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Abstract

We model the structure and strategy of social interactions prevailing at any point in
time as a directed network and we address the following open question in the theory
of social and economic network formation: given the rules of network and coalition
formation, preferences of individuals over networks, strategic behavior of coalitions
in forming networks, and the trembles of nature, what network and coalitional dy-
namics are likely to emergence and persist. Our main contributions are to formulate
the problem of network and coalition formation as a dynamic, stochastic game and
to show that: (i) the game possesses a stationary Markov correlated equilibrium (in
network and coalition formation strategies), (ii) together with the trembles of nature,
this stationary correlated equilibrium determines an equilibrium Markov process of
network and coalition formation, and (iii) this endogenous Markov process possesses
a finite set of ergodic measures, and generates a finite, disjoint collection of nonempty
subsets of networks and coalitions, each constituting a basin of attraction. Moreover,
we extend to the setting of endogenous Markov dynamics the notions of pairwise sta-
bility (Jackson-Wolinsky, 1996) and the path dominance core (Page-Wooders, 2009a).
We show that in order for any network-coalition pair to emerge and persist, it is nec-
essary that the pair reside in one of finitely many basins of attraction. The results
we obtain here for endogenous network dynamics and stochastic basins of attraction
are the dynamic analogs of our earlier results on endogenous network formation and
strategic basins of attraction in static, abstract games of network formation (Page
and Wooders, 2009a), and build on the seminal contributions of Jackson and Watts
(2002), Konishi and Ray (2003), and Dutta, Ghosal, and Ray (2005).

KEYWORDS: endogenous network dynamics, dynamic stochastic games of net-
work formation, stationary Markov correlated equilibrium, equilibriumMarkov process
of network formation, basins of attraction, Harris decomposition, ergodic probability
measures, dynamic path dominance core, dynamic pairwise stability.

JEL Classifications: A14, C71, C72



1 Introduction

1.1 Overview

In all social and economic interactions, individuals or coalitions choose not only with
whom to interact but how to interact, and over time both the structure (the “with
whom”) and the strategy (“the how”) of interactions change. Our objectives here are
to model the structure and strategy of interactions prevailing at any point in time as
a directed network and to shed new light on the co-evolution of network structure and
strategic behavior by addressing the following open question in the theory of social
and economic network formation: given rules of network formation, preferences of
individuals over networks, strategic behavior of coalitions in forming networks, and
trembles of nature, what network and coalitional dynamics are likely to emergence
and persist. Thus, we propose to study the emergence of endogenous network and
coalitional dynamics resulting from strategic behavior and the randomness in nature.

Our main contributions are to formulate the problem of network formation as a
dynamic, stochastic game, and to show that: (i) this game possesses a stationary
Markov equilibrium in network and coalition formation strategies, (ii) together with
the trembles of nature, this stationary equilibrium determines an equilibrium Markov
process of network and coalition formation that respects the rules of network forma-
tion and the preferences of individuals and (iii) although uncountably many networks
may form, this equilibrium Markov process generates a finite, disjoint collection of
nonempty subsets of networks and coalitions, each constituting a basin of attraction,
and possesses a finite, nonempty set of ergodic measures.

In our prior work on the co-evolution of network structure and strategic behavior
using static abstract games of network formation (Page and Wooders, 2009a), we have
shown that, given the rules of network formation and the preferences of individuals,
these games possess strategic basins of attraction and these contain all networks that
are likely to emerge and persist as the game unfolds. Moreover, we have shown that
when any one of these strategic basins contains only one network, then that network
(i.e., the network contained in the singleton basin) is stable against all coalitional
network deviation strategies - and thus the game has a nonempty path dominance
core. Finally, we have shown in Page-Wooders (2009a) that depending on how we spe-
cialize the rules of network formation and the dominance relation over networks, any
network contained in the path dominance core is pairwise stable (Jackson-Wolinsky,
1996), strongly stable (Jackson-van den Nouweland, 2005), Nash (Bala-Goyal, 2000),
or consistent (Chwe, 1994).

We show here that there are many parallels between the static abstract game
formulation and our prior results for static games and the results we obtain here
for our Markovian dynamic game formulation. This is suggested already by the
seminal paper by Jackson and Watts (2002) on the evolution of networks. Jackson
and Watts present to our knowledge the first theory of stochastic dynamic network
formation over a finite set of linking networks governed by a Markov chain generated
by the myopic strategic behavior of players (following the Jackson-Wolinsky rules of
network formation) and the trembles of nature. Their model builds on the earlier,
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nonstochastic model of dynamic network formation due to Watts (2001) - as far as we
know, the first model of network dynamics (see also Skyrms and Pemantle, 2000). By
considering a sequence of perturbed, irreducible and aperiodic Markov chains (i.e.,
each chain with a unique invariant measure) converging to the original Markov chain,
they show that any pairwise stable network is necessarily contained in the support of
an invariant measure - that is, in the support of a probability measure that places all
its mass on sets of networks likely to form in the long run. We show here that similar
conclusions can be reached for directed networks with many arc types governed by
a Markov process generated endogenously by the farsighted strategic behavior of
players (following arbitrary network formation rules) and the trembles of nature.

In a general Markov game setting, with farsighted players, what precisely does
it mean for a network to be pairwise stable - or stable in any sense? For example,
if the state space of networks is large, then the endogenous Markov process of net-
work formation is likely to have many invariant measures - and in fact many ergodic
probability measures (i.e., measures that place all their probability mass on a single
absorbing set). Which absorbing set contains networks stable in the sense of pairwise
stability, or strong stability, or Nash stability? These are some of the questions we
answer here in our study of endogenous network dynamics.

We conjecture that in any reasonable dynamic stochastic model of network forma-
tion the Markov process of network and coalition formation endogenously determined
by a Nash equilibrium will possess ergodic probability measures and generate basins
of attraction. We show here that, in fact, the endogenous Markov process possesses
only finitely many ergodic measures and generates only finitely many basins of at-
traction. This endogenous finiteness property of basins in equilibrium has serious
implications for empirical work on networks. In particular, since nature does not
afford the empirical observer multiple observations across states but rather only mul-
tiple observations across time, the fact that only finitely many long run equilibrium
sets are possible, and more importantly, the fact that on these sets (i.e., on these
basins of attraction) state averages are equal to time averages gives meaning and
significance to time series observations which seek to infer the long run equilibrium
network. Moreover, to the extent that networks can truly represent various social
and economic interactions, our understanding of how and why the network forma-
tion process moves toward or away from any particular basin can potentially shed
new light on the persistence or transience of many social and economic conditions.
For example, how and why does a particular path of entrepreneurial and scientific
interactions carry an economy beyond a tipping point and onto a path of economic
growth driven by a particular industry - and why might it fail to do so? How and why
does a particular path of product line-nonlinear pricing schedule configurations lead
a strategically competitive industry to become more concentrated - or fade? These
are some of the applied questions which hopefully can be addressed using a model of
endogenous network dynamics.
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1.2 Endogenous Network Dynamics

Our approach to endogenous dynamics is motivated by the observation that the sto-
chastic process governing network and coalition formation through time is determined
not only by nature’s randomness (or nature’s trembles) through time - as envisioned
in random graph theoretic approaches - but also by the strategic behavior of individu-
als and coalitions through time in attempting to influence the networks and coalitions
that emerge under the prevailing rules of network formation and the trembles of na-
ture. Thus, here we will develop a theory of endogenous network and coalitional
dynamics that brings together elements of random graph theory and game theory
in a dynamic stochastic game model of network and coalition formation. While dy-
namic stochastic games have been used elsewhere in economics (see, for example,
Amir, 1991, 1996; Amir and Lambson, 2003; and Chakrabarti, 1999, 2008; Duffie,
Geanakoplos, Mas-Colell, and McLennan, 1994; Mertens and Parthasarathy 1987,
1991; Nowak, 2003, 2007), their application to the analysis of the evolution of social
and economic networks is new.

Our plan of analysis has two parts. In part (1) we will construct our dynamic
game model of network and coalition formation, and then show that this game has
a stationary Markov correlated equilibrium. In part (2), we analyze the stability
properties of the endogenous Markov process of network and coalition formation
induced by this stationary Markov correlated equilibrium.

Our existence result in part (1) is based on the seminal paper Nowak and Ragha-
van (1992) on the existence of stationary Markov correlated equilibria. While the
existence of Nash equilibria in stationary Markov strategies for discounted stochastic
games with finite or countable state spaces and compact metric action spaces has
long been established (e.g., see Federgruen, 1978), the existence of such equilibria
for discounted stochastic games with uncountable state spaces and compact metric
action spaces has been an open question since such games were first studied by Him-
melberg, Parthasarathy, Raghavan, and Van Vleck (1976). Here we formulate our
dynamic game of network and coalition formation in a compact metric space of di-
rected networks, possibly containing uncountably many networks, and we establish
the existence of stationary Markov correlated equilibrium in players’ network and
coalition formation strategies. In a discounted stochastic game of network and coali-
tion formation consisting of m players, we show that the farsighted strategic behavior
of players in attempting to influence the path of network and coalition formation gen-
erates m+1 equilibrium Markov processes of network and coalition formation, one of
which - depending on the current state - will prevail as the governing law of motion in
any period. Thus, one of our main contributions, is to provide a possible theoretical
foundation in strategic behavior for the random graph theoretic approach to social
and economic network formation.

The assumptions of our discounted stochastic game model of network formation
are similar to those required to establish the existence of stationary correlated equi-
libria in discounted stochastic games (e.g., Nowak and Raghavan 1992) and subgame
perfect equilibria in discounted stochastic games (e.g., Mertens and Parthasarathy
1987, Salon 1998, and Maitra and Sudderth 2007). Our model has six primitives
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consisting of the following: (i) a feasible set of directed networks representing all pos-
sible configurations of social or economic interactions, (ii) a feasible set of coalitions
allowed to form under the rules of network formation for the purpose of proposing
alternative networks, (iii) a state space consisting of feasible network-coalition pairs,
(iv) a set of players and player constraint correspondences specifying for each player
and in each state the set of feasible alternative networks that a player can propose un-
der the rules of network formation as a member of the current or status quo coalition
- and as a nonmember, (v) a set of player discount rates and payoff functions defined
on the graph of players’ product constraint correspondence, and (vi) a stochastic law
of motion. This stochastic law of motion represents nature and specifies the probabil-
ity with which each possible new status quo network-coalition (i.e., new state) might
emerge as a function of the status quo network-coalition pair (i.e., the current state)
and the profile of player-proposed new status quo networks (i.e., the current action
profile). Using these primitives, we construct a discounted stochastic game model
of network formation, and then show that this game possesses a stationary Markov
correlated equilibrium in network proposal strategies.

Finally, in part (1) we show that, together with the stochastic law of motion,
this stationary correlated equilibrium determine an equilibrium Markov process of
network and coalition formation. More importantly, we are able to conclude via clas-
sical results due to Blackwell (1965) (also, Himmelberg, Parthasarathy, and vanVleck
(1976)), Nowak and Raghavan (1992), and Duffie, Geanakoplos, Mas-Colell, and
McLennan (1994)) that this correlated equilibrium over Markov stationary strate-
gies is optimal against player defections to any other network proposal strategies
(including history-dependent proposal strategies) - thus showing that our decision to
focus on correlation over stationary strategies (i.e., strategies that depend only on
the status quo network-coalition pair) is well-founded.

In part (2), we analyze the stability properties of the endogenous Markov process
of network and coalition formation. In particular, using methods of stability analysis
essentially due to Nummelin (1984) and Meyn and Tweedie (2009) - and based on the
profound work of Doeblin (1937, 1940) - we will show that the equilibrium Markov
process of network and coalition formation possesses ergodic probability measures and
generates basins of attraction. We will then study in some detail the number and
structure of these basins of attraction as well as the structure of the set of invariant
probability measures. More importantly, we will show that, in a state space with
uncountably many networks, the equilibrium process possesses only finitely many
ergodic measures and basins of attraction. Also, in part (2) we will introduce the
notions of dynamic stability and consistency and using these notions extend the
definitions of pairwise stability and path dominance core to the dynamic Markov
setting developed here. We will then show that networks that are stable with respect
to either of these notions must necessarily reside in the basins of attraction generated
by the endogenous network dynamic.
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1.3 Related Literature

To our knowledge, the first paper to study endogenous dynamics in a related model is
the paper by Konishi and Ray (2003) on dynamic coalition formation. The primitives
of their model consist of (i) a finite set of outcomes (possibly a finite set of networks),
(ii) a set of coalitional constraint correspondences specifying for each coalition and
each status quo outcome, the set of new outcomes a coalition might bring about if
allowed to do so, and (iii) a discount rate and set of player payoff functions defined on
the set of all outcomes. Konishi and Ray show that their model possesses a stochastic
law of motion governing movement from one outcome to another and a consistent
valuation function such that (a) if a move from one outcome to another takes place
with positive probability, then for some coalition this move makes sense in that no
coalition member is made worse off by the move and no further move makes all
coalition members better off, and (b) if for a given outcome there is another outcome
making all members of some coalition better off and no further outcome makes this
coalition even better off, then a move to another outcome takes place with probability
1 (i.e., the probability of standing still at the given outcome is zero). Stated loosely,
then, Konishi and Ray show that for their model there exists a law of motion which
generates coalitionally improving moves from one outcome to another (i.e., in our
case it would be from one network to another).

Our model differs from the model of Konishi and Ray in several respects. First, in
our model movements from one network (outcome) to another are largely determined
by the strategic behavior of individuals. In our model, equilibrium strategic behav-
ior, together with natures trembles, are central to determining equilibrium network
dynamics.

Second, whereas Konishi and Ray, for technical reasons, restrict attention to a fi-
nite set of outcomes (in our model, a finite set of networks), we allow for uncountably
many networks - this to allow for consideration of networks with a large number of
nodes or networks with uncountably many arc types. This is more than a technical
nicety. In order to capture the myriad and potentially complex nature of interac-
tions between players (say for example in a stock market or in a contracting game
with multiple principals and multiple agents) we must allow there to be uncountably
many possible types of interactions. In our model the set of potential interactions
are represented by a set of arc types (in fact, by a compact metric space of arc types)
with each arc type (or arc label) representing a particular type of interaction (or
connection) between nodes in a directed network. Thus, because we allow for un-
countably many arc types in describing the interactions between nodes, in our model
there are uncountably many possible networks (or outcomes, in the language of Kon-
ishi and Ray). Moreover, in order to model large networks (i.e., networks with many
nodes), in our model we can allow there to be infinitely many nodes - although here
we focus exclusively on the finite nodes case. Third, while Konishi and Ray restrict
attention at the outset to Markov laws of motion, we will show that our strategically
determined equilibrium Markov process of network and coalition formation is robust
against all possible alternative dynamics, even those induced by history-dependent
types of strategic behavior. Thus, at least for the class of Konishi-Ray types of mod-
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els, we will show that Markov laws of motion are stable and robust with respect to
other forms of history-dependent laws of motion.1

Finally, we take rules of network formation as given primitives of the model. We
show that the interactions of strategic behavior, network structure, and the trembles
of nature generate an equilibrium process of network and coalition formation and
change consistent with these rules. We will also show that this process possesses
a nonempty set of ergodic measures and generates basins of attraction. There are
no rules of coalition formation — rules specifying how the process moves from one
state to another in Konishi-Ray; instead they focus on transitions consistent with
improvement properties for coalitions.

In contrast to Konishi-Ray, Dutta, Ghosal, and Ray (2005) consider strategic be-
havior in a dynamic game of network formation over a finite set of undirected linking
networks (rather than directed networks) under a particular set of network formation
rules. They show existence of a Nash equilibrium and identify conditions under which
efficiency can be sustained in equilibrium - thus, continuing in a dynamic setting the
seminal work of Jackson and Wolinsky (1996) and Dutta and Mutuswami (1997) on
equilibrium and efficiency. Here our focus is on equilibrium and stability rather than
equilibrium and efficiency and our analysis is carried out in a dynamic, stochastic
game model of network and coalition formation, admitting all forms of network for-
mation rules, over an uncountable set of directed networks. Dutta et al. (2005)
restrict attention to Markov network formation strategies and show that there is an
equilibrium in this class. In contrast, we show for the class of all strategies (includ-
ing possibly history dependent strategies) that there is an equilibrium in stationary
Markov correlated strategies; and therefore, by Blackwell’s classical result (Black-
well, 1965, Theorem 6f) we conclude that this type of equilibrium is robust against
defections by individual players to even history-dependent strategies. Moreover, as
mentioned above, we show that in general, the resulting equilibrium Markov process
of network and coalitional formation possesses finitely many ergodic measures and
generates finitely many network and coalitional basins of attraction.

