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Abstract

Present econometric methodology of inference in cointegrating regression is extended
to mildly integrated time series of the type introduced by Magdalinos and Phillips
(2007, 2009). It is well known that conventional approaches to estimating cointegrat-
ing regressions fail to produce even asymptotically valid inference procedures when
the regressors are nearly integrated, and substantial size distortions can occur in
econometric testing. The new framework developed here enables a general approach
to inference that resolves this di¢ culty and is robust to the persistence character-
istics of the regressors, making it suitable for general practical application. Mildly
integrated instruments are employed, one using system regressors and internally gen-
erated instruments, the other using external instruments. These new IV techniques
eliminate the endogeneity problems of conventional cointegration methods with near
integrated regressors and robustify inference to uncertainty over the precise nature of
the integration in the system. The use of mildly integrated instruments also provides
a mechanism for linking the conventional treatment of endogeneity in simultaneous
equations with the econometric methodology for cointegrated systems. The methods
are easily implemented, widely applicable and help to alleviate practical concerns
about the use of cointegration methodology when roots are in the vicinity of unity
rather than precisely at unity.

Keywords: Central limit theory, Cointegration, Endogeneity bias, Instrumentation,
Mild integration, Mixed normality, Robustness, Simultaneity.
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1. Introduction

For the last two decades, autoregressive models with roots near unity have played an
important role in time series econometrics, resulting in a vast literature of theory and
applications. Theoretical developments have engaged econometricians, probabilists,
and statisticians, and the empirical applications extend well beyond economics and
�nance into other social and business sciences like mass media communications, po-
litical science, and marketing. The theoretical work makes extensive use of functional
laws for partial sums to Brownian motion, functional laws of weighted partial sums
to linear di¤usions, mapping theorems for functionals of these processes, and weak
convergence of discrete martingales to stochastic integrals and certain nonlinear func-
tionals to Brownian local time. This theory provides a foundation for econometric
estimation, testing, power curve evaluation and con�dence interval construction for
(unit root) nonstationary time series, certain nonlinear nonstationary models and
nonstationary panels.
Much of the limit theory for nonstationary time series involves processes with

autoregressive roots that are local to unity of the form � = 1 + c=n; where n is
the sample size and c is a constant. Deviations from unity of this particular form
are mathematically convenient and help in characterizing local asymptotics, power
functions (Phillips, 1987, 1988a), point optimal asymptotic tests (Elliott, Rothenberg,
Stock, 1996) and con�dence interval construction. But the speci�c O (n�1) rate of
approach to unity has no intrinsic signi�cance or economic meaning. To accommodate
greater deviations from unity within this framework, we may allow the localizing
parameter c to be large or even consider limits as c ! �1; as was done in Phillips
(1987) and Chan and Wei (1988). Such analysis produces certain useful insights, but
it does not resolve the di¢ culties of the discontinuity in the unit root asymptotics.
In particular, it does not bridge the very di¤erent convergence rates of the stationary,
unit root/local to unity, and explosive cases.
Phillips and Magdalinos (2007) and Magdalinos and Phillips (2009, hereafter MP)

recently explored another approach, giving a limit theory for time series with an au-
toregressive root of the form �n = 1+ c=kn; where (kn)n2N is a deterministic sequence
increasing to in�nity at a rate slower than n. Such roots represent moderate devia-
tions from unity in the sense that they belong to larger asymptotic neighborhoods of
one than conventional local to unity roots. But in practice, for �nite n the di¤erences
need not be large: e.g, when n = 100 and kn = n= log n; � = 0:95 is captured by the
value c = �1:086, whereas under the standard local to unity model the same value
of � is captured with c = �5: When c < 0; time series generated with such roots
may be regarded as mildly integrated, and when c > 0 they are mildly explosive. An
interesting family of moderate deviations from unity roots occurs when we consider
kn = n� or �n = 1 + c=n�, where the exponent � lies on (0; 1). The boundary value
as � ! 1 includes the conventional local to unity case, whereas the boundary value
as �! 0 includes the stationary or explosive process, depending on the sign of c.
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These linkages provided a mechanism for bridging the discontinuities between sta-
tionary, local to unity and explosive asymptotics in autoregressions, thereby helping
to complete the passage of the limit theory as the autoregressive coe¢ cient moves
through unity. Mildly explosive asymptotics extend the range of central limit ar-
guments and thereby inference to the explosive domain. They have recently been
found useful in the empirical study of �nancial bubble phenomena (Phillips, Wang,
Yu, 2008). Mildly integrated series may also occur in multivariate systems providing
a framework for generalizing standard cointegrating regressions and for linking these
regressions to simultaneous equations models with stationary regressors. As Elliott
(1998) showed, conventional approaches to estimating cointegrating regressions do
not produce valid asymptotic inference in cases where the regressors have autoregres-
sive roots that are local to unity, leading to what can be substantial size distortion
in econometric testing. An analogous situation arises when the regressors are mildly
integrated. In such cases, recognizing that roots at unity are a special (if important)
case in practical applications, there is a need to develop more robust approaches
to estimation and inference that do not rely upon knowledge of the precise form of
regressor persistence.
The present paper contributes by tackling this problem. We present results that

provide a framework of limit theory that can be used to validate inference in coin-
tegrating models with regressors whose time series characteristics fall into the very
general class of processes having roots in arbitrary neighbourhoods of unity. We
consider cases where the regressors are (i) exactly integrated, (ii) local to unity (in
the usual sense of O (n�1) departures) and (iii) mildly integrated. Instrumental vari-
ables (IV) procedures are developed that address the need for asymptotically valid
inference procedures in cointegrated systems where the regressors have roots in the
vicinity of unity, but their precise integration properties are unknown.
Two IV approaches are presented. The �rst uses instrumental variables that are

constructed by direct �ltering of the (endogenous) regressor variable (xt), so that no
external information (such as the existence of an exogenous instrumental variable) is
used in this procedure. We call this approach IVX estimation since the instrumental
variable relies directly on the regressor (xt): This approach makes use of the (possibly
mild) nonstationarity in xt in the construction of the instrument and the IVX regres-
sion estimator takes the form of a simple bias adjusted IV regression. It is shown that,
by virtue of its construction, the IVX procedure satis�es relevance and orthogonality
conditions that lead to a mixed normal limit theory and simple inferential procedures
that are robust to the precise form of integration in the system. The second approach
uses instrumental variables that are external to the original system and satisfy certain
relevance and orthogonality conditions, just as in the case of simultaneous equations
estimation. This approach also validates and robusti�es inference in cointegrated
systems with mildly integrated regressors. It has the particular advantage of relating
closely to the classical IV procedure in conventional simultaneous equations theory.
Both approaches involve simple linear estimation methods and are straightforward
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to implement in practical work. It is hoped that the resulting theory will resolve
many outstanding issues of inference in cointegrated models with roots near unity
and provide useful new practical tools for time series econometric work that are as
easy to implement as conventional methods for �tting cointegrated systems with unit
root regressors.
The paper is organized as follows. Section 2 de�nes a general cointegrated sys-

tem with possibly mildly integrated regressors and instruments, and lays out basic
regularity conditions that facilitate the asymptotic development. Section 3 proposes
the IVX estimation approach, showing how instrumentation with a mildly integrated
process removes the usual endogeneity problem in cointegrated regression arising from
local to unity regressors. This section also discusses second order bias correction pro-
cedures, estimation of systems with mildly integrated regressors, and develops limit
theory for all of these cases, establishing the robustness of the methods to the nature
of the integration. Section 4 develops the alternative IV approach using external
instruments and shows how these methods may also be used for inference in coin-
tegrated systems when there is uncertainty about the precise integration orders of
the regressors and external instruments are available. Section 5 concludes. Technical
material and proofs are given in Section 6.

2. Cointegration with arbitrary persistence

As is often emphasized in empirical work, economic time series seem to have autore-
gressive roots in the general neighborhood of unity and so insistence that roots be
at unity in cointegrating regressions is likely to be too harsh a requirement in prac-
tice. Matrix cases, where the long-run autoregressive coe¢ cient matrix has the form
Rn = I+C=n were considered in Phillips (1988a, 1988b) to address this issue and the
resulting theory has been useful in developing power functions for testing problems
in cointegrated regressions (Phillips, 1988a; Johansen, 1995) and in the analysis of
cointegrating regressions for near integrated time series (Elliot, 1998). The present
paper allows the regressors to have a much wider range of persistence, covering unit
root processes, local to unity processes and processes with roots that lie close to
the boundary with stationarity. Accommodating this wider range of possibilities is
important in building a connnection between cointegrated systems and stationary
models of joint dependence such as the simultaneous equations model.
A general modeling framework that is convenient for this purpose is the following

multivariate �cointegrated�system with time series regressors in the general vicinity
of unity

yt = Axt + u0t; (1)

xt = Rnxt�1 + uxt; (2)

for each t = 1; :::; n; for some m�K coe¢ cient matrix A and diagonal autoregressive
matrix Rn whose roots j�i (Rn)j � 1 and which satis�es Rn ! IK as n ! 1.
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The innovations u0t and uxt are correlated linear processes de�ned in Assumption LP
below and the system is initialized at some x0 that could be any constant or a random
process x0 (n) = op

�
n(�^1)=2

�
with � speci�ed by Assumption N below. The e¤ect of

more general assumptions on the initial condition are discussed in other recent work
(Phillips and Magdalinos, 2009) and will not be pursued here to avoid unnecessary
complications. Deterministic components may also be included in (1) - (2) and such
extensions are easily accommodated, following Park and Phillips (1988).
When Rn ! IK very slowly as n!1; the system (1) - (2) has characteristics that

are similar to those of a stationary simultaneous equations model. For example, suit-
ably standardized sample moments converge to constant matrices rather than random
matrices as n ! 1 (c.f., MP, and in the univariate case, Phillips and Magdalinos,
2007), in which case the traditional e¤ects of (�rst order) simultaneous equations
bias begin to manifest in ordinary least squares estimation. On the other hand, when
Rn ! IK very quickly as n!1; the signal of the cointegrating regressors dominates
and a second order bias e¤ect, which arises from the long run endogeneity in the
system, manifests in least squares limit theory (Phillips and Durlauf, 1986; Stock,
1987).
In consequence, asymptotic inference about the matrix A of cointegrating coe¢ -

cients depends on the degree of persistence of the nearly integrated regressor xt, i.e.
the rate at which the autoregressive matrix Rn converges to the identity matrix. The
e¤ect of changes in persistence on cointegration methods can be categorised more
precisely by distinguishing among three classes of neighbourhoods of unity. These
classes characterise the asymptotic behavior of the regressor in (2) and are listed in
the following (neighborhood of unity) assumption.

