (2), only the MSE-tij with i ∈ I0 and j ∈ J0 are asymp-

totically relevant. In other words, only the good models matter asymptotically.

More precisely, in the mathematical appendix, we prove that

MSE-t-mM = min
i∈I0

max
j∈J0

MSE-tij + op(1), (3)

MSE-t-Mm = max
j∈J0

min
i∈I0

MSE-tij + op(1). (4)

Another consequence of the null hypothesis is that among the pairs (i, j) ∈
I0×J0, we can find only two situations. Either i is nested in j or the models are

overlapping in the sense of Vuong (1989), that is, both contain the true model

k1 plus terms that vanish for the population value of the parameters.

Hence, for (i, j) ∈ I0 × J0, the asymptotics of MSE-tij , is given by the

following known results.

(a) When i and j are nested, the asymptotic distribution of MSE-tij is given

by theorem 3.2 in Clark and McCracken (2012).

(b) When i and j are overlapping , the asymptotic distribution of MSE-tij is

given by theorem 2.1 in Clark and McCracken (2011).
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In the mathematical appendix, we give the specific non-standard distribu-

tions for both cases.

4 The bootstrap

Although we know the asymptotic distribution of the test, we will use a boot-

strap to obtain the critical values or p-values. Our version of the bootstrap is

adapted from Clark and McCracken (2011 and 2012). They generate artificial

samples according to

y∗t = β̂0x0,t + v̂∗t ,

where the vector x0,t contains either the predictors that are common to the two

models compared (in the overlapping models test) or the predictors of the bench-

mark (in the RC). The v̂∗t terms are simulated by a wild bootstrap designed to

retain some features of the true prediction errors such as the heteroskedastic-

ity and when τ > 1 also the autocorrelation. In our case, the null hypothesis

implies that the true model is included in k0, so we will generate our artificial

samples according to y∗t = β̂k0xk0,t + v̂∗t . To be more specific, the following steps

are taken.

1 We fit the model with all n regressors and obtain the forecast errors v̂t,

with t = 1, . . . , T + P − τ .

2 We estimate a MA(τ − 1) model vt = εt + θ1εt−1 + . . . + θτ−1εt−τ+1,

obtaining the residuals ε̂t.

3 We simulate i.i.d variables ηt and calculate v̂∗t = ηtε̂t + θ̂1ηt−1ε̂t−1 + . . . +

θ̂τ−1ηt−τ+1ε̂t−τ+1.

4 We estimate the parameter βk0 of the model with xk0,t and build the

bootstrapped data y∗t = β̂k0xk0,t + v̂∗t .

5 With the sample y∗1 , . . . , y∗T+P−τ , calculate the statistics MSE-t-mM and

MSE-t-Mm.

In point 3 we depart from Clark and McCracken (2012) in one respect.

We replace the normal distribution used to generate ηt by one among two
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discrete distributions that take either the values (−(
√

5 − 1)/2, (
√

5 + 1)/2)

with probabilities p = (
√

5 + 1)/(2
√

5) and 1 − p respectively or (−1, 1) with

probabilities (0.5, 0.5). The first distribution satisfies Eη3 = 1 and the second

Eη3 = 0,Eη4 = 1, so they preserve the third and fourth-order moments of ε̂t

respectively. We took the idea from Davidson and Flachaire (2008). In our

Monte Carlo experiment, we have observed that for finite samples, the empiri-

cal sizes obtained with the second distribution were more approximate to their

theoretical values. This is consistent with the fact that we simulate the innova-

tions of the prediction error with a symmetric distribution, so the third-order

moment preserved even when Eη3 = 0. If one has reasons to believe that the

innovations are skewed, the distribution with the unitary third-order moment

should be chosen instead.