We view the starting point of our research to be the pioneering work of Jackson
and Watts (2002) already discussed briefly above. Our model of endogenous net-
work and coalitional dynamics extends their work on stochastic network dynamics
in several respects. First, in our model players behave farsightedly in attempting
to influence the path of network and coalition formation - farsighted in the sense of
dynamic programing (e.g., Dutta, Ghosal, and Ray (2005))2. Moreover, in our model
the game is played over a (possibly) uncountable collection of directed networks un-
der general rules of network formation which include not only the Jackson-Wolinsky
rules, but also other more complex rules. In our model the law of motion is such
that the trembles of nature are Markovian rather than i.i.d. as in Jackson and Watt,
and are functions of the current state and the current profile of network and coali-

1By a Markov law of motion we mean a stochastic law of motion where probabilistic movements
from one outcome or network to another depend only on the current outcome rather than on some
history of outcomes.

2See Chwe (1994), Page, Wooders, and Kamat (2005), and Page and Wooders (2005) for notions
of farsighted behavior in static, abstract games.
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tion proposals by players. Extending the notion of pairwise stability to a dynamic
setting, one of the benchmarks for our research is to show that in a Markov model
of network and coalition formation, if a network is dynamically pairwise stable, then
in order to persist, it must be contained in one of finitely many basins of attraction,
and therefore, contained in the support of an ergodic probability measure.

2 Primitives

2.1 Directed Connections and Directed Networks

The basic ingredients of our model are as follows:

[A-1] (nodes, arc types, and players)

N = a finite set of nodes, with typical elements i and j, equipped with the
discrete metric dN ,3

A = a compact metric space of arc types, with typical element a, equipped
with metric dA,

D = a finite set of players, with typical element d,

P (D) = the collection of all nonempty subsets or coalitions of players, with
typical element S.

Arcs represent potential types of connections between nodes, and depending on
the application, nodes can represent economic agents (players) or economic objects
such as markets or firms. We will make a distinction between nodes and players -
and thus, we will not assume automatically that the set of nodes N and the set of
players D are one and the same.

We begin by defining the notion of a directed connection.

Definition 1 (Directed Connections)

Given node set N and arc set A, a directed connection is an ordered pair (a, (i, j)) ∈
A × (N ×N) consisting of an arc type a and an order pair of nodes, i and j,
indicating that nodes i and j are connected by a type a arc from node i to node
j. The set of all possible directed connections is given by

K := A× (N ×N). (1)

3Under the discrete metric the distance between two nodes i and j in N is given by

dN (i, j) :=

�
1 if i �= j
0 if i = j.
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Consider an example in which nodes represent traders in an asset market for the
shares of a particular stock, and consider the connection from trader i to trader j
given by (as, (i, j)), where

as = (0, 0, ps, qs) ∈([0, pb]× [0, qb])× ([0, ps]× [0, qs])� ~} �
A

⊂ R4+.

Here, as is sell arc indicating that trader i is willing to sell to trader j as many as qs
shares at a price of ps per share. Note that in this example, nodes and players are
one and the same (i.e., N = D). For example, in some applications of our model the
set of nodes N might consist of the union of two disjoint sets, firms F and markets
M , where the firms are players and the markets are passive in that they do not make
strategic decisions vis-a-vis firms. More on this later.

Given our assumptions [A-1], the set of all possible directed connections, K, is a
compact metric space with product metric

dK
�
(a, (i, j)), (a�, (i�, j�))

�
:= dA(a, a

�) + dN(i, i�) + dN(j, j�). (2)

A directed network is defined as follows:

Definition 2 (Directed Networks)

Given node set N and arc set A, a directed network, G, is a nonempty, closed
subset of directed connections, K = A× (N ×N). The collection of all directed
networks is denoted by Pf (K).

Thus, a network G ∈ Pf (K) is a nonempty, closed set of connections specifying
the various ways the nodes in N are connected by the arcs in A in network G.

Under our definition of a directed network, we allow an arc to go from a given
node back to that given node (i.e., loops are allowed).4 Also, under our definition an
arc can be used multiple times in a given network and multiple arcs can go from one
node to another. However, our definition does not allow a particular arc a to go from
a node i to a node i� multiple times.

The following notation is useful in describing networks. Given directed network
G ∈ Pf (K), let

G(a) := {(i, j) ∈ N ×N : (a, (i, j)) ∈ G} ,
and

G(ij) := {a ∈ A : (a, (i, j)) ∈ G}.

⎫⎬⎭ (3)

Thus, in network G,

G(a) is the set of node pairs connected by arc a,
and

G(ij) is the set of arcs from node i to node j.

4By allowing loops we are able to represent a network having no connections between distinct
nodes as a network consisting entirely of loops at each node.
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If for some arc a ∈ A, G(a) is empty, then arc a is not used in network G. Also, if
for some node i ∈ N , G(ij) and G(ji) are empty for all j 9= i, then node i is isolated.

We will also find the following notation useful. Given directed network G ∈
Pf (K), let

G+(i) := {j ∈ N : (a, (i, j)) ∈ G for some a ∈ A} ,
and

G−(i) := {j ∈ N : (a, (j, i)) ∈ G for some a ∈ A}.

⎫⎬⎭ (4)

Thus, in network G,

G+(i) is the set of nodes j such that there is at least one arc from i to j,
and

G−(i) is the set of nodes j such that there is at least one arc from j to i.

Thus, G+(i) is the set of nodes, “you can get to” and G−(i) is the set of nodes
“you can come from” at node i in network G. Note that in a directed network with
multiple connections between nodes, the cardinality of G+(i), denoted by |G+(i)|, is
not the out degree of note i.5 Nor is |G−(i)| the in degree of node i. The out degree
of node i in network G is given by

S
j∈N |G(ij)| . Similarly, the in degree of node i

in network G is given by
S
j∈N |G(ji)| .

2.2 The Space of Directed Networks

In order to analyze the co-evolution of strategic behavior, network structure and
equilibrium dynamics, we must find a topology for the space of directed networks
that is simultaneously coarse enough to guarantee compactness and fine enough to
discriminate between differences across networks that are due to differences in the
ways nodes are connected (via differing arc types) and differences across networks that
are due to the complete absence of connections. We resolve this topological dilemma
by equipping the space of directed networks, Pf (K), with the Hausdorff metric h.
Because the set of directed connections, K := A × (N × N), is a compact metric
space, the space of directed networks, Pf (K) equipped with the Hausdorff metric
is automatically compact (see Section 7 below, also see Section B.11 in Hildenbrand
1974, or Sections 3.16-3.18 in Aliprantis and Border 2006). Moreover, given the nature
of the discrete metric on the set of nodes, it is easy to show that if the Hausdorff
distance between any pair of networks G and G� is less than ε ∈ (0, 1), then the
networks can differ only in the ways a given set of node pairs are connected - and not
in the set of node pairs that are connected. In particular, if for networks G and G�,
h(G,G�) < ε < 1, then

(a, (i, i�)) ∈ G if and only if (a�, (i, i�)) ∈ G�

for arcs a and a� with dA(a, a�) < ε.
To illustrate the sensitivity of the Hausdorff metric topology to absence or pres-

ence of connections across networks, consider the following example. Suppose that

5Recall that |G(ij)| = 0 if and only if G(ij) = ∅.
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the set of nodes is given by N := {i1, i2, i3}, while the set of arcs types is given by
A = [0, 1]. We can think of arc types a ∈ [0, 1] as representing intensity levels or flow
levels from one node to another or as expressing the probabilities with which one
node interacts with another.6 Consider the three networks, G1, G2, and G3 depicted
in Figure 1.

i 1

i2 i 3

1
11

1

G1 G2

G3

1

11

.001

1

i1

i2 i 3

1
11

1

1

11

0

1

i1

i2 i 3

1
11

1

1

111

Figure 1

Note that the three networks differ only in the nature of the connection from node
i1 to node i2. In network G1 this connection is inactive (i.e., has a zero intensity
level), that is, (0, (i1, i2)) ∈ G1. In network G2 the connection from i1 to i2 is weak,
that is, (.001, (i1, i2)) ∈ G2. However, in network G3, there is no connection at all
from i1 to i2. Under the network metric h (see 60), networks G1 and G2 are close,
while networks G1 and G3 as well as networks G2 and G3 are far apart. In particular,
h(G1, G2) = .001, while

h(G1, G3) = 2
and

h(G2, G3) = 2− .001.
In the analysis to follow, one of our main objectives will be to better understand

the emergence and stability properties of equilibrium network dynamics generated
6 In the context of linking networks, this class of networks (i.e., networks with constrained, variable

link strength) has recently been used to investigate the endogenous formation of efficient and reliable
communications networks by Bloch and Dutta (2009). See Page and Wooders (2009c) for a further
discussion of differences between linking networks with variable length strength and directed networks
with heterogeneous arc types.

10



by the endogenous interplay between network structure and strategic behavior in the
formation of networks over time. In order to achieve this objective, we must allow
for the emergence of networks where some connections are absent altogether (i.e.,
where some node pairs are not connected in any direction by any arc types, as in
network G3 in Figure 1). The Hausdorff metric topology on the space of networks is
particularly well suited for the type of analysis required to achieve this objective.7

2.3 The Feasible Set of Networks: Definition, Examples, and Com-
ments

In formulating our game of network and coalition formation, it will often be useful
to restrict attention to a particular subset of feasible networks.

Definition 3 (Feasible Networks)

Given node set N and arc set A, a feasible set of networks G is a nonempty, h-closed
subset of the collection of all directed networks Pf (K).

In the examples to follow we will exhibit several types of restrictions on the set
of networks Pf (K) leading to feasible sets G which are useful in applications.

2.3.1 The Cardinality of Connections and Arc Feasibility

Cardinality and arc type restrictions specify for each node pair (i, i�) ∈ N ×N how
many and what types of arcs can be used in making a connection from node i to
node i�.

7Another way to see this: rather than think of a network G as a nonempty, closed subset of the
Cartesian product of arcs and node pairs,

G ⊂ K := A× (N ×N),
think of network G as a set-valued function, fG,

fG : domfG → Pf (A)

from the subset domfG ⊆ N ×N of node pairs connected in G into the space Pf (A) of nonempty,
closed subsets of the set of arcs A. If network G is incomplete (i.e., has some node pairs without
connections) then the domain of definition, domfG, of function fG will be a proper subset of the
set of all node pairs N × N . Now consider the space of all such functions (i.e., the space of all
networks). Because domains can vary across functions, fG, (i.e., because domains are not fixed and
constant across functions) it is very difficult to define a topology on such a function space (called
a space of partial functions). One way around the variable domain problem is to equip function
space with a graph topology (e.g., see Naimpally 1966 or Beer 1993). This is precisely the role
played by the Hausdorff metric topology in the space of networks, Pf (K), where each network is
represented by a nonempty, closed subset of the space of connections K and where the set of node
pairs involved in connections can vary across networks. The Hausdorff metric topology in Pf (K) is
a graph topology, and as is the case with graph topologies in spaces of partial functions, it solves
the variable connections problem by making the variability of connections part of the topology (i.e.
part of the way we measure the distance between networks).
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Example 1 Suppose that the feasible set of networks G is given by

Gnm :=
�
G ∈ Pf (K) : ∀(i, i�) ∈ N ×N, n(ii�) ≤ ��G(ii�)�� ≤ m(ii�)� , (5)

where |G(ii�)| is the cardinality of the set of arcs from node i to node i� in network
G and n(·) and m(·) are nonnegative, integer-valued functions defined on the set of
node pairs N ×N such that m(ii�) > 0 for some node pair. Thus, for each network
G ∈ Gnm there is a minimum of n(ii�) arcs and a maximum of m(ii�) arcs (of different
types) from node i to node i�. It is easy to show that Gnm is an h-closed subset of
Pf (K).

If the functions n(·) andm(·) are constants, for example, if n(ii�) = 0 andm(ii�) =
1 for all node pairs, then G ∈ G01 if and only if every node pair (i, i�) is connected by
at most one arc type. Alternatively, if the functions n(·) and m(·) are equal, positive
constants across node pairs, for example, if n(ii�) = m(ii�) = 1 for all (i, i�), then
G ∈ G1 if and only if every node pair (i, i�) is connected by one and only one arc
type.

Example 2 Suppose that the feasible set of networks G is given by

GA :=
�
G ∈ Pf (K) : ∀(i, i�) ∈ N ×N, G(ii�) ⊆ A(ii�) � , (6)

where A(ii�) is the feasible set of arc types that can be used in making connections
from i to i�. It is easy to show that if A(ii�) is dA-closed for all (i, i�) ∈ N × N ,
then GA is an h-closed subset of Pf (K). Note that here we are not ruling out the
possibility that in some networks in GA some node pairs may not be connected (i.e.,
for some G ∈ GA, G(ii�) = ∅ for some node pairs (i, i�) ∈ N ×N).

Example 3 Combining examples 1 and 2, suppose that the feasible set of networks
is given by

GAnm :=
�
G ∈ Gnm : ∀(i, i�) ∈ N ×N, G(ii�) ⊆ A(ii�)� , (7)

If n(ii�) = m(ii�) = 1 for all (i, i�), then the feasible set of networks, denoted by GA1,
is given by

GA1 :=
�
G ∈ G1 : ∀(i, i�) ∈ N ×N, G(ii�) ⊆ A(ii�) � . (8)

Each network G in GA1 has the property that each and every node pair is connected
by a unique arc type. Alternatively, if the feasible set is given by

GA01 :=
�
G ∈ G01 : ∀(i, i�) ∈ N ×N, G(ii�) ⊆ A(ii�) � , (9)

then each network G in GA01 has the property that each and every node pair is
connected by at most one arc type - thus, for some networks in GA01, some node
pairs may not be connected.
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In the example depicted in Figure 1 above, the set of arc types, given by A = [0, 1],
represents connection intensity levels and for all node pairs (i, i�), A(ii�) = [0, 1]. Note
that all three networks in Figure 1 are contained in GA01, while networks G1 and G2
are contained in GA1. In network G1 the connection from node i1 to node i2 is
inactive, that is,

(0, (i1, i2)) ∈ G1.
In network G2 the connection from i1 to i2 is weak, that is, (.001, (i1, i2)) ∈ G2. In
network G3, there is no connection at all from i1 to i2 - thus, network G3 is contained
in GA01 but not in GA1.

2.3.2 Complete, Unitary Networks

The set of networks GA1 is special because for all networks in GA1 all node pairs
are connected in one and only one way (the connection may be inactive, but it is
present). We will refer to the networks in GA1 as complete, unitary networks (i.e.,
CU networks).8 CU networks can be particularly useful in applications because each
network G in GA1 has a unique matrix representation [G] given by

[G] :=

⎛⎜⎜⎜⎜⎜⎜⎝
a11 · · · a1j · · · a1n
...

...
...

ai1 · · · aij · · · ain
...

...
...

an1 · · · anj · · · ann

⎞⎟⎟⎟⎟⎟⎟⎠ :=

⎛⎜⎜⎜⎜⎜⎜⎝
· · · a1 · · ·

...
· · · ai · · ·

...
· · · an · · ·

⎞⎟⎟⎟⎟⎟⎟⎠
where for each i ∈ N , ai := (ai1, . . . , ain) is the ith row of [G], and where for each
(i, j) ∈ N × N , aij ∈ A(ij) is the ijth entry in matrix [G] if and only if (aij , (i, j))
is the unique connection from node i to node j in network G. Denoting by AGA1 (or
when no confusion is possible, by A) the set of matrices corresponding to feasible set
of networks GA1, equip AGA1 with the max metric,

dA([G], [G�]) := max
(i,j)∈N×N

dA(aij , a
�
ij).

It is easy to see thatAGA1 is dA-closed and that for any sequence of networks {Gn}n ⊂
GA1 with corresponding sequence of matrices {[Gn]}n ⊂ AGA1 ,

h(Gn,G)→ 0 if and only if dA([Gn], [G])→ 0.

Example 4 Consider a feasible set of CU networks where the structure of connec-
tions between distinct nodes (i.e., node pairs (i, j) with i 9= j) remains fixed across
networks in the set, but where loop connections can vary across networks in the set.
This feasible set of CU networks, which we will call CU diagonal networks and will

8Referring back to our discussion of the Hausdorff metric topology on the space of networks
Pf (K), observe that for the h-closed subset of CU networks, GA1 ⊂ Pf (K), the variable connections
problem is absent. In particular, the set of node pairs involved in connections across networks in
GA1 does not vary - it is fixed and equal to N ×N .
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denote by GD, is similar to the feasible set considered by Ballester, Calvo-Armengol,
and Zenou (2006). If nodes and players are one in the same, then we can think of
player i�s choice of a loop arc type aii as player i�s choice of an effort level, or a level
of spending on public goods (if player i is a jurisdiction), or as player i�s choice of
a contract or a contract offer. If the feasible set of networks consists of CU diagonal
networks, GD, then we have

G ∈ GD if and only if ∀(i, j) ∈ N ×N ,

|G(ij)| = 1 and G(ij) ⊆ A(ij) ⊂ A,
and

∀ G and G� in GD and ∀(i, j) ∈ N ×N with i 9= j,
G(ij) = G�(ij) = {aij} ∈ A(ij).