Assumption N. The autoregressive matrix in (2) satis�es the following condition:

Rn = IK +
C

n�
; for some � > 0 (3)

and some matrix C =diag(c1; :::; cK); with ci � 0 for all i 2 f1; :::; Kg. The regressor
xt in (2) belongs to one of the following classes:

(i) Integrated regressors, if C = 0 or � > 1 in (3).

(ii) Local to unity regressors, if C < 0 and � = 1 in (3).

(iii) Mildly integrated regressors, if C < 0 and � 2 (0; 1) in (3).

Some aspects of the limit theory and inferential methods in each of the above
cases are well documented: see Park and Phillips (1988), Phillips and Hansen (1990),
Johansen (1991), Saikkonen (1991) and Stock and Watson (1993) for (i), Phillips
(1988a,b) and Elliott (1998) for (ii) and MP for (iii). The problem is that the validity
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of all of the inferential machinery that has been developed in this work is conditional
on correct speci�cation of the degree of persistence of the regressor, i.e. on a priori
knowledge that the regressor xt belongs to class (i), (ii) or (iii). Without such prior
knowledge the e¤ects can be dramatic. Elliott (1998), for instance, showed that the
presence of local to unity regressors induces a size distortion in testing that can be
serious when conventional cointegration estimators are used. Similar and potentially
more serious distortions arise when conventional cointegration methods are applied
in the presence of mildly integrated regressors or stationary regressors.
This paper addresses the large question of how to conduct inference in such �coin-

tegrated�systems in a context that is of su¢ cient generality to be useful in practical
work. The goal is valid inference without knowledge of the precise degree of in-
tegration of the regressors. To reach this goal, the paper develops an estimating
methodology and associated Wald tests on the cointegrating matrix A which are ro-
bust to the type of persistence of the regressor in (2) and where the limit theory is
mixed normal, normal and standard chi-squared.
The key step to robustifying inference is the development of an instrumental vari-

ables procedure based on mildly integrated instruments. The intuition is as follows:
as we move substantially towards stationarity (C < 0 and 0 < � < 1 in (2)) valid
instrumentation is needed to assist in identifying and estimating the system, just as
in a stationary simultaneous equations model; on the other hand, when the regressors
have greater persistence and therefore carry a stronger signal, it is possible to utilize
this information constructively to eliminate endogeneities in the limit theory, even
for case (ii) where the regressors have roots that are local to unity.
Given a Kz-vector of mildly integrated instruments

zt = Rnzzt�1 + uzt (4)

with Kz � K and a known autoregressive matrix

Rnz = IKz +
Cz
n�
; � 2 (0; 1) ; Cz = diag(cz;1; :::; cz;Kz); cz;i < 0 (5)

it is possible to remove the long run endogeneity that is present in conventional coin-
tegration theory even in the local to unity regressor case. Such instruments may be
constructed directly from the regressors (as shown in equation (10) of Section 3 be-
low). So the method is feasible given only the information contained in (1) and (2).
On the other hand, if extra information is available and the instruments in (4) are
constructed exogenously (that is, so that orthogonality and relevance conditions hold
in relation to the original system (1)-(2)), it is possible to deal with systems where
the regressors are close to the boundary of stationarity and thereby establish a con-
nection between the present methods and formulation and those of the conventional
simultaneous equations system.
In order to accommodate these various possibilities, it is notationally convenient to

consider the equations (1), (2) and (4) jointly in one system and defer the construction
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of the instruments in (4) until the next section. The correlation structure of the
innovations of the system de�ned by (1), (2) and (4) is provided by the following
general purpose assumption, where k�k denotes the spectral norm.

Assumption LP. Let ut = (u00t; u
0
xt; u

0
zt)

0. For each t 2 N, ut has Wold represen-
tation

ut = F (L) "t =
1X
j=0

Fj"t�j;

1X
j=0

j kFjk <1;

where F (z) =
P1

j=0 Fjz
j; F0 = Im+K+Kz ; F (1) has full rank and ("t)t2Z is a sequence

of independent and identically distributed (0;�) random vectors satisfying � > 0 and
the moment condition E k"1k4 <1.
Under LP, the partial sums of ut satisfy a functional central theorem (cf. Phillips

and Solo, 1992)

1p
n

bnscX
t=1

ut ) B (s) on DRm+K+Kz [0; 1] ; (6)

where B denotes a Brownian motion with variance 
 = F (1)�F (1)0 > 0 and
DRp [0; 1] denotes the Skorokhod space of Rp-valued cadlag functions on [0; 1]. The
matrices Fj, F (1) and 
 may be partitioned conformably with ut = (u00t; u

0
xt; u

0
zt)

0 as

Fj =

24 F0j
Fxj
Fzj

35 ; F (1) =

24 F0 (1)
Fx (1)
Fz (1)

35 ; 
 =
24 
00 
0x 
0z

x0 
xx 
xz

z0 
zx 
zz

35
so that 
ij = Fi (1)�Fj (1)

0 for each i; j 2 f0; x; zg. The one sided long run covariance
matrices � =

P1
h=1E

�
utu

0
t�h
�
and � =

P1
h=0E

�
utu

0
t�h
�
may be partitioned in a

similar way to 
. The Brownian motion in (6) can also be partitioned conformably
to ut as follows:

B (s) =
�
B0 (s)

0 ; Bx (s)
0 ; Bz (s)

0�0 (7)

where Bi (s) is a Brownian motion with variance 
ii for each i 2 f0; x; zg. Finally,
following the notation of MP we de�ne the covariance matrices

Vxx =

Z 1

0

erC
xxe
rCdr; (8)

Vzz =

Z 1

0

erCz
zze
rCzdr and Vxz =

Z 1

0

erC
xze
rCzdr; (9)

corresponding to limiting sample moments of mildly integrated processes.
Semiparametric inference in cointegrated systems typically requires the estimation

of the long run covariance matrices 
 and�. For example, fully modi�ed least squares
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(Phillips and Hansen, 1990) makes substantial use of estimates of these quantities in
designing adjustments for long run endogeneity and serial correlation bias. It is
well known that (bandwidth/lag truncation) rate conditions on such estimates are
required to ensure suitable asymptotic properties in estimation and in particular
rates of convergence in the estimated quantities. This is particularly important, for
example, in unrestricted FM-VAR estimation where there are unknown numbers of
unit roots and cointegrated vectors (Phillips, 1995). Similarly, in the present case,
when � is estimated by �̂n using sample autocovariances of (consistent estimates)
ût of ut; it is convenient to impose a lag truncation expansion rate under which �̂n

converges fast enough. The Appendix provides a result of this kind (Lemma A0)
which is used for consistent estimation of � in the development that follows.

3. IVX estimation: �ltered regressors as instru-
ments

This section introduces a new IV procedure for the estimation of the coe¢ cient ma-
trix A in the cointegrated system (1) - (2). The idea is to construct instruments for xt
in (1) by means of a suitable �ltering of the regressors themselves, so that there is no
external data (such as exogenous instruments) employed in the procedure. Accord-
ingly, we call the approach �IVX estimation�because the instruments depend only
on the regressors xt. In this respect the approach bears all the usual hallmarks of
cointegrated system estimation. The intuition underlying the construction is to pro-
duce (from the di¤erences of xt) an instrumental variable whose degree of persistence
is explicitly controlled so that the process is mildly integrated. The IVX instruments
take the form of mildly integrated processes analogous to (4).
It turns out that this approach eliminates the long run endogeneity that is present

in conventional cointegration methods with unit root and local to unity regressors (see
Lemma 3.2 below) without speci�c knowledge of whether the time series have roots
at or local to unity. The limit distribution of the IVX estimator is mixed normal
and the resulting inferential methods follow standard chi-squared asymptotics and
are robust to the degree of persistence in the regressors.
Given the cointegrated system in (1) and (2), we construct instruments ~zt from

(2) as follows:

~zt =
tX
j=1

Rt�jnz �xj (10)

where Rnz is de�ned as in (5) for some given Cz, � and Kz = K. It su¢ ces to let
Cz = �IK and choose � according to broadly de�ned criteria that are laid out below.
The construction (10) is organized so that only information present in the series xt
is used � that is, no outside time series data (such as an exogenous instrumental
variable) is used in the construction. In fact, the weighted partial sum process (10)
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produces a mildly integrated instrument that is correlated with the regressor xt: As
shown below in Lemmas 3.1 and 3.2, this instrument satis�es a suitable asymptotic
relevance condition for the regressor xt in (2), while at the same time serving as a
valid instrument in terms of inducing a suitable asymptotic orthogonality between its
sample covariance with the equation error in (1) and the limit process corresponding
to the regressor xt: Importantly, as we will see, these two properties hold irrespective
of whether xt is an integrated, near integrated process or mildly integrated process.
So, the approach has wide generality for application.
In order to develop the limit theory, we separate out two cases of central impor-

tance. We begin by discussing the case where the instrument is less persistent than
the regressor, i.e. the instrument autoregressive matrix Rnz satis�es the restriction

� < min (�; 1) :

Since �xt = uxt +
C
n�
xt�1 and Rnz and C commute by virtue of being diagonal

matrices, the process ~zt may be decomposed in terms of a mildly integrated instrument
zt =

Pt
j=1R

t�j
nz uxj that satis�es

zt = Rnzzt�1 + uxt; t 2 f1; :::; ng z0 = 0; (11)

and a remainder term

 nt =
tX
j=1

Rt�jnz xj�1 (12)

that arises as a result of quasi-di¤erencing the regressor in (2) as follows:

~zt = zt +
C

n�
 nt: (13)

The following lemma shows that the e¤ects of quasi-di¤erencing on the IVX regression
sample moments are manifest only in the signal (relevance) matrix

Pn
t=1 xt~z

0
t.