In order to prove the validity of the bootstrap under the null hypothe-

sis, we have to prove that with the bootstrap-induced probability distribu-

tion, P ∗, the matrix {MSE-tij}(i,j)∈I0×J0 and its bootstrapped counterpart

{MSE-t∗ij}(i,j)∈I0×J0 have the same asymptotic distribution. For this, we have to

consider the consequences of generating the artificial sample y∗t with the full set

of regressors k0 instead of either i for the nested case, or i∩j for the overlapping

case. In the mathematical appendix we show that this effect is asymptotically

negligible. Here we only outline the argument: if i ∈ I0 and j ∈ J0, then

k1 ⊆ i, j and thus, k1 ⊆ i, i ∩ j ⊆ k0. This means that the excess parameters

in β∗k0
compared to β∗i in the nested case or to β∗i∩j in the overlapping case are

zero. Since the bootstrap distributions obtained with the regressors i or i ∩ j

are correct for each case, then so are those obtained with k0.

If the null does not hold, then k1 is not included in k0. Consequently, by

assumption 2, there is a model j ∈ J such that ∀i ∈ I, σ2
τ (j) < σ2

τ (i). Then,

MSE-t-mM and MSE-t-Mm diverge to +∞. On the other hand, let k2 = k1∩k0.

Then, the bootstrapped statistics will by asymptotically distributed as their

counterparts under the null that yt+τ = x′k2,tβk2 +uk2,t+τ , so the critical values

obtained by the bootstrap are be bounded and the asymptotic power of the test

is 1.
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4.1 An extension

Suppose the object of interest is not just whether any model in J beats the

benchmarks, but precisely which ones in J do that. If we express the null

as a composite hypothesis ∩j∈JH0,j = ∩j∈J{σ2
τ (j) ≥ mini∈I σ2

τ (i)}, then the

question is which H0,j are false. In the case of one benchmark, this can be

determined by the procedure of Romano and Wolf (2005), while controlling

the familywise error rate (FWE), that is, the probability that one true H0,j is

rejected (the RC only guarantees that when all of them are true).

We can adapt their method as follows. First calculate

d̂1 = inf{x : P ∗[MSE-t-Mm∗ ≤ x] ≥ 1− α},

where P ∗ is the bootstrap probability distribution. Then, we reject H0,j when

σ2
τ (j) < min

i∈I
{σ2

τ (i)− d̂1(P − τ + 1)1/2Ŝdij}.

If H0,j is rejected for at least one j, then repeat the procedure excluding the

indexes j of the already rejected hypotheses and continue until no hypothesis is

rejected. The fact that the FWE is controlled can be proved by modifying the

proof of theorem 3.1(ii) in Romano and Wolf (2005).

5 Monte Carlo

We have designed a Monte Carlo experiment with three different Data Genera-

tion Processes.

• DGP 1: this scenario is similar to DPG 1 of Clark and McCracken (2012),

but including several univariate benchmarks with lags of yt.

• DGP 2: similar to the DGP reported in section 4.1 of Hubrich and West

(2010), but again, with benchmarks with lags of yt.

• DGP 3: in this scenario we test causality of a predictand yt by another

variable xt when (xt, yt)′ is generated according to a VAR model.

We report the results in two forms. First, in tables of rejection frequencies

and second by the empirical cumulative distribution functions (ecdf) of the p-

values. We run 2,000 realizations of the DGP and obtain as many p-values
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with 500 bootstrap samples. Under the null hypothesis, the p-values should

be distributed according to a uniform distribution in (0, 1), so the ecdf would

be near the diagonal. We represent the ecdfs only in the interval [0, 0.2], since

theoretical significance levels below 0.8 are not usual. Under an alternative

hypothesis, the more powerful the test is, the further its ecdf is from the diagonal

towards the top left.

In order to assess the power of the MSE-t-mM and MSE-t-Mm tests, we

compare it to the results with the following procedure: we pick the benchmark

i∗ whose out-of-sample forecasts have the minimum MSE and then, we apply

the single-benchmark RC test with the statistic maxjMSE-ti∗j .

5.1 DGP 1

This scenario is similar to DGP 1 in Clark and McCracken (2012), that is

intended to replicate the real case of forecasting the US core inflation. We

simulate the predictand yt and a set of predictors xm,t, with m = 1, . . . , n, with

n = 5 (rather than n = 7 to reduce the computational burden) as

yt+τ = −0.3yt + bx1,t + ut+τ

ut+τ =





εt if τ = 1

εt + 0.95εt−1 + 0.9εt−2 + 0.8εt−3 if τ = 4

zm,t = γizm,t−1 + vm,t, γm = 0.8− 0.15(m− 1),

where Eεtvm,t = Evm,tv`,t = 0, Var(εt) = 2 and Var(vm,t) = 1− γ2
i .