Here, for each node pair (i, j), A(ij) is nonempty closed subset of the compact metric
space of arc types A. Thus, each network G in GD is uniquely identified by its loop
profile a := {aii}i∈N .

Example 5 Suppose that A = [L,H] and that for each node i ∈ N ,

A(ij) = [ri, si] ⊆ [L,H] for all j ∈ N .

Consider the subset of networks MLH⊂ GA1 given by

MLH =

⎧⎨⎩G ∈ GA1 : Li ≤[
j∈N

aij ≤ Hi

⎫⎬⎭ . (10)

MLH is an h-closed subset of GA1. If A = [0, 1] and if Li = Hi = 1 for all i ∈ N ,
then the resulting collection of networks, denoted byM1, consists of Markov networks.
It is easy to see that M1 is an h-closed subset of GA1 with A(ij) = [0, 1] for all i,
and that each network M ∈ M1 has a unique representation via a Markov matrix
[M ] ∈ A (we will usually use M rather than G to denote Markov networks). For
example, consider the directed Markov network M ∈M1 depicted in Figure 2.

i1 i2
.5.5.5 1

i1 i2

Figure 2: Markov Network M

This network has a unique matrix representation given by the Markov matrix

[M ] =

�
.5 .5
0 1

�
.

Note that each row in this matrix sums to 1. Note also that the probability that node
i2 initiates an interaction with node i1 is zero.
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2.3.3 Club Networks and CU Club Networks

Example 6 An interesting class of directed networks is the collection of club net-
works. As an example, consider the following marketing network. Letting F ⊆ N be
the set of firms and M ⊆ N be the set of markets, the set of marketing networks is
given by

K := Pf (A× (F ×M)).
Here the set of nodes is given by

N = {f1, f2, f3, f4, f5,m1,m2},
where the initial nodes

F = {f1, f2, f3, f4, f5}
represent firms and the terminal nodes M = {m1,m2} represent markets or market
locations (for example, suppose m1 = New York and m2 = Paris). Figure 3 depicts
marketing network G�.

m2

a2

a1

a3

a1

a1

G0

a3

a3

C12

m1

f2

f1

f3

f4

f5

C42

C52

C11 C21

C31

C41

Figure 3: Marketing Network G�

In marketing network G�, the arc labeled C12 ∈ A, indicates that firm f1 offers product
line C12 in the Paris market m2. Note that here because F ∩ M = ∅, marketing
network G� fits the usual definition of a bipartite network. Under our definition of
a club network, we do not require that F and M be disjoint. Also, note that here
the set of players is given by the set of firms, F , while the set of nodes is given by
N = F ∪M . Thus, here the set of nodes is not equal to the set of players.
Example 7 An interesting subclass of club networks is the collection of complete,
unitary club networks. By way of an example, suppose that the set of nodes is given
by N = D ∪ C where D is a finite set of players and C is a finite set of clubs, and
consider the feasible set of CU club networks KCU given by

KCU := {G ∈ Pf ([0, 1]× (D × C)) : ∀(d, c) ∈ D × C, |G(dc)| = 1} ,
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where Pf ([0, 1] × (D × C)) denotes the collection of all nonempty, closed subsets of
[0, 1]×(D×C). In a CU club network G ∈ KCU each player is a member of each club.
Thus for each player-club pair, the connection (a, (d, c)) is contained in G for some
unique a ∈ [0, 1]. For example, if arc types represent membership intensity levels,
then the connection (0, (d, c)) ∈ G would mean that in CU club network G, player d
is an inactive member of club c.

Next consider the subset of CU club networks given by

K = {G ∈ KCU : ∀(d, c) ∈ D ×C, G(dc) := adc ∈ [0, 1] and
[
c∈C

adc = 1},

where membership intensity is measured by the percent of time a player allocates to a
particular club. We will call these networks, club time allocation networks. In a club
time allocation network G ∈ K, a connection (adc, (d, c)) ∈ G means that in network
G player d allocates adc percent of his time to club c.

Each club time allocation network G has a unique, alternative representation as
the union of CU player club time allocation networks. For each player d, a CU club
time allocation network gd is a nonempty closed subset of [0, 1]× ({d}×C) such that
for all clubs c ∈ C,

|gd(dc)| = 1, gd(dc) ∈ [0, 1] and
[
c∈C

gd(dc) :=
[
c∈C

adc = 1.

Let Kd denote the collection of all CU club time allocation networks, gd, for player
d. Each time allocation network G ∈ K, can be written uniquely as

G = ∪d�∈Dgd�, where gd� ∈ Kd� .

Thus, any club time allocation network G has unique representation as the union,
∪d�∈Dgd� , of player club time allocation networks (gd�)d�∈D, and conversely, the union
of any collection of CU player club time allocation networks (gd�)d�∈D is a CU club
time allocation network. Note that each player’s set of CU club time allocation net-
works, Kd, is nonempty, convex, and compact.

2.4 Players and Feasible Coalitions

The path taken by a network through time depends in large measure on the actions
taken by groups of players in attempting to influence how the network changes across
time. Thus, coalitions will play a central role in our model. Recall that D denotes the
set of players (a set not necessarily equal to the set of nodes) with typical element
d and P (D) denotes the collection of all coalitions (i.e., nonempty subsets of D)
with typical element denoted by S. We will assume that the set of players D has
cardinality m (i.e., |D| = m).

In many applications it is useful to restrict attention to a particular feasible subset
of coalitions. Often restrictions on the feasible set of coalitions are the result of the
rules of network formation.
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Definition 4 (Feasible Coalitions)

Given finite player set D, a feasible set of coalitions is a nonempty subset F of the
collection of all coalitions P (D).

Examples of feasible sets of coalitions include the set,

F2 = {S ∈ P (D) : |S| = 2} ,
where each feasible coalition consists of 2 players, the set,

F≤2 = {S ∈ P (D) : |S| ≤ 2} ,
where each feasible coalition consists of, at most, 2 players, and the set

F1 = {S ∈ P (D) : |S| = 1} ,
where each feasible coalition consists of 1 player.

We will equip the feasible set of coalitions F with the discrete metric dF (i.e.,
dF(S�, S) = 0 if S� = S, and dF (S�, S) = 1 if S� 9= S).

2.5 The State Space

We shall take as the state space the set Ω := G×F of all feasible network-coalition
pairs. Each state ω ∈ Ω has the following interpretation: if ω = (G,S) is the current
state, then G is the current status quo network of social interactions and it is coalition
S’s turn to move in the game of network formation. We will refer to the coalition
whose turn it is to move as the status quo coalition.

The state space G×F is a compact metric space under the product metric dΩ
given by

dΩ((G
�, S�), (G,S)) := h(G,G�) + dF(S�, S).

Letting B(Ω) := B(G× F) be the Borel σ-field generated by the metric dΩ, we will
equip the state space (G×F , B(G×F)) with the product probability measure

μ = ν × η (11)

where the probability measure η on feasible coalitions is such that η(S) > 0 for all
S ∈ F and where the probability measure ν on feasible networks is such that the set
of, at most, countably many disjoint atoms9 is given by

{Aα1,Aα2, . . .} = {Aαk}∞k=1 ⊂ G. (12)

9A set of networks Aαk ∈ B(G) is an atom of the probability space (G, B(G), ν) if ν(Aαk) > 0
and for all subsets B ⊆ Aαk, B ∈ B(G), ν(B) = ν(Aαk) or ν(B) = 0. The set of networks G contains
at most countably many disjoint atoms, {Aαk}∞k=1, and G can be written as

G = NA∪ [∪∞k=1Aαk] ,
where the set NA contains no atoms. We say that the probability space (G, B(G), ν) is atomless or
nonatomic if it contains no atoms.
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Thus, we have as our state space, the probability space

(Ω, B(Ω),μ) = (G×F , B(G×F), ν × η), (13)

a compact metric space with metric dΩ = h+ dF and typical element ω = (G,S).

2.6 Feasible Actions and the Feasible Action Correspondence

In each move of the game, each player takes an action in an effort to optimally
influence the path of network change governed by the law of motion. In our game
each player’s action takes the form of a network recommendation or network proposal.
In particular, given current state ω = (G,S) ∈ Ω, each player d ∈ D has available
a nonempty subset of network proposals Φd(ω) ⊆ G that can be put forth by player
d for consideration by nature. However, only players who are members of the status
quo coalition S (i.e., the coalition whose turn it is to move) are allowed to propose
substantive changes. If G� ∈ Φd(G,S) is proposed by player d ∈ S (and therefore, by
a member of the status quo player coalition S), this means that if player d�s proposal
is chosen by nature (i.e., by the law of motion), then under the rules of network
formation, player d acting in concert with some or all the members of coalition S,
has the power and ability to implement the proposed network (i.e., change the status
quo network G to network G�). Moreover, because players who are not members of
the status quo coalition are not allowed to propose substantive changes, these players
(i.e., players d /∈ S) can only propose that the status quo network be maintained.
Thus, players’ feasible action correspondences, Φd(·), are the formal expressions of
the rules of network formation (see Page and Wooders, 2009a, for a discussion of
rules of network formation in static games).

A state-action profile pair (ω,GD) is contained in the graph of Φ(·), denoted
by GrΦ(·), if GD ∈ Φ(ω). We will assume the following concerning feasible action
correspondences, Φd(·).

[A-2] (feasible action correspondence)

(1) For all states ω = (G,S), Φd(G,S) ⊆ G is h-closed with
(a) G ∈ Φd(G,S),

and
(b) {G} = Φd(G,S) for all d /∈ S.

⎫⎬⎭ (14)

(2) Φd(·) has a measurable graph10, that is, GrΦd(·) ∈ B(Ω)×B(G).
10We say that Φd(·) is measurable if

Φ−1d (E) := {ω ∈ Ω : Φd(ω) ∩ E /∈ ∅} ∈ B(Ω)
for E ⊂ G open (sometimes called weak or lower measurability). Because G is compact, the following
statements are equivalent:
(1) Φd(·) is measurable.
(2) Φ−1d (F) ∈ B(Ω) for F ⊂ G closed.
(3) GrΦd(·) ∈ B(Ω)×B(G). (see Aliprantis and Border 2006, Nowak 1984, or Wagner 1977).
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Under [A-2] the feasible proposal profile correspondence

ω → Φ(ω) :=
\
d∈D
Φd(ω) (15)

is measurable with nonempty, h-closed values in Gm.

2.7 The Rules of Network Formation and Feasible Actions: Exam-
ples and Comments

In light of our discussions of feasible networks and feasible player coalitions, our
objective in this section is to give some examples of player constraint mappings,
Φd(·), corresponding to various state spaces of network-coalition pairs and rules of
network formation.

The rules of network formation specify for each player d, in each state ω =
(G,S), which connections can be changed and what they can be changed to. Given a
particular specification of the feasible set of networks, formalizing the rules of network
formation usually reduces to specifying for each player d, in each state ω = (G,S),
which connections player d can propose be changed (i.e., the connections player d can
legitimately target for change). This formalization can be accomplished be defining
the following mappings. First, letting 2N×N denote the collection of all subsets of
node pairs, N ×N (including the empty set), define the mappings,

∆+d (·) : Ω→ 2N×N and ∆−d (·) : Ω→ 2N×N . (16)

For player d in state ω = (G,S), the set of node pairs ∆+d (ω) identifies connections
that are positively in play for player d under the rules of network formation (i.e.,
player d can propose that these connections be added, changed, or left alone - but
not removed), while ∆−d (ω) identifies connections that are negatively in play for
player d (i.e., player d can propose that these connections be removed). Note that if
in state ω = (G,S), player d is not a member of the status quo coalition (i.e., d /∈ S),
then ∆+d (ω) ∪ ∆−d (ω) = ∅, meaning that no connections are in play (positively or
negatively) for player d.

Precisely which subset of connections player d targets for possible change is deter-
mined by players d�s choice of disjoint node pair subsets, (E+, E−) from the collection
of 2-tuples of subsets, 2∆

+
d (ω) × 2∆−d (ω), where 2∆+

d (ω) and 2∆
−
d (ω) denote the sets of

all node pair subsets of ∆+d (ω) and ∆
−
d (ω) respectively.

11 Under many rules, there
are further restrictions, usually on the number of connections that a player can add
or change as well as on the number that a player can remove in a given state of the
game. To capture these rule-based cardinality restrictions, we define the set-valued

11Given any set H in a metric space, we will use the notation 2H to denote the collection of
all closed subsets of H (including the empty set). We will use the notation Pf (H) to denote the
collection of all nonempty closed subsets of H. If H is finite, then 2H is simply the collection of all
subsets of H, while Pf (H) is the collection of all nonempty subsets of H.
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mapping ω → Ed(ω) as follows:

(E+, E−) ∈ Ed(ω)
if and only if

(E+, E−) ∈ 2∆+
d (ω) × 2∆−d (ω)

is such that
E+ ∩E− = ∅

and
nd(ω) ≤ |E+ ∪E−| ≤ md(ω).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(17)

Here, the cardinality functions (nd(·),md(·)) are integer-valued with values in the
interval [0, 2R2] where R = max{|N | , |D|}. For example, if for all ω, nd(ω) = 0 and
md(ω) = 1, then the cardinality functions would correspond to the case where in any
state of the game a player can propose that at most one connection be changed or
removed.

Under the rules of network formation, player d in state ω = (G,S) ∈ G × F
can propose that connections involving any node pairs contained in E+ and E− be
changed, where

(E+, E−)� ~} �
chosen by
player d

∈ Ed(ω)� ~} � .
determined by
the rules

Given player d�s choice of disjoint subsets (E+, E−) ∈ Ed(ω), player d in state ω =
(G,S) can then propose that the status quo network G ∈ G be changed to any
feasible network G� ∈ G where for node pairs (i, j) /∈ E = E+ ∪ E−, G�(ij) = G(ij)
(i.e., the connections corresponding to node pairs not contained E+ ∪ E− be left
unchanged), and where for node pairs (i, j) ∈ E−, G�(ij) = ∅ (i.e., the connections
corresponding to node pairs contained in E− be removed). Thus, in general, if the
rules of network formation are formalized via the state space G×F and the mappings,
(∆+d (·),∆−d (·), Ed(·))d∈D, then for any player d in any state ω = (G,S) ∈ G×F ,

G� ∈ Φd(ω) := Φd(G,S)
if and only if

G� ∈ G and for some (E+, E−) ∈ Ed(ω)
G�(ij) = G(ij) for all (i, j) /∈ E+ ∪E−

and
G�(ij) = ∅ for all (i, j) ∈ E−.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(18)

To further illustrate how rules translate into constraint correspondences Φd(·)
via the feasible set of networks and the mappings (∆+d (·),∆−d (·), Ed(·))d∈D, in the
next three examples we will translate the words describing some well-known rules
of network formation into exact expressions for the mappings (∆+d (·),∆−d (·))d∈D and
then deduce the constraint correspondences via the feasible set and statement (18).
We begin by considering the Jackson-Wolinsky (1996) rules.

The Jackson-Wolinsky rules of network formation require that networks be such
that the set of nodes and the set of players are one and the same (i.e., N = D). With
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this in mind, suppose that the feasible set of networks is given by

GA01 := {G ∈ G01 : ∀(i, j) ∈ N ×N, G(ij) ⊆ A(ij) } ,
where the set of nodes N is equal to the set of players D. For each network G ∈ GA01,
each pair of players (i.e., each pair of nodes) is either not connected or is connected
in one and only one way, via some arc type a ∈ A(ij), where {a} = G(ij). Under
Jackson-Wolinsky rules, moves in the game are made one connection at a time by
coalitions of at most two players. Thus, under Jackson-Wolinsky rules, the feasible
set of coalitions is given by F≤2 and the cardinality functions for the mapping Ed(·)
are such that for all states ω

(nd(ω),md(ω)) = {0, 1}.
Thus, under Jackson-Wolinsky rules, disjoint node pair subsets E+ and E− are con-
tained in Ed(ω) if and only if E+ ∈ 2∆+

d (ω) and E− ∈ 2∆−d (ω) and
0 ≤ ��E+ ∪E−�� ≤ 1.