3.1 Lemma. Consider the model (1) - (2) satisfying Assumptions N and LP and
instruments ~zt de�ned by (10) with 1=2 < � < min (�; 1) : The following approxima-
tions are valid as n!1:

(i) n�
1+�
2

Pn
t=1 u0t~z

0
t = n�

1+�
2

Pn
t=1 u0tz

0
t + op (1)

(ii) n�(1+�)
Pn

t=1 xt~z
0
t = n�(1+�)

Pn
t=1 xtz

0
t � n�(1+�)

Pn
t=1 xt�1x

0
t�1CC

�1
z + op (1)

(iii) n�(1+�)
Pn

t=1 ~zt~z
0
t = n�(1+�)

Pn
t=1 ztz

0
t + op (1)

where zt is de�ned in (11).

Lemma 3.1 reveals the asymptotic behavior of the key sample moments in (i) and
(iii). Since zt is a mildly integrated process satisfying (11) with Rnz = IK + Cz=n

�,
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equations (7) and (9) of MP yield the following limit matrix for the sample second
moments

1

n1+�

nX
t=1

ztz
0
t !p V

x
zz :=

Z 1

0

erCz
xxe
rCzdr; (14)

as n ! 1; and, for any � 2 (1=3; 1), the centred and scaled sample covariance has
the following martingale form

1

n
1+�
2

nX
t=1

vec (u0tz0t ��0x) = Un (1) + op (1) ; (15)

where Un (�) is the martingale array

Un (s) =
1

n
1+�
2

bnscX
t=1

[zt�1 
 F0 (1) "t] (16)

on the Skorokhod space DRmK [0; 1].
The restriction � > 1=3 is important and ensures that the system instruments

are not so close to the stationary boundary that the bias e¤ects (manifested in �0x)
cannot be easily eliminated. The potential for bias elimination is one of the important
features of cointegrated systems and this feature extends to near-cointegrated models
where the regressors are mildly integrated. By contrast, in a fully stationary system,
the bias e¤ects have the same order as the limit and in that case the (simultaneous)
system (1) is unidenti�ed without further information (such as the observability of
an exogenous instrument). This issue is of great importance in distinguishing simul-
taneous equations systems from cointegrated models and has a substantial e¤ect on
estimation methodology. The condition � > 1=3 in this section of the paper signals
this distinction. When the condition is relaxed, the required econometric methodol-
ogy moves closer to that of traditional simultaneous equations IV theory.
The asymptotic behavior of the sample moment

Pn
t=1 xtz

0
t in part (ii) of Lemma

3.1 is determined as follows. Using the recursive property of (2) and (11) we can
write

xtz
0
t = Rnxt�1z

0
t�1Rzn +Rnxt�1u

0
xt + uxtz

0
t�1Rzn + uxtu

0
xt:

Vectorising and summing over t 2 f1; :::; ng we obtain

(IK2 �Rzn 
Rn)
1

n

nX
t=1

vec
�
xt�1z

0
t�1
�

= [IK + op (1)] vec

"
1

n

nX
t=1

xt�1u
0
xt +

1

n

nX
t=1

uxtz
0
t�1 +

1

n

nX
t=1

uxtu
0
xt

#

= vec

"
1

n

nX
t=1

xt�1u
0
xt + �

0
xx + E (ux1u

0
x1)

#
+ op (1) ; (17)

9



by Lemma 3.1(d) of MP and the ergodic theorem. The asymptotic behavior of
n�1

Pn
t=1 xt�1u

0
xt depends on the order of persistence of xt. A standard application

of the Phillips and Solo (1992) method yields

1

n

nX
t=1

xt�1u
0
xt =

1

n

nX
t=1

xt�1"
0
tFx (1)

0 + �xx + op (1) as n!1: (18)

If xt is mildly integrated in the sense of Assumption N(iii), the right side of (18)
reduces asymptotically to the constant matrix �xx by Lemma 3.3 of MP. If xt is
local to unity, the martingale array on the right side of (18) converges weakly to the
matrix stochastic integral

R 1
0
JC (s) dBx (s)

0 ; where Bx (s) is the Brownian motion
with variance 
xx de�ned in (7) and

JC (s) =

Z s

0

eC(s�r)dBx (r) (19)

is the associated Ornstein-Uhlenbeck process. Since, when � > �,

IK2 �Rzn 
Rn = �
1

n�
(Cz 
 IK)

�
IK +Op

�
1

n���

��
as n!1

(17) and (18) imply that

1

n1+�

nX
t=1

xt�1z
0
t�1 )

8>><>>:
�
�R 1

0
BxdB

0
x + 
xx

�
C�1z under N(i)

�
�R 1

0
JCdB

0
x + 
xx

�
C�1z under N(ii)

�
xxC�1z under N(iii)

(20)

as n ! 1, the result for N(iii) applying under the additional condition that � >
�. The limit (20) shows that the standardized moment n�1��

Pn
t=1 xt�1z

0
t�1 takes

various forms, including both random and nonrandom, depending on the nature of
the nonstationarity in the regressor and instrument.
The results of Lemma 3.1, the representation (15) and the limits in (20) determine

the individual asymptotic behavior of relevant sample moments in the estimation limit
theory. In particular, they reveal the potential for an orthogonality condition via (15)
and a suitable relevance condition via (20). However, individually, these results o¤er
no information on the presence or lack of endogeneity in the limit, which is the critical
issue underlying robust inference in nearly cointegrated systems. The next lemma
addresses this issue by establishing asymptotic independence between the two central
components n�

1+�
2

Pn
t=1 (u0tz

0
t ��0x) and n�(1+�)

Pn
t=1 xt~z

0
t, and showing that joint

convergence applies.

3.2 Lemma. Consider the model (1) - (2) satisfying Assumptions N and LP and
the mildly integrated process zt de�ned in (11). The martingale array Un (s) in (16)
satis�es

Un (s)) U (s) on DRmK [0; 1]
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as n ! 1, where U is a Brownian motion, independent of Bx, with variance V x
zz

de�ned in (14). Joint convergence in distribution of Un (1), n�1
Pn

t=1 xt�1"
0
t and

n�1��
Pn

t=1 xt�1x
0
t�1 also applies as n!1.

3.3 Remarks.

(i) Lemma 3.2 is a consequence of Proposition A1 in the Appendix. It is impor-
tant to note that, unlike conventional methods for removing endogeneity, the
asymptotic independence between the martingale part of the sample covariance
matrix

Pn
t=1 u0tz

0
t and the signal matrix

Pn
t=1 xt~z

0
t holds by virtue of the re-

duced order of magnitude of the instrument zt and, importantly, does not rely
on a separate orthogonality correction or condition on the instrument. This is
evident from equation (35) in the Appendix which shows that the conditional
variance matrix of the martingale array consisting of Un (s) and the martingale
part of the partial sum process of ut is asymptotically block diagonal if and
only if

1

n1+
�
2

bnscX
t=1

zt�1 !p 0;

which holds when zt is a mildly integrated process with � 2 (0; 1) but fails when
� = 1.

(ii) Lemma 3.2 shows that instrumentation with a mildly integrated process com-
pletely removes the long run endogeneity (typically associated with stochastic
integrals of the type

R 1
0
BxdB

0
x and

R 1
0
JCdB

0
x) that arises in least squares esti-

mation of cointegrated systems of the form (1) - (2) with integrated and local
to unity regressors. These e¤ects still manifest in the relevance matrix limit,
as is apparent in (20), but are eliminated from the martingale component (16)
that drives the limit distribution theory. On the other hand, as is evident in the
centering of (15), there is a bias term of the form n

1��
2 �0x that carries the ef-

fect of simultaneity. This bias term can be estimated and removed by standard
nonparametric methods, as we now discuss.

The limit theory established above reveals the possibility of constructing a bias-
corrected IVX estimator of the coe¢ cient matrix A in (1) which is asymptotically
mixed Gaussian for a very general class of persistent regressors. Using conventional
regression notation, let

Y = [y01; :::; y
0
n]
0
; X = [x01; :::; x

0
n]
0 and ~Z = [~z01; :::; ~z

0
n]
0
: (21)

The bias corrected IVX estimator has the form

~An =
�
Y 0 ~Z � n�̂0x

��
X 0 ~Z

��1
; (22)

11



and is asymptotically mixed Gaussian, as the following theorem shows. The estimator
is analogous to the FM-OLS estimator (Phillips and Hansen, 1990) in terms of its
built-in bias correction term involving �̂0x, but unlike FM-OLS there is no need for
an endogeneity correction (either in Y or �̂0x). The quantity �̂0x is taken to be a
consistent nonparametric estimate of the one sided long run covariance matrix �0x;
which may be constructed by conventional methods, as given in (27) and considered
in Lemma A0 in the Appendix.

3.4 Theorem. Consider the model (1) - (2) satisfying Assumptions N and LP with
instruments ~zt de�ned by (10) with 2=3 < � < min (�; 1) : Then, the following limit
theory applies for the estimator ~An in (22):

n
1+�
2 vec

�
~An � A

�
)MN

�
0;
�
~	�1xx

�0
CzV

x
zzCz

~	�1xx 
 
00
�
;

as n!1, where

~	xx =

8<:

xx +

R 1
0
BxdB

0
x under N(i)


xx +
R 1
0
JCdJ

0
C under N(ii)


xx + VxxC under N(iii)
;

JC is the Ornstein-Uhlenbeck process in (19) and V x
zz and Vxx are de�ned in (14) and

(8) respectively.