The main difference of our experiment is that we consider several univariate

benchmarks instead of only one. Let xt = (yt, . . . , yt−4, x1,t, . . . , x5,t)′. We

choose I as the collection of all sets i = {1, . . . , p}, with p = 1, . . . , 4, that is, all

the autoregressive models with maximum lag p. On the other hand, J comprises

all sets of the form j = i ∪ k, where k ⊂ {5, . . . , 9} and k 6= ∅, that is, we have

4(25−1) = 124 bivariate models. The simulation is repeated for P = R = 40, 80

and 120. In tables 2 and 3 we report the rejection frequencies for α = 0.1 and

α = 0.05 and in figure 1 we represent the ecdfs of the p-values just for the case

P = R = 80.
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5.2 DGP 2

The second scenario is based in the one in section 4.1 of Hubrich and West (2010)

and is related to the question whether disaggregate data can be useful to predict

an aggregate. Here it is assumed that the predictand yt is the aggregation of

three components yi,t, i = 1, 2, 3. Here the benchmark is an univariate model of

yt and the alternative ones are bivariate models that include some component

yi,t. Unlike Hubrich and West, we do not focus on the case of small sets of

models. Consequently, we assume that the true orders of the autoregressive

models are unknown and we allow them to range from one lag to four. Thus,

the benchmarks are

ŷt+1 = c +
p∑

j=0

β0jyt−j

with p = 0, . . . , 3 and the alternatives are

ŷt+1 = c +
p∑

j=0

β0jyt−j +
q∑

j=0

β1jyi,t−j

with p, q = 0, . . . , 3 and i = 1, 2. Hence, we have 4 benchmarks and 24 alterna-

tives.

The simulations under the null use the same univariate autoregressive model

for all three components yi,t = 1+0.5yi,t−1+εi,t, where εi,t is standard Gaussian

white noise. Under the alternative hypothesis, the vector (y1,t, y2,t, y3,t)′ is

generated by a VAR(1) with the matrix



0.5 −0.6 0

−0.4 0.3 0

0 0 0.5


 .

The rejection frequencies under the null and the alternative are in tables 4

and 5. The cdfs of the p-values are in figure 2.

5.3 DGP 3

Now we want to check the performance of the test when the object of interest is

a causality relation between two variables. For this, we generate data according
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to the following model

yt+1 = φ11yt + φ12yt−1 + φ13yt−2 + bxt + ξ1t

xt+1 = φ21xt + φ22xt−1 + φ23xt−2 + ξ2t,

where φ1j = 0.6,−0.3, 0.2 and φ2j = 0.4, 0.2, 0.1. As in the previous cases, when

b = 0, the null hypothesis holds. We report results for b = 0 and b = 0.4.

In this example, all the regressors are either lags of yt or lags of xt. The first

class of models, I comprises the univariate autoregressive models that include p

lags of yt up to p = 6, whereas J comprises all the bivariate models with p lags

of yt and q lags of xt, where p and q range from 1 to 6, so J has 36 models.

Otherwise, the conditions of the experiment are as in the previous cases.

The rejection frequencies are in tables 6 and 7 and the cdfs of the p-values for

P = 80 are in figure 3.

5.4 Discussion

The simulations show that under the null, the empirical size of both tests is

acceptably close to the theoretical one. All the simulations show that MSE-t-

Mm has greater power than MSE-t-mM and the difference is greater for long

series. This is probably a consequence of the fact that for any matrix A,

maxi minj Aij ≤ minj maxi Aij . This implies that MSE-t-Mm≤MSE-t-mM and

then, the critical values of MSE-t-Mm are lower that the ones of MSE-t-mM.

On the other hand, both statistics appear to remain close when the null does

not hold. In simulations, their cdfs under the alternative hypothesis are closer

than under the null and in fact, it can be proved that when the null does not

hold, MSE-t-mM = MSE-t-Mm + Op(1).