Moreover, under Jackson-Wolinsky rules, adding or changing a connection (i.e., chang-
ing the arc type) requires the efforts of both players involved in the connection (arc
addition or modification is bilateral), while removing a connection requires the efforts
of one or both players involved in the connection (arc subtraction can be unilateral).
Because changing or adding a connection is bilateral, this means that if the status quo
coalition S in state ω = (G,S) is a single player, then under the Jackson-Wolinsky
rules, in this state connections can only be removed. Thus, in any state ω = (G,S)
where S = {i},

∆+d (G, {i}) = ∅ for all players d,
while

∆−d (G, {i}) =
�
[{d} ×N ] ∪ [N × {d}] if d ∈ {i}
∅ if d /∈ {i}.

Alternatively, under Jackson-Wolinsky rules, in any state

ω = (G, {i, j}) ∈ G×F≤2,
where the status quo coalition consists of two players, we have

∆+d (G, {i, j}) =
�
[{d} × {i, j}] ∪ [{i, j} × {d}] if d ∈ {i, j}
∅ if d /∈ {i, j},

and ∆−d (G, {i, j}) is given by

∆−d (G, {i, j}) =
�
[{d} ×N ] ∪ [N × {d}] if d ∈ {i, j}
∅ if d /∈ {i, j}.

Next, continuing to assume that the feasible set of networks is given by GA01
with the set of nodes equal to the set of players (i.e., N = D), consider the Jackson-
van den Nouweland (2005) rules. Under Jackson-van den Nouweland rules (2005),
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all coalitions are feasible. Thus, the feasible set of coalitions F is given by F =
P (N) = P (D). Moreover, in any one move of the game, each player d in the status
quo coalition S can propose that any subset of connections involving player (node)
pairs (d, j) and/or (j, d) for any player j also a member of S be added, changed, or
not changed (but not removed) and that any subset of connections involving player
(node) pairs (d, j) and/or (j, d) for any player j ∈ N , whether a member of S or
not, be removed. Thus, under the Jackson-van den Nouweland rules, moves are no
longer required to be one connection at a time - and thus, under Jackson-van den
Nouweland rules, in any state ω = (G,S) ∈ GA01 ×F

Ed(ω) = 2
∆+
d (ω) × 2∆−d (ω),

where the set of node pairs ∆+d (G,S) is given by

∆+d (G,S) =

�
[{d} × S] ∪ [S × {d}] if |S| > 1 and d ∈ S
∅ if |S| = 1 or d /∈ S,

while the set ∆−d (G, {i, j}) is given by

∆−d (G,S) =
�
[{d} ×N ] ∪ [N × {d}] if d ∈ S
∅ if d /∈ S.

We conclude our discussion of network formation rules by considering noncoop-
erative rules (Bala-Goyal, 2000). Again suppose that the feasible set of networks is
given by GA01 with the set of nodes equal to the set of players (i.e., N = D). Under
noncooperative rules the feasible set of player coalitions is F1, and in any one move
of the game, the player d who is the status quo coalition S = {d} can propose that
any subset of connections involving player (node) pairs (d, j) and/or (j, d) for any
player j be added, changed (or not changed), or removed.12 Thus, under noncooper-
ative rules, moves are not required to be one connection at a time - and thus, under
noncooperative rules, in any state ω = (G, {d�}) ∈ GA01 ×F1,

Ed(G, {d�}) = 2∆
+
d (ω) × 2∆−d (ω),

where the set of node pairs ∆+d (G, {d�}) is given by

∆+d (G, {d�}) =
�
[{d} ×N ] ∪ [N × {d}] if d ∈ {d�}
∅ if d /∈ {d�},

and the set ∆−d (G, {d�}) is given by

∆−d (G, {d�}) =
�
[{d} ×N ] ∪ [N × {d}] if d ∈ {d�}
∅ if d /∈ {d�}.

12Actually, in Bala-Goyal (2000) only the initiating player can add, change or remove a connection.
Thus, under Bala-Goyal noncooperative rules, in any one move of the game, the player d who is the
status quo coalition S = {d} can propose that any subset of connections involving player (node)
pairs (d, j) for any player j be added, changed (or not changed), or removed.
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2.8 Payoff Functions

Players decide which networks to propose, in part, based on their payoff functions.
We shall assume that

[A-3] (payoff functions)

each player d ∈ D has a payoff function defined on states and proposal profiles,

rd(·, ·) : Ω×Gm → [−M,M ], (19)

such that

(1) rd(·, ·) is jointly measurable on GrΦ(·); and
(2) rd(ω, ·) is continuous in proposal profiles, GD, on Φ(ω) for all ω ∈ Ω.

Thus, if the current state is ω = (G,S) (i.e., if the status quo network is G and
it is coalition S’s turn to move) and if players propose networks GD ∈ Φ(ω), then
player d�s payoff is given by

rd(ω, GD) := rd(ω, (Gd, G−d)).

2.9 The Law of Motion

2.9.1 Definition and Assumptions

Given the current state, ω ∈ Ω, if the network proposal profile is given by GD ∈ Φ(ω),
then nature chooses the next state (i.e., the next network-coalition pair) according
to the probability measure,

q(·|ω,GD) ∈ P(Ω).
The function,

(ω, GD)→ q(·|ω,GD),
relating current states and proposal profiles to the probability measures governing
the generation of states is called the law of motion, a mapping defined on the graph
of Φ(·) with values in the space of probability measures on the state space (Ω, B(Ω)).
We have the following list of assumptions concerning the law of motion:

[A-4] (the law of motion)

(1) For each E ∈ B(Ω), the function q(E|·, ·) is jointly measurable on GrΦ(·),
and for each (ω, GD) ∈ GrΦ(·) the probability measure q(·|ω, GD) is absolutely
continuous with respect the probability measure μ = ν×η defined on (Ω, B(Ω))
(i.e., q(·|ω,GD)� μ for all (ω, GD) ∈ GrΦ(·)).
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(2) The collection of probability densities

Hμ := {z(·|ω, GD) : (ω, GD) ∈ GrΦ(·)} (20)

of q(·|ω,GD) with respect μ is such that for all states ω

GD → z(ω�|ω, GD) is h-continuous in GD on Φ(ω)

a.e.[μ] in ω�.

(3) The collection of probability densities Hμ is μ-integrably bounded, that is, there
exists a μ-integrable function

g(·) : Ω→ R+

such that for all z(·|ω, GD) ∈ Hμ,

0 ≤ z(ω�|ω, GD) ≤ g(ω�) a.e.[μ] in ω�. (21)

For existence, we will require that assumptions [A-4](1) and (2) hold, and for
stability we will require that assumptions [A-4](1), (2), and (3). Call these sets of
assumptions [A-4], [A-4]* respectively.

2.9.2 Observations Concerning Stochastic Continuity

The continuity of the function z(ω�|ω, ·) in GD on Φ(ω), a.e.[μ] in ω�, implies via
Scheffee’s Theorem (see Billingsley, 1986, Theorem 16.11) that

supE∈B(Ω) |q(E|ω,GnD)− q(E|ω,G∗D)|

≤ UΩ |z(ω�|ω, GnD)− z(ω�|ω,G∗D)| dμ(ω�)→ 0.

⎫⎬⎭ (22)

for any sequence of network proposal profiles {GnD}n in Φ(ω) converging to G∗D ∈
Φ(ω). Sometimes this is written, anD →

A
a∗D implies that

nq(·|ω, GnD)− q(·|ω, G∗D)n∞ → 0.

Our stochastic continuity assumptions, [A-4](2), is stronger than the usual narrow
(or weak continuity) assumption. Under weak continuity, we would have for any
sequence {(anD)}n in Φ(ω) with

anD
n→ a∗D ∈ Φ(ω),

and any closed F ∈ B(Ω),
lim supn q(F |ω, anD) ≤ q(F |ω, a∗D)

or equivalently,U
Ω c(ω

�)q(dω�|ω, anD) n→ U
Ω c(ω

�)q(dω�|ω, a∗D),

24



for any bounded, continuous function c(·). With our stochastic continuity assumption
(on densities), we have strengthened weak continuity so that for any such sequence,

limn q(F |ω, anD) = q(F |ω, a∗D)

or equivalently (by Delbaen’s Lemma (1974)),U
Ω v(ω

�)q(dω�|ω, anD) n→ U
Ω v(ω

�)q(dω�|ω, a∗D),

for any bounded, measurable function v(·). Therein lies the real importance of our
stochastic continuity assumption: it makes the function, aD →

U
Ω v(ω

�)q(dω�|ω, aD),
continuous on Φ(ω) for any bounded measurable function v(·). This fact is criti-
cal to our being able to establish the existence of a stationary Markov correlated
equilibrium.

2.10 Strategies

2.10.1 Stationary Markov Strategies

A Markov strategy for player d is a measurable function, ω → σd(·|ω), which speci-
fies in each state ω the probability measure, σd(·|ω), governing player d�s choice of
a network proposal G from feasible set Φd(ω). Under Markov strategy σd(·|·), in
each state ω player d�s probability measure σd(·|ω) ∈ P(G) concentrates all of its
probability mass on the set Φd(ω) of feasible network proposals available to player d
in state ω. Denote this set of probability measures by P(Φd(ω))̇. Thus, the function
ω → σd(·|ω) is a Markov strategy if and only if the function σd(·|·) is measurable
and σd(·|ω) ∈ P(Φd(ω))̇ for all ω.13 Under Markov behavioral strategy σd(·|·) in
state ω, the probability with which player d proposes a feasible network G ∈ Φd(ω)
contained in measurable subset of networks E ∈ B(G) is given by σd(E|ω). Note that
if E ∩ Φd(ω) = ∅, then σd(E|ω) = 0.

We will denote by
Rd := Σ(P(Φd(·))), (23)

the set of all measurable selections from the mapping P(Φd(·)), and therefore, the
set of all Markov behavioral strategies. By Theorem 3 in Himmelberg and Van Vleck
(1975), each player’s feasible probability measure correspondence, P(Φd(·)), is mea-
surable (upper hemicontinuous) if and only if the feasible action correspondence,

13Sometimes we will write σd(·) rather than σd(·|·). We say that σd(·) is (lower or weakly) mea-
surable if for all open subsets E ∈ B(P(G)),

σ−1d (E) := {ω ∈ Ω|σd(ω) ∈ E} ∈ B(Ω),
where B(P(G)) is the Borel σ-field in the space of probability measures P(G) generated by the com-
pact and metrizable narrow topology (i.e., the topology of weak convergence of measures). Because
the space of probability measures P(G) is a compact metric space, lower measurability is equivalent
to

σ−1d (F ) := {ω ∈ Ω|σd(ω) ∈ F} ∈ B(Ω),
for all closed subsets F ∈ B(P(G)).
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Φd(·), is measurable (upper hemicontinuous). The measurability of the feasible prob-
ability correspondences, P(Φd(·)), implies via the Kuratowski and Ryll-Nardzewski
Theorem (see 18.13 in Aliprantis and Border, 2006), that the set of Markov strategies
Rd is nonempty.

We will denote by

RD :=
\
d

Rd :=
\
d

Σ(P(Φd(·))),

the set of all profiles (or m-tuples) of Markov strategies.

Definitions 5 (Stationary Markov Strategies)

A stationary Markov strategy for player d ∈ D is a constant sequence of measurable
functions (σd(·),σd(·), . . .) ∈ R∞d , where the function, σd(·) ∈ Rd, is a Markov
strategy.

A stationary Markov strategy profile for players is a constant sequence of profiles
(σD(·),σD(·), . . .) ∈ R∞D , where the function, σD(·) ∈ RD, is an m-tuple of
Markov strategies.

2.10.2 Stationary Markov Correlated Strategies

A Markov correlated strategy consists of m+ 1 measurable functions

λi(·) : Ω→ [0, 1]

such that
Sm
i=0 λ

i(ω) = 1 for all ω and m+ 1 Markov strategy profiles,

σiD(·) = (σid(·))d∈D ∈ RD.

A Markov correlated strategy is given by (λi(·),σiD(·))mi=0, and we will denote such a
strategy by

σλD(·) =
m[
i=0

λi(·)π(σiD(·)), (24)

where for each state ω, π(σiD(ω)) is the product probability measure on Φ(ω) given
by

π(σiD(ω)) := σi1(·|ω)× · · · × σim(·|ω). (25)

Observe that for all states ω the function

π(·) :
\
d

P(Φd(ω))→ P(Φ(ω)), (26)

fromm-tuples of probability measures in
T
dP(Φd(ω)) to their corresponding product

probability measures in P(Φ(ω)), is continuous (with respect to the narrow product
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topology). Observe also that the function π(·) is multilinear on TdP(Φd(ω)). Thus,
for t ∈ [0, 1], and σ1d(·) and σ2d(·) in Rd and σ−d(·) in RD\{d}, we have for all ω

tπ(σ1d(ω),σ−d(ω)) + (1− t)π(σ2d(ω),σ−d(ω))

= π(tσ1d(ω) + (1− t)σ2d(ω),σ−d(ω))

= tσ1d(ω) + (1− t)σ2d(ω)× σ−d(ω).

Definitions 6 (Stationary Markov Correlated Strategies)

A stationary Markov correlated strategy is a constant sequence of measurable func-
tions (σλD(·),σλD(·), . . .), where each function, σλD(·), is given by

σλD(·) =
m[
i=0

λi(·)π(σiD(·)),

where
π(σiD(·)) := σi1(·)× · · · × σim(·),

and σid(·) ∈ Rd for each player d.

2.10.3 History-Dependent Strategies

A history-dependent strategy ξnd for player d ∈ D in period n is a history-dependent
measurable function defined on the state space Ω taking values in the set of probability
measures defined on networks, P(G). Under history-dependent strategy ξnd in period
n given the history of states and proposal m-tuples (i.e., the (n−1)-sequence of state
and action m-tuple pairs)

Hn−1 := (ω1, G1D,ω
2, G2D, . . . ,ω

n−1, Gn−1D ),

and given the current (period n) state ωn ∈ Ω, the probabilities with which player d
will propose various feasible networks is given by the probability measure

ξnd(H
n−1,ωn) ∈ P(Φd(ωn)) ⊆ P(G). (27)

Let Hn−1 denote set of all (n− 1)-histories and let
Lnd := ΣHn−1(P(Φd(·))) (28)

denote the set of all measurable functions, (Hn−1,ωn)→ ξnd(H
n−1,ωn) ∈ P(G) such

that ξnd(H
n−1,ωn) ∈ P(Φd(ωn)) for all ωn ∈ Ω. We will denote by

LnD :=
\
d

Lnd

the set of period n, history-dependent strategy profiles.
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Definition 7 (History-Dependent Strategies)

A history-dependent strategy for player d ∈ D is a sequence of measurable functions

ξd(·) = (ξ1d(·), ξ2d(·), . . .) ∈ L∞d :=
∞\
n=1

Lnd ,

where for each n the function, ξnd(·) ∈ Lnd , is a history-dependent strategy.
A history-dependent strategy profile for players is a sequence of measurable functions

ξD(·) = (ξ1D(·), ξ2D(·), . . .) ∈ L∞D :=
∞\
n=1

LnD,

where for each n the function, ξnD(·) ∈ LnD, is a history-dependent strategy
profile for period n.

2.11 Expected Payoffs Under Markov Correlated Strategies

For any profile (or m-tuple) of feasible probability measures σD ∈
T
dP(Φd(ω)),

player d�s immediate expected payoff in state ω is

rd(ω,π(σD)) =

]
Gm
rd(ω, GD)π(σD(dGD)), (29)

where GD := (Gd)d∈D ∈ Φ(ω) := Πd∈DΦd(ω), and where
π(σD(dGD)) := σ1(dG1)× · · · × σm(dGm).

Under Markov correlated strategy σλD(·), the function rd(·,π(σλD(·))) is B(Ω)-
measurable and player d�s immediate expected payoff in state ω ∈ Ω is

rd(ω,π(σ
λ
D(ω))) =

U
Gm rd(ω, GD)π(σ

λ
D(dGD|ω))

=
U
Gm rd(ω,GD)

Sm
i=0 λ

i(ω)π(σiD(dGD|ω))

=
U
Gm rd(ω,GD)

Sm
i=0 λ

i(ω)(σi1(dG1|ω)× · · · × σim(dGm|ω))

=
Sm
i=0 λ

i(ω)
�U
Gm rd(ω, GD)(σ

i
1(dG1|ω)× · · · × σim(dGm|ω))

�
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(30)

If in state ω, stationary Markov strategy profile σiD(·|ω) is chosen by the public
randomization device λi(ω), i = 0, 1, 2, . . . ,m, and if network proposal profile GD is
chosen by the product measure π(σiD(dGD|ω)) induced by probability measure profile
σiD(·|ω), then given the law of motion q(·|·, ·) nature chooses the next state (i.e., the
next network-coalition pair) according to the probability measure q(·|ω, GD).