Having established Theorem 3.4, it remains to discuss the asymptotic behavior of
the IVX estimator ~An when the instrument is more persistent than a mildly explosive
regressor, i.e. when the vector of regressors xt satis�es Assumption N(iii) with � � �.
In this case, it is useful to apply a di¤erent decomposition of ~zt than the one presented
in (13). In particular, using summation by parts we have

~zt =
tX
j=1

Rt�jnz �xj = xt �Rtnzx0 �
tX
j=1

�
�Rt�jnz

�
xj�1

= xt �Rtnzx0 +
Cz
n�
 nt; (23)

where  nt is de�ned in (12). Applying (23) we can show that, when � < �, the con-
tribution of ~zt to the asymptotic behavior of the various sample moments of interest
consists exclusively of xt. This case and the � = � case are presented in the following
two results which are proved in the Appendix.

3.5 Lemma. Consider the model (1) - (2) satisfying Assumptions N(iii) and LP
and instruments ~zt de�ned by (10) with � 2 (1=2; 1).

12



(i) If � 2 (1=3; �), then

1

n
1+�
2

nX
t=1

u0t~z
0
t =

1

n
1+�
2

nX
t=1

u0tx
0
t + op (1) as n!1:

(ii) For any � 2 (0; �), the following approximations hold as n!1:

1

n1+�

nX
t=1

xt~z
0
t =

1

n1+�

nX
t=1

xtx
0
t + op (1) ;

1

n1+�

nX
t=1

~zt~z
0
t =

1

n1+�

nX
t=1

xtx
0
t + op (1) ;

so both n�1��
Pn

t=1 xt~z
0
t and n

�1��Pn
t=1 ~zt~z

0
t converge to Vxx in probability.

3.6 Lemma. Consider the model (1) - (2) satisfying Assumptions N(iii) and LP
and instruments ~zt de�ned by (10) with � = � 2 (1=2; 1). Then, letting

Vxz =
Z 1

0

erCVxxe
rCzdr;

the following limits apply as n!1:

(i) n�(1+�)
Pn

t=1 xt~z
0
t !p �CVxz;

(ii) n�(1+�)
Pn

t=1 ~zt~z
0
t !p

R1
0
esCz (CVxzCz + CzV0xzC) esCzds;

(iii) n�
1+�
2

Pn
t=1vec(u0t~z

0
t ��0x)) N

�
0;
R1
0
esCz (CVxzCz + CzV0xzC) esCzds
 
00

�
:

Using the limit theory of Lemmas 3.5 and 3.6 we can establish an analog of
Theorem 3.4 which yields a normal limit distribution for the IVX estimator in the
case when the original regressor in (2) is mildly integrated and we employ a more
persistent instrument.

3.7 Theorem. Consider the model (1) - (2) satisfying Assumptions N(iii) with
� 2 (1=3; �] and LP and instruments ~zt de�ned by (10) with � 2 (2=3; 1) : Then, the
following limit theory applies for the IVX estimator ~An in (22) as n!1:

n
1+�
2 vec

�
~An � A

�
) N (0; V �1

xx 
 
00) if � < �

n
1+�
2 vec

�
~An � A

�
) N

�
0;V�1xz C�1VxxC�1 (V0xz)

�1 
 
00
�

if � = �:

13



Asymptotic mixed normality of the IVX estimator in Theorems 3.4 and 3.7 implies
that conventional Wald tests for testing linear restrictions on A will have standard chi-
square limit distributions. As in Park and Phillips (1988), general linear restrictions
on the cointegrating coe¢ cients

H0 : Hvec (A) = h; (24)

where H is a known r �mK matrix with rank r and h is a known vector, may be
tested using the Wald statistic

Wn =
�
Hvec ~An � h

�0 h
H
n
(X 0P ~ZX)

�1 
 
̂00
o
H 0
i�1 �

Hvec ~An � h
�

(25)

where P ~Z = ~Z
�
~Z 0 ~Z
��1

~Z 0 denotes the projection matrix to the column space of ~Z.

The asymptotic behavior of the normalized sample moment matrix ~Z 0 ~Z is given by
Lemma 3.1(iii) and (14) under the assumptions of Theorem 3.4 and by Lemmas 3.5
and 3.6 under the assumptions of Theorem 3.7. The following result shows that the
IVX procedure gives rise to robust inferences about A: using (25). It is an immediate
corollary of Theorems 3.4 and 3.7. Obvious extensions to analytic restrictions in place
of (24) are also covered.

3.8 Theorem. Consider the model (1) - (2) satisfying Assumptions N and LP with
� > 1=3 and instruments ~zt de�ned (10) with � 2 (2=3; 1). The Wald statistic Wn in
(25) for testing the linear restrictions (24) satis�es

Wn ) �2 (r) under H0

as n!1, where r is the rank of H.

3.9 Remarks.

(i) Theorem 3.8 provides a robust inferential procedure which is valid for a very
general class of persistent regressors. Unlike conventional cointegration meth-
ods such as fully modi�ed least squares, a priori knowledge of the order of
persistence is not required and standard �2 inference applies for unit root, local
to unity and mildly integrated regressors alike. In this sense, Theorems 3.4,
3.7 and 3.8 provide a solution to the problem of robustness of cointegration
methods, highlighted in Elliott (1998).

(ii) The price paid for the method�s robustness is a reduction in the rate of con-

vergence of ~An to O
�
n
1+�
2

�
from O (n) in the case of applying standard coin-

tegration methods under the knowledge that the regressors are exact unit root
processes. Interestingly, ~An remains asymptotically e¢ cient in the case where

14



the vector of regressors is mildly integrated and we instrument by a more per-
sistent process (Theorem 3.7 with � < �), and it retains the OLS rate of
convergence when � = �. In any case, a reduction in the convergence rate of
~An should not a¤ect the performance of self normalized tests such as the Wald
test of Theorem 3.8.

(iii) A related point to the above remark is that the approach of removing long run
endogeneity by constructing instruments with a reduced rate of convergence
does not completely remove asymptotic bias. As earlier work in MP has shown,
cointegrated systems with mildly integrated regressors do not su¤er from long
run endogeneity problems but there is asymptotic bias in least squares estima-
tion and this bias (like simultaneous equations bias) can be more severe than
in systems with integrated and local to unity regressors. This observation sug-
gests that, in the present context, there is some trade-o¤ between long run
endogeneity and bias e¤ects in terms of practical implementation when choos-
ing the rate of persistence n� of the IVX instrument. A choice of � close to
unity typically reduces the e¤ects of (simultaneity) bias but may exacerbate
long run endogeneity e¤ects in least squares regression. On the other hand, the
e¤ect of simultaneity bias increases the closer we choose the instrument to the
stationary direction. Indeed, the bias becomes too severe for the method to
work for � 2 (0; 1=2). In that event, we need another IV approach that takes
advantage of external information, just as in simultaneous equations estima-
tion. The restriction � > 2=3 is imposed in order to ensure the inclusion of
optimal bandwidths associated with non-parametric estimation of the long run
covariance matrix � (see Lemma A0), which is needed for bias removal.

(iv) The IVX method presented in this Section is feasible for any cointegrated sys-
tem generated by Assumption N with � > 1=3 in the sense that it can be
implemented using only the information provided by the statistical model (1) -
(2). The instruments are constructed from the regressors in (2) without assum-
ing any exogenous information. For precisely this reason, the method cannot
accommodate mildly integrated regressors that are too close to the stationary
region. As earlier work in MP has shown, simultaneity in cointegrated systems
with mildly integrated regressors becomes more severe as we approach the sta-
tionary region and, eventually for � 2 (0; 1=3], it presents similar di¢ culties to
simultaneous equations bias in that it cannot be removed without the use of ex-
ogenous instrumental variables. Classical IV procedures that utilize exogenous
information and address this problem are considered in the next Section.
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4. Classical IV inference with mild integration

In this section we show how to conduct inference on the cointegrated system (1) -
(2) when additional information is available in the form of a Kz-vector of mildly
integrated instruments zt; with Kz � K, satisfying (4), (5) and the following form
of the classical IV long-run relevance condition holds. Importantly, orthogonality or
long-run orthogonality of the instruments is not required.

Assumption IV(i). The long run covariance matrix 
xz = Fx (1)�Fz (1)
0 has full

rank equal to K.

The instruments may be simply taken as given, as is commonly done in simul-
taneous equations theory, or we may employ a suitable constructive process. The
advantage of the latter is that we may control the degree of mild integration in the
instrument. One possible approach to constructing such instruments is to employ
suitable macroeconomic or �nancial series that are known to be unit root processes
and for which the long run relevance condition holds. Accordingly, let �t be a Kz-
vector unit root process that is correlated with the vector of regressors xt of the
original system (1) - (2). In this case the mildly integrated instruments zt may be
constructed by di¤erencing �t and forming

zt =
tX
j=1

Rt�jnz ��j;

for some chosen matrix Rnz satisfying (5). Using a unit root process like �t eliminates
the e¤ects of quasi-di¤erencing (see Lemmas 3.1, 3.5 and 3.6 in the previous section) in
the earlier construction, but extensions of our theory to that case also apply although
they will not be detailed here.
Classical IV inference also imposes incoherence between the innovations of (1) and

those of (4). We only make use of such a strong orthogonality condition in order to
establish a boundary with stationary simultaneous equation systems. The condition
is stated here for convenient subsequent reference in long run orthogonality form.

Assumption IV(ii). The innovations u0t and uzt of (1) and (4) satisfy the strong
(long run) orthogonality condition �0z = 0.