As expected, the power of the test increases with the length of the series,

which is consistent with the theoretical result that asymptotically, the power

of both tests is 1. Again, as expected, even MSE-t-mM is more powerful than

maxjMSE-ti∗j .
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6 Real data example

In this section, we apply our tests to the problem of determining whether the

unemployment is useful to predict inflation one step ahead. The series used in

this application are the Unemployment Rate (UNEM) and the Consumer Price

Index (CPI) of USA. Both series are subject to preliminary transformations, so

yt = ∇∇ log CPIt and xt = ∇ log UNEMt, where ∇ut = ut − ut−1. The length

of bivariate series, after the transformation is T = 648 (from 1958:1 to 2010:12).

Since both series have some seasonal component, it is convenient to use

seasonal models. Thus, our univariate benchmarks are

ŷt+τ =
p∑

j=0

β0,jyt−j ŷt+τ =
p∑

j=0

β0,jyt−j +
s+p∑

j=s−1

β0,jyt−j , (5)

where s = 12 and p ranges from 0 to 6. The alternative models are

ŷt+τ =
p∑

j=0

β0,jyt−j +
q∑

j=0

β1,jxt−j (6)

ŷt+τ =
p∑

j=0

β0,jyt−j +
p+s∑

j=s−1

β0,jyt−j +
q∑

j=0

β1,jxt−j (7)

ŷt+τ =
p∑

j=0

β0,jyt−j +
q∑

j=0

β1,jxt−j +
s+q∑

j=s−1

β1,jxt−j (8)

ŷt+τ =
p∑

j=0

β0,jyt−j +
p+s∑

j=s−1

β0,jyt−j +
q∑

j=0

β1,jxt−j +
s+q∑

j=s−1

β1,jxt−j (9)

where p and q range from 0 to 6.

We have computed the statistics MSE-t-mM, MSE-t-Mm and maxjMSE-

ti∗j , with M = 5000 replications for the bootstrap and λ = 0.5. The prediction

errors of the full model present some skewness, so in the bootstrap we use the

distribution with Eη3 = 1. The p-values are, 0.04 for MSE-t-Mm, 0.07 for

MSE-t-mM .

Let us see now some of the risks of the RC with a unique benchmark. In

table 1 we represent for each univariate model of (5), the p-value of the single-

benchmark Reality Check against all the alternatives in a set that comprises

those models in (6)–(9) that include exactly the same lags of yt as the bench-

mark.
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Below, we reproduce the MSEs of the benchmark and the best bivariate

model. What we get is that the result of the test is strongly dependent on the

particular benchmark. Sometimes, we reject the null strongly, but we can see

that this happens because our benchmark is not very good. We may prevent

this by picking the benchmark that has smallest MSE, but this is is the näıve

method that we tried in the Monte Carlo section. Then, we saw that it is less

powerful than our tests and this is reflected in its 0.15 p-value.

Table 1: p-values of the single-benchmark RC.
AR order 1 2 3 4 5

p-value 0 0 0.1556 0.0928 0.1862

MSEi 0.8525 0.7949 0.6520 0.5168 0.4715

minj∈J MSEj 0.7730 0.7256 0.6132 0.4816 0.4442

AR order (seasonal) 1 2 3 4 5

p-value 0 0.0822 0.3976 0.0732 0.1526

MSEi 0.7855 0.6805 0.5338 0.4676 0.4402

minj∈J MSEj 0.7330 0.6558 0.5080 0.4332 0.4120

7 Conclusions

There are situations in which we want to compare a class of models to a bench-

mark from a given class, but it is not clear which one should be chosen. Rather

than to pick up one, it is preferable to take all of them into account. To do

this, we use a straightforward generalization of the statistic of the RC for nested

models and a modification of the semiparametric wild bootstrap. The novelty

of our bootstrap is that it generates the artificial samples assuming that the

true model is one that nests all the possible benchmarks, while satisfying the

null hypothesis.

We show with Monte Carlo simulations in different scenarios that our method

performs better than just the RC with the better-performing benchmark. We

also apply our test to show that there is considerable evidence that bivariate

models that use unemployment can predict better the inflation than univariate
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ones.