Let

rnd (σ
λ
D)(ω) :=

⎧⎨⎩
rd(ω,π(σ

λ
D(ω))) for n = 1U

Ω rd(ω
�,π(σλD(ω

�)))qn−1(ω�|ω,π(σλD(ω))) for n ≥ 2,
(31)
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denote the nth period expected payoff to player d under Markov correlated strategy
σλD(·) starting at state ω given law of motion q(·|·, ·). Here, for n ≥ 2, qn(·|ω,π(σλD(ω)))
is defined recursively by

qn(E|ω,π(σλD(ω)))

=
U
Ω q

n−1(E|ω�,π(σλD(ω�)))q(ω�|ω,π(σλD(ω)))

=
U
Ω q(E|ω�,π(σλD(ω�)))qn−1(ω�|ω,π(σλD(ω))),

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (32)

where

q(E|ω,π(σλD(ω))) =
]
Gm
q(E|ω,GD)π(σλD(dGD|ω)).

The discounted expected payoff to player d, with discount rate βd ∈ [0, 1), over an
infinite time horizon under Markov correlated strategy σλD(·) starting at state ω is
then given by

Ed(σ
λ
D)(ω) :=

∞[
n=1

βn−1d rnd (σ
λ
D)(ω). (33)

3 Stationary Markov Correlated Equilibrium

A discounted stochastic game over stationary Markov strategies is given by

G := (Ω, Ed(·)(·), Rd)d∈D .

Definition 8 (Stationary Markov Correlated Equilibria)

A Markov correlated strategy

σλ∗D (·) =
m[
i=0

λi∗(·)π(σi∗D(·))

is a stationary correlated equilibrium of the discounted stochastic game G, if no
player d can unilaterally benefit by deviating from any of the Markov strategies
σi∗d (·) ∈ Rd assigned to him (under correlated strategy σλ∗D (·)) to any other
Markov strategy or any history dependent strategy.

Thus, a stationary Markov correlated strategy σλ∗D (·) is a dynamic correlated
equilibrium of the discounted stochastic game G if no player has an incentive to
unilaterally change his part, σi∗d (·), of the Markov correlated strategy σλ∗D (·) to any
other strategy.
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Theorem 1 (The Existence of Stationary Markov Correlated Equilibrium)

Any discounted stochastic game of network and coalition formation,

G := (Ω, Ed(·)(·), Rd)d∈D ,

satisfying assumptions [A-1]-[A-4] has a stationary Markov correlated equilibrium,

σλ∗D (·) =
m[
i=0

λi∗(·)π(σi∗D(·)), (34)

where each Markov strategy profile σi∗D(·) is such that for each state ω

σi∗D(·|ω) ∈ Nv∗(ω),

where Nv∗(ω) ⊂
T
dP(Φd(ω)) is the set of Nash equilibria of the one-shot game

Gv∗(ω) given by

Gv∗(ω) := (P(Φd(ω)), ud(ω, ·)(v∗d))d∈D , (35)

with player payoff functions given by

σD → ud(ω,σD)(v
∗
d) := (1−βd)rd(ω,π(σD))+βd

]
Ω
v∗d(ω

�)q(ω�|ω,π(σD)). (36)

Our approach to proving existence follows the broad outlines of the approach
introduced by Nowak and Raghavan in their seminal 1992 paper. For the convenience
of the reader we include a proof (see the appendix). The basic objective of the proof
is to show that there exists a stationary correlated strategy

σλ∗D (·) =
m[
i=0

λi∗(·)π(σi∗D(·)),

with corresponding m-tuple of value functions, w∗d(·) : Ω→[−M,M ] such that for
each player d ∈ D and for all states ω ∈ Ω,

(1) w∗d(ω) = ud(ω,σ
λ∗
D (ω))(w

∗
d)

and
for i = 0, 1, . . . ,m

(2) ud(ω, (σi∗d (ω),σ
i∗
−d(ω))(w

∗
d) = maxσd∈P(Φd(ω)) ud(ω, (σd,σ

i∗
−d(ω))(w

∗
d).

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(37)
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4 Emergent Markov Processes of Network and Coalition
Formation

4.1 Equilibrium Transitions

Under the equilibrium stationary Markov correlated strategy, σλ∗D (·), the emergent
Markov process of network and coalition formation,

{W ∗
n}n = {(G∗n, S∗n)}∞n=1 ,

is governed by the equilibrium Markov transition,

p∗(E|ω) = q(E|ω,π(σλ∗D (ω)))

=
U
Gm q(E|ω, G�D)π(σλ∗D (G�D|ω)).

Thus,
Pr
�
W ∗
n+1 ∈ E|W ∗

n = ω
�
= p∗(E|ω)

and
Pr {W ∗

n ∈ E|W ∗
0 = ω} = p∗n(E|ω) = qn(E|ω,π(σλ∗D (ω))),

where the n-step transition p∗n(·|·) is defined recursively as follows: for all ω ∈ Ω and
E ∈ B(Ω),

p∗n(E|ω) =
]
Ω
p∗(E|ω�)p∗n−1(dω�|ω) =

]
Ω
p∗n−1(E|ω�)p∗(dω�|ω), (38)

for n = 1, 2, . . ., and p∗0(·|ω) = δω(·) is the Dirac measure at ω.

4.2 Absorbing Sets and Invariant and Ergodic Probability Measures

A set E ∈ B(Ω) is called a p∗-absorbing set if p∗(E|ω) = 1 for all network-coalition
pairs ω ∈ E. A p∗-absorbing set E∈L∗ is said to be indecomposable if it does not
contain the union of two disjoint absorbing sets. Let L∗ ⊆ B(Ω) denote the collec-
tion of all p∗-absorbing sets. Note that the set of all absorbing sets is closed under
countable unions and intersections.

A probability measure γ(·) on the state space of feasible network-coalition pairs
(Ω, B(Ω)) is invariant for Markov transition p∗(·|·) (i.e., is p∗-invariant) if

γ(E) =

]
Ω
p∗(E|ω)dγ(ω) for all E ∈ B(Ω). (39)

Thus, if probability measure γ(·) is p∗-invariant, then for any set of network-coalition
pairs E∈B(Ω), if the current status quo network-coalition pair ωn = (Gn, Sn) is
chosen according to probability measure γ(·) - so that the probability that ωn lies
in E is just γ(E) - then the probability that next period’s network-coalition pair
ωn+1 = (Gn+1, Sn+1) lies in E is also γ(E) =

U
Ω p

∗(E|ω)dγ(ω). Denote by I∗ the
collection of all p∗-invariant measure.
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A p∗-invariant measure γ(·) is said to be p∗-ergodic if γ(E) = 0 or γ(E) = 1 for
all E∈L∗. Denote by E∗ the collection of all p∗-ergodic measures. Because the p∗-
ergodic probability measures are the extreme points of the (possibly empty) convex
set I∗ of p∗-invariant measures (see Theorem 19.25 in Aliprantis and Border 2006),
each measure γ(·) in I∗ can be written as a convex combination of the measures in
E∗.

4.3 Visitations and Hitting Times

The number of visitations by the process {W ∗
n}n = {(G∗n, S∗n)}∞n=1 to the set of

network-coalition pairs E ∈ B(Ω), is given by

η∗E :=
∞[
n=1

IE(W
∗
n). (40)

Thus, the expected number of visitations to E starting from network-coalition pair
ω = (G,S) is given by

G∗(ω, E) := E∗ω[η
∗
E] =

∞[
n=1

p∗n(E|ω). (41)

The probability that the network-coalition formation process {W ∗
n}n visits E infi-

nitely often (denoted by i.o.) is given by

Q∗(ω, E) := Pr {W ∗
n ∈ E i.o.|W ∗

0 = ω} = Pr {η∗E =∞|W ∗
0 = ω}

= Pr {∩∞m=1 ∪∞n=m (W ∗
n ∈ E|W ∗

0 = ω)} for all ω ∈ Ω.

⎫⎬⎭ (42)

The hitting time for set E is given by

τ∗E := inf {n ≥ 1 :W ∗
n ∈ E} . (43)

Following Tweedie (2001),

L∗(ω, E) := Pr {τ∗E <∞|W ∗
0 = ω} = Pr {∪∞n=1 (W ∗

n ∈ E|W ∗
0 = ω)} (44)

is the probability that the process {W ∗
n}n hits (or reaches) in finite time the set of

network-coalition pairs E starting from network-coalition pair ω ∈ Ω given transition
p∗(·|·). By Proposition 9.1.1 in Meyn and Tweedie (2009), if for any E ∈ B(Ω),
L∗(ω, E) = 1 for all ω ∈ E, then

L∗(ω, E) = Q∗(ω, E) for all ω ∈ Ω. (45)

4.4 Recurrence, Transience, and Irreducibility

The set of network-coalition pairs E is recurrent if

G∗(ω, E) := E∗ω[η
∗
E] =

∞[
n=1

p∗n(E|ω) = +∞.
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By Proposition 8.1.3 in Meyn and Tweedie (2009), for any state ω ∈ Ω,

G∗(ω, {ω}) = +∞ if and only if L∗(ω, {ω}) = 1.

A set of network-coalition pairs T∈B(Ω) is transient if (i) T is the disjoint union
of countably many uniformly transient sets Uj , that is, sets Uj∈B(Ω) such that
T = ∪jUj and if (ii) for each set there is a finite constant Mj , such that for all
network-coalition pairs ω ∈ Uj ,

E∗ω[η
∗
Uj ] =

∞[
n=1

p∗n(Uj |ω) < Mj . (46)

The set of network-coalition pairs E is said to be p∗-inessential if

Q∗(ω, E) = 0 for all ω ∈ Ω. (47)

Thus, a set of states E is inessential if the probability that the network-coalition
formation process visits the set E infinitely often is zero stating from any state. If a
set of states is inessential, then if the process visits the state at all, it leaves the state
for good after finitely many moves. The union of countable many inessential states
is called an improperly p∗-essential set . Any other set is called properly p∗-essential .

Finally, the network-coalition formation process {W ∗
n}n governed by p∗(·|·) is said

to be ψ-irreducible if for some measure ψ(·) on B(Ω),14

ψ(E) > 0 implies L∗(ω, E) > 0 for all ω ∈ Ω.

Thus if the process {W ∗
n}n governed by p∗(·|·) is ψ-irreducible, then it hits all the

“important” sets of network-coalition pairs (i.e., the sets E ∈ B(Ω) such that ψ(E) >
0) with positive probability starting from any network-coalition pair in the state space
Ω = G×F .

The network-coalition formation process {W ∗
n}n governed by p∗(·|·) is said to be

ψ-recurrent if,
ψ(E) > 0 implies Q∗(ω, E) = 1 for all ω ∈ Ω.

5 Stability of Emergent Markov Processes of Network
and Coalition Formation

In addition to modeling the emergence of endogenous network dynamics from the
co-evolution of strategic behavior and network structure, one of our main objectives
is to study the dynamic stability properties of the resulting equilibrium process of
network and coalition formation. A key component of our analysis is the notion of
a dynamic basin of attraction. Intuitively, a set of network-coalition pairs H is a
basin of attraction if the network and coalition formation process {W ∗

n}n reaches H
14Here, the probability measure ψ(·) is a maximal irreducibility measure (see Section 4.2.2 in Meyn

and Tweedie (second edition, 2009).
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in finite time with probability 1 and once there, stays there. The question we wish
to answer is this: does the process of network and coalition formation {W ∗

n}n that
emerges from the equilibrium interplay of strategic behavior, network structure, and
the trembles of nature generate basins of attraction. We begin by considering the
classical notion of a Maximal Harris set of network and coalition pairs.

5.1 Dynamic Basins of Attraction: Maximal Harris Sets

A set of network-coalition pairs H∈B(Ω) is called a maximal Harris set if there exists
some measure ϕ(·) on B(Ω) such that ϕ(H) > 0,

ϕ(A) > 0 implies L∗(ω, A) = 1 for all ω ∈ H,
and

L∗(ω,H) = 1 implies that ω ∈ H.
Note that a maximal Harris set is a maximal absorbing set and is indecomposable.
Moreover, if H and H � are distinct Maximal Harris sets, then they are disjoint.
Finally, note that if the network-coalition formation process reaches a particular
Harris set then it remains there for all future periods. By Proposition 9.1.1 in Meyn
and Tweedie (2009), because we have L∗(ω,H) = 1 for all ω ∈ H,

L∗(ω, E) = Q∗(ω, E) = 1 for all ω ∈ H.
Thus, if the set of network-coalition pairs H is maximal Harris, then process {W ∗

n}n
restricted to H is ϕ-irreducible and Harris recurrent - where Harris recurrence means
that Q∗(ω, E) = 1 for all ω ∈ H.

The fact that a maximal Harris set is a maximal absorbing set makes it a good
candidate for a basin of attraction. But in order to fully qualify as a basin of attraction
we must show that - or identify conditions under which - the process reaches such a
set in finite time with probability 1.

5.2 The Fundamental Conditions for Stability: Drift and Global
Uniform Countable Additivity

Given the Markov transition ω → p∗(·|ω) what can be said concerning stability?
Quite a bit if the Markov transition p∗(·|·) satisfies the following two conditions:
The Tweedie Conditions (2001):

there exists a measurable set of network-coalition pairs C ⊆ Ω, a nonnegative mea-
surable function

V (·) : Ω→[0,∞],
and a finite real number b such that

(i) (the drift condition) for all ω ∈ Ω]
Ω
V (ω�)dp∗(ω�|ω) ≤ V (ω)− 1 + bIC(ω),
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and

(ii) (uniform countable additivity) for any sequence {Bn}n ⊂ B(Ω) decreasing
to ∅ (i.e., Bn ↓ ∅),

lim
n→∞ supω∈C

p∗(Bn|ω) = 0.

We say that the Markov transition p∗(·|·) satisfies global uniform countable addi-
tivity if for any sequence {Bn}n ⊂ B(Ω) decreasing to ∅ (i.e., Bn ↓ ∅),

lim
n→∞ supω∈Ω

p∗(Bn|ω) = 0, (48)

and we will say that the Tweedie conditions are satisfied globally if the Tweedie
conditions (i) and (ii) hold with C = Ω.

Using results due to Meyn and Tweedie (2009), Tweedie (2001), and Costa and
Dufour (2005), we will show below that if the equilibrium Markov transition p∗(·|·)
governing the emergent process of network and coalition formation is globally uni-
formly countably additive, then the equilibrium process possesses some striking sta-
bility properties - analogous to those demonstrated in Page and Wooders (2009a) for
static abstract games of network formation.

To begin, let us strengthen our assumptions [A-4](1) and (2) concerning the law
of motion by adding to the list assumption [A-4](3).

[A-4](3) The collection of probability densities Hμ is bounded by a μ-integrable
function, g(·) : Ω→ R+.

By [A-4](3), we have for all z(·|ω, GD) ∈ Hμ,

0 ≤ z(ω�|ω, GD) ≤ g(ω�) a.e.[μ] in ω�.

Recall that [A-4]* denotes [A-4](1), (2), and (3). We have our main result on
global uniform countable additivity.

Theorem 2 (Global Uniform Countable Additivity)

Suppose assumptions [A-1], [A-2], [A-3], and [A-4]∗ hold. Then p∗(·|·) is globally
uniformly countably additive.

Proof. For any sequence {Bn}n ⊂ B(Ω) decreasing to ∅ (i.e., Bn ↓ ∅),
p∗(Bn|ω) =

U
Bn
q(ω�|ω,π(σλ∗D (ω)))

=
U
Gm
U
Bn
q(ω�|ω, G�D)π(σλ∗D (G�D|ω)))

=
U
Gm

�U
Bn
z(ω�|ω, G�D)dμ(ω�)

�
π(σλ∗D (dG

�
D|ω))

≤ UBn g(ω�)dμ(ω�)→ 0 as Bn ↓ ∅,
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where g(·) is the μ-integrable function bounding the set of densities Hμ

If we strengthen assumption [A-2](2) by assuming that Φd(·) has a closed graph
and if we also strengthen assumption [A-4](2) by assuming that the collection of
densities Hμ is such that

(ω, GD)→ z(ω�|ω,GD) is dΩ × h-continuous on GrΦ(·)
a.e.[μ] in ω�, then we can show that p∗(·|·) is globally uniformly countably additive
via Corollary 2.2 in Lasserre (1998). The proof goes like the following:
Proof. Let M(Ω) denote the Banach space of bounded measurable functions on
(Ω, B(Ω)), equipped with the sup norm and let rca(Ω) denote the Banach space of
finite signed Borel measures on (Ω, B(Ω)). First, observe that the set of probability
measures

Qμ := {q(·|ω, GD) : (ω, GD) ∈ GrΦ(·)}
is sequentially compact in the weak σ(rca(Ω),M(Ω)) topology. This follows because,
under our strengthened assumptions, GrΦ(·) is a compact metric space and by Del-
baen’s Lemma (1974),

(ω, GD)→
]
Ω
v(ω�)q(dω�|ω, GD)) for all v(·) ∈M(Ω)

is continuous on Ω×Gm. By Corollary 2.2 in Lasserre (1998), therefore,

lim
k→∞

sup
(ω,GD)∈GrΦ(·)

]
Ω
vk(ω

�)q(dω�|ω, GD) = 0 (49)

whenever vk(·) ↓ 0, vk(·) ∈M(Ω).
To see that (49) implies global uniform countable additivity (48), consider a se-

quence {Bk}k ⊂ B(Ω) decreasing to ∅ (i.e., Bk ↓ ∅) and let vk(·) := IBk(·), where

IBk(ω) =

�
1 if ω ∈ Bk
0 if ω /∈ Bk.