We now return to our program of providing robust inference for the cointegrated
system (1) - (2) by means of the mildly integrated instruments zt in (4). Under both
Assumptions IV(i) and IV(ii) this can be achieved by the classical IV estimator

ÂIV = Y 0PZX (X
0PZX)

�1

where Y and X are de�ned in (21), Z = [z01; :::; z
0
n]
0 and PZ = Z (Z 0Z)�1 Z 0.
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Given the practical di¢ culty of assessing the validity of the long run orthogonality
condition IV(ii), it is desirable to conduct inference on the basis of Assumption IV(i)
only. To this end, we de�ne a bias corrected version of ÂIV as follows

~AIV = ÂIV � n�̂0z (Z
0Z)

�1
Z 0X (X 0PZX)

�1

=
�
Y 0Z � n�̂0z

�
(Z 0Z)

�1
Z 0X (X 0PZX)

�1
:

The estimator ~AIV is constructed using a similar bias correction principle to that of
the IVX estimator ~An in the previous section. The di¤erence between the two estima-
tors consists of the additional information used in the construction of the instrument
matrix Z which, in the case of ~AIV , avoids the restrictions and ine¢ ciency associated
with quasi-di¤erencing the regressors in (2).
As in Section 3, the asymptotic behavior of the sample moments

Pn
t=1 ztz

0
t andPn

t=1 u0tz
0
t can be deduced directly from MP, and is detailed in the following result.

4.1 Lemma. Consider the model (1), (2) and (4) satisfying Assumptions N, LP
and IV(i). Then, as n!1:

(i) n�
1+�
2

Pn
t=1 (u0tz

0
t ��0z) = Un (1) + op (1), for each � 2 (1=3; 1)

(ii) n�(1+�)
Pn

t=1 ztz
0
t !p Vzz

where Un (�) is the martingale array de�ned in (16) and Vzz is given by (9). Under
Assumption IV(ii), �0z = 0, and part (i) holds for all � 2 (0; 1).
The asymptotic behavior of the U 00Z matrix in Lemma 4.1 presents an important

di¤erence in comparison to the corresponding sample covariance matrix of Section
3. As there is no quasi-di¤erencing e¤ect like that in Lemmas 3.1 and 3.5, there is
no need to restrict � and the validity of IV inference extends over the whole range
� 2 (0; 1) of mildly integrated regressors allowing linkages to the boundary with
stationary simultaneous equation systems.

4.2 Lemma. Consider the model (1), (2) and (4) satisfying Assumptions N, LP
and IV(i). Let Jn = n�1

Pn
t=1 xt�1"

0
tFz (1)

0. Then, as n!1:

(i) n�1�(�^�)
Pn

t=1vec
�
xt�1z

0
t�1
�
=
�
n�^� (IKKz �Rzn 
Rn)

��1
vec(Jn + 
xz)+op (1) ;

(ii) n�1�(�^�)X 0Z ) 	xz, where:

	xz =

8>>>>>><>>>>>>:

�
�

xz +

R 1
0
BxdB

0
z

�
C�1z under N(i)

�
�

xz +

R 1
0
JCdB

0
z

�
C�1z under N(ii)

Vxz under N(iii) with � = �
�
xzC�1z under N(iii) with � > �
�C�1
xz under N(iii) with � < �

(26)
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where Vxz is given by (9), Bx and Bz are Brownian motions de�ned in (7) and JC
is the Ornstein-Uhlenbeck process de�ned in (19).

Having obtained the asymptotic behavior of the various sample moments in Lem-
mas 4.1 and 4.5, we can employ a similar approach to that used in Section 3 to derive
the limit distribution of the IV estimators ~AIV and ÂIV . The joint asymptotic be-
havior of the matrices

Pn
t=1 u0tz

0
t and X

0Z can be deduced by the approximations in
Lemma 4.1(i) and Lemma 4.2(i) in conjunction with Proposition A1 in the Appendix:
the martingale part Un (1) of the sample covariance matrix and vec(Jn) of Lemma 4.2
converge jointly in distribution to independent random vectors. We therefore obtain
asymptotic mixed normality for the normalised and centered IV estimators ~AIV and
ÂIV under any degree of regressor persistence speci�ed by Assumption N, as the next
result shows. The direct consequences for inference follow in the corollary.

4.3 Theorem. Consider the model (1), (2) and (4) satisfying Assumptions N, LP.
Let  = min

�
�
2
; �� �

2

�
.

(i) Under Assumption IV(i), we obtain, for each � 2 (2=3; 1),

n
1
2
+vec

�
~AIV � A

�
)MN

�
0;
�
	xzV

�1
zz 	

0
xz

��1 
 
00� as n!1:

(ii) Under Assumption IV(i), we obtain, for each � 2 (0; 1),

n
1
2
+vec

�
ÂIV � A

�
)MN

�
0;
�
	xzV

�1
zz 	

0
xz

��1 
 
00� as n!1

where 	xz is given by (26).

4.4 Corollary. Under the hypotheses of Theorem 4.3(i), the Wald statistic

Wn =
�
Hvec ~AIV � h

�0 h
H
n
(X 0PZX)

�1 
 
̂00
o
H 0
i�1 �

Hvec ~AIV � h
�

for testing the linear restrictions (24) where H is a known matrix with rank r and h
is a known vector has a �2 (r) limit distribution under H0. Under the hypotheses of
Theorem 4.3(ii), the same conclusion applies with ~AIV replaced by ÂIV in Wn.

Clearly, similar results hold in the case of Wald tests for analytic restrictions under
standard regularity conditions.

5. Conclusion

This work develops a theory of econometric estimation and inference for cointegrated
systems with regressors that have roots in the general vicinity of unity. Two in-
strumental variable approaches are developed. One involves internally generated in-
struments (IVX) and the other uses external instruments (IV), which satisfy certain
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relevance conditions but do not necessarily require orthogonality conditions. Both
procedures use mildly integrated instruments, both eliminate the endogeneity that is
present in conventional cointegration methods when roots are no longer precisely at
unity, and both produce asymptotically mixed Gaussian estimators that are conve-
nient for inference. The methods and the resulting inferential techniques are robust
to the (generally unknown) persistence properties of the regressors.
Instrumentation by means of a mildly integrated process plays a crucial role in our

approach. The underlying reason is that, by virtue of their intermediate persistence
rate in comparison to stationary and integrated processes, mildly integrated time
series maintain a balance between long run bias and endogeneity. In other words: (i)
reduction in the �degree of nonstationarity�through the use of a mildly integrated
instrument eliminates the long run endogeneity e¤ect associated with I (1) processes,
at the potential cost of some mild reduction in rate of convergence; (ii) the fact that
mildly integrated processes are more persistent than stationary processes reduces
the impact of simultaneity and, unlike the case of simultaneous equations systems,
produces a tractable expression for the asymptotic bias which can be dealt with in
estimation, just as in the case of procedures like fully modi�ed least squares.
It is important to mention that the polynomial rates n� and n� used throughout

this paper in the modeling of mildly integrated series can be replaced by arbitrary
sequences (involving slowly varying functions at in�nity) that preserve the balance
between regressors and instruments. For example, a mildly integrated process in a
log n=n - neighborhood of unity provides equally valid instruments. This type of
generalization then follows along the lines of the univariate limit theory given in
Phillips and Magdalinos (2007).
The IVX and IV approaches developed here both involve linear estimation meth-

ods and are straightforward to implement in practical work. They should be widely
applicable and help to alleviate practical concerns about the use of cointegration
methodology when roots are in the vicinity of unity rather than precisely at unity. In
empirical work, unit root and stationarity pretests are often inconclusive, throwing
into doubt the use of conventional cointegration methodology, even when the series
manifest forms of stochastic nonstationarity such as randomly wandering behavior
with no �xed mean. In such cases, the econometric approaches developed here pro-
vide a robust alternative for estimation and inference which allow for a wider class of
nonstationarity with roots near unity rather than requiring all series to be precisely
I(1).

6. Technical Appendix and Proofs

This Appendix contains some technical results that are useful in the development of
the limit theory of the paper as well as proofs of the theorems in the paper. The �rst
result concerns the order of consistency of the commonly used Bartlett (Newey-West)
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estimator of �, viz.,

�̂n =
1

n

MX
h=0

�
1� h

M + 1

� nX
t=h+1

ûtû
0
t�h: (27)

Related results hold for other commonly used long run and one sided long run covari-
ance matrix estimators and are not given here but may be used without a¤ecting the
asymptotic theory of our estimators provided the general bandwidth condition (28)
holds. For example, optimal bandwidth choices such as M = Kn1=5 for other kernels
are included under the general condition that � 2 (2=3; 1) :

Lemma A0. Consider the estimator �̂n in (27) with M = Kn1=3, for some �xed
constant K. Under Assumption LP,

�̂n �� = op

�
n�

1��
2

�
as n!1

for any � 2 (2=3; 1).

Proof of Lemma A0. It can be shown by standard methods that, under Assump-
tion LP,

�̂n �� = Op

�
max

�
M

n1=2
;
1

M

��
(28)

for any bandwidth parameter M increasing to1 with n. Therefore, the requirement
n
1��
2

�
�̂n ��

�
= op (1) yields the restriction

max

(
M

n�=2
;
n
1��
2

M

)
! 0

which is satis�ed for all � 2 (2=3; 1) if M = Kn1=3: �

Proposition A1. Consider the system of equations (1), (2) and (4) with autore-
gressive matrices Rn and Rnz given by (3) and (5) respectively and innovations ut
satisfying Assumption LP.

(i) Consider the martingale array Un (s) de�ned in (16). Then�
Un (s)

n�1=2
Pbnsc

t=1 ut

�
)
�
U (s)
B (s)

�
(29)

on the Skorokhod space DRmKz+m+K+Kz [0; 1] where U and B are independent
Brownian motions with variances Vzz

00 and 
 respectively and Vzz is de�ned
in (9). If zt is generated by (11), the above result holds with Vzz replaced by
the matrix V x

zz de�ned in (14).
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(ii) Under Assumption N(ii),24 Un (1)
vec fn�1

Pn
t=1 xt�1"

0
tg

vec
�
n�1

Pn
t=1 xt�1x

0
t�1
	
35)

24 U (1)

vec
R 1
0
JC (s) dW (s)0

vec
R 1
0
JC (s) JC (s)

0 ds

35 as n!1 (30)

where W is a Brownian motion with variance � and JC (s) =
R s
0
e(s�r)CdBx (r).