A Mathematical Appendix

We need some additional notation for the asymptotic analysis: J` is the n` × n

selection matrix such that x`,t = J`xt; B = (Extx
′
t)−1, B` = (Ex`,tx

′
`,t)

−1;

B(t) = (t−1
∑t−τ

s=1 xsx
′
s)−1, B`(t) = (t−1

∑t−τ
s=1 x`,sx

′
`,s)

−1.

Let ht = xtut, H(t) = t−1
∑t−τ

s=1 ht and Ãij be a n × n matrix with rank

ni +nj − 2ni∩j such that Ã′ijÃij = B−1/2(−JiBiJ
′
i +JjBjJ

′
j)B

−1/2 and h̃ij,t =

σ−1ÃijB
1/2ht. Let Shh be equal to

∑τ−1
k=−τ+1 Γhh(k), and Γhh(k) is the auto-

covariance function of ht. Finally, Sij = σ−2S
1/2
hh B1/2Ã′ijÃijB

1/2S
1/2
hh

The technical assumptions that were not discussed in section 2 are the fol-

lowing.

Assumption 3. (a) Ut+τ = [h′t+τ , vec(xtx
′
t−Extx

′
t)
′]′ is covariance stationary.

(b) EUt+τ = 0. (c) For all l > τ − 1,Eht+τh′t+τ−l = 0. (d) Extx
′
t < ∞ and is

positive definite. (e) for some r > 8, Ut+τ is uniformly bounded in Lr. (f) For

some r > d > 2, Ut+τ is strong mixing with coefficients of size −rd/(r− d). (g)

limT T−1E(
∑T−τ

s=1 Us+τ )(
∑T−τ

s=1 Us+τ )′ = Ω < ∞ is positive definite.

Assumption 4. (a) let K(x) be a continuous kernel such that for all real scalars

x, |K(x)| ≤ 1,K(x) = K(−x) and K(0) = 1. (b) For some bandwidth L and

constant i ∈ (0, 0.5), L = O(P i). (c) The number of covariance terms l̄ used to

estimate the long-run covariances Sdij ,dij satisfies τ − 1 ≤ l̄ < ∞.

Assumption 5. limP,T P/T = λP ∈ (0,∞).

A.1 Asymptotics of MSE-t-Mm and MSE-t-mM

To determine the asymptotic distributions under the null, we need the following

auxiliary lemma, whose proof is left to the reader.

Lemma 1. For z ∈ R, let [z]+ be equal to max{0, z}. If [−xt]+ = Op(1) and

yt
p→ −∞, then max{xt, yt} − xt = op(1).

Proposition 1. MSE-t-mM = mini∈I0 maxj∈J0 MSE-tij+op(1) and MSE-t-Mm =

maxj∈J0 mini∈I0 MSE-tij + op(1).

16



Proof. We will prove the result for the MSE-t-mM and leave the other case to

the reader. First

MSE-t-mM = min
(
min
i∈I0

max
j∈J

MSE-tij , min
i∈I\I0

max
j∈J

MSE-tij

)
.

Since ∀i ∈ I \ I0,maxj∈J MSE-tij
p→ ∞, then mini∈I\I0 maxj∈J MSE-tij

p→ ∞.

Thus, by lemma 1,

MSE-t-mM = min
i∈I0

max
j∈J

MSE-tij + op(1). (10)

Now, we can apply again lemma 1 for each i to get maxj∈J MSE-tij = maxj∈J0 MSE-tij+

op(1). Then, we conclude by replacing in (10) and invoking the continuous map-

ping theorem.

Proposition 2. The asymptotic distributions of the tests are given by

MSE-t-mM d→ min
i∈I0

max
j∈J0

gij , (11)

MSE-t-Mm d→ max
j∈J0

min
i∈I0

gij , (12)

where gij ∼ (Γ1,ij − 0.5Γ2,ij)/Γ1/2
3,ij,

Γ1,ij =
∫ 1

λ

ω−1W (ω)′SijdW (ω)

Γ2,ij =
∫ 1

λ

ω−2W (ω)′SijW (ω)dω

Γ3,ij =
∫ 1

λ

ω−2W (ω)′S2
ijW (ω)dω,

and W (ω) is a n× 1 standard Brownian motion.