We have IBk(·) ↓ 0, IBk(·) ∈M(Ω) and]
Ω
vk(ω

�)q(dω�|ω, GD) = q(Bk|ω, GD).

Finally, for each k let (ωk, GkD) ∈ GrΦ(·) be such that
q(Bk|ωk, GkD) = sup

(ω,GD)∈GrΦ(·)
q(Bk|ω, GD).

We have for all ω ∈ Ω,

p∗(Bk|ω) =
]
Gm
q(Bk|ω, G�D)π(σλ∗D (G�D|ω)) ≤ q(Bk|ωk, GkD)→ 0.
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By Theorem 2, under assumptions [A-1], [A-2], [A-3], and [A-4]* the equilibrium
Markov transition p∗(·|·) governing the process of network and coalition formation is
globally uniformly countably additive. Moreover, letting C = Ω, V (ω) = 1 for all
ω ∈ Ω, and b = 2, the drift condition is also satisfied. Thus, by strengthening the
stochastic continuity properties of the law of motion q(·|·, ·) mildly beyond what is
required to guarantee the existence of an equilibrium Markov transition, p∗(·|·), we
are able to conclude in Theorem 2 that the Tweedie conditions are satisfied globally
(i.e., with C = Ω).

6 Basins of Attraction, Invariance, and Ergodicity

We now have our main result concerning stochastic basins of attraction and the
stability of the emergent network-coalition formation process

{W ∗
n}n = {(G∗n, S∗n)}∞n=1

governed by p∗(·|·).

Theorem 3 (Basins of Attraction: The Finite Decomposition of the State Space)

Under assumptions [A-1], [A-2], [A-3], and [A-4]* the emergent network-coalition
formation process

{W ∗
n}n = {(G∗n, S∗n)}∞n=1

governed by the equilibrium Markov transition p∗(·|·) = q(·|·,π(σλ∗D (·))) gener-
ates a decomposition of the state space of network-coalition pairs Ω = G × F
into a finite number of disjoint basins of attraction and a disjoint transient set.
In particular, this decomposition is of the form

Ω=
�∪Ni=1Hi� ∪ T , (50)

where each Hi is a basin of attraction (i.e., maximal Harris) and T is transient,
and has the property that for every network-coalition pair ω ∈ Ω

L∗(ω,∪iHi) = 1. (51)

By Theorem 3 the emergent network-coalition formation process {W ∗
n}n is such

that starting at any network-coalition pair not contained in a basin of attraction (i.e.,
a maximal Harris set), the process will reach in finite time with probability 1, one of
finitely many basins of attraction Hi, and once there will stay there. An analogous
conclusion is reached in Page and Wooders (2009a) for static, abstract games of
network formation over finitely many networks. There it is shown that no matter what
rules of network formation prevail, given any profile of player preferences, the feasible
set of networks contains a finite, disjoint collection of sets, each set representing a
strategic basin of attraction in the sense that if the game is repeated - each time
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starting at the status quo network reached in the previous play of the game - the
process of network formation generated by repeating this static game will reach a
strategic basin of attraction in finitely many moves and once there will stay there.

Because in our model the Tweedie conditions hold globally, it follows from Theo-
rem 2 in Tweedie (2001) that the entire state space Ω admits a finite decomposition,

Ω=
�∪Ni=1Hi� ∪ T,

consisting of a finite number of indecomposable, Maximal Harris sets, Hi, and a
transient set T . The key step in establishing this finite decomposition is to show that
because the equilibrium Markov transition,

ω → q(·|ω,π(σλ∗(ω))),
is globally, uniformly countably additive, the state space contains at most a finite
number of disjoint absorbing sets (see Tweedie 2001, Lemma 2). Moreover, by The-
orem 2 in Tweedie (2001), this decomposition is such that L∗(ω,∪Ni=1Hi) = 1 for all
ω ∈ Ω. Thus, governed by the equilibrium Markov transition, q(·|·,π(σλ∗(·))), the
process of network and coalition formation is such that no matter where the process
begins (no matter what network-coalition pair is the starting point), it reaches in
finite time with probability 1 one of finitely many basins of attraction, Hi, and once
there, stays there. Thus, the proof of our Theorem 3 follows from Theorem 2 in
Tweedie (2001) and the fact that the equilibrium Markov transition, q(·|·,π(σλ∗(·))),
is globally uniformly countably additive.

Our next result establishes that the equilibrium Markov transition possesses a
finite number of ergodic measures, one for each basin of attraction.

Theorem 4 (Invariance and Ergodicity of the Process of Network and Coalition
Formation)

Suppose assumptions [A-1], [A-2], [A-3], and [A-4]* hold. Let

{W ∗
n}n = {(G∗n, S∗n)}∞n=1

be the emergent network-coalition formation process governed by the equilibrium
Markov transition p∗(·|·) = q(·|·,π(σλ∗D (·))), and let

Ω=
�∪Ni=1Hi� ∪ T ,

be the corresponding finite decomposition into basins of attraction.

The following statements are true:

(1) Corresponding to each basin of attraction Hi, there is a unique p∗-invariant
probability measure γi(·) with γi(Hi) = 1. Moreover, for each network-coalition
pair ω = (G,S),

p∗(n)(E|ω) := 1

n

n[
k=1

p∗k(E|ω) n→
N[
i=1

L∗(ω,Hi)γi(E ∩Hi), for all E ∈ B(Ω).
(52)

where p∗k(E|ω) is defined recursively, see (38).
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(2) The set of all ergodic probability measures is given by

E∗ = {γi(·)}Ni=1 .

Moreover, a probability measure γ(·) on (Ω, B(Ω)) is p∗-invariant, i.e. γ(·) ∈
I∗, if and only if γ(·) is given by

γ(E) =
N[
i

γ(Hi)γi(E ∩Hi), for all E ∈ B(Ω). (53)

(3) E∗ is a singleton (i.e., E∗ = {γ(·)}) if and only if the network-coalition formation
process {W ∗

n}n is ψ-irreducible, in which case for each network-coalition pair
ω = (G,S) and for every set of network-coalition pairs E∈B(Ω)

1

n

n[
k=1

p∗k(E|ω) n→ γ(E).

Proof. (1) Under our assumptions [A-1], [A-2], [A-3], and [A-4]* (see the proof
of Theorem 2 above), p∗(·|·) satisfies the Tweedie conditions globally. As a result,
the first statement in part (1) is an immediate consequence of Lemma 5 in Tweedie
(2001). The second statement also follows from the fact that in our model the Tweedie
conditions hold globally and Theorem 1 in Tweedie (2001) (also, see Chapter 13 in
Meyn and Tweedie 2009).

(2) Again because the Tweedie Conditions are satisfied globally, the first state-
ment in part (2) follows from Lemma 2 in Tweedie (2001), Theorem 2.18 part (1) in
Costa and Dufour (2005), Theorem 3.8 in Costa and Dufour, and the proof of Propo-
sition 5.3 in Costa and Dufour. The second statement in part (2), that γ(·) ∈ I∗
implies (53), follows from the proof of Proposition 5.3 in Costa and Dufour (2005).
The fact that (53) implies γ(·) ∈ I∗ follows from observation (but also, see Theorem
19.25 in Aliprantis and Border 2006 and Theorem 2 in Villareal 2004).

(3) Finally, because the Tweedie Conditions are satisfied globally, necessary and
sufficient conditions for E∗ to be a singleton, given in terms of ψ-irreducibility follow
from Theorem 3 in Tweedie (2001). The convergence result in part (3) follows from
the convergence result in part (1) of the Theorem and the fact that if there is only one
basin of attractionH (i.e., one maximal Harris set), then by Theorem 3, L∗(ω,H) = 1
for all ω ∈ Ω.

Note that the probability measures in E∗ are orthogonal, that is, for all i and i�
in {1, 2, . . . , N} with i 9= i�,

γi(Ω\Hi) = γi� (Hi) = 0.

6.1 Ergodic Properties of Strategic Values

For each starting network-coalition pair ω = (G,S) ∈ Ω, w∗d(ω) is the strategic
value to player d of following his parts of the stationary Markov correlated strategy
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{σi∗d (·)}mi=0, given that all other players follow their parts of the strategy {σi∗−d(·)}mi=0.
Because each Markov strategy profile σi∗D(·) is Nash (for i = 0, 1, . . .m), we know
that this is the best that player d can do relative to all other strategies, even those
that are history dependent. Strategies σi∗D(·) together with the trembles of nature
determine the equilibrium Markov process of network and coalition formation via the
transition p∗(·|·) = q(·|·,π(σλ∗D (·))). The questions we wish to address in this section
concern the properties of players’ strategic values across time and states given the
equilibrium process of network and coalition formation.

We begin by considering time averages. Let

p∗(n)w∗d(ω) :=
1

n

n[
k=1

]
Ω
w∗d(ω

�)p∗k(dω�|ω) =
]
Ω
w∗d(ω

�)p∗(n)(dω�|ω),

where recall,

w∗d(ω) = Ed(σ
λ∗
D )(ω) :=

S∞
n=1 β

n−1
d rnd (σ

λ∗
D )(ω)

= rd(ω,π(σ
λ∗
D (ω))) + βd

U
Ωw

∗
d(ω

�)dq(ω�|ω,π(σλ∗D (ω)))
and

p∗(n)(E|ω) := 1
n

Sn
k=1 p

∗k(E|ω) = 1
n

Sn
k=1

U
Ω p

∗(E|ω�)p∗k−1(dω�|ω).

Here, p∗k(E|ω) is the probability that process reaches the set of network-coalition
pairs E starting at network-coalition pair ω = (G,S) in k periods or moves if players
follow the Markov strategies assigned via the correlated equilibrium strategy, σλ∗D (ω).

The function p∗(n)w∗d(·) specifies for each starting network-coalition pair, player
d’s n-period time average expected strategic value (i.e., the average value of following
his parts of the stationary Markov correlated strategy σλ∗D (·) for n moves). We can
think of limn p∗(n)w∗d(·) therefore as specifying for each starting network-coalition
pair, player d’s time average expected value.

By part (1) of Theorem 4 above, we have for all ω ∈ Ω and E ∈ B(Ω)

p∗(n)(E|ω) = 1

n

n[
k=1

p∗k(E|ω) n→
N[
i=1

L∗(ω,Hi)γi(E∩Hi) = γω(E), (54)

where γω(·) ∈ I∗ for all ω ∈ Ω and E∗ = {γi(·) : i = 1, 2, . . . , N}. Because p∗(n)(·|ω)
converges setwise for all ω, by Delbaen’s Lemma (1974) we have for all ω ∈ Ω

p∗(n)w∗d(ω)→
N[
i=1

L∗(ω,Hi)
]
Hi

w∗d(ω
�)dγi(ω

�). (55)

Thus, we obtain one of the fundamental principles of equilibrium dynamics: the
equality of time averages and state averages.
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Theorem 5 (The Equality of Time Average Values and State Average Values)

Under assumptions [A-1], [A-2], [A-3], and [A-4]* the emergent network-coalition
formation process

{W ∗
n}n = {(G∗n, S∗n)}∞n=1

governed by the equilibrium Markov transition p∗(·|·) = q(·|·,π(σλ∗D (·))) is such
that:

(1) for each player d starting at any network-coalition pair ω = (G,S) contained in
a basin of attraction Hi the time average value of the correlated strategy σλ∗D (·)
is equal to state average value of the correlated strategy, that is, for all basins
of attraction Hi and for all initial states ω = (G,S) ∈ Hi,

lim
n
p∗(n)w∗d(ω)� ~} �

time average

=

]
Hi

w∗d(ω
�)dγi(ω

�).� ~} �
state average

(56)

Moreover, for all initial states ω = (G,S) ∈ Ω,

lim
n
p∗(n)w∗d(ω) =

N[
i=1

L∗(ω,Hi)
]
Hi

w∗d(ω
�)dγi(ω

�) (57)

(2) For all invariant measures γ(·) ∈ I∗]
Ω
f∗d (ω

�)dγ(ω�) =
]
Ω
w∗d(ω

�)dγ(ω�), (58)

where

f∗d (ω) :=
N[
i=1

L∗(ω,Hi)
]
Hi

w∗d(ω
�)dγi(ω

�) for all ω ∈ Ω. (59)

Proof. (1) Part (1) is an immediate consequence of part (1) of Theorem 4, Delbaen’s
Lemma (1974), and the fact that for all basinsHi and all states ω ∈ Hi, L∗(ω,Hi) = 1.

(2) Let invariant probability measure γ(·) =SN
i=1 γ(Hi)γi(·) ∈ I∗ be given. We

haveU
Ωw

∗
d(ω

�)dγ(ω�) =
SN
i=1 γ(Hi)

U
Ωw

∗
d(ω

�)dγi(ω�) =
SN
i=1 γ(Hi)

U
Hi
w∗d(ω

�)dγi(ω�),
andU

Ω f
∗
d (ω

�)dγ(ω�) =
SN
i=1 γ(Hi)

U
Ω f

∗
d (ω

�)dγi(ω�) =
SN
i=1 γ(Hi)

U
Hi
f∗d (ω

�)dγi(ω�).

Letting
U
Hi
w∗d(ω

�)dγi(ω�) := w∗d(Hi), we haveU
Hi
f∗d (ω

�)dγi(ω�) =
U
Hi

kSN
i=1 L

∗(ω�,Hi)w∗d(Hi)
l
dγi(ω

�).

Moreover, because for all ω� ∈ Hi, L∗(ω�,Hi) = 1 and L∗(ω�,Hi�) = 0, for all i� 9= i,U
Hi

kSN
i=1 L

∗(ω�,Hi)w∗d(Hi)
l
dγi(ω

�) = w∗d(Hi) =
U
Hi
w∗d(ω

�)dγi(ω�).
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Thus we have for each iU
Hi
f∗d (ω

�)dγi(ω�) =
U
Hi
w∗d(ω

�)dγi(ω�),

and thus,U
Ω f

∗
d (ω

�)dγ(ω�) =
SN
i=1 γ(Hi)

U
Hi
f∗d (ω

�)dγi(ω�)

=
SN
i=1 γ(Hi)

U
Hi
w∗d(ω

�)dγi(ω�)

=
U
Ωw

∗
d(ω

�)dγ(ω�).

Also see Birkhoff’s Ergodic Theorems (pointwise and mean), for example, Theo-
rems 2.3.4 and 2.3.5 in Hernandez-Lerma and Lasserre 2003).

By part (1) of Theorem 5, each player’s time average value limn p∗(n)w∗d(ω) =
f∗d (ω) is constant with respect to the starting network-coalition pair on each basin of
attraction. In particular,

lim
n
p∗(n)w∗d(ω) =

]
Ω
w∗d(ω

�)dγ(ω�) =
]
Hi

w∗d(ω
�)dγi(ω

�) for all ω ∈ Hi.

By part (2) of Theorem 5, for any given invariant probability measure each player’s
average of time averages over the entire state space is equal to his state average over
the entire state space with respect to the given measure.

7 Strategic Stability and Dynamic Consistency

Again let σλ∗D (·) be an equilibriumMarkov correlated strategy of the dynamic network-
coalition formation game with corresponding equilibrium Markov transition p∗(·|·) =
q(·|·,π(σλ∗D (·))), and let

Ω=
�∪Ni=1Hi� ∪ T ,

be the finite decomposition of the state space generated by p∗(·|·) with basins of
attraction {H1, . . . ,HN} and transient set T . Finally, let E∗ = {γi(·)}Ni=1be the
corresponding set of ergodic probability measures with γi(Hi) = 1 for all i.