Under Assumption N(i), (30) continues to apply with JC replaced by Bx.

Proof of part (i). Applying the BN decomposition to ut (see Phillips and Solo,
1992) we �nd that the left side of (29) is asymptotically equivalent in probability to
the Fnt-martingale array

Pbnsc
t=1 �nt where

�nt := n�1=2
h�
n��=2zt�1 
 F0 (1) "t

�0
; (F (1) "t)

0
i0

and Fnt = � (x0; z0; "t; "t�1; :::). The result will follow by employing the martingale
invariance principle of Jacod and Shiryaev (1987, VIII, Theorem 3.33) to

Pbnsc
t=1 �nt.

To do so, we �rst establish the conditional Lindeberg condition

bnscX
t=1

EFnt�1
�
k�ntk

2 1 fk�ntk > �g
�
!p 0; (31)

for all s 2 [0; 1] and � > 0. Using the inequality (a+ b)1=2 � a1=2+ b1=2 for all a; b > 0
and the fact that kF (1)k � kF0 (1)k, we obtain

k�ntk � 1

n1=2

�
kF0 (1)k
n�=2

kzt�1k k"tk+ kF (1)k k"tk
�

� 2 kF (1)k
n1=2

�
kzt�1k
n�=2

+ 1

�
k"tk (32)

which, in turn, implies that

1 fk�ntk > �g � 1

�
2 kF (1)k
n
1
2
��
4

�
kzt�1k
n�=2

+ 1

�
>
p
�

�
+ 1

�
k"tk
n�=4

>
p
�

�
� 1

�
kzt�1k
n
1
2
+�
4

>
�0

2

�
+ 1

�
1

n
1
2
��
4

>
�0

2

�
+ 1

�
k"tk
n�=4

>
p
�

�
(33)

where �0 =
p
�=2 kF (1)k. Using (32) and the Fnt�1-measurability of zt�1 we obtain

that

bnscX
t=1

EFnt�1
�
k�ntk

2 1 fk�ntk > �g
�
� max

1�t�n
EFnt�1

�
k"tk2 1 fk�ntk > �g

�
Op (1)
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because n�1��
Pbnsc

t=1 kzt�1k
2 = Op (1). Therefore,

max
1�t�n

EFnt�1
�
k"tk2 1 fk�ntk > �g

�
= op (1) (34)

is su¢ cient for (31) . To show (34), using (33) and the fact that "t is an i.i.d. sequence
with E k"1k2 <1 we obtain

1 fk�ntk > �g � 1
�
kzt�1k
n
1
2
+�
4

>
�0

2

�
+ 1

�
1

n
1
2
��
4

>
�0

2

�
+ 1

�
k"tk
n�=4

>
p
�

�

max
1�t�n

EFnt�1
�
k"tk2 1 fk�ntk > �g

�
� max

1�t�n
1

�
kzt�1k
n
1
2
+�
4

>
�0

2

�
E k"1k2

+E
�
k"1k2 1

n
k"1k > n�=4

p
�
o�
+ o (1)

� 1

�
1

n
1
2
+�
4

max
1�t�n

kzt�1k >
�0

2

�
E k"1k2 + o (1)

= op (1)

since equation (53) of MP shows that n�
1
2
��
4 max1�t�n kzt�1k = op (1). This estab-

lishes (31).
Letting Q = F (1)�F0 (1)

0, the conditional variance of the martingale arrayPbnsc
t=1 �nt is given by

bnscX
t=1

EFnt�1�nt�
0
nt =

24
�

1
n1+�

Pbnsc
t=1 zt�1z

0
t�1

�

 
00

�
1

n1+
�
2

Pbnsc
t=1 zt�1

�

Q0�

1

n1+
�
2

Pbnsc
t=1 z

0
t�1

�

Q bnsc

n



35
!p s

�
Vzz 
 
00 0

0 


�
; (35)

because we know from MP that, for all s 2 [0; 1], and

n�1��
bnscX
t=1

ztz
0
t !p sVzz and

bnscX
t=1

zt�1 = Op

�
n
1
2
+�
�
:

Therefore, applying Theorem 3.33 VIII of Jacod and Shiryaev (1987) to
Pbnsc

t=1 �nt,
there exists a continuous Gaussian martingale � (s) with quadratic variation

h�is = s diag (Vzz 
 
00;
)

such that
Pbnsc

t=1 �nt ) � (s) on the Skorokhod space DRmKz+m+K+Kz [0; 1]. By Levy�s
characterisation of Brownian motion (e.g. Theorem 4.4 II of Jacod and Shiryaev
(1987)), � (s) is a Brownian motion on DRmKz+m+K+Kz [0; 1] with covariance matrix
diag(Vzz 
 
00;
). Partitioning � (s) =

�
U (s)0 ; B (s)0

�0
conformably with its covari-

ance matrix we conclude that U is independent of B.
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Proof of part (ii). Letting

Bnx (s) =
1p
n

bnscX
j=1

uxj; Wn (s) =
1p
n

bnscX
j=1

"j;

Proposition A1 (ii) implies that�
Bnx (s) ;

�
Un (s)
Wn (s)

��
)
�
Bx (s) ;

�
U (s)
W (s)

��
on DRK�R(m+1)Kz+K [0; 1] : (36)

Since xbn�c can be represented as a continuous functional of Bnx (�), viz.

1p
n
xbnsc = Bnx (s)� C

Z s

0

eC(s�r)Bnx (s) dr + op (1) ;

and n�1=2xbnsc ) JC (s) on DRK [0; 1], (36) and the continuous mapping theorem
imply that�

1p
n
xbnsc;

�
Un (s)
Wn (s)

��
)
�
JC (s) ;

�
U (s)
W (s)

��
on DRK�R(m+1)Kz+K [0; 1] : (37)

The identity

vec
Z 1

0

xbnscp
n
dWn (s)

0 =

Z 1

0

�
IKz 


xbnscp
n

�
dWn (s)

yields

24 Un (1)
vec fn�1

Pn
t=1 xt�1"

0
tg

vec
�
n�1

Pn
t=1 xt�1x

0
t�1
	
35 =

2664
R 1
0
dUn (s)R 1

0

n
IKz 


xbnscp
n

o
dWn (s)R 1

0

�
xbnscp
n

 xbnscp

n

�
ds

3775+ op (1)

=

Z 1

0

Gn (s) dVn (s) ; (38)

where

Gn (s) = diag
�
ImKz ; IKz 


xbnscp
n
;
xbnscp
n


xbnscp
n

�
and Vn (s) =

�
Un (s)

0 ;Wn (s)
0 ; s
�0
:

Letting

G (s) = diag [ImKz ; IKz 
 JC (s) ; JC (s)
 JC (s)] and V (s) =
�
U (s)0 ;W (s)0 ; s

�0
;

joint convergence [Gn (s) ; Vn (s)]) [G (s) ; V (s)] on the relevant Skorokhod space is
guaranteed by (37). Note that Vn (s) is a semimartingale with Doob-Meyer decom-
position Vn (s) =Mn (s) +A (s) where Mn (s) =

�
Un (s)

0 ;Wn (s)
0 ; 0
�0
is a martingale
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and A (s) = [0; 0; s]0 has bounded variation for all s 2 [0; 1]. Thus, Theorem 2.7 of
Kurtz and Protter (1991) implies thatZ 1

0

Gn (s) dVn (s))
Z 1

0

G (s) dV (s) (39)

obtains, provided that supnE [Mn]s <1. The later condition holds trivially, since

E [Mn]s = diag

240@n�1�� bnscX
t=1

Ezt�1z
0
t�1

1A
 
00;�; 0
35

and supn n
�1��

Pbnsc
t=1 Ezt�1z

0
t�1

 � supn n
�1��Pn

t=1E kzt�1k
2 < 1 for all s 2

[0; 1].
Now part (ii) can be established by combining (38) and (39).

Proposition A2. Under Assumptions N and LP, the process  nt in (12) satis�es

sup
1�t�n

E k ntk
2 = O

�
n(�_�)+2(�^�)

�
as n!1 (40)

and, for any � 2 (1=2; 1) with � 6= �,

1

n
1+(�^�)

2
+(�_�)

nX
t=1

ut 
0
nt !p 0 as n!1: (41)

When � = � 2 (1=2; 1), the left side of (41) is bounded in probability.