Proof. The result is a straightforward adaptation of theorem 3.2 in Clark and

McCracken (2012) for the pairs (i, j) where i is nested in j and theorem 2.1 in

Clark and McCracken (2011) when i and j are overlapping. We only need to be

careful to ensure that the Brownian motion is the same for all pairs (i, j). For

this, note that if we set Ckt = ht, where C = S
1/2
hh . We can apply theorem 4.1

in Hansen (1992) to get

[vt]∑

s=[ut]

K(s)k′s ⇒
∫ v

u

W (ω)dW (ω)′,

17



where⇒ denotes weak convergence and K(s) = C−1H(s). Now, h̃s = σ−1ÃB1/2Cks.

Thus

t∑

s=[ut]

H̃(s)h̃′s = σ−2ÃB1/2C

t∑
s

K(t)k′sC
′B1/2′Ã′ ⇒

σ−2ÃB1/2C
{ ∫ 1

u

W (ω)dW (ω)′
}

C ′B1/2′Ã′.

Consequently,

t∑

s=[ut]

h̃′sH̃(s) = tr
t∑

s=[ut]

H̃(s)h̃′s ⇒

σ−2trÃB1/2C
{ ∫ 1

u

W (ω)dW (ω)′
}

C ′B1/2′Ã′ =
∫ 1

u

W (ω)′
(
σ−2C ′B1/2′Ã′ÃB1/2C

)
dW (ω).

As stated in the discussion of the Monte Carlo, the asymptotic behavior of

both tests under the alternative hypothesis satisfies the constraint

MSE-t-mM = MSE-t-Mm + Op(1).

This is a consequence of the fact that when σ2
τ (i) < σ2

τ (j), then (P − τ +

1)1/2MSE-tij
p→ (σ2

τ (i)−σ2
τ (j))/Sdij , Sdij is the population counterpart of Ŝdij .

This entails that

(P − τ + 1)−1/2MSE-t-mM
p→ min

i∈I0
max
j∈J0

(σ2
τ (i)− σ2

τ (j))/Sdij
(13)

(P − τ + 1)−1/2MSE-t-Mm
p→ max

j∈J0
min
i∈I0

(σ2
τ (i)− σ2

τ (j))/Sdij . (14)

In fact, since ûj,t approach to the unique ut as β̂j,t → β∗j , Sdij only de-

pends on i. On the other hand, for any ai, bj , ci ∈ R, mini maxj(ai − bj)/ci =

maxj mini(ai − bj)/ci. Hence, the constants in the right hand sides of (13)

and (14) are the same. Since d̂i,j = σ2
τ (i) − σ2

τ (j) + Op(T−1/2) and Ŝdij =

Sdij + Op(T−1/2), then

MSE-t-mM−MSE-t-Mm = (P − τ + 1)1/2Op(T−1/2) = Op(1).
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A.2 Validity of the bootstrap

We have to prove that MSE-tij
d∗→ g∗ij , where g∗ij ∼ (Γ∗1,ij − 0.5Γ∗2,ij)/Γ∗3,ij

1/2,

where Γ∗m,ij is distributed as Γm,ij , for m = 1, 2, 3. Let us compare our bootstrap

with those of Clark and McCracken (2011) and (2012).

• In case i ∈ I0 is nested in j ∈ J0, the difference is that we generate the

data with x′k0,tβ̂k0,T + v̂∗t+τ instead of x′i,tβi + v̂∗t+τ , but since k1 ⊂ i ⊂ k0,

then the excess parameters have null population values.

• In case i ∈ I0 and j ∈ J0 are overlapping, the difference is that we generate

the data with x′k0,tβ̂k0,T + v̂∗t+τ instead of x′i∩j,tβi∩j + v̂∗t+τ , but since

k1 ⊂ i ⊂ k0, then k1 ⊂ i ∩ j ⊂ k0 and again, the excess parameters have

null population values.

We have to see that the excess regressors in the artificial sample only aport

a op∗(1) error to the MSE-t-∗ij statistics. Let us check this for the numerator of

MSE-t-∗ij . For the denominator, the calculations are similar.