Player d�s parts of the correlated strategy σλ∗D (·)

ω = (G,S)→ σi∗d (·|G,S), i = 0, 1, . . . ,m

govern the way in which player d tries to influence the process of network and coalition
formation across time (as directed by the public randomization device, λ(·)), and for
each given status quo coalition S, them+1 transitions, σi∗d (·|·, S), are the equilibrium
Markov transitions on networks governing player d’s network proposal process. For
each status quo coalition S, we will refer to the equilibrium Markov transitions,
(σi∗d (·|·, S)mi=0)d∈D, as the S-proposal transitions and we will refer to the induced
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equilibrium Markov network-coalition transition, p∗(·|·) = q(·|·,π(σλ∗D (·))), as the
state transition.

To begin, let L∗idS denote the set of absorbing sets corresponding to player d’s S-
proposal transition σi∗d (·|·, S), and let L∗cdS := ∩mi=0L∗idS denote the set of absorbing sets
common to all player d’s S-proposal transition σi∗d (·|·, S) under correlated strategy
σλ∗D (·). We will refer to the collection of absorbing sets L∗cdS as player d�s correlated
absorbing sets. If the set of networks E is a correlated absorbing set for player d,
then for any status quo network G ∈ E, it is optimal for player d ∈ S to propose
with probability 1 either the status quo network or a new network G� in E no matter
which S-proposal transition σi∗d (·|·, S), i = 0, 1, . . . ,m, governs player d�s network
proposal choice. Moreover, by assumption A-2(2) if d /∈ S, then player d is constrained
to propose only the status quo network. Thus, for any player d not in coalition
S, σi∗d ({G}|G,S) = 1 for all status quo networks G under all player d�s proposal
transitions.15 If in addition, the set of network proposals E is a correlated absorbing
set for all players in S, that is, if

E ∈ ∩d∈SL∗cdS := ∩d∈S [∩iL∗idS ],
then for all status quo networks G ∈ E, it is optimal for all players in S to propose
a network contained in E with probability 1 no matter which S-proposal transition
σi∗d (·|·, S) governs player d�s network proposal choice. Note, however, that unless E
is a singleton (i.e., E = {G} for some network G ∈ G), players may not agree on
their individual network proposals. However, if E is a correlated absorbing set for
all members of S then at least all members will agree that their proposals should be
drawn from E. Thus, we can think of the sets in ∩d∈SL∗cdS as being strategically stable
for coalition S - as long as coalition S is the status quo coalition. We will denote by
L∗cS the intersection ∩d∈SL∗cdS and we will refer to L∗cS as an S-strategically stable set.

Let C be a subcollection of the feasible coalitions F . We will say that a set of
networks E is C-strategically stable if it is S-strategically stable for all coalitions
S ∈ C, that is, if

E ∈ ∩S∈CL∗cS := L∗cC ,
and we will say that E is strategically stable if C = F . Thus, if E is C-strategically
stable, then in any status quo state ω = (G,S) with G ∈ E and S ∈ C, all players in
S will find it in their best interest to propose networks in E, while all players not in S
will be constrained (under the rules of network formation) to propose the status quo
network G - also a network in E. Moreover, the same will be true in any other state
ω� = (G�, S�) with G� ∈ E and S� ∈ C, that is, all players in S� will find it in their
best interest to propose networks in E, while all players not in S� will be constrained
to propose the status quo network G.

Finally, suppose the C-strategically stable set of networks E is such that nature
chooses with probability 1 network-coalition pairs from E×C starting from any status
15Thus, for all states ω = (G,S) and for all players d /∈ S, the singleton sets {G} are absorbing for

the m+ 1, S-proposal transitions
(σi∗d (·|·, S))mi=0.
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quo network-coalition pair contained in E × C; that is, suppose that in addition
to E being C-strategically stable, that E × C is absorbing for the state transition
p∗(·|·) := q(·|·,π(σλ∗D (·))). We will refer to a C-strategically stable set of networks
E as being C-dynamically consistent if E × C is absorbing for p∗(·|·). Thus, a set of
networks E ∈ L∗cC is C-dynamically consistent if E×C ∈ L∗, where as before L∗ is the
collection of all absorbing sets corresponding to the state transition p∗(·|·).

We have the following formal definitions.

Definitions 8 (C-Strategic Stability and C-Dynamic Consistency)
(1) ( C-Strategic Stability)
A set of networks E ∈ B(G) is C-strategically stable if all players d ∈ D in all states

(G,S) ∈ E×C propose networks in E with probability 1, that is, if for all players
d ∈ D,

σi∗d (E|G,S) = 1 for all (G,S) ∈ E×C and i = 0, 1, . . . ,m.

(2) ( C-Dynamic Consistency)
A C-strategically stable set of networks E ∈ B(G) is C-dynamically consistent if in

all states (G,S) ∈ E×C nature chooses states in E×C with probability 1, that
is, if

p∗(E×C|G,S) = 1 for all (G,S) ∈ E×C.
(3) (Strategic Stability and Dynamic Consistency)

An F-strategically stable set of networks E ∈ B(G) is dynamically consistent if it is
F-dynamically consistent.

The following result gives necessary conditions for dynamic strategic stability and
dynamic consistency. The proof is straightforward.

Theorem 6 (Dynamic Consistency and Invariance)

Suppose assumptions [A-1], [A-2], [A-3], and [A-4]* hold and let

{W ∗
n}n = {(G∗n, S∗n)}∞n=1

be the emergent network-coalition formation process governed by the equilibrium
Markov transition p∗(·|·) := q(·|·,π(σλ∗D (·))).

If E ∈ B(G) is dynamically consistent, then starting at any network-coalition pair
contained in E := E×F, the network-coalition formation process will reach
in finite time with probability 1 a nonempty subset of network-coalition pairs
E ∩ Hi, where Hi is a basin of attraction and once there will remain there.
Moreover, there exists a p∗-invariant probability measure which assigns positive
measure to E ∩Hi.
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Note that E∩Hi is absorbing for the state transition p∗(·|·); that is, E∩Hi ∈ L∗.
Moreover, note that it is possible for E to intersect more than one basin of attraction,
but because each basin of attraction is indecomposable, each basin of attraction can
intersect only one such set E := E×F where E is dynamically consistent. It is
also possible for E to intersect the transient set - but it is not possible for E to be a
subset of the transient set. If E intersects basins Hi and Hi� , and γ(·) is a p∗-invariant
measure such that γ(E) = 1, then by part (2) of Theorem 5 above we have,

γ(E) =
N[
i��

γ(Hi��)γi��(E ∩Hi��) = γ(Hi)γi(E ∩Hi) + γ(Hi�)γi�(E ∩Hi�).

Thus, under any p∗-invariant measure γ(·) the measure of any absorbing set E is a
weighted sum of the probability masses the invariant measures γ(·) assigns to each
basin Hi.

7.1 Dynamic Path dominance Core and Dynamic Pairwise Stability

One way to extend the definition of the path dominance core introduced in Page and
Wooders (2009a) to the dynamic setting considered here is as follows:

Definition 9 (The Dynamic Path Dominance Core)

A network G∗ ∈ G is in the dynamic path dominance core if the set {G∗} is dynam-
ically consistent, that is, if {G∗} ∈ L∗cF and {G∗} × F ∈ L∗.

We have the following result giving necessary conditions for a network to be in
the path dominance core.

Theorem 7 (The Dynamic Path Dominance Core and Invariance)

Suppose assumptions [A-1], [A-2], [A-3], and [A-4]* hold and let

{W ∗
n}n = {(G∗n, S∗n)}∞n=1

be the emergent network-coalition formation process governed by the equilibrium
Markov transition p∗(·|·) := q(·|·,π(σλ∗D (·))).

If network G∗ ∈ G is in the dynamic path dominance core, that is, if {G∗} is
dynamically consistent, then starting at any network-coalition pair contained in
{G∗}×F , the network-coalition formation process will reach in finite time with
probability 1 a nonempty subset of network-coalition pairs ({G∗} × F) ∩ Hi,
where Hi is a basin of attraction and once there will remain there. Moreover,
there exists a p∗-invariant probability measure which assigns positive measure
to ({G∗} × F) ∩Hi.
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Note that if for some network G∗ ∈ G and some coalition S∗ ∈ F , {G∗} ∈ L∗cS∗
and {(G∗, S∗)} ∈ L∗, so that {G∗} is {S∗}-dynamically consistent, this does not
necessarily imply that G∗ is in the dynamic path dominance core, even if {(G∗, S∗)}
basin of attraction, because {G∗} may not be dynamically consistent. Why? Because
while nature will choose with probability 1 the network-coalition pair (G∗, S∗) if the
status quo is (G∗, S∗), if the status quo coalition is not S∗, that is, if the status quo
state is (G∗, S�) for some coalition S� ∈ F not equal to S∗, some players in S� may
propose a network other than G∗ (i.e., it may be the case that G∗ /∈ L∗cdS� for some
player d ∈ S� or it may be the case that G∗ /∈ L∗idS� for some i = 0, 1, 2, . . . ,m)
and in turn nature may choose a state other than (G∗, S∗). Moreover, if G∗ is not
strategically stable, but nonetheless {G∗} × C ∈ L∗ for some subset of coalitions
C ⊆ F , then if the equilibrium network-coalition formation process reaches any state
(G∗, S) ∈ {G∗} × C, the process will remain in the set {G∗} × C - despite network
proposals to the contrary by players, even players in coalitions in C. In such a case,
the state transition overrides the wishes of the players. This leads to the following
alternative notion of dynamic path dominance core.

Definition 10 (The State Transition Core)

(1) (State Transition Core) A network G∗ ∈ G is in the state transition core if the
set of states {G∗}×F ∈ B(Ω) is an absorbing set for the state transition p∗(·|·).

(2) (Weak State Transition Core) A network G∗ ∈ G is in the weak state transition
core if the set of states {G∗} × C ∈ B(Ω) is an absorbing set for the state
transition p∗(·|·) for some subset of coalitions C ⊆ F.

Under the definition of weak state transition core, for any basin of attraction Hi∗
of the form Hi∗ = {(G∗, S∗)}, G∗ is in the weak state transition core. Moreover, if
for some state transition absorbing set E, E∩Hi∗ is nonempty but E is disjoint from
the other basins, then starting at any network-coalition pair in E, the process will
reach in finite time with probability 1 the network-coalition pair (G∗, S∗) and will
remain there.

Finally, note that if p∗({G∗} × C|G∗, S) = 1 for all S ∈ C ⊆ F , then because the
law of motion

q(·|(G,S), GD)
is absolutely continuous with respect the probability measure μ = ν × γ for all
((G,S), GD) ∈ GrΦ(·), G∗ must be an atom of the probability measure ν, that is,

G∗ ∈ {Aα1,Aα2, . . .} = {Aαk}∞k=1 ⊂ G.

To extend the definition of the pairwise stability introduced in Jackson and Wolin-
sky (1996) to the dynamic setting considered here, we begin by specializing the fea-
sible set of coalitions to coalitions of size no greater than 2.
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Definition 11 (Dynamic Pairwise Stability)

Suppose the feasible set of coalitions is given by

F≤2 = {S ∈ P (D) : |S| ≤ 2} .
(i.e., all feasible coalitions consist of at most two players). Then a network
G∗ ∈ G is dynamically pairwise stable if the set {G∗} is dynamically consistent,
that is, if {G∗} ∈ L∗cF≤2 and {G∗} × F≤2∈ L∗.

We have the following characterization

Theorem 8 (Dynamic Pairwise Stability and Invariance)

Suppose assumptions [A-1], [A-2], [A-3], and [A-4]* hold and let

{W ∗
n}n = {(G∗n, S∗n)}∞n=1

be the emergent network-coalition formation process governed by the equilibrium
Markov transition p∗(·|·) := q(·|·,π(σλ∗D (·))).

If network G∗ ∈ G is dynamically pairwise stable, that is, if {G∗} is dynamically
consistent, then starting at any network-coalition pair contained in {G∗}×F≤2,
the network-coalition formation process will reach in finite time with probability
1 a nonempty subset of network-coalition pairs ({G∗} × F≤2)∩Hi, where Hi is a
basin of attraction and once there will remain there. Moreover, there exists a p∗-
invariant probability measure which assigns positive measure to ({G∗} × F≤2)∩
Hi.

Our conclusion that for some basin of attraction Hi, ({G∗} × F≤2) ∩ Hi is con-
tained in the support of some p∗-invariant measure is similar to the conclusion reached
by Jackson and Watts (2002) for a stochastic process of network formation over a
finite set of linking networks governed by Markov chain generated by myopic players.
They reach their conclusion by considering a sequence of perturbed irreducible and
aperiodic Markov chains (i.e., each with a unique invariant measure) converging to
the original Markov chain. This method is similar to a method introduced into games
by Young (1993) which in turn is based on some very general perturbation methods
found in Freidlin and Wentzell (1984). Here we have reached similar conclusions using
very different methods.

8 Appendix

8.1 The Hausdorff metric topology for the Space of Directed Net-
works

Because the set of directed connections, K := A×(N×N), is a compact metric space,
we can equip the space of networks Pf (K) with the Hausdorff metric h, making
it a compact metric space (see Aliprantis and Border (2006), sections 3.16-3.18).
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Formally, the Hausdorffmetric is defined as follows: First, define the distance between
a connection (a, (i0, i1)) ∈ K and a network G ∈ Pf (K) as follows:

d((a, (i0, i1)), G) := inf
(a�,(i�0,i

�
1))∈G

dK
�
(a, (i0, i1)), (a

�, (i�0, i
�
1))
�
,

where

dK
�
(a, (i0, i1)), (a

�, (i�0, i
�
1))
�
:= dA(a, a

�) + dN(i0, i�0) + dN (i1, i
�
1)

is the product metric on K. The Hausdorff metric h is then defined as

h(G,G�)
:= max

q
sup(a,(i0,i1))∈G d((a, (i0, i1)), G

�), sup(a�,(i�0,i�1))∈G� d((a
�, (i�0, i�1)), G)

r
,
(60)

for directed networks G and G� in Pf (K).16

To better understand how the distance between networks is measured using the
Hausdorff metric, consider the notion of a sequence of networks converging to a
limit network. Convergence in the space of directed networks (Pf (K), h) can be
characterized via the notions of limit inferior and limit superior. Let {Gn}n be a
sequence of directed networks. The limit inferior of this sequence, denoted by Li(Gn),
is defined as follows:

connection (a, (i, i�)) ∈ Li(Gn) if and only if there is a sequence of connections
{(an, (in, i�n))}n such that (an, (in, i�n)) ∈ Gn for all n and

(an, (in, i�n))→
dK
(a, (i, i�)).

The limit superior, denoted by Ls(Gn), is defined as follows:

connection (a, (i, i�)) ∈ Ls(Gn) if and only if there is a subsequence of connections
{(ank , (ink , i�nk))}k such that (ank , (ink , i�nk)) ∈ Gnk for all k and

(ank , (ink , i�nk))→
dK
(a, (i, i�)).

A directed network G ∈ Pf (K) is said to be the limit of networks {Gn}n if
Ls(Gn) = G = Li(Gn).

Moreover, because the set of connections A × (N × N) is a compact metric
space,

Ls(Gn) = G = Li(Gn) if and only if h(Gn, G)→ 0

(i.e., the sequence of networks {Gn}n converges to network G ∈ Pf (K) under
the Hausdorff metric h - see Theorem 3.93 in Aliprantis and Border (1999)).17

16 It is important to note that because the space of connectionsK is compact, all metrics compatible
with the product topology on K := A × (N ×N) generate the same Hausdorff metric topology on
Pf (K) (see Theorem 3.87 in Aliprantis and Border, 2006).
17Both Li(Gn) and Ls(Gn) are networks, that is, both Li(Gn) and Ls(Gn) are contained in Pf (K).