Proof. For the sake of clarity, we di¤erentiate between the Euclidian matrix norm
kMkE = (trM 0M)1=2 and the spectral norm kMk de�ned as the square root of the
maximal eigenvalue of M 0M . Recall that

xj�1 = Rj�1n x0 +

jX
k=2

Rj�kn uxk�1

and denote the autocovariance matrix of uxt by �ux (h) = E
�
uxtu

0
xt�h

�
: Since

E (xjx
0
i) =

jX
k=2

iX
l=2

Rj�kn �ux (k � l)Ri�ln ;
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using the trace version of the Cauchy Schwarz inequality (see e.g. Abadir andMagnus,
2005) we obtain

E k ntk
2 = tr

(
tX

i;j=1

Rt�jnz R
t�i
nz E

�
xj�1x

0
i�1
�)

=
tX

i;j=1

jX
k=2

iX
l=2

tr
�
R2t�j�inz Rj+i�k�ln �ux (k � l)

	
�

tX
i;j=1

jX
k=2

iX
l=2

R2t�j�inz Rj+i�k�ln


E
k�ux (k � l)kE

�
tX

i;j=1

jX
k=2

iX
l=2

R2t�j�inz


E

Rj+i�k�ln


E
k�ux (k � l)kE

� K
tX

i;j=1

jX
k=2

iX
l=2

kRnzk2t�j�i kRnkj+i�k�l k�ux (k � l)kE (42)

where the last inequality follows from the fact that Rn and Rnz are diagonal K �K
matrices, so kRmn kE � K1=2 kRnkm for any m 2 Z and the same inequality holds for
Rnz. In order to estimate the right side (42) we make use of the bounds

sup
1�t�n

tX
j=1

kRnkt�j = O
�
n�^1

�
and sup

1�t�n

tX
j=1

kRnzkt�j = O
�
n�
�

(43)

and of the fact that Assumption LP guarantees
P

h2Z k�ux (h)kE <1.
We consider �rst the case � < �. Using the fact that kRnki�l � 1 for all l � i,

(42) and (43) yield

sup
1�t�n

E k ntk
2 � K

 
sup
1�t�n

tX
i=1

kRnzkt�i
!2 

sup
1�j�n

jX
k=1

kRnkj�k
! 1X
l=�1

k�ux (l)kE

= O
�
n�+2�

�
:

When � � �, letting j � k = m in (42) we obtain that

E k ntk
2 � K

tX
i;j=1

j�2X
m=0

iX
l=1

kRnzk2t�j�i kRnkm+i�l k�ux (j �m� l)kE :

Using the fact that kRnzkt�j � 1 for all j � t,

sup
1�t�n

E k ntk
2 � K

 
sup
1�t�n

tX
i=1

kRnzkt�i
! 1X

m=0

kRnkm
!2 1X

j=�1
k�ux (j)kE

= O
�
n�+2�

�
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and (40) follows.
To show (41), note that  nt in (12) satis�es the recursive formula

 nt = Rnz n;t�1 + xt�1 (44)

and using the BN decomposition

1

n
1+(�^�)

2
+(�_�)

nX
t=1

ut 
0
nt =

1

n
1+(�^�)

2
+(�_�)

(
F (1)

nX
t=1

"t 
0
nt �

nX
t=1

�~"t 
0
nt

)
: (45)

Since  nt is � (x0; :::; xt�1)-measurable, the �rst term of (45) is a matrix martingale
array with

E

 1

n
1+(�^�)

2
+(�_�)

nX
t=1

( nt 
 "t)


2

=
E k"1k2

n1+�^�+2(�_�)

nX
t=1

E k ntk
2

� E k"1k2

n�^�+2(�_�)
sup
1�t�n

E k ntk
2

= O

�
n�^�

n�_�

�
by (40). The last order is o (1) when � 6= � and exactly O (1) when � = �.
Next, we show that, under the condition � 2 (1=2; 1), the second term of (45) is

op (1) both when � 6= � and when � = �. Summation by parts, (40) and (44) yield

nX
t=1

�~"t 
0
nt = �

nX
t=1

~"t� 
0
nt+1 +Op

�
n
�_�
2
+(�^�)

�
= � 1

n�

nX
t=1

~"t 
0
ntC

0
z �

nX
t=1

~"tx
0
t +Op

�
n
�_�
2
+(�^�)

�
= � 1

n�

nX
t=1

~"t 
0
ntC

0
z +Op (n) +Op

�
n
�_�
2
+(�^�)

�
since

Pn
t=1 ~"tx

0
t = Op (n) for all � > 0 under Assumptions N and LP by Phillips

(1987) and MP. Now � 2 (1=2; 1) implies that n1� 1+(�^�)
2

�(�_�) ! 0, so

1

n
1+(�^�)

2
+(�_�)

nX
t=1

�~"t 
0
nt = �

1

n
1+(�^�)

2
+(�_�)

1

n�

nX
t=1

~"t 
0
ntC

0
z + op (1) :

The last term on the right converges to 0 in L1 for any � > 1=2 since, letting
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� = E k~"1k2, the Cauchy Schwarz inequality and (40) yield 1

n
1+(�^�)

2
+(�_�)

1

n�

nX
t=1

~"t 
0
nt


L1

� 1

n
1+(�^�)

2
+(�_�)

1

n�

nX
t=1

E (k ntk k~"tk)

� �1=2

n
1+(�^�)

2
+(�_�)

1

n�

nX
t=1

�
E k ntk

2�1=2
� �1=2

n1=2

n
(�^�)
2

+(�_�)+�

�
sup
1�t�n

E k ntk
2

�1=2
= O

 
1

n��1=2
n
�_�
2
+(�^�)

n
(�^�)
2

+(�_�)

!
= O

�
1

n��1=2

�
:

This shows that the second term of (45) is op (1) and establishes (41).

Proof of Lemma 3.1. Using the fact that supt2[0;1]
xbntc = Op

�
n(�^1)=2

�
and

(43) we obtain the following uniform bound for k ntk:

sup
1�t�n

k ntk � sup
1�j�n

kxj�1k sup
1�t�n

tX
j=1

kRnzkt�j = Op
�
n�=2+�

�
: (46)

For part (i), using (13) we obtain

1

n
1+�
2

 
nX
t=1

u0t~z
0
t �

nX
t=1

u0tz
0
t

!
=

1

n
1+�
2
+�

nX
t=1

u0t 
0
ntC = op (1)

by (41) since � < �.
For part (ii), using the recursive formulae (2) and (44) we obtain

xt 
0
nt = Rnxt�1 

0
n;t�1Rnz +Rnxt�1x

0
t�1 + uxt 

0
n;t�1Rnz + uxtx

0
t�1:

Vectorising and summing along t 2 f1; :::; ng we obtain

[IK2 �Rnz 
Rn]

nX
t=1

�
 n;t�1 
 xt�1

�
=  n;0 
 x0 �  n;n 
 xn + (IK 
Rn)

nX
t=1

(xt�1 
 xt�1)

+ (Rnz 
 IK)

nX
t=1

�
 n;t�1 
 uxt

�
+ (IK 
Rn)

nX
t=1

(xt�1 
 uxt)

= (IK 
Rn)
nX
t=1

(xt�1 
 xt�1) + op

�
n
1+�
2
+�
�
+Op (n) ;
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since
Pn

t=1

�
 n;t�1 
 uxt

�
= op

�
n
1+�
2
+�
�
by (41) and

Pn
t=1 (xt�1 
 uxt) = Op (n) for

any � > 0 (see equation (10) of MP). Since

IK2 �Rnz 
Rn =
1

n�

�
�Cz 
 IK +O

�
1

n���

��
;

multiplying the above expression by n�1 (n��C 
 IK) yields

1

n1+�

nX
t=1

�
C

n�
 n;t�1 
 xt�1

�
= �

�
C�1z C 
 IK

� 1

n1+�

nX
t=1

(xt�1 
 xt�1) + op (1) :

The result now follows by undoing the vectorisation and using (13).
For part (iii), (13) yields

1

n1+�


nX
t=1

~zt~z
0
t �

nX
t=1

ztz
0
t

 =
1

n1+�+�

 1n�
nX
t=1

C nt 
0
ntC +

nX
t=1

zt 
0
ntC + C

nX
t=1

 ntz
0
t


� kCk2

n1+�+2�

nX
t=1

k ntk
2 +

2 kCk
n1+�+�

nX
t=1

k ntk kztk

� kCk2
�
sup1�t�n k ntk

n�=2+�

�2
+

�
sup1�t�n k ntk

n�=2+�

�
Op (1)

= op (1)

by (46) since the Lyapounov inequality gives

E

 
1

n1+�=2

nX
t=1

kztk
!
�
�
1

n�
sup
1�t�n

E kztk2
�1=2

= O (1) :

Proof of Theorem 3.4. For any � 2 (2=3; 1), Lemma 2.1 and (15) yield

n
1+�
2

�
~An � A

�
=

1

n
1+�
2

�
U 00
~Z � n�̂0x

�� 1

n1+�
X 0 ~Z

��1
=

1

n
1+�
2

(U 00Z � n�0x)

�
1

n1+�
X 0 ~Z

��1
+Op

�
n
1��
2

�
�̂0x ��0x

��
= Un (1)

�
1

n1+�
X 0 ~Z

��1
+ op (1) :

For n�1�� ~Z 0X, Lemma 3.1(ii) shows that n�1�� ~Z 0X = n�1��Z 0X � Ln; where

Ln =
1

n1+�

nX
t=1

xt�1x
0
t�1CC

�1
z ;
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and the asymptotic behavior of n�1��Z 0X is given by (20). Under Assumption N(i),
Ln = op (1). Under N(ii), Ln )

R 1
0
JCJ

0
CdsCC

�1
z , giving

1

n1+�
~Z 0X ) �

�Z 1

0

JCdB
0
x + 
xx

�
C�1z �

Z 1

0

JCJ
0
CdsCC

�1
z

= �
�

xx +

Z 1

0

JCdJ
0
C

�
C�1z :

Under N(iii), equation (7) in MP gives Ln !p VxxCC
�1
z . Thus, in all of the above

cases, n�1�� ~Z 0X ) �~	xxC�1z . Now, by Lemma 3.1(ii), (17), (18) and Lemma 3.2,
n�1�� ~Z 0X and Un (1) converge jointly in distribution and are asymptotically inde-
pendent. Thus,

n
1+�
2 vec

�
~An � A

�
=

"�
1

n1+�
~Z 0X

��1

 Im

#
Un (1) + op (1)

has the required mixed Gaussian limit distribution.