We denote by û∗`,t+τ (a) the bootstrapped residual obtained using the model

x′a,tβ̂a,T + v̂∗t+τ . We can prove

∑
s

{
(û∗i,s+τ (i)2 − û∗j,s+τ (i)2)− (û∗i,s+τ (k0)2 − û∗j,s+τ (k0)2)

}
= op(1). (15)

In order to see that (15) holds, we write first, for ` = i, j,

û∗`,s+τ (k0) = û∗`,s+τ (i) + x′tQj(t)B(t)−1Jk0 β̂k0,T .

On the other hand, we can put Jk0 β̂k0,T = Jk0∩`J
′
k0∩`Jk0 β̂k0,T +Jk0∩`cJ ′k0∩`cJk0 β̂k0,T ,

but ∀m ⊂ `,Q`(t)B(t)−1Jm = 0 and thus,

û∗`,s+τ (k0) = û∗`,s+τ (i) + x′tQ`(t)B(t)−1Jk0∩`cJ ′k0∩`cJk0 β̂k0,T = û∗`,s+τ (i) + D`.

Hence,

û∗i,s+τ (k0)2 − û∗j,s+τ (k0)2 = û∗i,s+τ (i)2 − û∗j,s+τ (i)2 +

2û∗i,s+τ (i)(Di −Dj) + 2Dj

(
û∗i,s+τ (i)− û∗j,s+τ (i)

)
+ (D2

i −D2
j ) =

û∗i,s+τ (i)2 − û∗j,s+τ (i)2 + E1 + E2 + E3.
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Now, that

E1 =
∑

s

2ĥ∗i,s+τ (i)′
(
Qi(s)−Qj(s)

)
B(t)−1 ×

[
Jk0∩icJ ′k0∩ic − Jk0∩jcJ ′k0∩jc

]
Jk0 β̂k0,T = op(1)

can be proved along the lines of lemma 1 in Clark and McCracken (2012), and

using that [Jk0∩icJ ′k0∩ic − Jk0∩jcJ ′k0∩jc ]Jk0 β̂k0,T = op(T−1/2) whereas for

E2 =
∑

s

Ĥ∗(s)′(Qi(s)−Qj(s))xsx
′
sQi(t)B(t)−1Jk0∩icJ ′k0∩icJk0 β̂k0,T = op(1)

and

E3 =
∑

s

β̂′k0,T J ′k0
Jk0∩icJ ′k0∩icB(s)−1Qi(s)xsx

′
s(Qi(s)−Qj(s))×

B(s)−1Jk0∩icJ ′k0∩icJk0 β̂k0,T = op(1),

we may use that sups |T 1/2(Qi(s)−Qj(s)−Qi+Qj)| = Op(1) and sups |T 1/2Ĥ∗(s)| =
Op∗(1).

B Tables and figures

Table 2: DGP 1: rejection frequencies under the null (b = 0).

P=40 P=80 P=120

α = 0.9 α = 0.95 α = 0.9 α = 0.95 α = 0.9 α = 0.95

τ = 1

MSE-t-mM 0.0795 0.0410 0.0895 0.0475 0.1085 0.0515

MSE-t-Mm 0.0850 0.0475 0.0975 0.0600 0.1095 0.0570

MSE-t-näıve 0.0645 0.0300 0.0625 0.0300 0.0815 0.0410

τ = 4

MSE-t-mM 0.1120 0.0685 0.1075 0.0560 0.1250 0.0695

MSE-t-Mm 0.1250 0.0735 0.1085 0.0615 0.1240 0.0700

MSE-t-näıve 0.0925 0.0530 0.0770 0.0390 0.0945 0.0525
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Figure 1: DGP 1: results under the null hypothesis (above) and the alternative

(below), for P = R = 80. Left is τ = 1 and the right is τ = 4. MSE-t-mM is

represented by the dotted line, MSE-t-Mm by the dash-dot line and the näıve

test by the dashed line.
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Figure 2: DGP 2: results under the null hypothesis (above) and the alternative

(below), for P = R = 80. MSE-t-mM is represented by the dotted line, MSE-t-

Mm by the dash-dot line and the näıve test by the dashed line.
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Figure 3: DGP 3: results under the null hypothesis (above) and the alternative

(below), for P = R = 80. Left is τ = 1 and right, τ = 3. MSE-t-mM is

represented by the dotted line, MSE-t-Mm by the dash-dot line and the näıve

test by the dashed line.
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