Moreover, in general,
Li(Gn) ⊆ Ls(Gn).
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8.2 The Existence of Stationary Markov Correlated Equilibrium

8.2.1 The Continuity Lemma

A key ingredient in proving the existence of a stationary Markov correlated equilib-
rium is the one-shot, state-contingent game given by

Gv(ω) := (P(Φd(ω)), ud(ω, ·)(vd))d∈D (61)

where for each state ω ∈ Ω, player d�s strategy set is P(Φd(ω)) and player d�s payoff
function is

σD → ud(ω,σD)(vd) := (1− βd)rd(ω,π(σD)) + βd

]
Ω
vd(ω

�)q(ω�|ω,π(σD)). (62)

Here v = (vd) ∈ Vm is the m-tuple of player value functions. Each player’s set of
value functions is given by V, the set of all μ-equivalence classes of B(Ω)-measurable
functions, v(·) : Ω→[−M,M ]. Because the Borel σ-field B(Ω) countably generated,
the space of μ-equivalence classes of μ-integrable functions, L1(Ω, B(Ω),μ), is sep-
arable. As a consequence the set of value functions V is a compact, convex, and
metrizable subset of L∞(Ω, B(Ω),μ) for the weak star topology σ(L∞,L1). Letting

Vm =V× · · · × V� ~} �
m:=|D| times

,

Vm equipped with the product topology σm(L∞,L1) is also compact, convex, and
metrizable. We will denote by vn →

w∗
v∗ convergence in weak star product topology

σm(L∞,L1).
In order to establish existence, we must show that in each state ω ∈ Ω and for

each m-tuple of player value functions, v = (vd) ∈ Vm, the one-shot game Gv(ω)
has a nonempty, compact set of Nash equilibria, Nv(ω). But more importantly,
we must show that Nv(·) is measurable in ω for each v and that N(·)(ω) is upper
hemicontinuous in v for each ω. In order to accomplish the latter, we will first show
that

(v,σD)→ (ud(ω, ·)(·))d
is continuous for each ω ∈ Ω.

Lemma (The Continuity Lemma)

Suppose assumptions [A-1]-[A-4] hold and let {(vn,σnD)}n be any sequence in Vm×T
dP(Φd(ω)). If vn →w∗ v

∗ and σnD → σ∗D narrowly,then for each player d

ud(ω,π(σ
n
D))(v

n)→ ud(ω,π(σ
∗
D))(v

∗) for all ω ∈ Ω.
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Proof. Let {(vn,σnD)}n be a sequence such that vn →w∗ v
∗ and σnD → σ∗D narrowly.

Let ω be given and fixed, and observe that for all players d:

|ud(ω,σnD)(vnd )− ud(ω,σ∗D)(v∗d)|

≤|ud(ω,σnD)(vnd )− ud(ω,σ∗D)(vnd )|� ~} �
An

+ |ud(ω,σ∗D)(vnd )− ud(ω,σ∗D)(v∗d)|� ~} �
Bn

.

We will carry out our proof for one player d, keeping in mind that the argument
can easily be made to hold for all players simultaneously. Consider Bn first. We have

Bn = βd

����]
Ω
vnd (ω

�)q(ω�|ω,π(σ∗D))−
]
Ω
v∗d(ω

�)q(ω�|ω,π(σ∗D))
���� .

Let z(·|ω,π(σ∗D)) be a density of q(·|ω,π(σ∗D)) with respect to μ. Given that vnd →w∗ v
∗
d,

we have (by the very notion of weak star convergence),U
Ω v

n
d (ω

�)q(ω�|ω,π(σ∗D)) =
U
Ω v

n
d (ω

�)z(ω�|ω,π(σ∗D))dμ(ω�)

→ U
Ω v

∗
d(ω

�)z(ω�|ω,π(σ∗D))dμ(ω�) =
U
Ω v

∗
d(ω

�)q(ω�|ω,π(σ∗D)).

Thus, Bn n→ 0.
Next, consider An. We have

An ≤ (1− βd) |rd(ω,π(σnD))− rd(ω,π(σ∗D))|� ~} �
An1

+βd

����]
Ω
vnd (ω

�)q(ω�|ω,π(σnD))−
]
Ω
vnd (ω

�)q(ω�|ω,π(σ∗D))
����� ~} �

An2

.

Continuity of rd(ω,π(·)) and σnD → σ∗D imply that A
n
1
n→ 0. To see that An2

n→ 0,
observe that by Scheffee’s Theorem we have����]

Ω
vnd (ω

�)q(ω�|ω,π(σnD))−
]
Ω
vnd (ω

�)q(ω�|ω,π(σ∗D))
����� ~} �

An2

≤M nq(·|ω,π(σnD))− q(·|ω,π(σ∗D))n∞
n→ 0.

50



8.2.2 Proof of Existence of a Stationary Markov Correlated Equilibrium

Again consider the one-shot game Gv(ω) and let Nv(ω) denote the set of Nash equi-
libria of Gv(ω).

The proof will proceed in 6 steps:
Step 1 : (ω → Nv(ω) is measurable)
Following Nowak and Raghavan (1992) let

V (ω,σD)(v) :=
S
d

�
ud(ω, (σd,σ−d))(vd)−maxσ∈P(Φd(ω)) ud(ω, (σ,σ−d))(vd)

�
,

and consider the correspondence

ω → Nv(ω) := {σD ∈ P(Φd(ω)) : V (ω,σD)(v) = 0} . (63)

Note that σD = (σd)d ∈ Nv(ω) if and only if for each player d ∈ D,
ud(ω, (σd,σ−d))(vd) ≥ ud(ω, (σ,σ−d))(vd) for all σ ∈ P(Φd(ω)).

Given that q(F |ω, ·) is continuous on Φ(ω) for closed F ∈ B(Ω), it follows from
Delbaen’s Lemma (1974) that the function

Gd →
]
Ω
vd(ω

�)q(ω�|ω, (Gd, G−d))

is also continuous on Φd(ω) for all players d, states ω ∈ Ω, and value functions
v(·) ∈ Vm. Therefore, by weak continuity, the function

σd →
]
Ω
vd(ω

�)q(ω�|ω,π(σd,σ−d))

is continuous on P(Φd(ω)) for all players d, states ω ∈ Ω, and value functions v(·) ∈
Vm. Moreover, because each player’s payoff function,

σd → ud(ω, (σd,σ−d))(vd),

is continuous and affine on P(Φd(ω)), and because the feasible sets, P(Φd(ω)), are
compact and convex, the game Gv(ω) has a Nash equilibrium σ∗D ∈

T
dP(Φd(ω)).

Thus, Nv(ω) is nonempty and compact. Finally, because σD → V (ω,σD)(v) is
continuous, it follows from Theorem 6.4 in Himmelberg (1975) that ω → Nv(ω)
is measurable.

Step 2 : (Properties of the Nash Correspondence v → Nv(ω))
The correspondence v → Nv(ω) has a closed graph for all ω ∈ Ω. To see this,

let {(vn,σnD)} be a sequence such that σnD ∈ Nvn(ω) for all n and let vn →w∗ v
∗ and

σnD → σ∗D narrowly. We must show that σ
∗
D ∈ Nv∗(ω). Suppose that σ∗D /∈ Nv∗(ω).

Thus, σ∗D is not Nash equilibrium for the game Gv∗(ω). Therefore for some player d
and some action σd ∈ P(Φd(ω)),

ud(ω, (σd,σ
∗
−d))(v

∗
d) > ud(ω, (σ

∗
d,σ

∗
−d))(v

∗
d).
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But by the Continuity Lemma, we have for sequences {(vn,σnD)}n and
�
(vn, (σd,σ

n
−d))

�
n

ud(ω, (σd,σ
n
−d))(v

n
d )

n→ ud(ω, (σd,σ
∗
−d))(v

∗
d)

and
ud(ω, (σ

n
d ,σ

n
−d))(v

n
d )

n→ ud(ω, (σ
∗
d,σ

∗
−d))(v

∗
d).

Thus, for n sufficiently large,

ud(ω, (σd,σ
n
−d))(v

n
d ) > ud(ω, (σ

n
d ,σ

n
−d))(v

n
d )

contradicting the fact that σnD ∈ Nvn(ω) for all n.
Step 3 : (v → Σ(coPv(·)) has a closed graph)
Consider the Nash payoff correspondence given by

Pv(ω) := {(Ud) ∈ Rm : (Ud) = (ud(ω,σD)(vd)) for some σD ∈ Nv(ω)} ,

where, recall

ud(ω,σD)(vd) := (1− βd)rd(ω,π(σD)) + βd

]
Ω
vd(ω

�)q(ω�|ω,π(σD)).

By Theorem 6.5 in Himmelberg (1975) the payoff correspondence ω → Pv(ω) is
measurable with nonempty, compact values, and by Theorem 9.1 in Himmelberg
(1975) the correspondence

ω → coPv(ω)

is measurable with nonempty, compact convex values.
Step 4 : (The Nowak-Raghavan Lemma under weaker stochastic continuity)
Let Σ(coPv(·)) be the set of all μ-equivalence classes of measurable selectors of

ω → coPv(ω), v ∈ Vm (i.e., U(·) ∈ Σ(coPv(·)) if and only if U(ω) ∈ coPv(ω) for
all ω ∈ Ω\NU , where NU is a μ-null set, μ(NU ) = 0). The Nowak-Raghavan (NR)
Lemma states that the payoff selection correspondence v → Σ(coPv(·)) is upper hemi-
continuous with nonempty convex, weakly compact values. Convexity, weak compact-
ness, and nonemptiness are straightforward. We need only prove upper hemicontinu-
ity. Thus, we must show that if Un(·) ∈ Σ(coPvn(·)) for all n and Un(·)→

w∗
U∗(·) and

vn(·)→
w∗
v∗(·), then U∗(·) ∈ Σ(coPv∗(·)) (i.e., U∗(ω) ∈ coPv∗(ω) a.e. [μ]).

The proof of the NR Lemma proceeds in three steps:
First, we have Un(·) →

w∗
U∗(·) and vn(·) →

w∗
v∗(·), where for all n, Un(·) ∈

Σ(coPvn(·)) and vn(·) ∈ Vm. Let N∞ = ∪NUn be the μ-null set where for each
n, NUn is such that for all ω ∈ Ω\NUn , Un(ω) ∈ coPvn(ω). By Komlos’ Theorem
(1967), we can assume without loss of generality that for some μ-null set eN (i.e.,
μ( eN) = 0)

1

n

n[
k=1

Uk(ω)
n→ eU(ω) ∈ Rm for all ω ∈ Ω\ eN .
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Therefore,

1

n

n[
k=1

Uk(ω)
n→ eU(ω) for all ω ∈ Ω\N where N = eN ∪N∞.

By Proposition 1 in Page (1991),eU(ω) ∈ coLs {Un(ω)} and we know already that eU(ω) = U∗(ω) for all ω ∈ Ω\N .
Here “co” denotes convex hull and Ls {Un(ω)} is the set of cluster points of the
sequence {Un(ω)}n.

Second, applying the Kuratowski-Ryll-Nardzewski Theorem (1965), let hU(·) be
a measurable selector of coLs {Un(·)}. Thus, we have hU(ω) ∈ coLs {Un(ω)} for all
ω ∈ Ω, and therefore, hU(ω) = eU(ω) = U∗(ω) for all ω ∈ Ω\N.
By Theorem 8.2 in Wagner (1977), hU(·) has a Caratheodory representation hU(ω) =Sm
i=0 hαi(ω)hU i(ω), where the Rm-valued functions hU0(·), hU1(·), . . . , hUm(·) are measur-

able selectors of Ls {Un(·)} and the nonnegative functions hα0(·), hα1(·), . . . , hαm(·) are
measurable with

Sm
i=0 hαi(ω) = 1 for all ω. Thus, for each i and each ω, U ink(ω) k→hU i(ω) in Rm for some subsequence �U ink(ω)�

k
⊂ Rm where U ink(ω) ∈ coPvnk (ω) for

all k.
Third, Given that hU(ω) =Sm

i=0 hαi(ω)hU i(ω), the proof (that the payoff selection
correspondence v → Σ(coPv(·)) is upper hemicontinuous) will be complete if we can
show that for each ω ∈ Ω\N , hU i(ω) ∈ coPv∗(ω) for i = 0, 1, . . .m. To accomplish
this, we need the following

Lemma (*): If Un(ω) n→ hU i(ω) in Rm, where Un(ω) ∈ coPvn(ω) for all n and if
vn(·)→

w∗
v∗(·), then hU i(ω) ∈ coPv∗(ω).

Proof of Lemma (*): Again by Theorem 8.2 in Wagner (1977) each

Un(·) ∈ Σ(coPvn(·))
has a Caratheodory representation

Un(ω) =
m[
i=0

ρni(ω)Uni(ω) for all ω ∈ Ω,

where for all n, Uni(ω) ∈ Pvn(ω) and
Sm
i=0 ρ

ni(ω)(ω) = 1, ρni(ω)(ω) ≥ 0 for i =
0, 1, . . . ,m. For each n, let σniD ∈ Nvn(ω) be such that for each player d, Unid (ω) =
ud(ω,σ

ni
D )(v

n
d ) and without loss of generality, assume that σ

ni
D → σ∗iD, and

(ρn0(ω), ρn1(ω), . . . , ρnm(ω))→ (ρ∗0(ω), ρ∗1(ω), . . . , ρ∗m(ω)).

By the Continuity Lemma, we have for all players d,

Und (ω) =
Sm
i=0 ρ

ni(ω)(ω)Unid (ω) =
Sm
i=0 ρ

ni(ω)(ud(ω,σ
ni
D )(v

n
d ))

→
n

Sm
i=0 ρ

∗i(ω)(ud(ω,σ∗iD)(v
∗
d)) =

Sm
i=0 ρ

∗i(ω)U∗i(ω) = hU id(ω).
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Because ν → Nv(ω) has a closed graph, we know that σ∗iD ∈ Nv∗(ω). Thus, we
conclude that each U∗i(ω) ∈ Pv∗(ω), and thus we have for all ω ∈ Ω,

m[
i=0

ρ∗i(ω)U∗i(ω) = hU id(ω) ∈ coPv∗(ω),
completing the proof of the Nowak-Raghavan Lemma.

Step 5: (The Fixed Point Argument)
Applying the Kakutani-Glicksberg Fixed Point Theorem (1952) to v → Σ(coPv(·))

we obtain an m-tuple of value functions

v(·) = (vd(·)) ∈ Vm

such that
v(ω) ∈ coPv(ω) for all ω ∈ Ω\N where μ(N) = 0.

Let v∗(·) = (v∗d(·)) ∈ Vm be a measurable selection of coPv(·) such that v∗(ω) =
v(ω) for all ω ∈ Ω\N . Thus, v∗(ω) ∈ coPv(ω) for all ω ∈ Ω and because coPv(ω) =
coPv∗(ω) for all ω ∈ Ω, we have v∗(ω) ∈ coPv∗(ω) for all ω ∈ Ω.

Step 6: (Construction of a Stationary Markov Correlated Equilibrium)
By Theorem 8.2 in Wagner (1977) v∗(·) has a Caratheodory representation

v∗(ω) =
m[
i=0

λi∗(ω)vi∗(ω) for all ω

where for all i = 0, 1, . . . ,m, vi∗(·) ∈ Vm and vi∗(·) ∈ Pv∗(ω) for all ω ∈ Ω. By the
Measurable Implicit Function Theorem (Theorem 7.1 in Himmelberg 1975), there
exists for each i = 0, 1, . . . ,m, a measurable selection of Nv∗(·), that is, a measurable
function

ω → σi∗D(ω) ∈
\
d

P(Φd(ω))

with σi∗D(ω) ∈ Nv∗(ω) for all ω, such that for each player d ∈ D, i = 0, 1, . . . ,m, and
ω ∈ Ω

vi∗d (ω)

= ud(ω,σ
i∗
D(ω))(v

∗
d)

:= (1− βd)rd(ω,π(σ
i∗
D(ω))) + βd

U
Ω v

∗
d(ω

�)q(ω�|ω,π(σi∗D(ω))).
Thus, for each player d ∈ D, and ω ∈ Ω

v∗d(ω) =
Sm
i=0 λ

i∗(ω)vi∗d (ω)

=
Sm
i=0 λ

i∗(ω)
�
(1− βd)rd(ω,π(σ

i∗
D(ω))) + βd

U
Ω v

∗
d(ω

�)q(ω�|ω,π(σi∗D(ω)))
�

= (1− βd)rd(ω,
m[
i=0

λi∗(ω)π(σi∗D(ω))� ~} �
σλ∗D (ω)

) + βd
U
Ω v

∗
d(ω

�)q(ω�|ω,
m[
i=0

λi∗(ω)π(σi∗D(ω))� ~} �
σλ∗D (ω)

)
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For d ∈ D, let w∗d(·) := v∗d(·)
1−βd . Substituting, we have for all ω ∈ Ω

w∗d(ω) = rd(ω,π(σ
λ∗
D (ω))) + βd

]
Ω
w∗d(ω

�)q(ω�|ω,π(σλ∗D (ω))). (**)

where σλ∗D (ω) =
Sm
i=0 λ

i∗(ω)π(σi∗D(ω)) and σi∗D(ω) ∈ Nw∗(ω) for all ω and i =
0, 1, 2, . . . ,m.

By classical results on discounted dynamic programming (e.g., Blackwell 1965),
we conclude from (**) that for all players d ∈ D and all starting states ω ∈ Ω

w∗d(ω) = Ed(σ
λ∗
D )(ω) :=

∞[
n=1

βn−1d rnd (σ
λ∗
D )(ω).
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