Proof of Lemma 3.5. For part (i), we can use (23) to write

1

n
1+�
2

(
nX
t=1

u0t~z
0
t �

nX
t=1

u0tx
0
t

)
=

1

n
1+�
2

nX
t=1

u0t

�
Cz
n�
 nt �Rtnzx0

�0
=

1

n
1+�
2
+�

nX
t=1

u0t 
0
ntCz + op

�
1

n
1��
2

�
;

because x0 = op
�
n�=2

�
and

Pn
t=1 (R

t�1
nz 
 u0t) = Op

�
n�=2

�
by MP. The leading term

in the above display is op (1) by (41) since � < �.
For part (ii), we make repeated use of the decomposition (23) and Proposition

A2. By (23),

1

n1+�

 
nX
t=1

xt~z
0
t �

nX
t=1

xtx
0
t

!
=

1

n1+�

"
1

n�

nX
t=1

xt 
0
ntCz �

nX
t=1

xtx
0
0R

t
nz

#

=
1

n1+�+�

nX
t=1

xt 
0
ntCz + op

�
1

n1��

�
;

since sup1�t�n kxtk = Op
�
n�=2

�
implies that 1

n1+�

nX
t=1

xtx
0
0R

t
nz

 � kx0k
n�=2

1

n1+�=2
sup
1�t�n

kxtk
nX
t=1

kRnzkt =
kx0k
n�=2

Op

�
1

n1��

�
:
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For the leading term, we know from MP that sup1�t�nE
�
kxtk2

�
= O (n�). Thus,

the Cauchy Schwarz inequality and (40) yield 1

n1+�+�

nX
t=1

( nt 
 xt)


L1

� 1

n1+�+�

nX
t=1

E (k ntk kxtk)

� 1

n1+�+�

nX
t=1

�
E k ntk

2�1=2 �E kxtk2�1=2
� 1

n�+�

�
sup
1�t�n

E k ntk
2 sup
1�j�n

E kxjk2
�1=2

= O

�
1

n(���)=2

�
:

Since � > �, this shows the result for n�1��
Pn

t=1 xt~z
0
t. It remains to show the

result for n�1��
Pn

t=1 ~zt~z
0
t: By (23) and given the derivations for n

�1��Pn
t=1 xt~z

0
t, it

is su¢ cient to prove that

1

n1+�

nX
t=1

Rtnzx0x
0
0R

t
nz;

1

n1+�+�

nX
t=1

 ntx
0
0R

t
nz and

1

n1+�+2�

nX
t=1

 nt 
0
nt

all converge to 0 in probability. The �rst term in the above display is clearly
Op
�
n�(1��)

�
. For the second term, (46) gives 1

n1+�+�

nX
t=1

 ntx
0
0R

t
nz

 � kx0k
n1+�+�

sup
1�t�n

k ntk
nX
t=1

kRnzkt

= op

�
n�=2+�

n1+�=2

�
= op

�
1

n1��

�
:

For the third term, (40) implies that

E

 1

n1+�+2�

nX
t=1

 nt 
0
nt

 � 1

n1+�+2�

nX
t=1

E k ntk
2

� 1

n�+2�
sup
1�t�n

E k ntk
2 = O

�
1

n���

�
:

This completes the proof of the lemma.

Proof of Lemma 3.6. Proposition A2 and (13) imply that

1

n

nX
t=1

(~zt�1 
 ut) =
1

n

nX
t=1

(zt�1 
 ut) + op (1) : (47)
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Note that, by construction, ~zt satis�es the recursive formula

~zt = Rnz~zt�1 + vt; vt = uxt +
C

n�
xt�1: (48)

For part (i), using (48) together with the recursive property of xt, we obtain

xt~z
0
t = Rnxt�1~z

0
t�1Rnz +Rnxt�1v

0
t + uxt~z

0
t�1Rnz + uxtv

0
t:

Vectorising and summing over f1; :::; ng we obtain

(IK2 �Rzn 
Rn)
1

n

nX
t=1

(~zt�1 
 xt�1)

= [IK2 + op (1)]

(
1

n

nX
t=1

(vt 
 xt�1) +
1

n

nX
t=1

(~zt�1 
 uxt) +
1

n

nX
t=1

(vt 
 uxt)

)

=
1

n

nX
t=1

(uxt 
 xt�1) +
1

n1+�

nX
t=1

(Cxt�1 
 xt�1) +
1

n

nX
t=1

(zt�1 
 uxt)

+
1

n

nX
t=1

(uxt 
 uxt) + op (1)

= vec

(
1

n

nX
t=1

xt�1u
0
xt +

1

n

nX
t=1

uxtz
0
t�1 +

1

n

nX
t=1

uxtu
0
xt +

1

n1+�

nX
t=1

xt�1x
0
t�1C

)

where the second asymptotic equivalence follows from (47) and
Pn

t=1 xt�1u
0
xt = Op (n).

Now xt and zt are both mildly integrated processes with innovations uxt, so Lemma
3.1(d) of MP implies that n�1

Pn
t=1 uxtz

0
t�1 !p �xx and n�1

Pn
t=1 xt�1u

0
xt !p �

0
xx.

Also, applying the integration by parts formula to Vxx =
R1
0
erC
xxe

rCdr, we obtain

CVxx + VxxC = �
xx: (49)

Therefore,

1

n1+�

nX
t=1

(~zt�1 
 xt�1) !p � (Cz 
 IK + IK 
 C)�1 vec (
xx + VxxC)

= (Cz 
 IK + IK 
 C)�1 vec (CVxx)

= �
Z 1

0

�
erCz 
 erC

�
drvec (CVxx)

= vec (�CVxz)

which shows part (i).
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For part (ii), (48) yields

(IK2 �Rzn 
Rnz)
1

n

nX
t=1

(~zt�1 
 ~zt�1) = [IK2 + op (1)]

� 1
n
vec

(
nX
t=1

vt~z
0
t�1 +

nX
t=1

~zt�1v
0
t +

nX
t=1

vtv
0
t

)
:

Now since
Pn

t=1 xt�1u
0
xt = Op (n) and

Pn
t=1 xt�1x

0
t�1 = Op (n

1+�),

1

n

nX
t=1

vtv
0
t =

1

n

nX
t=1

uxtu
0
xt +Op

�
n��

�
!p E (ux1u

0
x1) :

Also, using (47) and part (i),

1

n

nX
t=1

~zt�1v
0
t =

1

n

nX
t=1

~zt�1u
0
xt +

1

n1+�

nX
t=1

~zt�1x
0
t�1C

=
1

n

nX
t=1

zt�1u
0
xt � V0xzC2 + op (1)

= �0xx � V0xzC2 + op (1) :

Collecting the above asymptotic results we obtain

1

n1+�

nX
t=1

(~zt�1 
 ~zt�1)!p � (Cz 
 IK + IK 
 Cz)
�1 vec

�

xx � C2Vxz � V0xzC2

	
:

Applying the integration by parts formula to Vxz =
R1
0
erCVxxe

rCzdr and using (49)

C2Vxz + V0xzC2 = �VxxC � CzV0xzC � CVxx � CVxzCz
= 
xx � (CzV0xzC + CVxzCz) :

Thus,

1

n1+�

nX
t=1

(~zt�1 
 ~zt�1) !p

�Z 1

0

esCz 
 esCzds

�
vec (CzV0xzC + CVxzCz)

= vec
Z 1

0

esCz (CzV0xzC + CVxzCz) esCzds;

and part (ii) follows.
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For part (iii), using (48), (13), the fact that
Pn

t=1 u0tx
0
t�1 = Op (n) and the BN

decomposition we obtain
nX
t=1

u0t~z
0
t =

nX
t=1

u0t~z
0
t�1Rzn +

nX
t=1

u0tu
0
xt +Op

�
n1��

�
= F0 (1)

nX
t=1

"t~z
0
t�1Rzn +

nX
t=1

u0tu
0
xt �

nX
t=1

�~"0tz
0
t�1Rzn

� 1

n�

nX
t=1

�~"0t 
0
nt�1CRzn +Op

�
n1��

�
: (50)

As shown in the proof of Proposition A2 (where asymptotic negligibility of the second

term of (45) was established) n��
Pn

t=1�~"0t 
0
nt�1 = op

�
n
1+�
2

�
for any � > 1=2. For

the third term of (50), summation by parts yields
nX
t=1

�~"0tz
0
t�1 =

nX
t=1

~"0t�z
0
t +Op

�
n�=2

�
=

nX
t=1

~"0tu
0
xt +

1

n�

nX
t=1

~"0tz
0
t�1Cz +Op

�
n�=2

�
=

nX
t=1

~"0tu
0
xt +Op

�
n1��

�
+Op

�
n�=2

�
by MP. Since � = � > 1=2, and

Pn
t=1 fu0tu0xt � E (u0tu

0
xt)g and

Pn
t=1 f~"0tu0xt � �0xg

both have rate Op
�
n�1=2

�
by the stationary ergodic CLT, (50) implies that

1

n
1+�
2

nX
t=1

vec (u0t~z0t ��0x) =
[IK 
 F0 (1)]

n
1+�
2

nX
t=1

(~zt�1 
 "t) + op (1) :

A standard martingale CLT implies that the right side of the above expression con-
verges in distribution to

N

 
0;

(
plimn!1n

�(1+�)
nX
t=1

~zt�1~z
0
t�1

)

 
00

!
which, in view of part (ii), yields the required limit distribution.

Proof of Lemma 4.2. Part (i) can be deduced by an identical method to that
used in establishing (17) (18):

(IKKz �Rzn 
Rn)
1

n

nX
t=1

vec
�
xt�1z

0
t�1
�
= vec (Jn + 
xz) + op (1) :

When � > �;

IKKz �Rzn 
Rn = �
1

n�
(Cz 
 IK)

�
IK +Op

�
1

n���

��
as n!1
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and the lemma follows by standard unit root asymptotics and, in the 1 > � > � case,
from the fact that Jn = op (1). It remains to show the lemma when � � � < 1. When
� = �, Jn = op (1) and IKKz �Rzn 
Rn ! � (Cz 
 IK + IKz 
 C), so

1

n1+�

nX
t=1

vec
�
xt�1z

0
t�1
�
=

Z 1

0

�
erCz 
 erC

�
dr vec
xz + op (1) = vecVxz:

When � > �, Jn = op (1) and n� (IKKz �Rzn 
Rn)! �IKz 
 C so

1

n1+�

nX
t=1

vec
�
xt�1z

0
t�1
�
= �

�
IKz 
 C�1

�
vec
xz + op (1)

= vec
�
C�1
xz

�
:
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